hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a190fd12c879dcd2af13b17cd522eb61ccbb41a
3,655
py
Python
sent_levl/pre_process.py
tejasvaidhyadev/extract_covid_entity
6dcd1711d889d9e43af70955c98d3f7d2ce2a3f9
[ "MIT" ]
6
2020-09-24T04:31:08.000Z
2021-12-28T12:49:21.000Z
sent_levl/pre_process.py
tejasvaidhyadev/extract_covid_entity
6dcd1711d889d9e43af70955c98d3f7d2ce2a3f9
[ "MIT" ]
null
null
null
sent_levl/pre_process.py
tejasvaidhyadev/extract_covid_entity
6dcd1711d889d9e43af70955c98d3f7d2ce2a3f9
[ "MIT" ]
3
2020-12-22T04:49:06.000Z
2021-04-22T07:18:44.000Z
# Input: data/wtwt_ids.json and data/scrapped_full/* # Output: data/pre_processed.json # Read all existing scrapped files and preprocess, tokenize the full_text part # Read wtwt_ids.json and for each tweet_id, append toked_text. Save into pre_processed.json import json import os import sys import glob import re from ekphrasis.classes.preprocessor import TextPreProcessor from ekphrasis.classes.tokenizer import SocialTokenizer from ekphrasis.dicts.emoticons import emoticons FILES = ['can_not_test-add_text.jsonl', 'cure_and_prevention-add_text.jsonl', 'death-add_text.jsonl', 'positive-add_text.jsonl', 'negative-add_text.jsonl'] FILES = ['../data/' + FILE for FILE in FILES EMOJI_PATTERN = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" "]+", flags=re.UNICODE) text_processor = TextPreProcessor( normalize=['url', 'email', 'percent', 'money', 'phone', 'user', 'time', 'url', 'date', 'number'], annotate={"hashtag", "allcaps", "elongated", "repeated", 'emphasis', 'censored'}, fix_html=True, segmenter="twitter", corrector="twitter", unpack_hashtags=True, unpack_contractions=True, spell_correct_elong=True, tokenizer=SocialTokenizer(lowercase=True).tokenize, dicts=[emoticons] ) REMOVE_TAGS = [ "<emphasis>", "<kiss>", "<repeated>", "<laugh>", "<allcaps>", "</allcaps>", "<angel>", "<elongated>", "<tong>", "<annoyed>", "<censored>", "<happy>", "<percent>", "<wink>", "<headdesk>", "<surprise>", "<date>", "<time>", "<url>", "<sad>", "<email>", "<phone>", "<hashtag>", "</hashtag>", "<number>", "<money>" ] ADD_TO_GLOVE = ["<user>"] PUNCTS = '''()-[]{;}\,<>/@#'%"^*_~.?!| +:=`''' def decontracted(phrase): phrase = re.sub(r"won\'t", "will not", phrase) phrase = re.sub(r"can\'t", "can not", phrase) phrase = re.sub(r"n\'t", " not", phrase) phrase = re.sub(r"\'re", " are", phrase) phrase = re.sub(r"\'s", " is", phrase) phrase = re.sub(r"\'d", " would", phrase) phrase = re.sub(r"\'ll", " will", phrase) phrase = re.sub(r"\'t", " not", phrase) phrase = re.sub(r"\'ve", " have", phrase) phrase = re.sub(r"\'m", " am", phrase) phrase = re.sub(r"\'m", " am", phrase) phrase = re.sub(r"1st", " first ", phrase) phrase = re.sub(r"2nd", " second ", phrase) phrase = re.sub(r"3rd", " third ", phrase) phrase = re.sub(r"—", " ", phrase) phrase = re.sub(r"-", " ", phrase) return phrase def pre_process_single(tweet): tweet_toked_text = [] de_emojified_text = tweet.encode('ascii', 'ignore').decode('ascii') de_emojified_text = EMOJI_PATTERN.sub(r' ', de_emojified_text) de_emojified_text = decontracted(de_emojified_text) company_normalize_text = de_emojified_text tokens = text_processor.pre_process_doc(company_normalize_text) for token in tokens: if token in REMOVE_TAGS: pass else: tweet_toked_text.append(token) if len(tweet_toked_text) < 1: pass#print(tweet, tokens, t_id) return tweet_toked_text for file in FILES: savepath = "preproced_" + file[:-1] fin = open(file, 'r') lines = fin.read().split("\n") event_data = [] for line in lines: if line.strip() == "": continue j = json.loads(line) j['prepro'] = " ".join(pre_process_single(j['text'])) event_data.append(j.copy()) fin.close() fout = open(savepath, "w+") json.dump(event_data, fout) fout.close()
31.508621
93
0.633105
4a191076d05e6427e03cf4357f3fedee5e0a4630
986
py
Python
python/modules/softmax.py
RachelBlin/keras-retinanet
248b5463ce663a35350b222fd469b506b37ce118
[ "Apache-2.0" ]
2
2020-11-12T11:58:53.000Z
2021-04-14T12:24:42.000Z
python/modules/softmax.py
RachelBlin/keras-retinanet
248b5463ce663a35350b222fd469b506b37ce118
[ "Apache-2.0" ]
null
null
null
python/modules/softmax.py
RachelBlin/keras-retinanet
248b5463ce663a35350b222fd469b506b37ce118
[ "Apache-2.0" ]
3
2019-11-14T14:01:58.000Z
2021-04-14T12:24:50.000Z
''' @author: Sebastian Lapuschkin @author: Gregoire Montavon @maintainer: Sebastian Lapuschkin @contact: sebastian.lapuschkin@hhi.fraunhofer.de, wojciech.samek@hhi.fraunhofer.de @date: 14.08.2015 @version: 1.2+ @copyright: Copyright (c) 2015-2017, Sebastian Lapuschkin, Alexander Binder, Gregoire Montavon, Klaus-Robert Mueller, Wojciech Samek @license : BSD-2-Clause ''' import numpy as np from .module import Module # ------------------------------- # Softmax layer # ------------------------------- class SoftMax(Module): ''' Softmax Layer ''' def __init__(self): Module.__init__(self) def forward(self,X): self.X = X self.Y = np.exp(X) / np.exp(X).sum(axis=1,keepdims=True) return self.Y def lrp(self,R,*args,**kwargs): # just propagate R further down. # makes sure subroutines never get called. #return R*self.X return R def clean(self): self.X = None self.Y = None
24.65
133
0.609533
4a1910cc531c431313cf64a1dc301c2751979929
1,101
py
Python
app/ch13-validation/starter/pypi_org/data/db_session.py
callumrollo/data-driven-web-apps-with-flask
550096856145e7cc6bba1d3df7f28d923e417531
[ "MIT" ]
null
null
null
app/ch13-validation/starter/pypi_org/data/db_session.py
callumrollo/data-driven-web-apps-with-flask
550096856145e7cc6bba1d3df7f28d923e417531
[ "MIT" ]
null
null
null
app/ch13-validation/starter/pypi_org/data/db_session.py
callumrollo/data-driven-web-apps-with-flask
550096856145e7cc6bba1d3df7f28d923e417531
[ "MIT" ]
null
null
null
import sqlalchemy as sa import sqlalchemy.orm as orm from sqlalchemy.orm import Session from pypi_org.data.modelbase import SqlAlchemyBase __factory = None def global_init(db_file: str): global __factory if __factory: return if not db_file or not db_file.strip(): raise Exception("You must specify a db file.") conn_str = 'sqlite:///' + db_file.strip() print("Connecting to DB with {}".format(conn_str)) # Adding check_same_thread = False after the recording. This can be an issue about # creating / owner thread when cleaning up sessions, etc. This is a sqlite restriction # that we probably don't care about in this example. engine = sa.create_engine(conn_str, echo=False, connect_args={"check_same_thread": False}) __factory = orm.sessionmaker(bind=engine) # noinspection PyUnresolvedReferences import pypi_org.data.__all_models SqlAlchemyBase.metadata.create_all(engine) def create_session() -> Session: global __factory session: Session = __factory() session.expire_on_commit = False return session
27.525
94
0.726612
4a1911302c9949eed5f66f4610f16c0c65cddcc2
425
py
Python
part-requests/test-requests.py
wuljchange/interesting_python
3fdf9f7f17f7b361be030bb4eadf7aab889b15fe
[ "MIT" ]
1
2019-03-29T14:09:43.000Z
2019-03-29T14:09:43.000Z
part-requests/test-requests.py
wuljchange/interesting_python
3fdf9f7f17f7b361be030bb4eadf7aab889b15fe
[ "MIT" ]
null
null
null
part-requests/test-requests.py
wuljchange/interesting_python
3fdf9f7f17f7b361be030bb4eadf7aab889b15fe
[ "MIT" ]
null
null
null
# ---------------------------------------------- # -*- coding: utf-8 -*- # @Time : 2019-11-08 11:42 # @Author : 吴林江 # @Email : wulinjiang1@kingsoft.com # @File : test-requests.py # ---------------------------------------------- import requests if __name__ == "__main__": url = "https://cn.bing.com/" resp = requests.get("https://"+"cn.bing.com", verify=True) print(resp.status_code) print(resp.url)
28.333333
62
0.470588
4a1911da145e4fe69d1a35e2c1e07cce11c2c49d
3,164
py
Python
api/tests/opentrons/config/test_reset.py
knownmed/opentrons
d02eb3c6cbf9f1c8c05c5e9e1dac30a92a8c5e6c
[ "Apache-2.0" ]
235
2017-10-27T20:37:27.000Z
2022-03-30T14:09:49.000Z
api/tests/opentrons/config/test_reset.py
knownmed/opentrons
d02eb3c6cbf9f1c8c05c5e9e1dac30a92a8c5e6c
[ "Apache-2.0" ]
8,425
2017-10-26T15:25:43.000Z
2022-03-31T23:54:26.000Z
api/tests/opentrons/config/test_reset.py
knownmed/opentrons
d02eb3c6cbf9f1c8c05c5e9e1dac30a92a8c5e6c
[ "Apache-2.0" ]
130
2017-11-09T21:02:37.000Z
2022-03-15T18:01:24.000Z
from unittest.mock import patch import pytest from opentrons.config import reset @pytest.fixture def mock_reset_boot_scripts(): with patch("opentrons.config.reset.reset_boot_scripts") as m: yield m @pytest.fixture def mock_reset_labware_calibration(): with patch("opentrons.config.reset.reset_labware_calibration") as m: yield m @pytest.fixture def mock_labware(): with patch("opentrons.config.reset.delete") as m: yield m @pytest.fixture def mock_reset_pipette_offset(): with patch("opentrons.config.reset.reset_pipette_offset") as m: yield m @pytest.fixture def mock_reset_deck_calibration(): with patch("opentrons.config.reset.reset_deck_calibration") as m: yield m @pytest.fixture def mock_reset_tip_length_calibrations(): with patch("opentrons.config.reset.reset_tip_length_calibrations") as m: yield m @pytest.fixture def mock_cal_storage_delete(): with patch("opentrons.config.reset.delete", autospec=True) as m: yield m def test_reset_empty_set( mock_reset_boot_scripts, mock_reset_labware_calibration, mock_reset_pipette_offset, mock_reset_deck_calibration, mock_reset_tip_length_calibrations, ): reset.reset(set()) mock_reset_labware_calibration.assert_not_called() mock_reset_boot_scripts.assert_not_called() mock_reset_pipette_offset.assert_not_called() mock_reset_deck_calibration.assert_not_called() mock_reset_tip_length_calibrations.assert_not_called() def test_reset_all_set( mock_reset_boot_scripts, mock_reset_labware_calibration, mock_reset_pipette_offset, mock_reset_deck_calibration, mock_reset_tip_length_calibrations, ): reset.reset( { reset.ResetOptionId.boot_scripts, reset.ResetOptionId.labware_calibration, reset.ResetOptionId.deck_calibration, reset.ResetOptionId.pipette_offset, reset.ResetOptionId.tip_length_calibrations, } ) mock_reset_labware_calibration.assert_called_once() mock_reset_boot_scripts.assert_called_once() mock_reset_pipette_offset.assert_called_once() mock_reset_deck_calibration.assert_called_once() mock_reset_tip_length_calibrations.assert_called_once() def test_labware_calibration_reset(mock_labware): reset.reset_labware_calibration() # Check side effecting function calls mock_labware.clear_calibrations.assert_called_once() def test_deck_calibration_reset(mock_cal_storage_delete): reset.reset_deck_calibration() mock_cal_storage_delete.delete_robot_deck_attitude.assert_called_once() mock_cal_storage_delete.clear_pipette_offset_calibrations.assert_called_once() def test_tip_length_calibrations_reset(mock_cal_storage_delete): reset.reset_tip_length_calibrations() mock_cal_storage_delete.clear_tip_length_calibration.assert_called_once() mock_cal_storage_delete.clear_pipette_offset_calibrations.assert_called_once() def test_pipette_offset_reset(mock_cal_storage_delete): reset.reset_pipette_offset() mock_cal_storage_delete.clear_pipette_offset_calibrations.assert_called_once()
29.570093
82
0.787927
4a1912e15a013de4a71dca73cef8096fa8ad444d
37,168
py
Python
python/oneflow/nn/modules/loss.py
Oneflow-Inc/oneflow
b105cacd1e3b0b21bdec1a824a2c125390a2a665
[ "Apache-2.0" ]
3,285
2020-07-31T05:51:22.000Z
2022-03-31T15:20:16.000Z
python/oneflow/nn/modules/loss.py
Oneflow-Inc/oneflow
b105cacd1e3b0b21bdec1a824a2c125390a2a665
[ "Apache-2.0" ]
2,417
2020-07-31T06:28:58.000Z
2022-03-31T23:04:14.000Z
python/oneflow/nn/modules/loss.py
Oneflow-Inc/oneflow
b105cacd1e3b0b21bdec1a824a2c125390a2a665
[ "Apache-2.0" ]
520
2020-07-31T05:52:42.000Z
2022-03-29T02:38:11.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Optional import oneflow as flow from oneflow.framework.tensor import Tensor from oneflow.nn.module import Module from oneflow.nn.modules.constant import _ConstantBase class _Loss(Module): def __init__(self, reduction: str = "mean") -> None: super(_Loss, self).__init__() assert reduction in ["none", "mean", "sum"] self.reduction = reduction class _WeightedLoss(_Loss): def __init__( self, weight: Optional[Tensor] = None, reduction: str = "mean" ) -> None: super(_WeightedLoss, self).__init__(reduction=reduction) self.weight = weight class L1Loss(_Loss): """This operator computes the L1 Loss between each element in `input` and `target`. The equation is: if reduction = "none": .. math:: output = |Target - Input| if reduction = "mean": .. math:: output = \\frac{1}{n}\\sum_{i=1}^n|Target_i - Input_i| if reduction = "sum": .. math:: output = \\sum_{i=1}^n|Target_i - Input_i| Args: input (oneflow.Tensor): The input Tensor. target (oneflow.Tensor): The target Tensor. reduction (str): The reduce type, it can be one of "none", "mean", "sum". Defaults to "mean". Returns: oneflow.Tensor: The result Tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor([[1, 1, 1], [2, 2, 2], [7, 7, 7]], dtype = flow.float32) >>> target = flow.tensor([[4, 4, 4], [4, 4, 4], [4, 4, 4]], dtype = flow.float32) >>> m = flow.nn.L1Loss(reduction="none") >>> out = m(input, target) >>> out tensor([[3., 3., 3.], [2., 2., 2.], [3., 3., 3.]], dtype=oneflow.float32) >>> m_mean = flow.nn.L1Loss(reduction="mean") >>> out = m_mean(input, target) >>> out tensor(2.6667, dtype=oneflow.float32) >>> m_mean = flow.nn.L1Loss(reduction="sum") >>> out = m_mean(input, target) >>> out tensor(24., dtype=oneflow.float32) """ def __init__(self, reduction: str = "mean") -> None: super(L1Loss, self).__init__(reduction) def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.l1_loss(input, target, self.reduction) class CrossEntropyLoss(_WeightedLoss): """This criterion combines :class:`~flow.nn.LogSoftmax` and :class:`~flow.nn.NLLLoss` in one single class. It is useful when training a classification problem with `C` classes. The `input` is expected to contain raw, unnormalized scores for each class. `input` has to be a Tensor of size either :math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \\geq 1` for the `K`-dimensional case (described later). This criterion expects a class index in the range :math:`[0, C-1]` as the `target` for each value of a 1D tensor of size `minibatch`; The loss can be described as: .. math:: \\text{loss}(x, class) = -\\log\\left(\\frac{\\exp(x[class])}{\\sum_j \\exp(x[j])}\\right) = -x[class] + \\log\\left(\\sum_j \\exp(x[j])\\right) Can also be used for higher dimension inputs, such as 2D images, by providing an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \\geq 1`, where :math:`K` is the number of dimensions, and a target of appropriate shape (see below). Args: reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the weighted mean of the output is taken, ``'sum'``: the output will be summed. Default: ``'mean'`` For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor( ... [[-0.1664078, -1.7256707, -0.14690138], ... [-0.21474946, 0.53737473, 0.99684894], ... [-1.135804, -0.50371903, 0.7645404]], dtype=flow.float32) >>> target = flow.tensor(np.array([0, 1, 2]), dtype=flow.int32) >>> out = flow.nn.CrossEntropyLoss(reduction="none")(input, target) >>> out tensor([0.8020, 1.1167, 0.3583], dtype=oneflow.float32) >>> out_sum = flow.nn.CrossEntropyLoss(reduction="sum")(input, target) >>> out_sum tensor(2.2769, dtype=oneflow.float32) >>> out_mean = flow.nn.CrossEntropyLoss(reduction="mean")(input, target) >>> out_mean tensor(0.7590, dtype=oneflow.float32) """ def __init__( self, weight: Optional[Tensor] = None, ignore_index: int = -100, reduction: str = "mean", ) -> None: super(CrossEntropyLoss, self).__init__(weight, reduction) self.ignore_index = ignore_index def forward(self, input, target): return flow._C.cross_entropy( input, target, self.weight, self.ignore_index, self.reduction ) class BCELoss(_WeightedLoss): """This operator computes the binary cross entropy loss. The equation is: if reduction = "none": .. math:: out = -(Target_i*log(Input_i) + (1-Target_i)*log(1-Input_i)) if reduction = "mean": .. math:: out = -\\frac{1}{n}\\sum_{i=1}^n(Target_i*log(Input_i) + (1-Target_i)*log(1-Input_i)) if reduction = "sum": .. math:: out = -\\sum_{i=1}^n(Target_i*log(Input_i) + (1-Target_i)*log(1-Input_i)) Args: weight (oneflow.Tensor, optional): The manual rescaling weight to the loss. Default to None, whose corresponding weight value is 1. reduction (str, optional): The reduce type, it can be one of "none", "mean", "sum". Defaults to "mean". Attention: The input value must be in the range of (0, 1). Or the loss function may return `nan` value. Returns: oneflow.Tensor: The result Tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.Tensor(np.array([[1.2, 0.2, -0.3], [0.7, 0.6, -2]]).astype(np.float32)) >>> target = flow.Tensor(np.array([[0, 1, 0], [1, 0, 1]]).astype(np.float32)) >>> weight = flow.Tensor(np.array([[2, 2, 2], [2, 2, 2]]).astype(np.float32)) >>> activation = flow.nn.Sigmoid() >>> sigmoid_input = activation(input) >>> m = flow.nn.BCELoss(weight, reduction="none") >>> out = m(sigmoid_input, target) >>> out tensor([[2.9266, 1.1963, 1.1087], [0.8064, 2.0750, 4.2539]], dtype=oneflow.float32) >>> m_sum = flow.nn.BCELoss(weight, reduction="sum") >>> out = m_sum(sigmoid_input, target) >>> out tensor(12.3668, dtype=oneflow.float32) >>> m_mean = flow.nn.BCELoss(weight, reduction="mean") >>> out = m_mean(sigmoid_input, target) >>> out tensor(2.0611, dtype=oneflow.float32) >>> m_none = flow.nn.BCELoss() >>> out = m_none(sigmoid_input, target) >>> out tensor(1.0306, dtype=oneflow.float32) """ def __init__( self, weight: Optional[Tensor] = None, reduction: str = "mean" ) -> None: super(BCELoss, self).__init__(weight, reduction) def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.binary_cross_entropy_loss( input, target, self.weight, self.reduction ) class NLLLoss(_WeightedLoss): """ The negative log likelihood loss. It is useful to train a classification problem with `C` classes. The `input` given through a forward call is expected to contain log-probabilities of each class. `input` has to be a Tensor of size either :math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \\geq 1` for the `K`-dimensional case (described later). Obtaining log-probabilities in a neural network is easily achieved by adding a `LogSoftmax` layer in the last layer of your network. You may use `CrossEntropyLoss` instead, if you prefer not to add an extra layer. The `target` that this loss expects should be a class index in the range :math:`[0, C-1]` where `C = number of classes`; The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: \\ell(x, y) = L = \\{l_1,\\dots,l_N\\}^\\top, \\quad l_n = - w_{y_n} x_{n,y_n}, \\quad w_{c} = \\mathbb{1}, where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight, and :math:`N` is the batch size. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then .. math:: \\ell(x, y) = \\begin{cases} \\sum_{n=1}^N \\frac{1}{N} l_n, & \\text{if reduction} = \\text{`mean';}\\\\ \\sum_{n=1}^N l_n, & \\text{if reduction} = \\text{`sum'.} \\end{cases} Can also be used for higher dimension inputs, such as 2D images, by providing an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \\geq 1`, where :math:`K` is the number of dimensions, and a target of appropriate shape (see below). In the case of images, it computes NLL loss per-pixel. Args: reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the weighted mean of the output is taken, ``'sum'``: the output will be summed. Default: ``'mean'`` For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor( ... [[-0.1664078, -1.7256707, -0.14690138], ... [-0.21474946, 0.53737473, 0.99684894], ... [-1.135804, -0.50371903, 0.7645404]], dtype=flow.float32) >>> target = flow.tensor(np.array([0, 1, 2]), dtype=flow.int32) >>> m = flow.nn.NLLLoss(reduction="none") >>> out = m(input, target) >>> out tensor([ 0.1664, -0.5374, -0.7645], dtype=oneflow.float32) >>> m = flow.nn.NLLLoss(reduction="sum") >>> out = m(input, target) >>> out tensor(-1.1355, dtype=oneflow.float32) >>> m = flow.nn.NLLLoss(reduction="mean") >>> out = m(input, target) >>> out tensor(-0.3785, dtype=oneflow.float32) """ def __init__( self, weight: Optional[Tensor] = None, ignore_index: int = -100, reduction: str = "mean", ) -> None: super(NLLLoss, self).__init__(weight, reduction) self.ignore_index = ignore_index def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.nll_loss( input, target, self.weight, self.ignore_index, self.reduction ) class KLDivLoss(_Loss): """The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kldivloss#torch.nn.KLDivLoss The Kullback-Leibler divergence loss measure `Kullback-Leibler divergence`_ is a useful distance measure for continuous distributions and is often useful when performing direct regression over the space of (discretely sampled) continuous output distributions. As with :class:`~torch.nn.NLLLoss`, the `input` given is expected to contain *log-probabilities* and is not restricted to a 2D Tensor. The targets are interpreted as *probabilities* by default, but could be considered as *log-probabilities* with :attr:`log_target` set to ``True``. This criterion expects a `target` `Tensor` of the same size as the `input` `Tensor`. The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: l(x,y) = L = \\{ l_1,\\dots,l_N \\}, \\quad l_n = y_n \\cdot \\left( \\log y_n - x_n \\right) where the index :math:`N` spans all dimensions of ``input`` and :math:`L` has the same shape as ``input``. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then: .. math:: \\ell(x, y) = \\begin{cases} \\operatorname{mean}(L), & \\text{if reduction} = \\text{`mean';} \\\\ \\operatorname{sum}(L), & \\text{if reduction} = \\text{`sum'.} \\end{cases} In default :attr:`reduction` mode ``'mean'``, the losses are averaged for each minibatch over observations **as well as** over dimensions. ``'batchmean'`` mode gives the correct KL divergence where losses are averaged over batch dimension only. ``'mean'`` mode's behavior will be changed to the same as ``'batchmean'`` in the next major release. .. _`kullback-leibler divergence`: https://en.wikipedia.org/wiki/Kullback-Leibler_divergence Args: reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``. ``'none'``: no reduction will be applied. ``'batchmean'``: the sum of the output will be divided by batchsize. ``'sum'``: the output will be summed. ``'mean'``: the output will be divided by the number of elements in the output. Default: ``'mean'`` log_target (bool, optional): Specifies whether `target` is passed in the log space. Default: ``False`` .. note:: :attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use :attr:`reduction` = ``'batchmean'`` which aligns with KL math definition. In the next major release, ``'mean'`` will be changed to be the same as ``'batchmean'``. Shape: - Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions - Target: :math:`(N, *)`, same shape as the input - Output: scalar by default. If :attr:``reduction`` is ``'none'``, then :math:`(N, *)`, the same shape as the input For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor([-0.9021705, 0.08798598, 1.04686249], dtype=flow.float32) >>> target = flow.tensor([1.22386942, -0.89729659, 0.01615712], dtype=flow.float32) >>> m = flow.nn.KLDivLoss(reduction="none", log_target=False) >>> out = m(input, target) >>> out tensor([ 1.3514, 0.0000, -0.0836], dtype=oneflow.float32) >>> m = flow.nn.KLDivLoss(reduction="mean", log_target=False) >>> out = m(input, target) >>> out tensor(0.4226, dtype=oneflow.float32) >>> m = flow.nn.KLDivLoss(reduction="sum", log_target=True) >>> out = m(input, target) >>> out tensor(5.7801, dtype=oneflow.float32) """ def __init__(self, reduction: str = "mean", log_target: bool = False) -> None: super(KLDivLoss, self).__init__(reduction) self.log_target = log_target def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.kl_div_loss(input, target, self.log_target, self.reduction) class MSELoss(_Loss): """The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html?highlight=mseloss#torch.nn.MSELoss Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input :math:`x` and target :math:`y`. The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: \\ell(x, y) = L = \\{l_1,\\dots,l_N\\}^\\top, \\quad l_n = \\left( x_n - y_n \\right)^2, where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then: .. math:: \\ell(x, y) = \\begin{cases} \\operatorname{mean}(L), & \\text{if reduction} = \\text{`mean';}\\\\ \\operatorname{sum}(L), & \\text{if reduction} = \\text{`sum'.} \\end{cases} :math:`x` and :math:`y` are tensors of arbitrary shapes with a total of :math:`n` elements each. The mean operation still operates over all the elements, and divides by :math:`n`. The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``. Args: reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Shape: - Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions - Target: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor( ... [[-0.02557137, 0.03101675, 1.37493674], ... [0.25599439, -1.08372561, -0.21006816]], dtype=flow.float32) >>> target = flow.tensor( ... [[-1.53105064, -0.68137555, 0.5931354], ... [-0.49158347, 0.93673637, 0.1324141]], dtype=flow.float32) >>> m = flow.nn.MSELoss(reduction="none") >>> out = m(input, target) >>> out tensor([[2.2665, 0.5075, 0.6112], [0.5589, 4.0823, 0.1173]], dtype=oneflow.float32) >>> m = flow.nn.MSELoss(reduction="mean") >>> out = m(input, target) >>> out tensor(1.3573, dtype=oneflow.float32) >>> m = flow.nn.MSELoss(reduction="sum") >>> out = m(input, target) >>> out tensor(8.1436, dtype=oneflow.float32) """ def __init__(self, reduction: str = "mean") -> None: super(MSELoss, self).__init__(reduction) def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.mse_loss(input, target, self.reduction) class MarginRankingLoss(_Loss): """Creates a criterion that measures the loss given inputs :math:`x1`, :math:`x2`, two 1D mini-batch `Tensors`, and a label 1D mini-batch tensor :math:`y` (containing 1 or -1). If :math:`y = 1` then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for :math:`y = -1`. The loss function for each sample in the mini-batch is: .. math:: \\text{loss}(x1, x2, y) = \\max(0, -y * (x1 - x2) + \\text{margin}) Args: margin (float, optional): Has a default value of :math:`0`. reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Shape: - `x1` : :math:`(N, D)` where `N` is the batch size and `D` is the size of a sample. - `x2` : :math:`(N, D)` where `N` is the batch size and `D` is the size of a sample. - Target: :math:`(N)` - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> x1 = flow.tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=flow.float32) >>> x2 = flow.tensor(np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]]), dtype=flow.float32) >>> target = flow.tensor(np.array([[1, -1, 1],[-1, 1, -1], [1, 1, 1]]), dtype=flow.float32) >>> m = flow.nn.MarginRankingLoss(margin =1.0, reduction="none") >>> out = m(x1, x2, target) >>> out tensor([[2., 1., 0.], [3., 0., 5.], [0., 0., 0.]], dtype=oneflow.float32) >>> m = flow.nn.MarginRankingLoss(margin = 0.3, reduction="sum") >>> out = m(x1, x2, target) >>> out tensor(8.2000, dtype=oneflow.float32) >>> m = flow.nn.MarginRankingLoss(margin = 10, reduction="mean") >>> out = m(x1, x2, target) >>> out tensor(8.3333, dtype=oneflow.float32) """ def __init__(self, margin: float = 0.0, reduction: str = "mean") -> None: super(MarginRankingLoss, self).__init__(reduction) self.margin = margin def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor: return flow._C.margin_ranking_loss( input1, input2, target, self.margin, self.reduction ) class CTCLoss(_Loss): """The Connectionist Temporal Classification loss. The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html#torch.nn.CTCLoss Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the probability of possible alignments of input to target, producing a loss value which is differentiable with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which limits the length of the target sequence such that it must be :math:`\\leq` the input length. Args: blank (int, optional): blank label. Default :math:`0`. reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the output losses will be divided by the target lengths and then the mean over the batch is taken. Default: ``'mean'`` zero_infinity (bool, optional): Whether to zero infinite losses and the associated gradients. Default: ``False`` Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Shape: - Log_probs: Tensor of size :math:`(T, N, C)`, where :math:`T = \\text{input length}`, :math:`N = \\text{batch size}`, and :math:`C = \\text{number of classes (including blank)}`. - Targets: Tensor of size :math:`(N, S)` or :math:`(\\operatorname{sum}(\\text{target_lengths}))`, where :math:`N = \\text{batch size}` and :math:`S = \\text{max target length, if shape is } (N, S)`. It represent the target sequences. Each element in the target sequence is a class index. And the target index cannot be blank (default=0). In the :math:`(N, S)` form, targets are padded to the length of the longest sequence, and stacked. In the :math:`(\\operatorname{sum}(\\text{target_lengths}))` form, the targets are assumed to be un-padded and concatenated within 1 dimension. - Input_lengths: Tuple or tensor of size :math:`(N)`, where :math:`N = \\text{batch size}`. It represent the lengths of the inputs (must each be :math:`\\leq T`). And the lengths are specified for each sequence to achieve masking under the assumption that sequences are padded to equal lengths. - Target_lengths: Tuple or tensor of size :math:`(N)`, where :math:`N = \\text{batch size}`. It represent lengths of the targets. Lengths are specified for each sequence to achieve masking under the assumption that sequences are padded to equal lengths. If target shape is :math:`(N,S)`, target_lengths are effectively the stop index :math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for each target in a batch. Lengths must each be :math:`\\leq S` If the targets are given as a 1d tensor that is the concatenation of individual targets, the target_lengths must add up to the total length of the tensor. Reference: A. Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks: https://www.cs.toronto.edu/~graves/icml_2006.pdf For example: .. code-block:: python >>> import oneflow as flow >>> log_probs = flow.tensor( ... [ ... [[-1.1031, -0.7998, -1.5200], [-0.9808, -1.1363, -1.1908]], ... [[-1.2258, -1.0665, -1.0153], [-1.1135, -1.2331, -0.9671]], ... [[-1.3348, -0.6611, -1.5118], [-0.9823, -1.2355, -1.0941]], ... [[-1.3850, -1.3273, -0.7247], [-0.8235, -1.4783, -1.0994]], ... [[-0.9049, -0.8867, -1.6962], [-1.4938, -1.3630, -0.6547]], ... ], dtype=flow.float32) >>> targets = flow.tensor([[1, 2, 2], [1, 2, 2]], dtype=flow.int32) >>> input_lengths = flow.tensor([5, 5], dtype=flow.int32) >>> target_lengths = flow.tensor([3, 3], dtype=flow.int32) >>> loss_mean = flow.nn.CTCLoss() >>> out = loss_mean(log_probs, targets, input_lengths, target_lengths) >>> out tensor(1.1376, dtype=oneflow.float32) >>> loss_sum = flow.nn.CTCLoss(blank=0, reduction="sum") >>> out = loss_sum(log_probs, targets, input_lengths, target_lengths) >>> out tensor(6.8257, dtype=oneflow.float32) """ def __init__( self, blank: int = 0, reduction: str = "mean", zero_infinity: bool = False ) -> None: super(CTCLoss, self).__init__(reduction) self.blank = blank self.zero_infinity = zero_infinity def forward( self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, ) -> Tensor: max_target_length = 0 if targets.ndim == 1: max_target_length = target_lengths.max().item() elif targets.ndim == 2: max_target_length = targets.shape[1] return flow._C.ctc_loss( log_probs, targets, input_lengths, target_lengths, max_target_length, self.blank, self.zero_infinity, self.reduction, ) class BCEWithLogitsLoss(_WeightedLoss): """This operator combines the `Sigmoid` and `BCELoss` together. For numerical stability, we apply some math tricks instead of using `Sigmoid` layer with `BCELoss`. The equation is: if :attr:`reduction` = ``"none"``: .. math:: out = -weight*[Pos\\_weight*y*log\\sigma({x}) + (1-y)*log(1-\\sigma(x))] if :attr:`reduction` = ``"mean"``: .. math:: out = -\\frac{weight}{n}\\sum_{i=1}^n[Pos\\_weight*y*log\\sigma({x}) + (1-y)*log(1-\\sigma(x))] if :attr:`reduction` = ``"sum"``: .. math:: out = -weight*\\sum_{i=1}^n[Pos\\_weight*y*log\\sigma({x}) + (1-y)*log(1-\\sigma(x))] Args: weight (Tensor, optional): The manual rescaling weight to the loss. Default: ``None`` size_average (bool, optional): Deprecated (see :attr:`reduction`). Default: ``True`` reduce (bool, optional): Deprecated (see :attr:`reduction`). Default: ``True`` reduction (str, optional): The reduce type, it can be one of ``"none"``, ``"mean"``, ``"sum"``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``"mean"`` pos_weight (Tensor, optional): The manual rescaling weight to the positive examples. Default: ``None`` Shape: - Input: :math:`(N,*)` where `*` means, any number of additional dimensions - Target: :math:`(N,*)`, same shape as the input - Output: scalar. If :attr:`reduction` is ``"none"``, then :math:`(N,*)`, same shape as input. For example: .. code-block:: python >>> import oneflow as flow >>> input = flow.tensor([[1.2, 0.2, -0.3], [0.7, 0.6, -2], [0.7, 0.6, -2]], dtype=flow.float32) >>> target = flow.tensor([[0, 1, 0], [1, 0, 1], [1, 0, 1]], dtype=flow.float32) >>> weight = flow.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=flow.float32) >>> pos_weight = flow.tensor([1.2, 1.3, 1.4], dtype=flow.float32) >>> m = flow.nn.BCEWithLogitsLoss(weight=weight, pos_weight=pos_weight, reduction="none") >>> out = m(input, target) >>> out tensor([[2.9266, 1.5552, 1.1087], [0.9676, 2.0750, 5.9554], [0.9676, 2.0750, 5.9554]], dtype=oneflow.float32) >>> m = flow.nn.BCEWithLogitsLoss(weight=weight, pos_weight=pos_weight, reduction="mean") >>> out = m(input, target) >>> out tensor(2.6207, dtype=oneflow.float32) >>> m = flow.nn.BCEWithLogitsLoss(weight=weight, pos_weight=pos_weight, reduction="sum") >>> out = m(input, target) >>> out tensor(23.5865, dtype=oneflow.float32) """ def __init__( self, weight: Optional[Tensor] = None, reduction: str = "mean", pos_weight: Optional[Tensor] = None, ) -> None: super(BCEWithLogitsLoss, self).__init__(weight, reduction) self.reduction = reduction self.pos_weight = pos_weight def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.binary_cross_entropy_with_logits_loss( input, target, self.weight, self.pos_weight, self.reduction ) class SmoothL1Loss(_Loss): """Creates a criterion that uses a squared term if the absolute element-wise error falls below beta and an L1 term otherwise. The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html It is less sensitive to outliers than :class:`torch.nn.MSELoss` and in some cases prevents exploding gradients (e.g. see the paper `Fast R-CNN <https://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf>`__ by Ross Girshick).. For a batch of size :math:`N`, the unreduced loss can be described as: .. math:: \\ell(x, y) = L = \\{l_1, ..., l_N\\}^T with .. math:: l_n = \\begin{cases} 0.5 (x_n - y_n)^2 / beta, & \\text{if } |x_n - y_n| < beta \\\\ |x_n - y_n| - 0.5 * beta, & \\text{otherwise } \\end{cases} If `reduction` is not `none`, then: .. math:: \\ell(x, y) = \\begin{cases} \\operatorname{mean}(L), & \\text{if reduction} = \\text{`mean';}\\\\ \\operatorname{sum}(L), & \\text{if reduction} = \\text{`sum'.} \\end{cases} .. note:: Smooth L1 loss can be seen as exactly :class:`L1Loss`, but with the :math:`|x - y| < beta` portion replaced with a quadratic function such that its slope is 1 at :math:`|x - y| = beta`. The quadratic segment smooths the L1 loss near :math:`|x - y| = 0`. .. note:: Smooth L1 loss is closely related to :class:`HuberLoss`, being equivalent to :math:`huber(x, y) / beta` (note that Smooth L1's beta hyper-parameter is also known as delta for Huber). This leads to the following differences: * As beta -> 0, Smooth L1 loss converges to :class:`L1Loss`, while :class:`HuberLoss` converges to a constant 0 loss. * As beta -> :math:`+\\infty`, Smooth L1 loss converges to a constant 0 loss, while :class:`HuberLoss` converges to :class:`MSELoss`. * For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant slope of 1. For :class:`HuberLoss`, the slope of the L1 segment is beta. Args: size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when :attr:`reduce` is ``False``. Default: ``True`` reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` beta (float, optional): Specifies the threshold at which to change between L1 and L2 loss. The value must be non-negative. Default: 1.0 Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions - Target: :math:`(N, *)`; same shape as the input - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`; same shape as the input For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> x = flow.tensor(np.array([0.1, 0.4, 0.3, 0.5, 0.9]).astype(np.float32), dtype=flow.float32) >>> y = flow.tensor(np.array([0.3, 0.9, 2.5, 0.4, 0.3]).astype(np.float32), dtype=flow.float32) >>> m = flow.nn.SmoothL1Loss(reduction="none") >>> out = m(x, y) >>> out tensor([0.0200, 0.1250, 1.7000, 0.0050, 0.1800], dtype=oneflow.float32) >>> m = flow.nn.SmoothL1Loss(reduction="mean") >>> out = m(x, y) >>> out tensor(0.4060, dtype=oneflow.float32) >>> m = flow.nn.SmoothL1Loss(reduction="sum") >>> out = m(x, y) >>> out tensor(2.0300, dtype=oneflow.float32) """ def __init__(self, reduction: str = "mean", beta: float = 1.0) -> None: super(SmoothL1Loss, self).__init__(reduction) self.beta = beta def forward(self, input: Tensor, target: Tensor) -> Tensor: return flow._C.smooth_l1_loss(input, target, self.beta, self.reduction) class CombinedMarginLoss(Module): """The operation implements "margin_softmax" in InsightFace: https://github.com/deepinsight/insightface/blob/master/recognition/arcface_mxnet/train.py The implementation of margin_softmax in InsightFace is composed of multiple operators. We fuse them for speed up. Args: x (oneflow.Tensor): A Tensor label (oneflow.Tensor): label with integer data type m1 (float): loss m1 parameter m2 (float): loss m2 parameter m3 (float): loss m3 parameter Returns: oneflow.Tensor: A Tensor For example: .. code-block:: python >>> import numpy as np >>> import oneflow as flow >>> np_x = np.array([[-0.7027179, 0.0230609], [-0.02721931, -0.16056311], [-0.4565852, -0.64471215]]) >>> np_label = np.array([0, 1, 1]) >>> x = flow.tensor(np_x, dtype=flow.float32) >>> label = flow.tensor(np_label, dtype=flow.int32) >>> loss_func = flow.nn.CombinedMarginLoss(0.3, 0.5, 0.4) >>> out = loss_func(x, label) >>> out tensor([[-0.0423, 0.0231], [-0.0272, 0.1237], [-0.4566, -0.0204]], dtype=oneflow.float32) """ def __init__(self, m1: float = 1.0, m2: float = 0.0, m3: float = 0.0) -> None: super().__init__() self.m1 = m1 self.m2 = m2 self.m3 = m3 def forward(self, x: Tensor, label: Tensor) -> Tensor: return flow._C.combined_margin_loss( x, label, m1=self.m1, m2=self.m2, m3=self.m3 ) if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
39.794433
184
0.591692
4a19139f67bb51c91164b0ab2d8f557151f0df03
6,727
py
Python
center_out_task/matdatainterface.py
catalystneuro/shenoy-lab-to-nwb
29dbcf94e98dcdf4b5f079e906742af0603e958e
[ "MIT" ]
null
null
null
center_out_task/matdatainterface.py
catalystneuro/shenoy-lab-to-nwb
29dbcf94e98dcdf4b5f079e906742af0603e958e
[ "MIT" ]
null
null
null
center_out_task/matdatainterface.py
catalystneuro/shenoy-lab-to-nwb
29dbcf94e98dcdf4b5f079e906742af0603e958e
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Union import numpy as np from nwb_conversion_tools.basedatainterface import BaseDataInterface from nwb_conversion_tools.utils.json_schema import ( get_base_schema, get_schema_from_hdmf_class, get_schema_for_NWBFile, get_schema_from_method_signature, ) from pynwb import NWBFile, TimeSeries from pynwb.base import DynamicTable from pynwb.behavior import Position, SpatialSeries from pynwb.epoch import TimeIntervals from pynwb.misc import Units from .matextractor import MatDataExtractor PathType = Union[str, Path] class COutMatDataInterface(BaseDataInterface): def __init__(self, filename: PathType): super().__init__() self.file_path = Path(filename) assert self.file_path.suffix == ".mat", "file_path should be a .mat" assert self.file_path.exists(), "file_path does not exist" self.mat_extractor = MatDataExtractor(self.file_path) @classmethod def get_source_schema(cls): return get_schema_from_method_signature(cls.__init__) @staticmethod def _convert_schema_object_to_array(schema_to_convert): base_schema = get_base_schema() base_schema.update(type="array") _ = base_schema.pop("properties") base_schema["items"] = schema_to_convert return base_schema def get_metadata_schema(self): metadata_schema = get_base_schema() metadata_schema["required"] = [ "Behavior", "Intervals", "Units", "Subject", "NWBFile", ] metadata_schema["properties"] = dict() metadata_schema["properties"]["Behavior"] = get_base_schema() metadata_schema["properties"]["NWBFile"] = get_schema_for_NWBFile() metadata_schema["properties"]["Intervals"] = get_schema_from_hdmf_class( TimeIntervals ) dt_schema = get_base_schema(DynamicTable) dt_schema["additionalProperties"] = True metadata_schema["properties"]["Behavior"]["properties"] = dict( Position=self._convert_schema_object_to_array( get_schema_from_hdmf_class(SpatialSeries) ), ) units_schema = get_schema_from_hdmf_class(Units) units_schema["additionalProperties"] = True metadata_schema["properties"]["Units"] = units_schema return metadata_schema def get_metadata(self): metadata = dict( Subject=dict( sex="M", species="Macaca mulatta", subject_id=self.mat_extractor.subject_name, ), NWBFile=dict(session_start_time=str(self.mat_extractor.session_start)), Behavior=dict( Position=[ dict(name="Eye", reference_frame="screen center"), dict(name="Hand", reference_frame="screen center"), dict(name="Cursor", reference_frame="screen center"), ] ), Intervals=dict(name="trials"), Units=dict(name="units"), ) return metadata def run_conversion(self, nwbfile: NWBFile, metadata: dict, **kwargs): assert isinstance(nwbfile, NWBFile), "'nwbfile' should be of type pynwb.NWBFile" beh_pos = self.mat_extractor.extract_behavioral_position() stim_pos = self.mat_extractor.extract_stimulus() trial_times = self.mat_extractor.get_trial_times() trial_times_all = np.concatenate(trial_times) task_data = self.mat_extractor.extract_task_data() task_times_data = self.mat_extractor.extract_task_times() spike_times = self.mat_extractor.extract_unit_spike_times() # add behavior: beh_mod = nwbfile.create_processing_module( "behavior", "contains monkey movement data" ) position_container = Position() spatial_series_list = [] for beh in beh_pos: args = dict( timestamps=trial_times_all, reference_frame="screen center", conversion=np.nan, ) spatial_series_list.append( position_container.create_spatial_series(**beh, **args) ) beh_mod.add(position_container) # add stimulus: nwbfile.add_stimulus( TimeSeries( name="juice_reward", description="1 is when reward was presented", data=stim_pos, timestamps=trial_times_all, unit="n.a.", ) ) # add trials: for col_details in task_data + task_times_data: col_det = dict( name=col_details["name"], description=col_details["description"] ) if "index" in col_details: col_det.update(index=col_details["index"]) nwbfile.add_trial_column(**col_det) for trial_no in range(self.mat_extractor._no_trials): col_details_dict = { i["name"]: i["data"][trial_no] for i in task_data + task_times_data } col_details_dict.update( start_time=trial_times[trial_no][0], stop_time=trial_times[trial_no][-1], timeseries=spatial_series_list, ) nwbfile.add_trial(**col_details_dict) if len(nwbfile.devices) == 0: nwbfile.create_device( name="Utah Electrode", description="192 channels microelectrode array" ) if len(nwbfile.electrode_groups) == 0: # add electrdoe groups: nwbfile.create_electrode_group( name="1", description="array corresponding to device implanted at PMd", location="Caudal, dorsal Pre-motor cortex, Left hemisphere", device=nwbfile.devices["Utah Electrode"], ) nwbfile.create_electrode_group( name="2", description="array corresponding to device implanted at M1", location="M1 in Motor Cortex, left hemisphere", device=nwbfile.devices["Utah Electrode"], ) # add units: for no, unit_sp_times in enumerate(spike_times): elec_group = 1 if no > 95 else 0 nwbfile.add_unit( spike_times=unit_sp_times, electrodes=[no], electrode_group=list(nwbfile.electrode_groups.values())[elec_group], obs_intervals=np.array([trial_times[0][0], trial_times[-1][-1]])[ np.newaxis, : ], )
38.44
88
0.603687
4a1913a08b980cfdbba5a48a14fdfc2c62285cdc
792
py
Python
tests/test_repeated_cookie_headers.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
53,007
2018-12-08T10:05:29.000Z
2022-03-31T23:30:02.000Z
tests/test_repeated_cookie_headers.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
4,155
2019-01-05T05:07:49.000Z
2022-03-31T21:25:38.000Z
tests/test_repeated_cookie_headers.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
4,092
2018-12-09T16:21:00.000Z
2022-03-31T07:59:45.000Z
from fastapi import Depends, FastAPI, Response from fastapi.testclient import TestClient app = FastAPI() def set_cookie(*, response: Response): response.set_cookie("cookie-name", "cookie-value") return {} def set_indirect_cookie(*, dep: str = Depends(set_cookie)): return dep @app.get("/directCookie") def get_direct_cookie(dep: str = Depends(set_cookie)): return {"dep": dep} @app.get("/indirectCookie") def get_indirect_cookie(dep: str = Depends(set_indirect_cookie)): return {"dep": dep} client = TestClient(app) def test_cookie_is_set_once(): direct_response = client.get("/directCookie") indirect_response = client.get("/indirectCookie") assert ( direct_response.headers["set-cookie"] == indirect_response.headers["set-cookie"] )
22.628571
88
0.712121
4a1913a28629cb6092edda4a12f35ab500d43794
4,703
py
Python
nautobot/extras/plugins/utils.py
susanhooks/nautobot
bc3ef5958f0d5decb0be763342c790f26ff1e20e
[ "Apache-2.0" ]
null
null
null
nautobot/extras/plugins/utils.py
susanhooks/nautobot
bc3ef5958f0d5decb0be763342c790f26ff1e20e
[ "Apache-2.0" ]
null
null
null
nautobot/extras/plugins/utils.py
susanhooks/nautobot
bc3ef5958f0d5decb0be763342c790f26ff1e20e
[ "Apache-2.0" ]
null
null
null
""" Plugin utilities. """ import importlib.util import logging import sys from django.core.exceptions import ImproperlyConfigured from django.utils.module_loading import import_string from .exceptions import PluginNotFound, PluginImproperlyConfigured # Logging object logger = logging.getLogger("nautobot.plugins") def import_object(module_and_object): """ Import a specific object from a specific module by name, such as "nautobot.extras.plugins.utils.import_object". Returns the imported object, or None if it doesn't exist. """ target_module_name, object_name = module_and_object.rsplit(".", 1) module_hierarchy = target_module_name.split(".") # Iterate through the module hierarchy, checking for the existence of each successive submodule. # We have to do this rather than jumping directly to calling find_spec(target_module_name) # because find_spec will raise a ModuleNotFoundError if any parent module of target_module_name does not exist. module_name = "" for module_component in module_hierarchy: module_name = f"{module_name}.{module_component}" if module_name else module_component spec = importlib.util.find_spec(module_name) if spec is None: # No such module return None # Okay, target_module_name exists. Load it if not already loaded if target_module_name in sys.modules: module = sys.modules[target_module_name] else: module = importlib.util.module_from_spec(spec) sys.modules[target_module_name] = module spec.loader.exec_module(module) return getattr(module, object_name, None) def load_plugins(settings): """Process plugins and log errors if they can't be loaded.""" for plugin_name in settings.PLUGINS: # Attempt to load the plugin but let any errors bubble up. load_plugin(plugin_name, settings) def load_plugin(plugin_name, settings): """Process a single plugin or raise errors that get bubbled up.""" logger.debug(f"Loading {plugin_name}!") # Import plugin module try: plugin = importlib.import_module(plugin_name) except ModuleNotFoundError as err: if getattr(err, "name") == plugin_name: raise PluginNotFound( f"Unable to import plugin {plugin_name}: Module not found. Check that the plugin module has been " f"installed within the correct Python environment." ) from err raise err # Validate plugin config try: plugin_config = plugin.config except AttributeError as err: raise PluginImproperlyConfigured( f"Plugin {plugin_name} does not provide a 'config' variable. This should be defined in the plugin's " f"__init__.py file and point to the PluginConfig subclass." ) from err # Validate user-provided configuration settings and assign defaults. Plugin # validation that fails will stop before modifying any settings. if plugin_name not in settings.PLUGINS_CONFIG: settings.PLUGINS_CONFIG[plugin_name] = {} plugin_config.validate(settings.PLUGINS_CONFIG[plugin_name], settings.VERSION) # Plugin config is valid, so now we can and add to INSTALLED_APPS. plugin_import_path = f"{plugin_config.__module__}.{plugin_config.__name__}" if plugin_import_path not in settings.INSTALLED_APPS: settings.INSTALLED_APPS.append(plugin_import_path) # Include any extra installed apps provided by the plugin # TODO(jathan): We won't be able to support advanced app-ordering concerns # and if the time comes that we do, this will have to be rethought. for plugin_installed_app in plugin_config.installed_apps: if plugin_installed_app not in settings.INSTALLED_APPS: settings.INSTALLED_APPS.append(plugin_installed_app) # Include any extra middleware provided by the plugin for middleware in plugin_config.middleware: if middleware not in settings.MIDDLEWARE: settings.MIDDLEWARE.append(middleware) # Update caching configg settings.CACHEOPS.update({f"{plugin_name}.{key}": value for key, value in plugin_config.caching_config.items()}) def get_sso_backend_name(social_auth_module): """ Return the name parameter of the social auth module defined in the module itself. :param social_auth_module: The social auth python module to read the name parameter from """ try: backend_class = import_string(social_auth_module) except ImportError: raise ImproperlyConfigured(f"Unable to import Social Auth Module {social_auth_module}.") backend_name = backend_class.name return backend_name
38.867769
116
0.724856
4a1913af16afa1c7cea2146b8fe72c8a0a14de25
837
py
Python
notes/migrations/0005_auto_20200314_1006.py
namratavalecha/notesea
5fb2133c0744bed45dfa106c428581035185f7db
[ "MIT" ]
null
null
null
notes/migrations/0005_auto_20200314_1006.py
namratavalecha/notesea
5fb2133c0744bed45dfa106c428581035185f7db
[ "MIT" ]
7
2021-03-19T01:00:25.000Z
2022-03-12T00:20:35.000Z
notes/migrations/0005_auto_20200314_1006.py
namratavalecha/notesea
5fb2133c0744bed45dfa106c428581035185f7db
[ "MIT" ]
null
null
null
# Generated by Django 3.0.4 on 2020-03-14 10:06 from django.db import migrations, models import django.db.models.deletion import notes.models class Migration(migrations.Migration): dependencies = [ ('notes', '0004_auto_20200314_0952'), ] operations = [ migrations.RemoveField( model_name='note', name='image', ), migrations.CreateModel( name='Images', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to=notes.models.get_image_filename, verbose_name='Image')), ('note', models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='notes.Note')), ], ), ]
29.892857
120
0.608124
4a191505655a8d4c57e7bb6429b6e767fdda9d6e
9,138
py
Python
node-transformer-deprecated/model_process.py
mandubian/pytorch-neural-ode
2d8a6e3a51b7446188ef4851c0d6620f603c9b72
[ "Apache-2.0" ]
6
2020-09-01T13:50:42.000Z
2022-02-03T09:13:46.000Z
node-transformer-deprecated/model_process.py
mandubian/pytorch-neural-ode
2d8a6e3a51b7446188ef4851c0d6620f603c9b72
[ "Apache-2.0" ]
null
null
null
node-transformer-deprecated/model_process.py
mandubian/pytorch-neural-ode
2d8a6e3a51b7446188ef4851c0d6620f603c9b72
[ "Apache-2.0" ]
1
2021-10-29T18:30:03.000Z
2021-10-29T18:30:03.000Z
import time import math from tqdm import tqdm #tqdm_notebook as tqdm import numpy as np import torch from torch.utils import data import torch.nn.functional as F from transformer import Constants #from transformer.Translator import Translator from NodeTranslator import NodeTranslator from loss import compute_performance from checkpoints import rotating_save_checkpoint, build_checkpoint from progress_bar import ProgressBar def train_epoch(model, training_data, timesteps, optimizer, device, epoch, pb, tb=None, log_interval=100): model.train() total_loss = 0 n_word_total = 0 n_word_correct = 0 model.reset_nfes() #for batch_idx, batch in enumerate(tqdm(training_data, mininterval=2, leave=False)): for batch_idx, batch in enumerate(training_data): batch_qs, batch_qs_pos, batch_as, batch_as_pos = map(lambda x: x.to(device), batch) gold_as = batch_as[:, 1:] optimizer.zero_grad() pred_as = model(batch_qs, batch_qs_pos, batch_as, batch_as_pos, timesteps) loss, n_correct = compute_performance(pred_as, gold_as, smoothing=True) loss.backward() # update parameters optimizer.step() # note keeping total_loss += loss.item() non_pad_mask = gold_as.ne(Constants.PAD) n_word = non_pad_mask.sum().item() n_word_total += n_word n_word_correct += n_correct if tb is not None and batch_idx % log_interval == 0: tb.add_scalars( { "loss_per_word" : total_loss / n_word_total, "accuracy" : n_word_correct / n_word_total, "nfe_encoder": model.nfes[0], "nfe_decoder": model.nfes[1], }, group="train", sub_group="batch", global_step=epoch * len(training_data) + batch_idx ) if pb is not None: pb.training_step( { "train_loss": total_loss / n_word_total, "train_accuracy": 100 * n_word_correct / n_word_total, } ) loss_per_word = total_loss / n_word_total accuracy = n_word_correct / n_word_total if tb is not None: tb.add_scalars( { "loss_per_word" : loss_per_word, "accuracy" : accuracy, "nfe_encoder": model.nfes[0], "nfe_decoder": model.nfes[1], }, group="train", sub_group="epoch", global_step=epoch ) return loss_per_word, accuracy def eval_epoch(model, validation_data, timesteps, device, epoch, tb=None, log_interval=100): model.eval() total_loss = 0 n_word_total = 0 n_word_correct = 0 with torch.no_grad(): #for batch_idx, batch in enumerate(tqdm(validation_data, mininterval=2, leave=False)): for batch_idx, batch in enumerate(validation_data): # prepare data batch_qs, batch_qs_pos, batch_as, batch_as_pos = map(lambda x: x.to(device), batch) gold_as = batch_as[:, 1:] # forward pred_as = model(batch_qs, batch_qs_pos, batch_as, batch_as_pos, timesteps) loss, n_correct = compute_performance(pred_as, gold_as, smoothing=False) # note keeping total_loss += loss.item() non_pad_mask = gold_as.ne(Constants.PAD) n_word = non_pad_mask.sum().item() n_word_total += n_word n_word_correct += n_correct loss_per_word = total_loss / n_word_total accuracy = n_word_correct / n_word_total if tb is not None: tb.add_scalars( { "loss_per_word" : loss_per_word, "accuracy" : accuracy, }, group="eval", sub_group="epoch", global_step=epoch ) return loss_per_word, accuracy def train(exp_name, unique_id, model, training_data, validation_data, timesteps, optimizer, device, epochs, tb=None, log_interval=100, start_epoch=0, best_valid_accu=0.0, best_valid_loss=float('Inf'), checkpoint_desc={}): model = model.to(device) timesteps = timesteps.to(device) print(f"Loaded model and timesteps to {device}") pb = ProgressBar( epochs, len(training_data), destroy_on_completed=False, keys_to_plot=["train_loss", "valid_accu", "best_valid_loss", "best_valid_accu"], ) for epoch_i in range(start_epoch, epochs): pb.start_epoch(epoch_i) print('[ Epoch', epoch_i, ']') start = time.time() train_loss, train_accu = train_epoch(model, training_data, timesteps, optimizer, device, epoch_i, pb, tb, log_interval) print('[Training] loss: {train_loss}, ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\ 'elapse: {elapse:3.3f}ms'.format( train_loss=train_loss, ppl=math.exp(min(train_loss, 100)), accu=100*train_accu, elapse=(time.time()-start)*1000)) start = time.time() valid_loss, valid_accu = eval_epoch(model, validation_data, timesteps, device, epoch_i, tb, log_interval) print('[Validation] loss: {valid_loss}, ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\ 'elapse: {elapse:3.3f}ms'.format( valid_loss=valid_loss, ppl=math.exp(min(valid_loss, 100)), accu=100*valid_accu, elapse=(time.time()-start)*1000)) if valid_accu > best_valid_accu: print("Checkpointing Validation Model...") best_valid_accu = valid_accu best_valid_loss = valid_loss state = build_checkpoint(exp_name, unique_id, "validation", model, optimizer, best_valid_accu, best_valid_loss, epoch_i, checkpoint_desc) rotating_save_checkpoint(state, prefix=f"{exp_name}_{unique_id}_validation", path="./checkpoints", nb=5) pb.end_epoch( { "train_loss": train_loss, "train_accu": train_accu, "valid_loss": valid_loss, "valid_accu": valid_accu, "best_valid_loss": best_valid_loss, "best_valid_accu": best_valid_accu, } ) pb.close() def predict(translator, data, timesteps, device, max_predictions=None): if max_predictions is not None: cur = max_predictions else: cur = len(data) resps = [] for batch_idx, batch in enumerate(data): if cur == 0: break batch_qs, batch_qs_pos = map(lambda x: x.to(device), batch) all_hyp, all_scores = translator.translate_batch(batch_qs, batch_qs_pos, timesteps) for i, idx_seqs in enumerate(all_hyp): for j, idx_seq in enumerate(idx_seqs): r = np_decode_string(np.array(idx_seq)) s = all_scores[i][j].cpu().item() resps.append({"resp":r, "score":s}) cur -= 1 return resps def predict_dataset(dataset, model, timesteps, device, callback, max_token_seq_len, max_batches=None, beam_size=5, n_best=1, batch_size=1, num_workers=1): translator = NodeTranslator(model, device, beam_size=beam_size, max_token_seq_len=max_token_seq_len, n_best=n_best) if max_batches is not None: cur = max_batches else: cur = len(dataset) resps = [] for batch_idx, batch in enumerate(dataset): if cur == 0: break batch_qs, batch_qs_pos, _, _ = map(lambda x: x.to(device), batch) all_hyp, all_scores = translator.translate_batch(batch_qs, batch_qs_pos, timesteps) callback(batch_idx, batch, all_hyp, all_scores) cur -= 1 return resps def predict_multiple(questions, model, device, max_token_seq_len, beam_size=5, n_best=1, batch_size=1, num_workers=1): questions = list(map(lambda q: np_encode_string(q), questions)) questions = data.DataLoader(questions, batch_size=1, shuffle=False, num_workers=1, collate_fn=question_to_position_batch_collate_fn) translator = Translator(model, device, beam_size=beam_size, max_token_seq_len=max_token_seq_len, n_best=n_best) return predict(translator, questions, device) def predict_single(qs, qs_pos, model, timesteps, device, max_token_seq_len, beam_size=5, n_best=1): model = model.eval() translator = NodeTranslator(model, device, beam_size=beam_size, max_token_seq_len=max_token_seq_len, n_best=n_best) qs, qs_pos = qs.to(device), qs_pos.to(device) all_hyp, all_scores = translator.translate_batch(qs, qs_pos, timesteps) resps = [] for i, idx_seqs in enumerate(all_hyp): for j, idx_seq in enumerate(idx_seqs): s = all_scores[i][j].cpu().item() resps.append({"resp":np.array(idx_seq), "score":s}) return resps
34.483019
145
0.608995
4a1916012f64e47757d1a63e29b6e9cabaa0e2de
2,512
py
Python
pypesto/sample/util.py
stephanmg/pyPESTO
72488fbb3eaa91dd163f88bac71a1a165a0da70f
[ "BSD-3-Clause" ]
97
2018-08-01T20:16:57.000Z
2022-03-31T18:46:28.000Z
pypesto/sample/util.py
Doresic/pyPESTO
d92bd7801353cd522fa8ec04a750aac120771f01
[ "BSD-3-Clause" ]
758
2018-08-01T12:47:28.000Z
2022-03-30T21:00:26.000Z
pypesto/sample/util.py
Doresic/pyPESTO
d92bd7801353cd522fa8ec04a750aac120771f01
[ "BSD-3-Clause" ]
36
2018-08-16T20:10:15.000Z
2022-03-17T16:58:11.000Z
"""A set of helper functions""" import numpy as np import logging from typing import Tuple from ..result import Result from .diagnostics import geweke_test logger = logging.getLogger(__name__) def calculate_ci_mcmc_sample( result: Result, ci_level: float = 0.95, exclude_burn_in: bool = True, ) -> Tuple[np.ndarray, np.ndarray]: """Calculate parameter credibility intervals based on MCMC samples. Parameters ---------- result: The pyPESTO result object with filled sample result. ci_level: Lower tail probability, defaults to 95% interval. Returns ------- lb, ub: Bounds of the MCMC percentile-based confidence interval. """ burn_in = 0 if exclude_burn_in: # Check if burn in index is available if result.sample_result.burn_in is None: geweke_test(result) # Get burn in index burn_in = result.sample_result.burn_in # Get converged parameter samples as numpy arrays chain = np.asarray(result.sample_result.trace_x[0, burn_in:, :]) lb, ub = calculate_ci(chain, ci_level=ci_level, axis=0) return lb, ub def calculate_ci_mcmc_sample_prediction( simulated_values: np.ndarray, ci_level: float = 0.95, ) -> Tuple[np.ndarray, np.ndarray]: """Calculate prediction credibility intervals based on MCMC samples. Parameters ---------- simulated_values: Simulated model states or model observables. ci_level: Lower tail probability, defaults to 95% interval. Returns ------- lb, ub: Bounds of the MCMC-based prediction confidence interval. """ lb, ub = calculate_ci(simulated_values, ci_level=ci_level, axis=1) return lb, ub def calculate_ci( values: np.ndarray, ci_level: float, **kwargs, ) -> Tuple[np.ndarray, np.ndarray]: """Calculate confidence/credibility levels using percentiles. Parameters ---------- values: The values used to calculate percentiles. ci_level: Lower tail probability. kwargs: Additional keyword arguments are passed to the `numpy.percentile` call. Returns ------- lb, ub: Bounds of the confidence/credibility interval. """ # Percentile values corresponding to the CI level percentiles = 100 * np.array([(1-ci_level)/2, 1-(1-ci_level)/2]) # Upper and lower bounds lb, ub = np.percentile(values, percentiles, **kwargs) return lb, ub
26.442105
79
0.650478
4a19171c5d6464c6bfb983ed74f5bcfdda6f06fc
7,621
py
Python
sdk/python/pulumi_azure_nextgen/containerregistry/v20190601preview/task_run.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/containerregistry/v20190601preview/task_run.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/containerregistry/v20190601preview/task_run.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['TaskRun'] class TaskRun(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, force_update_tag: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['IdentityPropertiesArgs']]] = None, location: Optional[pulumi.Input[str]] = None, registry_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, run_request: Optional[pulumi.Input[Union[pulumi.InputType['DockerBuildRequestArgs'], pulumi.InputType['EncodedTaskRunRequestArgs'], pulumi.InputType['FileTaskRunRequestArgs'], pulumi.InputType['TaskRunRequestArgs']]]] = None, task_run_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ The task run that has the ARM resource and properties. The task run will have the information of request and result of a run. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] force_update_tag: How the run should be forced to rerun even if the run request configuration has not changed :param pulumi.Input[pulumi.InputType['IdentityPropertiesArgs']] identity: Identity for the resource. :param pulumi.Input[str] location: The location of the resource :param pulumi.Input[str] registry_name: The name of the container registry. :param pulumi.Input[str] resource_group_name: The name of the resource group to which the container registry belongs. :param pulumi.Input[Union[pulumi.InputType['DockerBuildRequestArgs'], pulumi.InputType['EncodedTaskRunRequestArgs'], pulumi.InputType['FileTaskRunRequestArgs'], pulumi.InputType['TaskRunRequestArgs']]] run_request: The request (parameters) for the run :param pulumi.Input[str] task_run_name: The name of the task run. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['force_update_tag'] = force_update_tag __props__['identity'] = identity __props__['location'] = location if registry_name is None and not opts.urn: raise TypeError("Missing required property 'registry_name'") __props__['registry_name'] = registry_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['run_request'] = run_request __props__['task_run_name'] = task_run_name __props__['name'] = None __props__['provisioning_state'] = None __props__['run_result'] = None __props__['system_data'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:containerregistry:TaskRun")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(TaskRun, __self__).__init__( 'azure-nextgen:containerregistry/v20190601preview:TaskRun', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'TaskRun': """ Get an existing TaskRun resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return TaskRun(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="forceUpdateTag") def force_update_tag(self) -> pulumi.Output[Optional[str]]: """ How the run should be forced to rerun even if the run request configuration has not changed """ return pulumi.get(self, "force_update_tag") @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.IdentityPropertiesResponse']]: """ Identity for the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ The location of the resource """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of this task run """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="runRequest") def run_request(self) -> pulumi.Output[Optional[Any]]: """ The request (parameters) for the run """ return pulumi.get(self, "run_request") @property @pulumi.getter(name="runResult") def run_result(self) -> pulumi.Output['outputs.RunResponse']: """ The result of this task run """ return pulumi.get(self, "run_result") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
41.873626
259
0.647553
4a1917cac9612f9b1fcc96f6090bd28f7e3cd29c
2,186
py
Python
src/smokeyfeet/mollie_webhook/views.py
smokeyfeet/smokeyfeet-registration
6bd8e6bbab8cdbd678a9ec8fe66a1bb036479240
[ "MIT" ]
null
null
null
src/smokeyfeet/mollie_webhook/views.py
smokeyfeet/smokeyfeet-registration
6bd8e6bbab8cdbd678a9ec8fe66a1bb036479240
[ "MIT" ]
5
2020-06-02T09:36:10.000Z
2021-06-10T20:05:03.000Z
src/smokeyfeet/mollie_webhook/views.py
smokeyfeet/smokeyfeet-registration
6bd8e6bbab8cdbd678a9ec8fe66a1bb036479240
[ "MIT" ]
null
null
null
import logging from django.conf import settings from django.http import HttpResponse, HttpResponseServerError from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_POST from mollie.api.client import Client as MollieClient from mollie.api.error import Error as MollieError from smokeyfeet.minishop import mollie_handler as minishop_mollie from smokeyfeet.registration import mollie_handler as registration_mollie logger = logging.getLogger(__name__) def _make_mollie_client(): mollie_client = MollieClient() mollie_client.set_api_key(settings.MOLLIE_API_KEY) return mollie_client def retrieve_payment(payment_id): mollie_client = _make_mollie_client() try: payment = mollie_client.payments.get(payment_id) except MollieError as err: logger.error("Mollie API call failed: %s", str(err)) return None else: return payment @csrf_exempt @require_POST def mollie_notif(request): """ Mollie will notify us when a payment status changes. Only the payment id is passed and we are responsible for retrieving the payment. """ # Pull out the Mollie payment id from the notification mollie_payment_id = request.POST.get("id", "") if not mollie_payment_id: logger.warning("Missing payment id in Mollie notif (probably test)") return HttpResponse(status=200) logger.info("Got Mollie payment status update: %s", mollie_payment_id) # Retrieve the Mollie payment mollie_payment = retrieve_payment(mollie_payment_id) if mollie_payment is None: logger.error("Failed to retrieve Mollie payment: %s", mollie_payment_id) return HttpResponseServerError() else: logger.info("Retrieved Mollie payment: %s", str(mollie_payment)) metadata = mollie_payment.get("metadata", {}) if "order_id" in metadata: minishop_mollie.on_payment_change(mollie_payment) elif "registration_id" in metadata: registration_mollie.on_payment_change(mollie_payment) else: logger.error("Missing identifier in Mollie payment: %s", str(mollie_payment)) return HttpResponse(status=200)
32.147059
85
0.745197
4a1917d7e796bad01c026079b72b5293412150cd
827
py
Python
app/app/urls.py
MrRob100/recipe-app-api
4a9b05ab80b4d1f3d79b2750b2c8aae55aa8c004
[ "MIT" ]
null
null
null
app/app/urls.py
MrRob100/recipe-app-api
4a9b05ab80b4d1f3d79b2750b2c8aae55aa8c004
[ "MIT" ]
null
null
null
app/app/urls.py
MrRob100/recipe-app-api
4a9b05ab80b4d1f3d79b2750b2c8aae55aa8c004
[ "MIT" ]
null
null
null
"""app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import include urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('user.urls')), ]
34.458333
77
0.706167
4a1918d055e823f9aa786122c7902cfb312244b9
967
py
Python
tests/test_message_client.py
jinlygenius/sparrow_cloud
9cc8619aff48f7f439a63dddeb0ec15ca7fc2538
[ "MIT" ]
null
null
null
tests/test_message_client.py
jinlygenius/sparrow_cloud
9cc8619aff48f7f439a63dddeb0ec15ca7fc2538
[ "MIT" ]
null
null
null
tests/test_message_client.py
jinlygenius/sparrow_cloud
9cc8619aff48f7f439a63dddeb0ec15ca7fc2538
[ "MIT" ]
null
null
null
import os import unittest from unittest import mock from django.conf import settings class TestMessage(unittest.TestCase): """test message client""" def setUp(self): os.environ["SPARROW_TASK_TEST_SVC_HOST"] = "127.0.0.1:8001" settings.MESSAGE_SENDER_CONF = { "SERVICE_CONF": { "ENV_NAME": "SPARROW_TASK_TEST_SVC_HOST", "VALUE": "sparrow-task-test-svc", }, "API_PATH": "/api/sparrow_task/producer/send/", } @mock.patch('sparrow_cloud.message_service.sender.TaskSender.send_task', return_value={}) def test_send_message(self, mock_send_task): from sparrow_cloud.message_service.sender import send_task exchange = 'topic_3' routing_key = 'order_pay_success' message_code = 'order_pay_success' data = send_task(exchange=exchange, routing_key=routing_key, message_code=message_code) self.assertEqual(data, {})
32.233333
95
0.661841
4a191902b6d901032a19dddc4b9a0861032554d5
2,481
py
Python
tool/ics.py
honmaple/maple-spider
b9b6b295114149436974f4fe82f75dc7f2797129
[ "MIT" ]
null
null
null
tool/ics.py
honmaple/maple-spider
b9b6b295114149436974f4fe82f75dc7f2797129
[ "MIT" ]
null
null
null
tool/ics.py
honmaple/maple-spider
b9b6b295114149436974f4fe82f75dc7f2797129
[ "MIT" ]
1
2019-04-20T03:22:26.000Z
2019-04-20T03:22:26.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # ************************************************************************** # Copyright © 2017 jianglin # File Name: ics.py # Author: jianglin # Email: xiyang0807@gmail.com # Created: 2017-04-12 16:18:05 (CST) # Last Update:星期三 2017-4-12 17:4:29 (CST) # By: # Description: # ************************************************************************** from lxml import html from random import choice import requests import json class Spider(object): def __init__(self, start_url): self.url_prefix = 'http://m.biqugetw.com' self.start_url = start_url @property def headers(self): ''' 设置header ''' user_agent = [ 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)', "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.249.0 Safari/532.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.27 (KHTML, like Gecko) Chrome/12.0.712.0 Safari/534.27", "Mozilla/5.0 (Windows; U; Windows NT 6.0 x64; en-US; rv:1.9pre) Gecko/2008072421 Minefield/3.0.2pre", "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:7.0.1) Gecko/20100101 Firefox/7.0.1" ] return {'User-Agent': choice(user_agent)} def request(self, url): r = requests.get(url, headers=self.headers) return r.text def parse(self, content): selector = html.fromstring(content) hrefs = selector.xpath('//tr') datas = [] for href in hrefs: data = {} text = href.xpath('td/p[@class="normal"]/text()') if len(text) == 6: data['name'] = href.xpath('td//p/b/a/text()')[0] data['data_types'] = text[0].replace('\xa0', '') data['default_task'] = text[1].replace('\xa0', '') data['attributes_types'] = text[2].replace('\xa0', '') data['instances'] = text[3].replace('\xa0', '') data['attributes'] = text[4].replace('\xa0', '') data['year'] = text[5].replace('\xa0', '') if data: datas.append(data) a = json.dumps(datas) with open('b.json', 'w') as f: f.write(a) def start(self): return self.parse(self.request(self.start_url)) if __name__ == '__main__': spider = Spider("http://archive.ics.uci.edu/ml/datasets.html") spider.start()
35.442857
130
0.520355
4a1919752abfaeaf89bcadd30b21c1abdeb47ada
1,193
py
Python
help/setter/admin_setter.py
relarizky/flask-pre-order
d336c179414892a8fad4bdbe63c8cb5449921729
[ "MIT" ]
null
null
null
help/setter/admin_setter.py
relarizky/flask-pre-order
d336c179414892a8fad4bdbe63c8cb5449921729
[ "MIT" ]
null
null
null
help/setter/admin_setter.py
relarizky/flask-pre-order
d336c179414892a8fad4bdbe63c8cb5449921729
[ "MIT" ]
null
null
null
# Author : Relarizky # Github : https://github.com/relarizky # File Name : help/setter/admin_setter.py # Last Modified : 02/02/21, 11:34 PM # Copyright © Relarizky 2021 from help.hash import create_sha224 from help.exception import ValueLengthError class AdminSetter: """ contains setter for Admin (tb_admin) with validation """ def set_real_name(self, real_name: str) -> None: """ set real name """ if real_name.__len__() > 40: raise ValueLengthError("real name tidak boleh lebih dari 40") self.real_name = real_name def set_user_name(self, user_name: str) -> None: """ set user name """ if user_name.__len__() > 20: raise ValueLengthError("user name tidak boleh lebih dari 20") self.user_name = user_name def set_pass_word(self, pass_word: str) -> None: """ set pass word """ if not bool(pass_word) is False: # pass_word is not empty if pass_word.__len__() < 8: raise ValueLengthError("pass word harus lebih dari 8") self.pass_word = create_sha224(pass_word)
24.854167
73
0.602682
4a1919bcafdb5b292fbfc9ae7c017dc60b593497
17,688
py
Python
HLTrigger/Configuration/test/OnLine_HLT_Fake2.py
vjmastra/cmssw
de96df37dbaf3543daef67339179e074bde9e858
[ "Apache-2.0" ]
1
2018-08-28T16:51:36.000Z
2018-08-28T16:51:36.000Z
HLTrigger/Configuration/test/OnLine_HLT_Fake2.py
dellaric/cmssw
cd7470dc554972076740dde7523f311c43f248d3
[ "Apache-2.0" ]
25
2016-06-24T20:55:32.000Z
2022-02-01T19:24:45.000Z
HLTrigger/Configuration/test/OnLine_HLT_Fake2.py
dellaric/cmssw
cd7470dc554972076740dde7523f311c43f248d3
[ "Apache-2.0" ]
8
2016-03-25T07:17:43.000Z
2021-07-08T17:11:21.000Z
# hltGetConfiguration --full --data /dev/CMSSW_12_3_0/Fake2 --type Fake2 --unprescale --process HLTFake2 --globaltag auto:run2_hlt_Fake2 --input file:RelVal_Raw_Fake2_DATA.root # /dev/CMSSW_12_3_0/Fake2/V3 (CMSSW_12_3_0_pre2) import FWCore.ParameterSet.Config as cms process = cms.Process( "HLTFake2" ) process.HLTConfigVersion = cms.PSet( tableName = cms.string('/dev/CMSSW_12_3_0/Fake2/V3') ) process.streams = cms.PSet( A = cms.vstring( 'InitialPD' ) ) process.datasets = cms.PSet( InitialPD = cms.vstring( 'HLT_Physics_v1', 'HLT_Random_v1', 'HLT_ZeroBias_v1' ) ) process.GlobalParametersRcdSource = cms.ESSource( "EmptyESSource", recordName = cms.string( "L1TGlobalParametersRcd" ), iovIsRunNotTime = cms.bool( True ), firstValid = cms.vuint32( 1 ) ) process.GlobalTag = cms.ESSource( "PoolDBESSource", DBParameters = cms.PSet( authenticationPath = cms.untracked.string( "." ), connectionRetrialTimeOut = cms.untracked.int32( 60 ), idleConnectionCleanupPeriod = cms.untracked.int32( 10 ), messageLevel = cms.untracked.int32( 0 ), enablePoolAutomaticCleanUp = cms.untracked.bool( False ), enableConnectionSharing = cms.untracked.bool( True ), enableReadOnlySessionOnUpdateConnection = cms.untracked.bool( False ), connectionTimeOut = cms.untracked.int32( 0 ), connectionRetrialPeriod = cms.untracked.int32( 10 ) ), connect = cms.string( "frontier://FrontierProd/CMS_CONDITIONS" ), globaltag = cms.string( "80X_dataRun2_HLT_v12" ), snapshotTime = cms.string( "" ), toGet = cms.VPSet( ), DumpStat = cms.untracked.bool( False ), ReconnectEachRun = cms.untracked.bool( False ), RefreshAlways = cms.untracked.bool( False ), RefreshEachRun = cms.untracked.bool( False ), RefreshOpenIOVs = cms.untracked.bool( False ) ) process.GlobalParameters = cms.ESProducer( "StableParametersTrivialProducer", TotalBxInEvent = cms.int32( 5 ), NumberPhysTriggers = cms.uint32( 512 ), NumberL1Muon = cms.uint32( 12 ), NumberL1EGamma = cms.uint32( 12 ), NumberL1Jet = cms.uint32( 12 ), NumberL1Tau = cms.uint32( 8 ), NumberChips = cms.uint32( 5 ), PinsOnChip = cms.uint32( 512 ), OrderOfChip = cms.vint32( 1 ), NumberL1IsoEG = cms.uint32( 4 ), NumberL1JetCounts = cms.uint32( 12 ), UnitLength = cms.int32( 8 ), NumberL1ForJet = cms.uint32( 4 ), IfCaloEtaNumberBits = cms.uint32( 4 ), IfMuEtaNumberBits = cms.uint32( 6 ), NumberL1TauJet = cms.uint32( 4 ), NumberL1Mu = cms.uint32( 4 ), NumberConditionChips = cms.uint32( 1 ), NumberPsbBoards = cms.int32( 7 ), NumberL1CenJet = cms.uint32( 4 ), PinsOnConditionChip = cms.uint32( 512 ), NumberL1NoIsoEG = cms.uint32( 4 ), NumberTechnicalTriggers = cms.uint32( 64 ), NumberPhysTriggersExtended = cms.uint32( 64 ), WordLength = cms.int32( 64 ), OrderConditionChip = cms.vint32( 1 ), appendToDataLabel = cms.string( "" ) ) process.CastorDbProducer = cms.ESProducer( "CastorDbProducer", appendToDataLabel = cms.string( "" ) ) process.HcalTopologyIdealEP = cms.ESProducer( "HcalTopologyIdealEP", Exclude = cms.untracked.string( "" ), MergePosition = cms.untracked.bool( True ), appendToDataLabel = cms.string( "" ) ) process.hcalDDDRecConstants = cms.ESProducer( "HcalDDDRecConstantsESModule", appendToDataLabel = cms.string( "" ) ) process.hcalDDDSimConstants = cms.ESProducer( "HcalDDDSimConstantsESModule", appendToDataLabel = cms.string( "" ) ) process.FastTimerService = cms.Service( "FastTimerService", printEventSummary = cms.untracked.bool( False ), printRunSummary = cms.untracked.bool( True ), printJobSummary = cms.untracked.bool( True ), writeJSONSummary = cms.untracked.bool( False ), jsonFileName = cms.untracked.string( "resources.json" ), enableDQM = cms.untracked.bool( True ), enableDQMbyModule = cms.untracked.bool( False ), enableDQMbyPath = cms.untracked.bool( False ), enableDQMbyLumiSection = cms.untracked.bool( True ), enableDQMbyProcesses = cms.untracked.bool( True ), enableDQMTransitions = cms.untracked.bool( False ), dqmTimeRange = cms.untracked.double( 1000.0 ), dqmTimeResolution = cms.untracked.double( 5.0 ), dqmMemoryRange = cms.untracked.double( 1000000.0 ), dqmMemoryResolution = cms.untracked.double( 5000.0 ), dqmPathTimeRange = cms.untracked.double( 100.0 ), dqmPathTimeResolution = cms.untracked.double( 0.5 ), dqmPathMemoryRange = cms.untracked.double( 1000000.0 ), dqmPathMemoryResolution = cms.untracked.double( 5000.0 ), dqmModuleTimeRange = cms.untracked.double( 40.0 ), dqmModuleTimeResolution = cms.untracked.double( 0.2 ), dqmModuleMemoryRange = cms.untracked.double( 100000.0 ), dqmModuleMemoryResolution = cms.untracked.double( 500.0 ), dqmLumiSectionsRange = cms.untracked.uint32( 2500 ), dqmPath = cms.untracked.string( "HLT/TimerService" ), ) process.MessageLogger = cms.Service( "MessageLogger", suppressWarning = cms.untracked.vstring( 'hltOnlineBeamSpot', 'hltCtf3HitL1SeededWithMaterialTracks', 'hltL3MuonsOIState', 'hltPixelTracksForHighMult', 'hltHITPixelTracksHE', 'hltHITPixelTracksHB', 'hltCtfL1SeededWithMaterialTracks', 'hltRegionalTracksForL3MuonIsolation', 'hltSiPixelClusters', 'hltActivityStartUpElectronPixelSeeds', 'hltLightPFTracks', 'hltPixelVertices3DbbPhi', 'hltL3MuonsIOHit', 'hltPixelTracks', 'hltSiPixelDigis', 'hltL3MuonsOIHit', 'hltL1SeededElectronGsfTracks', 'hltL1SeededStartUpElectronPixelSeeds', 'hltBLifetimeRegionalCtfWithMaterialTracksbbPhiL1FastJetFastPV', 'hltCtfActivityWithMaterialTracks' ), suppressFwkInfo = cms.untracked.vstring( ), suppressInfo = cms.untracked.vstring( ), suppressDebug = cms.untracked.vstring( ), debugModules = cms.untracked.vstring( ), cerr = cms.untracked.PSet( INFO = cms.untracked.PSet( limit = cms.untracked.int32( 0 ) ), noTimeStamps = cms.untracked.bool( False ), FwkReport = cms.untracked.PSet( reportEvery = cms.untracked.int32( 1 ), limit = cms.untracked.int32( 0 ) ), default = cms.untracked.PSet( limit = cms.untracked.int32( 10000000 ) ), Root_NoDictionary = cms.untracked.PSet( limit = cms.untracked.int32( 0 ) ), FwkJob = cms.untracked.PSet( limit = cms.untracked.int32( 0 ) ), FwkSummary = cms.untracked.PSet( reportEvery = cms.untracked.int32( 1 ), limit = cms.untracked.int32( 10000000 ) ), threshold = cms.untracked.string( "INFO" ), ), suppressError = cms.untracked.vstring( 'hltOnlineBeamSpot', 'hltL3MuonCandidates', 'hltL3TkTracksFromL2OIState', 'hltPFJetCtfWithMaterialTracks', 'hltL3TkTracksFromL2IOHit', 'hltL3TkTracksFromL2OIHit' ) ) process.hltGetConditions = cms.EDAnalyzer( "EventSetupRecordDataGetter", verbose = cms.untracked.bool( False ), toGet = cms.VPSet( ) ) process.hltGetRaw = cms.EDAnalyzer( "HLTGetRaw", RawDataCollection = cms.InputTag( "rawDataCollector" ) ) process.hltBoolFalse = cms.EDFilter( "HLTBool", result = cms.bool( False ) ) process.hltTriggerType = cms.EDFilter( "HLTTriggerTypeFilter", SelectedTriggerType = cms.int32( 1 ) ) process.hltGtStage2Digis = cms.EDProducer( "L1TRawToDigi", FedIds = cms.vint32( 1404 ), Setup = cms.string( "stage2::GTSetup" ), FWId = cms.uint32( 0 ), DmxFWId = cms.uint32( 0 ), FWOverride = cms.bool( False ), TMTCheck = cms.bool( True ), CTP7 = cms.untracked.bool( False ), MTF7 = cms.untracked.bool( False ), InputLabel = cms.InputTag( "rawDataCollector" ), lenSlinkHeader = cms.untracked.int32( 8 ), lenSlinkTrailer = cms.untracked.int32( 8 ), lenAMCHeader = cms.untracked.int32( 8 ), lenAMCTrailer = cms.untracked.int32( 0 ), lenAMC13Header = cms.untracked.int32( 8 ), lenAMC13Trailer = cms.untracked.int32( 8 ), debug = cms.untracked.bool( False ), MinFeds = cms.uint32( 0 ) ) process.hltGtStage2ObjectMap = cms.EDProducer( "L1TGlobalProducer", MuonInputTag = cms.InputTag( 'hltGtStage2Digis','Muon' ), MuonShowerInputTag = cms.InputTag( "" ), EGammaInputTag = cms.InputTag( 'hltGtStage2Digis','EGamma' ), TauInputTag = cms.InputTag( 'hltGtStage2Digis','Tau' ), JetInputTag = cms.InputTag( 'hltGtStage2Digis','Jet' ), EtSumInputTag = cms.InputTag( 'hltGtStage2Digis','EtSum' ), ExtInputTag = cms.InputTag( "hltGtStage2Digis" ), AlgoBlkInputTag = cms.InputTag( "hltGtStage2Digis" ), GetPrescaleColumnFromData = cms.bool( False ), AlgorithmTriggersUnprescaled = cms.bool( True ), RequireMenuToMatchAlgoBlkInput = cms.bool( True ), AlgorithmTriggersUnmasked = cms.bool( True ), useMuonShowers = cms.bool( False ), ProduceL1GtDaqRecord = cms.bool( True ), ProduceL1GtObjectMapRecord = cms.bool( True ), EmulateBxInEvent = cms.int32( 1 ), L1DataBxInEvent = cms.int32( 5 ), AlternativeNrBxBoardDaq = cms.uint32( 0 ), BstLengthBytes = cms.int32( -1 ), PrescaleSet = cms.uint32( 1 ), Verbosity = cms.untracked.int32( 0 ), PrintL1Menu = cms.untracked.bool( False ), TriggerMenuLuminosity = cms.string( "startup" ), PrescaleCSVFile = cms.string( "prescale_L1TGlobal.csv" ) ) process.hltScalersRawToDigi = cms.EDProducer( "ScalersRawToDigi", scalersInputTag = cms.InputTag( "rawDataCollector" ) ) process.hltOnlineBeamSpot = cms.EDProducer( "BeamSpotOnlineProducer", changeToCMSCoordinates = cms.bool( False ), maxZ = cms.double( 40.0 ), setSigmaZ = cms.double( 0.0 ), beamMode = cms.untracked.uint32( 11 ), src = cms.InputTag( "hltScalersRawToDigi" ), gtEvmLabel = cms.InputTag( "" ), maxRadius = cms.double( 2.0 ), useTransientRecord = cms.bool( False ) ) process.hltPrePhysics = cms.EDFilter( "HLTPrescaler", offset = cms.uint32( 0 ), L1GtReadoutRecordTag = cms.InputTag( "hltGtStage2Digis" ) ) process.hltBoolEnd = cms.EDFilter( "HLTBool", result = cms.bool( True ) ) process.hltRandomEventsFilter = cms.EDFilter( "HLTTriggerTypeFilter", SelectedTriggerType = cms.int32( 3 ) ) process.hltPreRandom = cms.EDFilter( "HLTPrescaler", offset = cms.uint32( 0 ), L1GtReadoutRecordTag = cms.InputTag( "hltGtStage2Digis" ) ) process.hltL1sZeroBias = cms.EDFilter( "HLTL1TSeed", saveTags = cms.bool( True ), L1SeedsLogicalExpression = cms.string( "L1_ZeroBias" ), L1ObjectMapInputTag = cms.InputTag( "hltGtStage2ObjectMap" ), L1GlobalInputTag = cms.InputTag( "hltGtStage2Digis" ), L1MuonInputTag = cms.InputTag( 'hltGtStage2Digis','Muon' ), L1EGammaInputTag = cms.InputTag( 'hltGtStage2Digis','EGamma' ), L1JetInputTag = cms.InputTag( 'hltGtStage2Digis','Jet' ), L1TauInputTag = cms.InputTag( 'hltGtStage2Digis','Tau' ), L1EtSumInputTag = cms.InputTag( 'hltGtStage2Digis','EtSum' ) ) process.hltPreZeroBias = cms.EDFilter( "HLTPrescaler", offset = cms.uint32( 0 ), L1GtReadoutRecordTag = cms.InputTag( "hltGtStage2Digis" ) ) process.hltFEDSelector = cms.EDProducer( "EvFFEDSelector", inputTag = cms.InputTag( "rawDataCollector" ), fedList = cms.vuint32( 1023, 1024 ) ) process.hltTriggerSummaryAOD = cms.EDProducer( "TriggerSummaryProducerAOD", throw = cms.bool( False ), processName = cms.string( "@" ), moduleLabelPatternsToMatch = cms.vstring( 'hlt*' ), moduleLabelPatternsToSkip = cms.vstring( ) ) process.hltTriggerSummaryRAW = cms.EDProducer( "TriggerSummaryProducerRAW", processName = cms.string( "@" ) ) process.hltPreHLTAnalyzerEndpath = cms.EDFilter( "HLTPrescaler", offset = cms.uint32( 0 ), L1GtReadoutRecordTag = cms.InputTag( "hltGtStage2Digis" ) ) process.hltL1TGlobalSummary = cms.EDAnalyzer( "L1TGlobalSummary", AlgInputTag = cms.InputTag( "hltGtStage2Digis" ), ExtInputTag = cms.InputTag( "hltGtStage2Digis" ), MinBx = cms.int32( 0 ), MaxBx = cms.int32( 0 ), DumpTrigResults = cms.bool( False ), DumpRecord = cms.bool( False ), DumpTrigSummary = cms.bool( True ), ReadPrescalesFromFile = cms.bool( False ), psFileName = cms.string( "prescale_L1TGlobal.csv" ), psColumn = cms.int32( 0 ) ) process.hltTrigReport = cms.EDAnalyzer( "HLTrigReport", HLTriggerResults = cms.InputTag( 'TriggerResults','','@currentProcess' ), reportBy = cms.untracked.string( "job" ), resetBy = cms.untracked.string( "never" ), serviceBy = cms.untracked.string( "never" ), ReferencePath = cms.untracked.string( "HLTriggerFinalPath" ), ReferenceRate = cms.untracked.double( 100.0 ) ) process.hltPreAOutput = cms.EDFilter( "HLTPrescaler", offset = cms.uint32( 0 ), L1GtReadoutRecordTag = cms.InputTag( "hltGtDigis" ) ) process.hltOutputA = cms.OutputModule( "PoolOutputModule", fileName = cms.untracked.string( "outputA.root" ), fastCloning = cms.untracked.bool( False ), dataset = cms.untracked.PSet( filterName = cms.untracked.string( "" ), dataTier = cms.untracked.string( "RAW" ) ), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring( 'HLT_Physics_v1', 'HLT_Random_v1', 'HLT_ZeroBias_v1' ) ), outputCommands = cms.untracked.vstring( 'drop *', 'keep *_hltL1GtObjectMap_*_*', 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*', 'keep edmTriggerResults_*_*_*', 'keep triggerTriggerEvent_*_*_*' ) ) process.HLTL1UnpackerSequence = cms.Sequence( process.hltGtStage2Digis + process.hltGtStage2ObjectMap ) process.HLTBeamSpot = cms.Sequence( process.hltScalersRawToDigi + process.hltOnlineBeamSpot ) process.HLTBeginSequence = cms.Sequence( process.hltTriggerType + process.HLTL1UnpackerSequence + process.HLTBeamSpot ) process.HLTEndSequence = cms.Sequence( process.hltBoolEnd ) process.HLTBeginSequenceRandom = cms.Sequence( process.hltRandomEventsFilter + process.hltGtStage2Digis ) process.HLTriggerFirstPath = cms.Path( process.hltGetConditions + process.hltGetRaw + process.hltBoolFalse ) process.HLT_Physics_v1 = cms.Path( process.HLTBeginSequence + process.hltPrePhysics + process.HLTEndSequence ) process.HLT_Random_v1 = cms.Path( process.HLTBeginSequenceRandom + process.hltPreRandom + process.HLTEndSequence ) process.HLT_ZeroBias_v1 = cms.Path( process.HLTBeginSequence + process.hltL1sZeroBias + process.hltPreZeroBias + process.HLTEndSequence ) process.HLTriggerFinalPath = cms.Path( process.hltGtStage2Digis + process.hltScalersRawToDigi + process.hltFEDSelector + process.hltTriggerSummaryAOD + process.hltTriggerSummaryRAW + process.hltBoolFalse ) process.HLTAnalyzerEndpath = cms.EndPath( process.hltGtStage2Digis + process.hltPreHLTAnalyzerEndpath + process.hltL1TGlobalSummary + process.hltTrigReport ) process.AOutput = cms.EndPath( process.hltPreAOutput + process.hltOutputA ) # load the DQMStore and DQMRootOutputModule process.load( "DQMServices.Core.DQMStore_cfi" ) process.dqmOutput = cms.OutputModule("DQMRootOutputModule", fileName = cms.untracked.string("DQMIO.root") ) process.DQMOutput = cms.EndPath( process.dqmOutput ) process.schedule = cms.Schedule( *(process.HLTriggerFirstPath, process.HLT_Physics_v1, process.HLT_Random_v1, process.HLT_ZeroBias_v1, process.HLTriggerFinalPath, process.HLTAnalyzerEndpath, process.AOutput, process.DQMOutput, )) # source module (EDM inputs) process.source = cms.Source( "PoolSource", fileNames = cms.untracked.vstring( 'file:RelVal_Raw_Fake2_DATA.root', ), inputCommands = cms.untracked.vstring( 'keep *' ) ) # limit the number of events to be processed process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32( 100 ) ) # enable TrigReport, TimeReport and MultiThreading process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool( True ), numberOfThreads = cms.untracked.uint32( 4 ), numberOfStreams = cms.untracked.uint32( 0 ), ) # override the GlobalTag, connection string and pfnPrefix if 'GlobalTag' in process.__dict__: from Configuration.AlCa.GlobalTag import GlobalTag as customiseGlobalTag process.GlobalTag = customiseGlobalTag(process.GlobalTag, globaltag = 'auto:run2_hlt_Fake2') # show summaries from trigger analysers used at HLT if 'MessageLogger' in process.__dict__: process.MessageLogger.TriggerSummaryProducerAOD = cms.untracked.PSet() process.MessageLogger.L1GtTrigReport = cms.untracked.PSet() process.MessageLogger.L1TGlobalSummary = cms.untracked.PSet() process.MessageLogger.HLTrigReport = cms.untracked.PSet() process.MessageLogger.FastReport = cms.untracked.PSet() process.MessageLogger.ThroughputService = cms.untracked.PSet() # add specific customizations _customInfo = {} _customInfo['menuType' ]= "Fake2" _customInfo['globalTags']= {} _customInfo['globalTags'][True ] = "auto:run2_hlt_Fake2" _customInfo['globalTags'][False] = "auto:run2_mc_Fake2" _customInfo['inputFiles']={} _customInfo['inputFiles'][True] = "file:RelVal_Raw_Fake2_DATA.root" _customInfo['inputFiles'][False] = "file:RelVal_Raw_Fake2_MC.root" _customInfo['maxEvents' ]= 100 _customInfo['globalTag' ]= "auto:run2_hlt_Fake2" _customInfo['inputFile' ]= ['file:RelVal_Raw_Fake2_DATA.root'] _customInfo['realData' ]= True from HLTrigger.Configuration.customizeHLTforALL import customizeHLTforAll process = customizeHLTforAll(process,"Fake2",_customInfo) from HLTrigger.Configuration.customizeHLTforCMSSW import customizeHLTforCMSSW process = customizeHLTforCMSSW(process,"Fake2") # Eras-based customisations from HLTrigger.Configuration.Eras import modifyHLTforEras modifyHLTforEras(process)
42.519231
229
0.722185
4a1919f12c5effb37031c673a2db65c11940f84f
271
py
Python
pyparcel/__version__.py
najaco/PyParcel
47f2aa4fb64c8d866b630262928bd2715956bf07
[ "MIT" ]
1
2020-05-22T18:28:36.000Z
2020-05-22T18:28:36.000Z
pyparcel/__version__.py
najaco/PyParcel
47f2aa4fb64c8d866b630262928bd2715956bf07
[ "MIT" ]
15
2020-05-18T16:15:03.000Z
2021-05-03T19:33:48.000Z
pyparcel/__version__.py
najaco/PyParcel
47f2aa4fb64c8d866b630262928bd2715956bf07
[ "MIT" ]
2
2020-05-17T21:25:30.000Z
2020-05-18T22:54:23.000Z
__title__ = "pyparcel" __description__ = "The simple and secure way to convert objects to bytestrings." __url__ = "https://najaco.github.io/pyparcel/" __version__ = "1.0.0" __author__ = "Nathan Cohen" __author_email__ = "ncohen4299@gmail.com" __license__ = "MIT License"
33.875
80
0.760148
4a191ab1ed4e38d7a8d485384eddca30737aacaf
549
py
Python
output/models/nist_data/atomic/non_negative_integer/schema_instance/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1_xsd/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/non_negative_integer/schema_instance/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1_xsd/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/non_negative_integer/schema_instance/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1_xsd/nistschema_sv_iv_atomic_non_negative_integer_max_exclusive_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import Optional __NAMESPACE__ = "NISTSchema-SV-IV-atomic-nonNegativeInteger-maxExclusive-1-NS" @dataclass class NistschemaSvIvAtomicNonNegativeIntegerMaxExclusive1: class Meta: name = "NISTSchema-SV-IV-atomic-nonNegativeInteger-maxExclusive-1" namespace = "NISTSchema-SV-IV-atomic-nonNegativeInteger-maxExclusive-1-NS" value: Optional[int] = field( default=None, metadata={ "required": True, "max_exclusive": 1, } )
27.45
82
0.695811
4a191bc965ce800239b432eb53719005c51116ad
9,041
py
Python
rootfs/usr/lib/python3/dist-packages/serial/win32.py
kappaIO-Dev/kappaIO-sdk-armhf-crosscompile
66fc5fc21e6235f7a3be72a7ccac68e2224b7fb2
[ "MIT" ]
null
null
null
rootfs/usr/lib/python3/dist-packages/serial/win32.py
kappaIO-Dev/kappaIO-sdk-armhf-crosscompile
66fc5fc21e6235f7a3be72a7ccac68e2224b7fb2
[ "MIT" ]
1
2018-04-15T22:59:15.000Z
2018-04-15T22:59:15.000Z
rootfs/usr/lib/python3/dist-packages/serial/win32.py
kappaIO-Dev/kappaIO-sdk-armhf-crosscompile
66fc5fc21e6235f7a3be72a7ccac68e2224b7fb2
[ "MIT" ]
null
null
null
from ctypes import * from ctypes.wintypes import HANDLE from ctypes.wintypes import BOOL from ctypes.wintypes import LPCWSTR _stdcall_libraries = {} _stdcall_libraries['kernel32'] = WinDLL('kernel32') from ctypes.wintypes import DWORD from ctypes.wintypes import WORD from ctypes.wintypes import BYTE INVALID_HANDLE_VALUE = HANDLE(-1).value class _SECURITY_ATTRIBUTES(Structure): pass LPSECURITY_ATTRIBUTES = POINTER(_SECURITY_ATTRIBUTES) CreateEventW = _stdcall_libraries['kernel32'].CreateEventW CreateEventW.restype = HANDLE CreateEventW.argtypes = [LPSECURITY_ATTRIBUTES, BOOL, BOOL, LPCWSTR] CreateEvent = CreateEventW # alias CreateFileW = _stdcall_libraries['kernel32'].CreateFileW CreateFileW.restype = HANDLE CreateFileW.argtypes = [LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES, DWORD, DWORD, HANDLE] CreateFile = CreateFileW # alias class _OVERLAPPED(Structure): pass OVERLAPPED = _OVERLAPPED class _COMSTAT(Structure): pass COMSTAT = _COMSTAT class _DCB(Structure): pass DCB = _DCB class _COMMTIMEOUTS(Structure): pass COMMTIMEOUTS = _COMMTIMEOUTS GetLastError = _stdcall_libraries['kernel32'].GetLastError GetLastError.restype = DWORD GetLastError.argtypes = [] LPOVERLAPPED = POINTER(_OVERLAPPED) LPDWORD = POINTER(DWORD) GetOverlappedResult = _stdcall_libraries['kernel32'].GetOverlappedResult GetOverlappedResult.restype = BOOL GetOverlappedResult.argtypes = [HANDLE, LPOVERLAPPED, LPDWORD, BOOL] ResetEvent = _stdcall_libraries['kernel32'].ResetEvent ResetEvent.restype = BOOL ResetEvent.argtypes = [HANDLE] LPCVOID = c_void_p WriteFile = _stdcall_libraries['kernel32'].WriteFile WriteFile.restype = BOOL WriteFile.argtypes = [HANDLE, LPCVOID, DWORD, LPDWORD, LPOVERLAPPED] LPVOID = c_void_p ReadFile = _stdcall_libraries['kernel32'].ReadFile ReadFile.restype = BOOL ReadFile.argtypes = [HANDLE, LPVOID, DWORD, LPDWORD, LPOVERLAPPED] CloseHandle = _stdcall_libraries['kernel32'].CloseHandle CloseHandle.restype = BOOL CloseHandle.argtypes = [HANDLE] ClearCommBreak = _stdcall_libraries['kernel32'].ClearCommBreak ClearCommBreak.restype = BOOL ClearCommBreak.argtypes = [HANDLE] LPCOMSTAT = POINTER(_COMSTAT) ClearCommError = _stdcall_libraries['kernel32'].ClearCommError ClearCommError.restype = BOOL ClearCommError.argtypes = [HANDLE, LPDWORD, LPCOMSTAT] SetupComm = _stdcall_libraries['kernel32'].SetupComm SetupComm.restype = BOOL SetupComm.argtypes = [HANDLE, DWORD, DWORD] EscapeCommFunction = _stdcall_libraries['kernel32'].EscapeCommFunction EscapeCommFunction.restype = BOOL EscapeCommFunction.argtypes = [HANDLE, DWORD] GetCommModemStatus = _stdcall_libraries['kernel32'].GetCommModemStatus GetCommModemStatus.restype = BOOL GetCommModemStatus.argtypes = [HANDLE, LPDWORD] LPDCB = POINTER(_DCB) GetCommState = _stdcall_libraries['kernel32'].GetCommState GetCommState.restype = BOOL GetCommState.argtypes = [HANDLE, LPDCB] LPCOMMTIMEOUTS = POINTER(_COMMTIMEOUTS) GetCommTimeouts = _stdcall_libraries['kernel32'].GetCommTimeouts GetCommTimeouts.restype = BOOL GetCommTimeouts.argtypes = [HANDLE, LPCOMMTIMEOUTS] PurgeComm = _stdcall_libraries['kernel32'].PurgeComm PurgeComm.restype = BOOL PurgeComm.argtypes = [HANDLE, DWORD] SetCommBreak = _stdcall_libraries['kernel32'].SetCommBreak SetCommBreak.restype = BOOL SetCommBreak.argtypes = [HANDLE] SetCommMask = _stdcall_libraries['kernel32'].SetCommMask SetCommMask.restype = BOOL SetCommMask.argtypes = [HANDLE, DWORD] SetCommState = _stdcall_libraries['kernel32'].SetCommState SetCommState.restype = BOOL SetCommState.argtypes = [HANDLE, LPDCB] SetCommTimeouts = _stdcall_libraries['kernel32'].SetCommTimeouts SetCommTimeouts.restype = BOOL SetCommTimeouts.argtypes = [HANDLE, LPCOMMTIMEOUTS] WaitForSingleObject = _stdcall_libraries['kernel32'].WaitForSingleObject WaitForSingleObject.restype = DWORD WaitForSingleObject.argtypes = [HANDLE, DWORD] ONESTOPBIT = 0 # Variable c_int TWOSTOPBITS = 2 # Variable c_int ONE5STOPBITS = 1 NOPARITY = 0 # Variable c_int ODDPARITY = 1 # Variable c_int EVENPARITY = 2 # Variable c_int MARKPARITY = 3 SPACEPARITY = 4 RTS_CONTROL_HANDSHAKE = 2 # Variable c_int RTS_CONTROL_DISABLE = 0 # Variable c_int RTS_CONTROL_ENABLE = 1 # Variable c_int SETRTS = 3 CLRRTS = 4 DTR_CONTROL_HANDSHAKE = 2 # Variable c_int DTR_CONTROL_DISABLE = 0 # Variable c_int DTR_CONTROL_ENABLE = 1 # Variable c_int SETDTR = 5 CLRDTR = 6 MS_DSR_ON = 32 # Variable c_ulong EV_RING = 256 # Variable c_int EV_PERR = 512 # Variable c_int EV_ERR = 128 # Variable c_int SETXOFF = 1 # Variable c_int EV_RXCHAR = 1 # Variable c_int GENERIC_WRITE = 1073741824 # Variable c_long PURGE_TXCLEAR = 4 # Variable c_int FILE_FLAG_OVERLAPPED = 1073741824 # Variable c_int EV_DSR = 16 # Variable c_int MAXDWORD = 4294967295 # Variable c_uint EV_RLSD = 32 # Variable c_int ERROR_IO_PENDING = 997 # Variable c_long MS_CTS_ON = 16 # Variable c_ulong EV_EVENT1 = 2048 # Variable c_int EV_RX80FULL = 1024 # Variable c_int PURGE_RXABORT = 2 # Variable c_int FILE_ATTRIBUTE_NORMAL = 128 # Variable c_int PURGE_TXABORT = 1 # Variable c_int SETXON = 2 # Variable c_int OPEN_EXISTING = 3 # Variable c_int MS_RING_ON = 64 # Variable c_ulong EV_TXEMPTY = 4 # Variable c_int EV_RXFLAG = 2 # Variable c_int MS_RLSD_ON = 128 # Variable c_ulong GENERIC_READ = 2147483648 # Variable c_ulong EV_EVENT2 = 4096 # Variable c_int EV_CTS = 8 # Variable c_int EV_BREAK = 64 # Variable c_int PURGE_RXCLEAR = 8 # Variable c_int ULONG_PTR = c_ulong INFINITE = 0xFFFFFFFF class N11_OVERLAPPED4DOLLAR_48E(Union): pass class N11_OVERLAPPED4DOLLAR_484DOLLAR_49E(Structure): pass N11_OVERLAPPED4DOLLAR_484DOLLAR_49E._fields_ = [ ('Offset', DWORD), ('OffsetHigh', DWORD), ] PVOID = c_void_p N11_OVERLAPPED4DOLLAR_48E._anonymous_ = ['_0'] N11_OVERLAPPED4DOLLAR_48E._fields_ = [ ('_0', N11_OVERLAPPED4DOLLAR_484DOLLAR_49E), ('Pointer', PVOID), ] _OVERLAPPED._anonymous_ = ['_0'] _OVERLAPPED._fields_ = [ ('Internal', ULONG_PTR), ('InternalHigh', ULONG_PTR), ('_0', N11_OVERLAPPED4DOLLAR_48E), ('hEvent', HANDLE), ] _SECURITY_ATTRIBUTES._fields_ = [ ('nLength', DWORD), ('lpSecurityDescriptor', LPVOID), ('bInheritHandle', BOOL), ] _COMSTAT._fields_ = [ ('fCtsHold', DWORD, 1), ('fDsrHold', DWORD, 1), ('fRlsdHold', DWORD, 1), ('fXoffHold', DWORD, 1), ('fXoffSent', DWORD, 1), ('fEof', DWORD, 1), ('fTxim', DWORD, 1), ('fReserved', DWORD, 25), ('cbInQue', DWORD), ('cbOutQue', DWORD), ] _DCB._fields_ = [ ('DCBlength', DWORD), ('BaudRate', DWORD), ('fBinary', DWORD, 1), ('fParity', DWORD, 1), ('fOutxCtsFlow', DWORD, 1), ('fOutxDsrFlow', DWORD, 1), ('fDtrControl', DWORD, 2), ('fDsrSensitivity', DWORD, 1), ('fTXContinueOnXoff', DWORD, 1), ('fOutX', DWORD, 1), ('fInX', DWORD, 1), ('fErrorChar', DWORD, 1), ('fNull', DWORD, 1), ('fRtsControl', DWORD, 2), ('fAbortOnError', DWORD, 1), ('fDummy2', DWORD, 17), ('wReserved', WORD), ('XonLim', WORD), ('XoffLim', WORD), ('ByteSize', BYTE), ('Parity', BYTE), ('StopBits', BYTE), ('XonChar', c_char), ('XoffChar', c_char), ('ErrorChar', c_char), ('EofChar', c_char), ('EvtChar', c_char), ('wReserved1', WORD), ] _COMMTIMEOUTS._fields_ = [ ('ReadIntervalTimeout', DWORD), ('ReadTotalTimeoutMultiplier', DWORD), ('ReadTotalTimeoutConstant', DWORD), ('WriteTotalTimeoutMultiplier', DWORD), ('WriteTotalTimeoutConstant', DWORD), ] __all__ = ['GetLastError', 'MS_CTS_ON', 'FILE_ATTRIBUTE_NORMAL', 'DTR_CONTROL_ENABLE', '_COMSTAT', 'MS_RLSD_ON', 'GetOverlappedResult', 'SETXON', 'PURGE_TXABORT', 'PurgeComm', 'N11_OVERLAPPED4DOLLAR_48E', 'EV_RING', 'ONESTOPBIT', 'SETXOFF', 'PURGE_RXABORT', 'GetCommState', 'RTS_CONTROL_ENABLE', '_DCB', 'CreateEvent', '_COMMTIMEOUTS', '_SECURITY_ATTRIBUTES', 'EV_DSR', 'EV_PERR', 'EV_RXFLAG', 'OPEN_EXISTING', 'DCB', 'FILE_FLAG_OVERLAPPED', 'EV_CTS', 'SetupComm', 'LPOVERLAPPED', 'EV_TXEMPTY', 'ClearCommBreak', 'LPSECURITY_ATTRIBUTES', 'SetCommBreak', 'SetCommTimeouts', 'COMMTIMEOUTS', 'ODDPARITY', 'EV_RLSD', 'GetCommModemStatus', 'EV_EVENT2', 'PURGE_TXCLEAR', 'EV_BREAK', 'EVENPARITY', 'LPCVOID', 'COMSTAT', 'ReadFile', 'PVOID', '_OVERLAPPED', 'WriteFile', 'GetCommTimeouts', 'ResetEvent', 'EV_RXCHAR', 'LPCOMSTAT', 'ClearCommError', 'ERROR_IO_PENDING', 'EscapeCommFunction', 'GENERIC_READ', 'RTS_CONTROL_HANDSHAKE', 'OVERLAPPED', 'DTR_CONTROL_HANDSHAKE', 'PURGE_RXCLEAR', 'GENERIC_WRITE', 'LPDCB', 'CreateEventW', 'SetCommMask', 'EV_EVENT1', 'SetCommState', 'LPVOID', 'CreateFileW', 'LPDWORD', 'EV_RX80FULL', 'TWOSTOPBITS', 'LPCOMMTIMEOUTS', 'MAXDWORD', 'MS_DSR_ON', 'MS_RING_ON', 'N11_OVERLAPPED4DOLLAR_484DOLLAR_49E', 'EV_ERR', 'ULONG_PTR', 'CreateFile', 'NOPARITY', 'CloseHandle']
31.283737
91
0.725362
4a191be9591651eccf940d1c7e92f81aa4a113cf
951
py
Python
scanpy/preprocessing/_utils.py
ShobiStassen/scanpy
44320ea365e6e22a0ff87dbe8be1ebf01d89b5cb
[ "BSD-3-Clause" ]
1
2020-01-18T07:48:09.000Z
2020-01-18T07:48:09.000Z
scanpy/preprocessing/_utils.py
ShobiStassen/scanpy
44320ea365e6e22a0ff87dbe8be1ebf01d89b5cb
[ "BSD-3-Clause" ]
null
null
null
scanpy/preprocessing/_utils.py
ShobiStassen/scanpy
44320ea365e6e22a0ff87dbe8be1ebf01d89b5cb
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from scipy.sparse import issparse STANDARD_SCALER_FIXED = False def _get_mean_var(X): # - using sklearn.StandardScaler throws an error related to # int to long trafo for very large matrices # - using X.multiply is slower if not STANDARD_SCALER_FIXED: mean = X.mean(axis=0) if issparse(X): mean_sq = X.multiply(X).mean(axis=0) mean = mean.A1 mean_sq = mean_sq.A1 else: mean_sq = np.multiply(X, X).mean(axis=0) # enforece R convention (unbiased estimator) for variance var = (mean_sq - mean ** 2) * (X.shape[0] / (X.shape[0] - 1)) else: from sklearn.preprocessing import StandardScaler scaler = StandardScaler(with_mean=False).partial_fit(X) mean = scaler.mean_ # enforce R convention (unbiased estimator) var = scaler.var_ * (X.shape[0] / (X.shape[0] - 1)) return mean, var
31.7
69
0.618297
4a191c35e669860db95024dedd522262357f8453
119,391
py
Python
object_detection/core/target_assigner_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
1
2021-05-22T12:50:50.000Z
2021-05-22T12:50:50.000Z
object_detection/core/target_assigner_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
object_detection/core/target_assigner_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.target_assigner.""" from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from object_detection.box_coders import keypoint_box_coder from object_detection.box_coders import mean_stddev_box_coder from object_detection.core import box_list from object_detection.core import region_similarity_calculator from object_detection.core import standard_fields as fields from object_detection.core import target_assigner as targetassigner from object_detection.matchers import argmax_matcher from object_detection.utils import np_box_ops from object_detection.utils import test_case from object_detection.utils import tf_version class TargetAssignerTest(test_case.TestCase): def test_assign_agnostic(self): def graph_fn(anchor_means, groundtruth_box_corners): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9]], dtype=np.float32) exp_cls_targets = [[1], [1], [0]] exp_cls_weights = [[1], [1], [1]] exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0]] exp_reg_weights = [1, 1, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_class_agnostic_with_ignored_matches(self): # Note: test is very similar to above. The third box matched with an IOU # of 0.35, which is between the matched and unmatched threshold. This means # That like above the expected classification targets are [1, 1, 0]. # Unlike above, the third target is ignored and therefore expected # classification weights are [1, 1, 0]. def graph_fn(anchor_means, groundtruth_box_corners): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.3) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0.0, 0.5, .9, 1.0]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9]], dtype=np.float32) exp_cls_targets = [[1], [1], [0]] exp_cls_weights = [[1], [1], [0]] exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0]] exp_reg_weights = [1, 1, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_agnostic_with_keypoints(self): def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_keypoints): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = keypoint_box_coder.KeypointBoxCoder( num_keypoints=6, scale_factors=[10.0, 10.0, 5.0, 5.0]) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) groundtruth_boxlist.add_field(fields.BoxListFields.keypoints, groundtruth_keypoints) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0], [0.0, 0.5, .9, 1.0]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.45, 0.45, 0.95, 0.95]], dtype=np.float32) groundtruth_keypoints = np.array( [[[0.1, 0.2], [0.1, 0.3], [0.2, 0.2], [0.2, 0.2], [0.1, 0.1], [0.9, 0]], [[0, 0.3], [0.2, 0.4], [0.5, 0.6], [0, 0.6], [0.8, 0.2], [0.2, 0.4]]], dtype=np.float32) exp_cls_targets = [[1], [1], [0]] exp_cls_weights = [[1], [1], [1]] exp_reg_targets = [[0, 0, 0, 0, -3, -1, -3, 1, -1, -1, -1, -1, -3, -3, 13, -5], [-1, -1, 0, 0, -15, -9, -11, -7, -5, -3, -15, -3, 1, -11, -11, -7], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] exp_reg_weights = [1, 1, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [anchor_means, groundtruth_box_corners, groundtruth_keypoints]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_class_agnostic_with_keypoints_and_ignored_matches(self): # Note: test is very similar to above. The third box matched with an IOU # of 0.35, which is between the matched and unmatched threshold. This means # That like above the expected classification targets are [1, 1, 0]. # Unlike above, the third target is ignored and therefore expected # classification weights are [1, 1, 0]. def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_keypoints): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = keypoint_box_coder.KeypointBoxCoder( num_keypoints=6, scale_factors=[10.0, 10.0, 5.0, 5.0]) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) groundtruth_boxlist.add_field(fields.BoxListFields.keypoints, groundtruth_keypoints) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0], [0.0, 0.5, .9, 1.0]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.45, 0.45, 0.95, 0.95]], dtype=np.float32) groundtruth_keypoints = np.array( [[[0.1, 0.2], [0.1, 0.3], [0.2, 0.2], [0.2, 0.2], [0.1, 0.1], [0.9, 0]], [[0, 0.3], [0.2, 0.4], [0.5, 0.6], [0, 0.6], [0.8, 0.2], [0.2, 0.4]]], dtype=np.float32) exp_cls_targets = [[1], [1], [0]] exp_cls_weights = [[1], [1], [1]] exp_reg_targets = [[0, 0, 0, 0, -3, -1, -3, 1, -1, -1, -1, -1, -3, -3, 13, -5], [-1, -1, 0, 0, -15, -9, -11, -7, -5, -3, -15, -3, 1, -11, -11, -7], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] exp_reg_weights = [1, 1, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [anchor_means, groundtruth_box_corners, groundtruth_keypoints]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_multiclass(self): def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_labels): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, groundtruth_labels, unmatched_class_label=unmatched_class_label) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]], dtype=np.float32) groundtruth_labels = np.array([[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0]], dtype=np.float32) exp_cls_targets = [[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]] exp_cls_weights = [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]] exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0], [0, 0, -.5, .2]] exp_reg_weights = [1, 1, 0, 1] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners, groundtruth_labels]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_multiclass_with_groundtruth_weights(self): def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_labels, groundtruth_weights): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, groundtruth_labels, unmatched_class_label=unmatched_class_label, groundtruth_weights=groundtruth_weights) (_, cls_weights, _, reg_weights, _) = result return (cls_weights, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]], dtype=np.float32) groundtruth_labels = np.array([[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0]], dtype=np.float32) groundtruth_weights = np.array([0.3, 0., 0.5], dtype=np.float32) # background class gets weight of 1. exp_cls_weights = [[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]] exp_reg_weights = [0.3, 0., 0., 0.5] # background class gets weight of 0. (cls_weights_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_box_corners, groundtruth_labels, groundtruth_weights ]) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_assign_multidimensional_class_targets(self): def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_labels): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) unmatched_class_label = tf.constant([[0, 0], [0, 0]], tf.float32) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, groundtruth_labels, unmatched_class_label=unmatched_class_label) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]], dtype=np.float32) groundtruth_labels = np.array([[[0, 1], [1, 0]], [[1, 0], [0, 1]], [[0, 1], [1, .5]]], np.float32) exp_cls_targets = [[[0, 1], [1, 0]], [[1, 0], [0, 1]], [[0, 0], [0, 0]], [[0, 1], [1, .5]]] exp_cls_weights = [[[1, 1], [1, 1]], [[1, 1], [1, 1]], [[1, 1], [1, 1]], [[1, 1], [1, 1]]] exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0], [0, 0, -.5, .2]] exp_reg_weights = [1, 1, 0, 1] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners, groundtruth_labels]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_assign_empty_groundtruth(self): def graph_fn(anchor_means, groundtruth_box_corners, groundtruth_labels): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) unmatched_class_label = tf.constant([0, 0, 0], tf.float32) anchors_boxlist = box_list.BoxList(anchor_means) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) result = target_assigner.assign( anchors_boxlist, groundtruth_boxlist, groundtruth_labels, unmatched_class_label=unmatched_class_label) (cls_targets, cls_weights, reg_targets, reg_weights, _) = result return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32) groundtruth_labels = np.zeros((0, 3), dtype=np.float32) anchor_means = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]], dtype=np.float32) exp_cls_targets = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]] exp_cls_weights = [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]] exp_reg_targets = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] exp_reg_weights = [0, 0, 0, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners, groundtruth_labels]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self): similarity_calc = region_similarity_calculator.NegSqDistSimilarity() matcher = argmax_matcher.ArgMaxMatcher(0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder() unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8], [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]]) priors = box_list.BoxList(prior_means) box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.8], [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]] boxes = box_list.BoxList(tf.constant(box_corners)) groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0]], tf.float32) with self.assertRaisesRegexp(ValueError, 'Unequal shapes'): target_assigner.assign( priors, boxes, groundtruth_labels, unmatched_class_label=unmatched_class_label) def test_raises_error_on_invalid_groundtruth_labels(self): similarity_calc = region_similarity_calculator.NegSqDistSimilarity() matcher = argmax_matcher.ArgMaxMatcher(0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0) unmatched_class_label = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32) target_assigner = targetassigner.TargetAssigner( similarity_calc, matcher, box_coder) prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]]) priors = box_list.BoxList(prior_means) box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]] boxes = box_list.BoxList(tf.constant(box_corners)) groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32) with self.assertRaises(ValueError): target_assigner.assign( priors, boxes, groundtruth_labels, unmatched_class_label=unmatched_class_label) class BatchTargetAssignerTest(test_case.TestCase): def _get_target_assigner(self): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) return targetassigner.TargetAssigner(similarity_calc, matcher, box_coder) def test_batch_assign_targets(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_targets = [None, None] anchors_boxlist = box_list.BoxList(anchor_means) agnostic_target_assigner = self._get_target_assigner() (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_targets( agnostic_target_assigner, anchors_boxlist, gt_box_batch, gt_class_targets) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[1], [0], [0], [0]], [[0], [1], [1], [0]]] exp_cls_weights = [[[1], [1], [1], [1]], [[1], [1], [1], [1]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_multiclass_targets(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_targets = [class_targets1, class_targets2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() num_classes = 3 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_targets( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_targets, unmatched_class_label) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) class_targets1 = np.array([[0, 1, 0, 0]], dtype=np.float32) class_targets2 = np.array([[0, 0, 0, 1], [0, 0, 1, 0]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2 ]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_multiclass_targets_with_padded_groundtruth(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2, groundtruth_weights1, groundtruth_weights2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_targets = [class_targets1, class_targets2] gt_weights = [groundtruth_weights1, groundtruth_weights2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() num_classes = 3 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_targets( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_targets, unmatched_class_label, gt_weights) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2], [0., 0., 0., 0.]], dtype=np.float32) groundtruth_weights1 = np.array([1, 0], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842], [0, 0, 0, 0]], dtype=np.float32) groundtruth_weights2 = np.array([1, 1, 0], dtype=np.float32) class_targets1 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], dtype=np.float32) class_targets2 = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2, groundtruth_weights1, groundtruth_weights2 ]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_multidimensional_targets(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_targets = [class_targets1, class_targets2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() target_dimensions = (2, 3) unmatched_class_label = tf.constant(np.zeros(target_dimensions), tf.float32) (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_targets( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_targets, unmatched_class_label) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) class_targets1 = np.array([[[0, 1, 1], [1, 1, 0]]], dtype=np.float32) class_targets2 = np.array([[[0, 1, 1], [1, 1, 0]], [[0, 0, 1], [0, 0, 1]]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[[0., 1., 1.], [1., 1., 0.]], [[0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.]]], [[[0., 0., 0.], [0., 0., 0.]], [[0., 1., 1.], [1., 1., 0.]], [[0., 0., 1.], [0., 0., 1.]], [[0., 0., 0.], [0., 0., 0.]]]] exp_cls_weights = [[[[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]]], [[[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2 ]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_empty_groundtruth(self): def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets): groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) gt_box_batch = [groundtruth_boxlist] gt_class_targets_batch = [gt_class_targets] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() num_classes = 3 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_targets( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_targets_batch, unmatched_class_label) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1]], dtype=np.float32) exp_cls_targets = [[[1, 0, 0, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[1, 1, 1, 1], [1, 1, 1, 1]]] exp_reg_targets = [[[0, 0, 0, 0], [0, 0, 0, 0]]] exp_reg_weights = [[0, 0]] num_classes = 3 pad = 1 gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32) (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) class BatchGetTargetsTest(test_case.TestCase): def test_scalar_targets(self): batch_match = np.array([[1, 0, 1], [-2, -1, 1]], dtype=np.int32) groundtruth_tensors_list = np.array([[11, 12], [13, 14]], dtype=np.int32) groundtruth_weights_list = np.array([[1.0, 1.0], [1.0, 0.5]], dtype=np.float32) unmatched_value = np.array(99, dtype=np.int32) unmatched_weight = np.array(0.0, dtype=np.float32) def graph_fn(batch_match, groundtruth_tensors_list, groundtruth_weights_list, unmatched_value, unmatched_weight): targets, weights = targetassigner.batch_get_targets( batch_match, tf.unstack(groundtruth_tensors_list), tf.unstack(groundtruth_weights_list), unmatched_value, unmatched_weight) return (targets, weights) (targets_np, weights_np) = self.execute(graph_fn, [ batch_match, groundtruth_tensors_list, groundtruth_weights_list, unmatched_value, unmatched_weight ]) self.assertAllEqual([[12, 11, 12], [99, 99, 14]], targets_np) self.assertAllClose([[1.0, 1.0, 1.0], [0.0, 0.0, 0.5]], weights_np) def test_1d_targets(self): batch_match = np.array([[1, 0, 1], [-2, -1, 1]], dtype=np.int32) groundtruth_tensors_list = np.array([[[11, 12], [12, 13]], [[13, 14], [14, 15]]], dtype=np.float32) groundtruth_weights_list = np.array([[1.0, 1.0], [1.0, 0.5]], dtype=np.float32) unmatched_value = np.array([99, 99], dtype=np.float32) unmatched_weight = np.array(0.0, dtype=np.float32) def graph_fn(batch_match, groundtruth_tensors_list, groundtruth_weights_list, unmatched_value, unmatched_weight): targets, weights = targetassigner.batch_get_targets( batch_match, tf.unstack(groundtruth_tensors_list), tf.unstack(groundtruth_weights_list), unmatched_value, unmatched_weight) return (targets, weights) (targets_np, weights_np) = self.execute(graph_fn, [ batch_match, groundtruth_tensors_list, groundtruth_weights_list, unmatched_value, unmatched_weight ]) self.assertAllClose([[[12, 13], [11, 12], [12, 13]], [[99, 99], [99, 99], [14, 15]]], targets_np) self.assertAllClose([[1.0, 1.0, 1.0], [0.0, 0.0, 0.5]], weights_np) class BatchTargetAssignConfidencesTest(test_case.TestCase): def _get_target_assigner(self): similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.5) box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) return targetassigner.TargetAssigner(similarity_calc, matcher, box_coder) def test_batch_assign_empty_groundtruth(self): def graph_fn(anchor_means, groundtruth_box_corners, gt_class_confidences): groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) gt_box_batch = [groundtruth_boxlist] gt_class_confidences_batch = [gt_class_confidences] anchors_boxlist = box_list.BoxList(anchor_means) num_classes = 3 implicit_class_weight = 0.5 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) multiclass_target_assigner = self._get_target_assigner() (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_confidences( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_confidences_batch, unmatched_class_label=unmatched_class_label, include_background_class=True, implicit_class_weight=implicit_class_weight) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1]], dtype=np.float32) num_classes = 3 pad = 1 gt_class_confidences = np.zeros((0, num_classes + pad), dtype=np.float32) exp_cls_targets = [[[1, 0, 0, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5]]] exp_reg_targets = [[[0, 0, 0, 0], [0, 0, 0, 0]]] exp_reg_weights = [[0, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_box_corners, gt_class_confidences]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_confidences_agnostic(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_confidences_batch = [None, None] anchors_boxlist = box_list.BoxList(anchor_means) agnostic_target_assigner = self._get_target_assigner() implicit_class_weight = 0.5 (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_confidences( agnostic_target_assigner, anchors_boxlist, gt_box_batch, gt_class_confidences_batch, include_background_class=False, implicit_class_weight=implicit_class_weight) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[1], [0], [0], [0]], [[0], [1], [1], [0]]] exp_cls_weights = [[[1], [0.5], [0.5], [0.5]], [[0.5], [1], [1], [0.5]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute( graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_confidences_multiclass(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_confidences_batch = [class_targets1, class_targets2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() num_classes = 3 implicit_class_weight = 0.5 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_confidences( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_confidences_batch, unmatched_class_label=unmatched_class_label, include_background_class=True, implicit_class_weight=implicit_class_weight) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) class_targets1 = np.array([[0, 1, 0, 0]], dtype=np.float32) class_targets2 = np.array([[0, 0, 0, 1], [0, 0, -1, 0]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[1, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[1, 1, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5]], [[0.5, 0.5, 0.5, 0.5], [1, 0.5, 0.5, 1], [0.5, 0.5, 1, 0.5], [0.5, 0.5, 0.5, 0.5]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 0, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2 ]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_confidences_multiclass_with_padded_groundtruth(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2, groundtruth_weights1, groundtruth_weights2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_confidences_batch = [class_targets1, class_targets2] gt_weights = [groundtruth_weights1, groundtruth_weights2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() num_classes = 3 unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32) implicit_class_weight = 0.5 (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_confidences( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_confidences_batch, gt_weights, unmatched_class_label=unmatched_class_label, include_background_class=True, implicit_class_weight=implicit_class_weight) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2], [0., 0., 0., 0.]], dtype=np.float32) groundtruth_weights1 = np.array([1, 0], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842], [0, 0, 0, 0]], dtype=np.float32) groundtruth_weights2 = np.array([1, 1, 0], dtype=np.float32) class_targets1 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], dtype=np.float32) class_targets2 = np.array([[0, 0, 0, 1], [0, 0, -1, 0], [0, 0, 0, 0]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) exp_cls_targets = [[[0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[1, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0]]] exp_cls_weights = [[[1, 1, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5]], [[0.5, 0.5, 0.5, 0.5], [1, 0.5, 0.5, 1], [0.5, 0.5, 1, 0.5], [0.5, 0.5, 0.5, 0.5]]] exp_reg_targets = [[[0, 0, -0.5, -0.5], [0, 0, 0, 0], [0, 0, 0, 0,], [0, 0, 0, 0,],], [[0, 0, 0, 0,], [0, 0.01231521, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 0, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2, groundtruth_weights1, groundtruth_weights2 ]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) def test_batch_assign_confidences_multidimensional(self): def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2): box_list1 = box_list.BoxList(groundtruth_boxlist1) box_list2 = box_list.BoxList(groundtruth_boxlist2) gt_box_batch = [box_list1, box_list2] gt_class_confidences_batch = [class_targets1, class_targets2] anchors_boxlist = box_list.BoxList(anchor_means) multiclass_target_assigner = self._get_target_assigner() target_dimensions = (2, 3) unmatched_class_label = tf.constant(np.zeros(target_dimensions), tf.float32) implicit_class_weight = 0.5 (cls_targets, cls_weights, reg_targets, reg_weights, _) = targetassigner.batch_assign_confidences( multiclass_target_assigner, anchors_boxlist, gt_box_batch, gt_class_confidences_batch, unmatched_class_label=unmatched_class_label, include_background_class=True, implicit_class_weight=implicit_class_weight) return (cls_targets, cls_weights, reg_targets, reg_weights) groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32) groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]], dtype=np.float32) class_targets1 = np.array([[0, 1, 0, 0]], dtype=np.float32) class_targets2 = np.array([[0, 0, 0, 1], [0, 0, 1, 0]], dtype=np.float32) class_targets1 = np.array([[[0, 1, 1], [1, 1, 0]]], dtype=np.float32) class_targets2 = np.array([[[0, 1, 1], [1, 1, 0]], [[0, 0, 1], [0, 0, 1]]], dtype=np.float32) anchor_means = np.array([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]], dtype=np.float32) with self.assertRaises(ValueError): _, _, _, _ = self.execute(graph_fn, [ anchor_means, groundtruth_boxlist1, groundtruth_boxlist2, class_targets1, class_targets2 ]) class CreateTargetAssignerTest(test_case.TestCase): def test_create_target_assigner(self): """Tests that named constructor gives working target assigners. TODO(rathodv): Make this test more general. """ corners = [[0.0, 0.0, 1.0, 1.0]] groundtruth = box_list.BoxList(tf.constant(corners)) priors = box_list.BoxList(tf.constant(corners)) if tf_version.is_tf1(): multibox_ta = (targetassigner .create_target_assigner('Multibox', stage='proposal')) multibox_ta.assign(priors, groundtruth) # No tests on output, as that may vary arbitrarily as new target assigners # are added. As long as it is constructed correctly and runs without errors, # tests on the individual assigners cover correctness of the assignments. anchors = box_list.BoxList(tf.constant(corners)) faster_rcnn_proposals_ta = (targetassigner .create_target_assigner('FasterRCNN', stage='proposal')) faster_rcnn_proposals_ta.assign(anchors, groundtruth) fast_rcnn_ta = (targetassigner .create_target_assigner('FastRCNN')) fast_rcnn_ta.assign(anchors, groundtruth) faster_rcnn_detection_ta = (targetassigner .create_target_assigner('FasterRCNN', stage='detection')) faster_rcnn_detection_ta.assign(anchors, groundtruth) with self.assertRaises(ValueError): targetassigner.create_target_assigner('InvalidDetector', stage='invalid_stage') def _array_argmax(array): return np.unravel_index(np.argmax(array), array.shape) class CenterNetCenterHeatmapTargetAssignerTest(test_case.TestCase, parameterized.TestCase): def setUp(self): super(CenterNetCenterHeatmapTargetAssignerTest, self).setUp() self._box_center = [0.0, 0.0, 1.0, 1.0] self._box_center_small = [0.25, 0.25, 0.75, 0.75] self._box_lower_left = [0.5, 0.0, 1.0, 0.5] self._box_center_offset = [0.1, 0.05, 1.0, 1.0] self._box_odd_coordinates = [0.1625, 0.2125, 0.5625, 0.9625] def test_center_location(self): """Test that the centers are at the correct location.""" def graph_fn(): box_batch = [tf.constant([self._box_center, self._box_lower_left])] classes = [ tf.one_hot([0, 1], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes) return targets targets = self.execute(graph_fn, []) self.assertEqual((10, 10), _array_argmax(targets[0, :, :, 0])) self.assertAlmostEqual(1.0, targets[0, 10, 10, 0]) self.assertEqual((15, 5), _array_argmax(targets[0, :, :, 1])) self.assertAlmostEqual(1.0, targets[0, 15, 5, 1]) @parameterized.parameters( {'keypoint_weights_for_center': [1.0, 1.0, 1.0, 1.0]}, {'keypoint_weights_for_center': [0.0, 0.0, 1.0, 1.0]}, ) def test_center_location_by_keypoints(self, keypoint_weights_for_center): """Test that the centers are at the correct location.""" kpts_y = [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.0, 0.0, 0.0, 0.0]] kpts_x = [[0.5, 0.6, 0.7, 0.8], [0.1, 0.2, 0.3, 0.4], [0.0, 0.0, 0.0, 0.0]] gt_keypoints_list = [ tf.stack([tf.constant(kpts_y), tf.constant(kpts_x)], axis=2) ] kpts_weight = [[1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0]] gt_keypoints_weights_list = [tf.constant(kpts_weight)] gt_classes_list = [ tf.one_hot([0, 0, 0], depth=1), ] gt_weights_list = [tf.constant([1.0, 1.0, 0.0])] def graph_fn(): assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner( 4, keypoint_class_id=0, keypoint_indices=[0, 1, 2, 3], keypoint_weights_for_center=keypoint_weights_for_center) targets = assigner.assign_center_targets_from_keypoints( 80, 80, gt_classes_list=gt_classes_list, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_keypoints_weights_list=gt_keypoints_weights_list) return targets targets = self.execute(graph_fn, []) if sum(keypoint_weights_for_center) == 4.0: # There should be two peaks at location (5, 13), and (12, 4). # (5, 13) = ((0.1 + 0.2 + 0.3 + 0.4) / 4 * 80 / 4, # (0.5 + 0.6 + 0.7 + 0.8) / 4 * 80 / 4) # (12, 4) = ((0.5 + 0.7) / 2 * 80 / 4, # (0.1 + 0.3) / 2 * 80 / 4) self.assertEqual((5, 13), _array_argmax(targets[0, :, :, 0])) self.assertAlmostEqual(1.0, targets[0, 5, 13, 0]) self.assertEqual((1, 20, 20, 1), targets.shape) targets[0, 5, 13, 0] = 0.0 self.assertEqual((12, 4), _array_argmax(targets[0, :, :, 0])) self.assertAlmostEqual(1.0, targets[0, 12, 4, 0]) else: # There should be two peaks at location (5, 13), and (12, 4). # (7, 15) = ((0.3 + 0.4) / 2 * 80 / 4, # (0.7 + 0.8) / 2 * 80 / 4) # (14, 6) = (0.7 * 80 / 4, 0.3 * 80 / 4) self.assertEqual((7, 15), _array_argmax(targets[0, :, :, 0])) self.assertAlmostEqual(1.0, targets[0, 7, 15, 0]) self.assertEqual((1, 20, 20, 1), targets.shape) targets[0, 7, 15, 0] = 0.0 self.assertEqual((14, 6), _array_argmax(targets[0, :, :, 0])) self.assertAlmostEqual(1.0, targets[0, 14, 6, 0]) def test_center_batch_shape(self): """Test that the shape of the target for a batch is correct.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center]), tf.constant([self._box_center_small]), ] classes = [ tf.one_hot([0, 1], depth=4), tf.one_hot([2], depth=4), tf.one_hot([3], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes) return targets targets = self.execute(graph_fn, []) self.assertEqual((3, 20, 20, 4), targets.shape) def test_center_overlap_maximum(self): """Test that when boxes overlap we, are computing the maximum.""" def graph_fn(): box_batch = [ tf.constant([ self._box_center, self._box_center_offset, self._box_center, self._box_center_offset ]) ] classes = [ tf.one_hot([0, 0, 1, 2], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes) return targets targets = self.execute(graph_fn, []) class0_targets = targets[0, :, :, 0] class1_targets = targets[0, :, :, 1] class2_targets = targets[0, :, :, 2] np.testing.assert_allclose(class0_targets, np.maximum(class1_targets, class2_targets)) def test_size_blur(self): """Test that the heatmap of a larger box is more blurred.""" def graph_fn(): box_batch = [tf.constant([self._box_center, self._box_center_small])] classes = [ tf.one_hot([0, 1], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes) return targets targets = self.execute(graph_fn, []) self.assertGreater( np.count_nonzero(targets[:, :, :, 0]), np.count_nonzero(targets[:, :, :, 1])) def test_weights(self): """Test that the weights correctly ignore ground truth.""" def graph1_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center]), tf.constant([self._box_center_small]), ] classes = [ tf.one_hot([0, 1], depth=4), tf.one_hot([2], depth=4), tf.one_hot([3], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes) return targets targets = self.execute(graph1_fn, []) self.assertAlmostEqual(1.0, targets[0, :, :, 0].max()) self.assertAlmostEqual(1.0, targets[0, :, :, 1].max()) self.assertAlmostEqual(1.0, targets[1, :, :, 2].max()) self.assertAlmostEqual(1.0, targets[2, :, :, 3].max()) self.assertAlmostEqual(0.0, targets[0, :, :, [2, 3]].max()) self.assertAlmostEqual(0.0, targets[1, :, :, [0, 1, 3]].max()) self.assertAlmostEqual(0.0, targets[2, :, :, :3].max()) def graph2_fn(): weights = [ tf.constant([0., 1.]), tf.constant([1.]), tf.constant([1.]), ] box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center]), tf.constant([self._box_center_small]), ] classes = [ tf.one_hot([0, 1], depth=4), tf.one_hot([2], depth=4), tf.one_hot([3], depth=4), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner(4) targets = assigner.assign_center_targets_from_boxes(80, 80, box_batch, classes, weights) return targets targets = self.execute(graph2_fn, []) self.assertAlmostEqual(1.0, targets[0, :, :, 1].max()) self.assertAlmostEqual(1.0, targets[1, :, :, 2].max()) self.assertAlmostEqual(1.0, targets[2, :, :, 3].max()) self.assertAlmostEqual(0.0, targets[0, :, :, [0, 2, 3]].max()) self.assertAlmostEqual(0.0, targets[1, :, :, [0, 1, 3]].max()) self.assertAlmostEqual(0.0, targets[2, :, :, :3].max()) def test_low_overlap(self): def graph1_fn(): box_batch = [tf.constant([self._box_center])] classes = [ tf.one_hot([0], depth=2), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner( 4, min_overlap=0.1) targets_low_overlap = assigner.assign_center_targets_from_boxes( 80, 80, box_batch, classes) return targets_low_overlap targets_low_overlap = self.execute(graph1_fn, []) self.assertLess(1, np.count_nonzero(targets_low_overlap)) def graph2_fn(): box_batch = [tf.constant([self._box_center])] classes = [ tf.one_hot([0], depth=2), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner( 4, min_overlap=0.6) targets_medium_overlap = assigner.assign_center_targets_from_boxes( 80, 80, box_batch, classes) return targets_medium_overlap targets_medium_overlap = self.execute(graph2_fn, []) self.assertLess(1, np.count_nonzero(targets_medium_overlap)) def graph3_fn(): box_batch = [tf.constant([self._box_center])] classes = [ tf.one_hot([0], depth=2), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner( 4, min_overlap=0.99) targets_high_overlap = assigner.assign_center_targets_from_boxes( 80, 80, box_batch, classes) return targets_high_overlap targets_high_overlap = self.execute(graph3_fn, []) self.assertTrue(np.all(targets_low_overlap >= targets_medium_overlap)) self.assertTrue(np.all(targets_medium_overlap >= targets_high_overlap)) def test_empty_box_list(self): """Test that an empty box list gives an all 0 heatmap.""" def graph_fn(): box_batch = [ tf.zeros((0, 4), dtype=tf.float32), ] classes = [ tf.zeros((0, 5), dtype=tf.float32), ] assigner = targetassigner.CenterNetCenterHeatmapTargetAssigner( 4, min_overlap=0.1) targets = assigner.assign_center_targets_from_boxes( 80, 80, box_batch, classes) return targets targets = self.execute(graph_fn, []) np.testing.assert_allclose(targets, 0.) class CenterNetBoxTargetAssignerTest(test_case.TestCase): def setUp(self): super(CenterNetBoxTargetAssignerTest, self).setUp() self._box_center = [0.0, 0.0, 1.0, 1.0] self._box_center_small = [0.25, 0.25, 0.75, 0.75] self._box_lower_left = [0.5, 0.0, 1.0, 0.5] self._box_center_offset = [0.1, 0.05, 1.0, 1.0] self._box_odd_coordinates = [0.1625, 0.2125, 0.5625, 0.9625] def test_max_distance_for_overlap(self): """Test that the distance ensures the IoU with random boxes.""" # TODO(vighneshb) remove this after the `_smallest_positive_root` # function if fixed. self.skipTest(('Skipping test because we are using an incorrect version of' 'the `max_distance_for_overlap` function to reproduce' ' results.')) rng = np.random.RandomState(0) n_samples = 100 width = rng.uniform(1, 100, size=n_samples) height = rng.uniform(1, 100, size=n_samples) min_iou = rng.uniform(0.1, 1.0, size=n_samples) def graph_fn(): max_dist = targetassigner.max_distance_for_overlap(height, width, min_iou) return max_dist max_dist = self.execute(graph_fn, []) xmin1 = np.zeros(n_samples) ymin1 = np.zeros(n_samples) xmax1 = np.zeros(n_samples) + width ymax1 = np.zeros(n_samples) + height xmin2 = max_dist * np.cos(rng.uniform(0, 2 * np.pi)) ymin2 = max_dist * np.sin(rng.uniform(0, 2 * np.pi)) xmax2 = width + max_dist * np.cos(rng.uniform(0, 2 * np.pi)) ymax2 = height + max_dist * np.sin(rng.uniform(0, 2 * np.pi)) boxes1 = np.vstack([ymin1, xmin1, ymax1, xmax1]).T boxes2 = np.vstack([ymin2, xmin2, ymax2, xmax2]).T iou = np.diag(np_box_ops.iou(boxes1, boxes2)) self.assertTrue(np.all(iou >= min_iou)) def test_max_distance_for_overlap_centernet(self): """Test the version of the function used in the CenterNet paper.""" def graph_fn(): distance = targetassigner.max_distance_for_overlap(10, 5, 0.5) return distance distance = self.execute(graph_fn, []) self.assertAlmostEqual(2.807764064, distance) def test_assign_size_and_offset_targets(self): """Test the assign_size_and_offset_targets function.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center_offset]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] assigner = targetassigner.CenterNetBoxTargetAssigner(4) indices, hw, yx_offset, weights = assigner.assign_size_and_offset_targets( 80, 80, box_batch) return indices, hw, yx_offset, weights indices, hw, yx_offset, weights = self.execute(graph_fn, []) self.assertEqual(indices.shape, (5, 3)) self.assertEqual(hw.shape, (5, 2)) self.assertEqual(yx_offset.shape, (5, 2)) self.assertEqual(weights.shape, (5,)) np.testing.assert_array_equal( indices, [[0, 10, 10], [0, 15, 5], [1, 11, 10], [2, 10, 10], [2, 7, 11]]) np.testing.assert_array_equal( hw, [[20, 20], [10, 10], [18, 19], [10, 10], [8, 15]]) np.testing.assert_array_equal( yx_offset, [[0, 0], [0, 0], [0, 0.5], [0, 0], [0.25, 0.75]]) np.testing.assert_array_equal(weights, 1) def test_assign_size_and_offset_targets_weights(self): """Test the assign_size_and_offset_targets function with box weights.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_lower_left, self._box_center_small]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] cn_assigner = targetassigner.CenterNetBoxTargetAssigner(4) weights_batch = [ tf.constant([0.0, 1.0]), tf.constant([1.0, 1.0]), tf.constant([0.0, 0.0]) ] indices, hw, yx_offset, weights = cn_assigner.assign_size_and_offset_targets( 80, 80, box_batch, weights_batch) return indices, hw, yx_offset, weights indices, hw, yx_offset, weights = self.execute(graph_fn, []) self.assertEqual(indices.shape, (6, 3)) self.assertEqual(hw.shape, (6, 2)) self.assertEqual(yx_offset.shape, (6, 2)) self.assertEqual(weights.shape, (6,)) np.testing.assert_array_equal(indices, [[0, 10, 10], [0, 15, 5], [1, 15, 5], [1, 10, 10], [2, 10, 10], [2, 7, 11]]) np.testing.assert_array_equal( hw, [[20, 20], [10, 10], [10, 10], [10, 10], [10, 10], [8, 15]]) np.testing.assert_array_equal( yx_offset, [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 0.75]]) np.testing.assert_array_equal(weights, [0, 1, 1, 1, 0, 0]) def test_get_batch_predictions_from_indices(self): """Test the get_batch_predictions_from_indices function. This test verifies that the indices returned by assign_size_and_offset_targets function work as expected with a predicted tensor. """ def graph_fn(): pred_array = np.ones((2, 40, 20, 2), dtype=np.int32) * -1000 pred_array[0, 20, 10] = [1, 2] pred_array[0, 30, 5] = [3, 4] pred_array[1, 20, 10] = [5, 6] pred_array[1, 14, 11] = [7, 8] pred_tensor = tf.constant(pred_array) indices = tf.constant([ [0, 20, 10], [0, 30, 5], [1, 20, 10], [1, 14, 11] ], dtype=tf.int32) preds = targetassigner.get_batch_predictions_from_indices( pred_tensor, indices) return preds preds = self.execute(graph_fn, []) np.testing.assert_array_equal(preds, [[1, 2], [3, 4], [5, 6], [7, 8]]) def test_get_batch_predictions_from_indices_with_class(self): """Test the get_batch_predictions_from_indices function with class axis. This test verifies that the indices returned by assign_size_and_offset_targets function work as expected with a predicted tensor. """ def graph_fn(): pred_array = np.ones((2, 40, 20, 5, 2), dtype=np.int32) * -1000 pred_array[0, 20, 10, 0] = [1, 2] pred_array[0, 30, 5, 2] = [3, 4] pred_array[1, 20, 10, 1] = [5, 6] pred_array[1, 14, 11, 4] = [7, 8] pred_tensor = tf.constant(pred_array) indices = tf.constant([ [0, 20, 10, 0], [0, 30, 5, 2], [1, 20, 10, 1], [1, 14, 11, 4] ], dtype=tf.int32) preds = targetassigner.get_batch_predictions_from_indices( pred_tensor, indices) return preds preds = self.execute(graph_fn, []) np.testing.assert_array_equal(preds, [[1, 2], [3, 4], [5, 6], [7, 8]]) class CenterNetKeypointTargetAssignerTest(test_case.TestCase): def test_keypoint_heatmap_targets(self): def graph_fn(): gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 1.0], [0.4, 0.1, 0.4, 0.2, 0.1], [float('nan'), 0.1, 0.5, 0.7, 0.6]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] gt_boxes_list = [ tf.constant( np.array([[0.0, 0.0, 0.3, 0.3], [0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 1.0, 1.0]]), dtype=tf.float32) ] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2]) (targets, num_instances_batch, valid_mask) = cn_assigner.assign_keypoint_heatmap_targets( 120, 80, gt_keypoints_list, gt_classes_list, gt_boxes_list=gt_boxes_list) return targets, num_instances_batch, valid_mask targets, num_instances_batch, valid_mask = self.execute(graph_fn, []) # keypoint (0.5, 0.5) is selected. The peak is expected to appear at the # center of the image. self.assertEqual((15, 10), _array_argmax(targets[0, :, :, 1])) self.assertAlmostEqual(1.0, targets[0, 15, 10, 1]) # No peak for the first class since NaN is selected. self.assertAlmostEqual(0.0, targets[0, 15, 10, 0]) # Verify the output heatmap shape. self.assertAllEqual([1, 30, 20, 2], targets.shape) # Verify the number of instances is correct. np.testing.assert_array_almost_equal([[0, 1]], num_instances_batch) # When calling the function, we specify the class id to be 1 (1th and 3rd) # instance and the keypoint indices to be [0, 2], meaning that the 1st # instance is the target class with no valid keypoints in it. As a result, # the region of the 1st instance boxing box should be blacked out # (0.0, 0.0, 0.5, 0.5), transfering to (0, 0, 15, 10) in absolute output # space. self.assertAlmostEqual(np.sum(valid_mask[:, 0:16, 0:11]), 0.0) # All other values are 1.0 so the sum is: 30 * 20 - 16 * 11 = 424. self.assertAlmostEqual(np.sum(valid_mask), 424.0) def test_assign_keypoints_offset_targets(self): def graph_fn(): gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2]) (indices, offsets, weights) = cn_assigner.assign_keypoints_offset_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list) return indices, weights, offsets indices, weights, offsets = self.execute(graph_fn, []) # Only the last element has positive weight. np.testing.assert_array_almost_equal( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], weights) # Validate the last element's indices and offsets. np.testing.assert_array_equal([0, 3, 2], indices[7, :]) np.testing.assert_array_almost_equal([0.6, 0.4], offsets[7, :]) def test_assign_keypoint_depths_target(self): def graph_fn(): gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, 0.7, 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] depths = tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [0.5, 0.0, 7.0, 0.7, 0.4]]), dtype=tf.float32) gt_keypoint_depths_list = [depths] gt_keypoint_depth_weights = tf.constant( np.array([[1.0, 1.0, 1.0, 1.0, 1.0], [float('nan'), 0.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 0.5, 1.0, 1.0]]), dtype=tf.float32) gt_keypoint_depth_weights_list = [gt_keypoint_depth_weights] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2], peak_radius=1) (indices, depths, weights) = cn_assigner.assign_keypoints_depth_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_keypoint_depths_list=gt_keypoint_depths_list, gt_keypoint_depth_weights_list=gt_keypoint_depth_weights_list) return indices, depths, weights indices, depths, weights = self.execute(graph_fn, []) # Only the last 5 elements has positive weight. np.testing.assert_array_almost_equal([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5 ], weights) # Validate the last 5 elements' depth value. np.testing.assert_array_almost_equal( [7.0, 7.0, 7.0, 7.0, 7.0], depths[35:, 0]) self.assertEqual((40, 3), indices.shape) np.testing.assert_array_equal([0, 2, 2], indices[35, :]) def test_assign_keypoint_depths_per_keypoints(self): def graph_fn(): gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, 0.7, 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] depths = tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [0.5, 0.0, 7.0, 0.7, 0.4]]), dtype=tf.float32) gt_keypoint_depths_list = [depths] gt_keypoint_depth_weights = tf.constant( np.array([[1.0, 1.0, 1.0, 1.0, 1.0], [float('nan'), 0.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 0.5, 1.0, 1.0]]), dtype=tf.float32) gt_keypoint_depth_weights_list = [gt_keypoint_depth_weights] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2], peak_radius=1, per_keypoint_depth=True) (indices, depths, weights) = cn_assigner.assign_keypoints_depth_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_keypoint_depths_list=gt_keypoint_depths_list, gt_keypoint_depth_weights_list=gt_keypoint_depth_weights_list) return indices, depths, weights indices, depths, weights = self.execute(graph_fn, []) # Only the last 5 elements has positive weight. np.testing.assert_array_almost_equal([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5 ], weights) # Validate the last 5 elements' depth value. np.testing.assert_array_almost_equal( [7.0, 7.0, 7.0, 7.0, 7.0], depths[35:, 0]) self.assertEqual((40, 4), indices.shape) np.testing.assert_array_equal([0, 2, 2, 1], indices[35, :]) def test_assign_keypoints_offset_targets_radius(self): def graph_fn(): gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2], peak_radius=1, per_keypoint_offset=True) (indices, offsets, weights) = cn_assigner.assign_keypoints_offset_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list) return indices, weights, offsets indices, weights, offsets = self.execute(graph_fn, []) # There are total 8 * 5 (neighbors) = 40 targets. self.assertAllEqual(indices.shape, [40, 4]) self.assertAllEqual(offsets.shape, [40, 2]) self.assertAllEqual(weights.shape, [40]) # Only the last 5 (radius 1 generates 5 valid points) element has positive # weight. np.testing.assert_array_almost_equal([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0 ], weights) # Validate the last element's (with neighbors) indices and offsets. np.testing.assert_array_equal([0, 2, 2, 1], indices[35, :]) np.testing.assert_array_equal([0, 3, 1, 1], indices[36, :]) np.testing.assert_array_equal([0, 3, 2, 1], indices[37, :]) np.testing.assert_array_equal([0, 3, 3, 1], indices[38, :]) np.testing.assert_array_equal([0, 4, 2, 1], indices[39, :]) np.testing.assert_array_almost_equal([1.6, 0.4], offsets[35, :]) np.testing.assert_array_almost_equal([0.6, 1.4], offsets[36, :]) np.testing.assert_array_almost_equal([0.6, 0.4], offsets[37, :]) np.testing.assert_array_almost_equal([0.6, -0.6], offsets[38, :]) np.testing.assert_array_almost_equal([-0.4, 0.4], offsets[39, :]) def test_assign_joint_regression_targets(self): def graph_fn(): gt_boxes_list = [ tf.constant( np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]]), dtype=tf.float32) ] gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2]) (indices, offsets, weights) = cn_assigner.assign_joint_regression_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_boxes_list=gt_boxes_list) return indices, offsets, weights indices, offsets, weights = self.execute(graph_fn, []) np.testing.assert_array_almost_equal( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], weights) np.testing.assert_array_equal([0, 15, 10, 1], indices[7, :]) np.testing.assert_array_almost_equal([-11.4, -7.6], offsets[7, :]) def test_assign_joint_regression_targets_radius(self): def graph_fn(): gt_boxes_list = [ tf.constant( np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]]), dtype=tf.float32) ] gt_classes_list = [ tf.one_hot([0, 1, 0, 1], depth=4), ] coordinates = tf.expand_dims( tf.constant( np.array([[0.1, 0.2, 0.3, 0.4, 0.5], [float('nan'), 0.7, float('nan'), 0.9, 0.4], [0.4, 0.1, 0.4, 0.2, 0.0], [float('nan'), 0.0, 0.12, 0.7, 0.4]]), dtype=tf.float32), axis=2) gt_keypoints_list = [tf.concat([coordinates, coordinates], axis=2)] cn_assigner = targetassigner.CenterNetKeypointTargetAssigner( stride=4, class_id=1, keypoint_indices=[0, 2], peak_radius=1) (indices, offsets, weights) = cn_assigner.assign_joint_regression_targets( height=120, width=80, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_boxes_list=gt_boxes_list) return indices, offsets, weights indices, offsets, weights = self.execute(graph_fn, []) # There are total 8 * 5 (neighbors) = 40 targets. self.assertAllEqual(indices.shape, [40, 4]) self.assertAllEqual(offsets.shape, [40, 2]) self.assertAllEqual(weights.shape, [40]) # Only the last 5 (radius 1 generates 5 valid points) element has positive # weight. np.testing.assert_array_almost_equal([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0 ], weights) # Test the values of the indices and offsets of the last 5 elements. np.testing.assert_array_equal([0, 14, 10, 1], indices[35, :]) np.testing.assert_array_equal([0, 15, 9, 1], indices[36, :]) np.testing.assert_array_equal([0, 15, 10, 1], indices[37, :]) np.testing.assert_array_equal([0, 15, 11, 1], indices[38, :]) np.testing.assert_array_equal([0, 16, 10, 1], indices[39, :]) np.testing.assert_array_almost_equal([-10.4, -7.6], offsets[35, :]) np.testing.assert_array_almost_equal([-11.4, -6.6], offsets[36, :]) np.testing.assert_array_almost_equal([-11.4, -7.6], offsets[37, :]) np.testing.assert_array_almost_equal([-11.4, -8.6], offsets[38, :]) np.testing.assert_array_almost_equal([-12.4, -7.6], offsets[39, :]) class CenterNetMaskTargetAssignerTest(test_case.TestCase): def test_assign_segmentation_targets(self): def graph_fn(): gt_masks_list = [ # Example 0. tf.constant([ [ [1., 0., 0., 0.], [1., 1., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], ], [ [0., 0., 0., 0.], [0., 0., 0., 1.], [0., 0., 0., 0.], [0., 0., 0., 0.], ], [ [1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.], ] ], dtype=tf.float32), # Example 1. tf.constant([ [ [1., 1., 0., 1.], [1., 1., 1., 1.], [0., 0., 1., 1.], [0., 0., 0., 1.], ], [ [0., 0., 0., 0.], [0., 0., 0., 0.], [1., 1., 0., 0.], [1., 1., 0., 0.], ], ], dtype=tf.float32), ] gt_classes_list = [ # Example 0. tf.constant([[1., 0., 0.], [0., 1., 0.], [1., 0., 0.]], dtype=tf.float32), # Example 1. tf.constant([[0., 1., 0.], [0., 1., 0.]], dtype=tf.float32) ] cn_assigner = targetassigner.CenterNetMaskTargetAssigner(stride=2) segmentation_target = cn_assigner.assign_segmentation_targets( gt_masks_list=gt_masks_list, gt_classes_list=gt_classes_list, mask_resize_method=targetassigner.ResizeMethod.NEAREST_NEIGHBOR) return segmentation_target segmentation_target = self.execute(graph_fn, []) expected_seg_target = np.array([ # Example 0 [[class 0, class 1], [background, class 0]] [[[1, 0, 0], [0, 1, 0]], [[0, 0, 0], [1, 0, 0]]], # Example 1 [[class 1, class 1], [class 1, class 1]] [[[0, 1, 0], [0, 1, 0]], [[0, 1, 0], [0, 1, 0]]], ], dtype=np.float32) np.testing.assert_array_almost_equal( expected_seg_target, segmentation_target) def test_assign_segmentation_targets_no_objects(self): def graph_fn(): gt_masks_list = [tf.zeros((0, 5, 5))] gt_classes_list = [tf.zeros((0, 10))] cn_assigner = targetassigner.CenterNetMaskTargetAssigner(stride=1) segmentation_target = cn_assigner.assign_segmentation_targets( gt_masks_list=gt_masks_list, gt_classes_list=gt_classes_list, mask_resize_method=targetassigner.ResizeMethod.NEAREST_NEIGHBOR) return segmentation_target segmentation_target = self.execute(graph_fn, []) expected_seg_target = np.zeros((1, 5, 5, 10)) np.testing.assert_array_almost_equal( expected_seg_target, segmentation_target) class CenterNetDensePoseTargetAssignerTest(test_case.TestCase): def test_assign_part_and_coordinate_targets(self): def graph_fn(): gt_dp_num_points_list = [ # Example 0. tf.constant([2, 0, 3], dtype=tf.int32), # Example 1. tf.constant([1, 1], dtype=tf.int32), ] gt_dp_part_ids_list = [ # Example 0. tf.constant([[1, 6, 0], [0, 0, 0], [0, 2, 3]], dtype=tf.int32), # Example 1. tf.constant([[7, 0, 0], [0, 0, 0]], dtype=tf.int32), ] gt_dp_surface_coords_list = [ # Example 0. tf.constant( [[[0.11, 0.2, 0.3, 0.4], # Box 0. [0.6, 0.4, 0.1, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], # Box 1. [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.22, 0.1, 0.6, 0.8], # Box 2. [0.0, 0.4, 0.5, 1.0], [0.3, 0.2, 0.4, 0.1]]], dtype=tf.float32), # Example 1. tf.constant( [[[0.5, 0.5, 0.3, 1.0], # Box 0. [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.2, 0.2, 0.5, 0.8], # Box 1. [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]], dtype=tf.float32), ] gt_weights_list = [ # Example 0. tf.constant([1.0, 1.0, 0.5], dtype=tf.float32), # Example 1. tf.constant([0.0, 1.0], dtype=tf.float32), ] cn_assigner = targetassigner.CenterNetDensePoseTargetAssigner(stride=4) batch_indices, batch_part_ids, batch_surface_coords, batch_weights = ( cn_assigner.assign_part_and_coordinate_targets( height=120, width=80, gt_dp_num_points_list=gt_dp_num_points_list, gt_dp_part_ids_list=gt_dp_part_ids_list, gt_dp_surface_coords_list=gt_dp_surface_coords_list, gt_weights_list=gt_weights_list)) return batch_indices, batch_part_ids, batch_surface_coords, batch_weights batch_indices, batch_part_ids, batch_surface_coords, batch_weights = ( self.execute(graph_fn, [])) expected_batch_indices = np.array([ # Example 0. e.g. # The first set of indices is calculated as follows: # floor(0.11*120/4) = 3, floor(0.2*80/4) = 4. [0, 3, 4, 1], [0, 18, 8, 6], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 6, 2, 0], [0, 0, 8, 2], [0, 9, 4, 3], # Example 1. [1, 15, 10, 7], [1, 0, 0, 0], [1, 0, 0, 0], [1, 6, 4, 0], [1, 0, 0, 0], [1, 0, 0, 0] ], dtype=np.int32) expected_batch_part_ids = tf.one_hot( [1, 6, 0, 0, 0, 0, 0, 2, 3, 7, 0, 0, 0, 0, 0], depth=24).numpy() expected_batch_surface_coords = np.array([ # Box 0. [0.3, 0.4], [0.1, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.6, 0.8], [0.5, 1.0], [0.4, 0.1], # Box 1. [0.3, 1.0], [0.0, 0.0], [0.0, 0.0], [0.5, 0.8], [0.0, 0.0], [0.0, 0.0], ], np.float32) expected_batch_weights = np.array([ # Box 0. 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, # Box 1. 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 ], dtype=np.float32) self.assertAllEqual(expected_batch_indices, batch_indices) self.assertAllEqual(expected_batch_part_ids, batch_part_ids) self.assertAllClose(expected_batch_surface_coords, batch_surface_coords) self.assertAllClose(expected_batch_weights, batch_weights) class CenterNetTrackTargetAssignerTest(test_case.TestCase): def setUp(self): super(CenterNetTrackTargetAssignerTest, self).setUp() self._box_center = [0.0, 0.0, 1.0, 1.0] self._box_center_small = [0.25, 0.25, 0.75, 0.75] self._box_lower_left = [0.5, 0.0, 1.0, 0.5] self._box_center_offset = [0.1, 0.05, 1.0, 1.0] self._box_odd_coordinates = [0.1625, 0.2125, 0.5625, 0.9625] def test_assign_track_targets(self): """Test the assign_track_targets function.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_lower_left, self._box_center_small]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] track_id_batch = [ tf.constant([0, 1]), tf.constant([1, 0]), tf.constant([0, 2]), ] assigner = targetassigner.CenterNetTrackTargetAssigner( stride=4, num_track_ids=3) (batch_indices, batch_weights, track_targets) = assigner.assign_track_targets( height=80, width=80, gt_track_ids_list=track_id_batch, gt_boxes_list=box_batch) return batch_indices, batch_weights, track_targets indices, weights, track_ids = self.execute(graph_fn, []) self.assertEqual(indices.shape, (3, 2, 3)) self.assertEqual(track_ids.shape, (3, 2, 3)) self.assertEqual(weights.shape, (3, 2)) np.testing.assert_array_equal(indices, [[[0, 10, 10], [0, 15, 5]], [[1, 15, 5], [1, 10, 10]], [[2, 10, 10], [2, 7, 11]]]) np.testing.assert_array_equal(track_ids, [[[1, 0, 0], [0, 1, 0]], [[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [0, 0, 1]]]) np.testing.assert_array_equal(weights, [[1, 1], [1, 1], [1, 1]]) def test_assign_track_targets_weights(self): """Test the assign_track_targets function with box weights.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_lower_left, self._box_center_small]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] track_id_batch = [ tf.constant([0, 1]), tf.constant([1, 0]), tf.constant([0, 2]), ] weights_batch = [ tf.constant([0.0, 1.0]), tf.constant([1.0, 1.0]), tf.constant([0.0, 0.0]) ] assigner = targetassigner.CenterNetTrackTargetAssigner( stride=4, num_track_ids=3) (batch_indices, batch_weights, track_targets) = assigner.assign_track_targets( height=80, width=80, gt_track_ids_list=track_id_batch, gt_boxes_list=box_batch, gt_weights_list=weights_batch) return batch_indices, batch_weights, track_targets indices, weights, track_ids = self.execute(graph_fn, []) self.assertEqual(indices.shape, (3, 2, 3)) self.assertEqual(track_ids.shape, (3, 2, 3)) self.assertEqual(weights.shape, (3, 2)) np.testing.assert_array_equal(indices, [[[0, 10, 10], [0, 15, 5]], [[1, 15, 5], [1, 10, 10]], [[2, 10, 10], [2, 7, 11]]]) np.testing.assert_array_equal(track_ids, [[[1, 0, 0], [0, 1, 0]], [[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [0, 0, 1]]]) np.testing.assert_array_equal(weights, [[0, 1], [1, 1], [0, 0]]) # TODO(xwwang): Add a test for the case when no objects are detected. class CornerOffsetTargetAssignerTest(test_case.TestCase): def test_filter_overlap_min_area_empty(self): """Test that empty masks work on CPU.""" def graph_fn(masks): return targetassigner.filter_mask_overlap_min_area(masks) masks = self.execute_cpu(graph_fn, [np.zeros((0, 5, 5), dtype=np.float32)]) self.assertEqual(masks.shape, (0, 5, 5)) def test_filter_overlap_min_area(self): """Test the object with min. area is selected instead of overlap.""" def graph_fn(masks): return targetassigner.filter_mask_overlap_min_area(masks) masks = np.zeros((3, 4, 4), dtype=np.float32) masks[0, :2, :2] = 1.0 masks[1, :3, :3] = 1.0 masks[2, 3, 3] = 1.0 masks = self.execute(graph_fn, [masks]) self.assertAllClose(masks[0], [[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) self.assertAllClose(masks[1], [[0, 0, 1, 0], [0, 0, 1, 0], [1, 1, 1, 0], [0, 0, 0, 0]]) self.assertAllClose(masks[2], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) def test_assign_corner_offset_single_object(self): """Test that corner offsets are correct with a single object.""" assigner = targetassigner.CenterNetCornerOffsetTargetAssigner(stride=1) def graph_fn(): boxes = [ tf.constant([[0., 0., 1., 1.]]) ] mask = np.zeros((1, 4, 4), dtype=np.float32) mask[0, 1:3, 1:3] = 1.0 masks = [tf.constant(mask)] return assigner.assign_corner_offset_targets(boxes, masks) corner_offsets, foreground = self.execute(graph_fn, []) self.assertAllClose(foreground[0], [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]) self.assertAllClose(corner_offsets[0, :, :, 0], [[0, 0, 0, 0], [0, -1, -1, 0], [0, -2, -2, 0], [0, 0, 0, 0]]) self.assertAllClose(corner_offsets[0, :, :, 1], [[0, 0, 0, 0], [0, -1, -2, 0], [0, -1, -2, 0], [0, 0, 0, 0]]) self.assertAllClose(corner_offsets[0, :, :, 2], [[0, 0, 0, 0], [0, 3, 3, 0], [0, 2, 2, 0], [0, 0, 0, 0]]) self.assertAllClose(corner_offsets[0, :, :, 3], [[0, 0, 0, 0], [0, 3, 2, 0], [0, 3, 2, 0], [0, 0, 0, 0]]) def test_assign_corner_offset_multiple_objects(self): """Test corner offsets are correct with multiple objects.""" assigner = targetassigner.CenterNetCornerOffsetTargetAssigner(stride=1) def graph_fn(): boxes = [ tf.constant([[0., 0., 1., 1.], [0., 0., 0., 0.]]), tf.constant([[0., 0., .25, .25], [.25, .25, 1., 1.]]) ] mask1 = np.zeros((2, 4, 4), dtype=np.float32) mask1[0, 0, 0] = 1.0 mask1[0, 3, 3] = 1.0 mask2 = np.zeros((2, 4, 4), dtype=np.float32) mask2[0, :2, :2] = 1.0 mask2[1, 1:, 1:] = 1.0 masks = [tf.constant(mask1), tf.constant(mask2)] return assigner.assign_corner_offset_targets(boxes, masks) corner_offsets, foreground = self.execute(graph_fn, []) self.assertEqual(corner_offsets.shape, (2, 4, 4, 4)) self.assertEqual(foreground.shape, (2, 4, 4)) self.assertAllClose(foreground[0], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) self.assertAllClose(corner_offsets[0, :, :, 0], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, -3]]) self.assertAllClose(corner_offsets[0, :, :, 1], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, -3]]) self.assertAllClose(corner_offsets[0, :, :, 2], [[4, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) self.assertAllClose(corner_offsets[0, :, :, 3], [[4, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) self.assertAllClose(foreground[1], [[1, 1, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1]]) self.assertAllClose(corner_offsets[1, :, :, 0], [[0, 0, 0, 0], [-1, -1, 0, 0], [0, -1, -1, -1], [0, -2, -2, -2]]) self.assertAllClose(corner_offsets[1, :, :, 1], [[0, -1, 0, 0], [0, -1, -1, -2], [0, 0, -1, -2], [0, 0, -1, -2]]) self.assertAllClose(corner_offsets[1, :, :, 2], [[1, 1, 0, 0], [0, 0, 3, 3], [0, 2, 2, 2], [0, 1, 1, 1]]) self.assertAllClose(corner_offsets[1, :, :, 3], [[1, 0, 0, 0], [1, 0, 2, 1], [0, 3, 2, 1], [0, 3, 2, 1]]) def test_assign_corner_offsets_no_objects(self): """Test assignment works with empty input on cpu.""" assigner = targetassigner.CenterNetCornerOffsetTargetAssigner(stride=1) def graph_fn(): boxes = [ tf.zeros((0, 4), dtype=tf.float32) ] masks = [tf.zeros((0, 5, 5), dtype=tf.float32)] return assigner.assign_corner_offset_targets(boxes, masks) corner_offsets, foreground = self.execute_cpu(graph_fn, []) self.assertAllClose(corner_offsets, np.zeros((1, 5, 5, 4))) self.assertAllClose(foreground, np.zeros((1, 5, 5))) class CenterNetTemporalOffsetTargetAssigner(test_case.TestCase): def setUp(self): super(CenterNetTemporalOffsetTargetAssigner, self).setUp() self._box_center = [0.0, 0.0, 1.0, 1.0] self._box_center_small = [0.25, 0.25, 0.75, 0.75] self._box_lower_left = [0.5, 0.0, 1.0, 0.5] self._box_center_offset = [0.1, 0.05, 1.0, 1.0] self._box_odd_coordinates = [0.1625, 0.2125, 0.5625, 0.9625] self._offset_center = [0.5, 0.4] self._offset_center_small = [0.1, 0.1] self._offset_lower_left = [-0.1, 0.1] self._offset_center_offset = [0.4, 0.3] self._offset_odd_coord = [0.125, -0.125] def test_assign_empty_groundtruths(self): """Tests the assign_offset_targets function with empty inputs.""" def graph_fn(): box_batch = [ tf.zeros((0, 4), dtype=tf.float32), ] offset_batch = [ tf.zeros((0, 2), dtype=tf.float32), ] match_flag_batch = [ tf.zeros((0), dtype=tf.float32), ] assigner = targetassigner.CenterNetTemporalOffsetTargetAssigner(4) indices, temporal_offset, weights = assigner.assign_temporal_offset_targets( 80, 80, box_batch, offset_batch, match_flag_batch) return indices, temporal_offset, weights indices, temporal_offset, weights = self.execute(graph_fn, []) self.assertEqual(indices.shape, (0, 3)) self.assertEqual(temporal_offset.shape, (0, 2)) self.assertEqual(weights.shape, (0,)) def test_assign_offset_targets(self): """Tests the assign_offset_targets function.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center_offset]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] offset_batch = [ tf.constant([self._offset_center, self._offset_lower_left]), tf.constant([self._offset_center_offset]), tf.constant([self._offset_center_small, self._offset_odd_coord]), ] match_flag_batch = [ tf.constant([1.0, 1.0]), tf.constant([1.0]), tf.constant([1.0, 1.0]), ] assigner = targetassigner.CenterNetTemporalOffsetTargetAssigner(4) indices, temporal_offset, weights = assigner.assign_temporal_offset_targets( 80, 80, box_batch, offset_batch, match_flag_batch) return indices, temporal_offset, weights indices, temporal_offset, weights = self.execute(graph_fn, []) self.assertEqual(indices.shape, (5, 3)) self.assertEqual(temporal_offset.shape, (5, 2)) self.assertEqual(weights.shape, (5,)) np.testing.assert_array_equal( indices, [[0, 10, 10], [0, 15, 5], [1, 11, 10], [2, 10, 10], [2, 7, 11]]) np.testing.assert_array_almost_equal( temporal_offset, [[0.5, 0.4], [-0.1, 0.1], [0.4, 0.3], [0.1, 0.1], [0.125, -0.125]]) np.testing.assert_array_equal(weights, 1) def test_assign_offset_targets_with_match_flags(self): """Tests the assign_offset_targets function with match flags.""" def graph_fn(): box_batch = [ tf.constant([self._box_center, self._box_lower_left]), tf.constant([self._box_center_offset]), tf.constant([self._box_center_small, self._box_odd_coordinates]), ] offset_batch = [ tf.constant([self._offset_center, self._offset_lower_left]), tf.constant([self._offset_center_offset]), tf.constant([self._offset_center_small, self._offset_odd_coord]), ] match_flag_batch = [ tf.constant([0.0, 1.0]), tf.constant([1.0]), tf.constant([1.0, 1.0]), ] cn_assigner = targetassigner.CenterNetTemporalOffsetTargetAssigner(4) weights_batch = [ tf.constant([1.0, 0.0]), tf.constant([1.0]), tf.constant([1.0, 1.0]) ] indices, temporal_offset, weights = cn_assigner.assign_temporal_offset_targets( 80, 80, box_batch, offset_batch, match_flag_batch, weights_batch) return indices, temporal_offset, weights indices, temporal_offset, weights = self.execute(graph_fn, []) self.assertEqual(indices.shape, (5, 3)) self.assertEqual(temporal_offset.shape, (5, 2)) self.assertEqual(weights.shape, (5,)) np.testing.assert_array_equal( indices, [[0, 10, 10], [0, 15, 5], [1, 11, 10], [2, 10, 10], [2, 7, 11]]) np.testing.assert_array_almost_equal( temporal_offset, [[0.5, 0.4], [-0.1, 0.1], [0.4, 0.3], [0.1, 0.1], [0.125, -0.125]]) np.testing.assert_array_equal(weights, [0, 0, 1, 1, 1]) class DETRTargetAssignerTest(test_case.TestCase): def test_assign_detr(self): def graph_fn(pred_corners, groundtruth_box_corners, groundtruth_labels, predicted_labels): detr_target_assigner = targetassigner.DETRTargetAssigner() pred_boxlist = box_list.BoxList(pred_corners) groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners) result = detr_target_assigner.assign( pred_boxlist, groundtruth_boxlist, predicted_labels, groundtruth_labels) (cls_targets, cls_weights, reg_targets, reg_weights) = result return (cls_targets, cls_weights, reg_targets, reg_weights) pred_corners = np.array([[0.25, 0.25, 0.4, 0.2], [0.5, 0.8, 1.0, 0.8], [0.9, 0.5, 0.1, 1.0]], dtype=np.float32) groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9]], dtype=np.float32) predicted_labels = np.array([[-3.0, 3.0], [2.0, 9.4], [5.0, 1.0]], dtype=np.float32) groundtruth_labels = np.array([[0.0, 1.0], [0.0, 1.0]], dtype=np.float32) exp_cls_targets = [[0, 1], [0, 1], [1, 0]] exp_cls_weights = [[1, 1], [1, 1], [1, 1]] exp_reg_targets = [[0.25, 0.25, 0.5, 0.5], [0.7, 0.7, 0.4, 0.4], [0, 0, 0, 0]] exp_reg_weights = [1, 1, 0] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute_cpu( graph_fn, [pred_corners, groundtruth_box_corners, groundtruth_labels, predicted_labels]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) def test_batch_assign_detr(self): def graph_fn(pred_corners, groundtruth_box_corners, groundtruth_labels, predicted_labels): detr_target_assigner = targetassigner.DETRTargetAssigner() result = detr_target_assigner.batch_assign( pred_corners, groundtruth_box_corners, [predicted_labels], [groundtruth_labels]) (cls_targets, cls_weights, reg_targets, reg_weights) = result return (cls_targets, cls_weights, reg_targets, reg_weights) pred_corners = np.array([[[0.25, 0.25, 0.4, 0.2], [0.5, 0.8, 1.0, 0.8], [0.9, 0.5, 0.1, 1.0]]], dtype=np.float32) groundtruth_box_corners = np.array([[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9]]], dtype=np.float32) predicted_labels = np.array([[-3.0, 3.0], [2.0, 9.4], [5.0, 1.0]], dtype=np.float32) groundtruth_labels = np.array([[0.0, 1.0], [0.0, 1.0]], dtype=np.float32) exp_cls_targets = [[[0, 1], [0, 1], [1, 0]]] exp_cls_weights = [[[1, 1], [1, 1], [1, 1]]] exp_reg_targets = [[[0.25, 0.25, 0.5, 0.5], [0.7, 0.7, 0.4, 0.4], [0, 0, 0, 0]]] exp_reg_weights = [[1, 1, 0]] (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out) = self.execute_cpu( graph_fn, [pred_corners, groundtruth_box_corners, groundtruth_labels, predicted_labels]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertEqual(cls_targets_out.dtype, np.float32) self.assertEqual(cls_weights_out.dtype, np.float32) self.assertEqual(reg_targets_out.dtype, np.float32) self.assertEqual(reg_weights_out.dtype, np.float32) if __name__ == '__main__': tf.enable_v2_behavior() tf.test.main()
44.071982
86
0.543232
4a191cd286bb461789bb03bfc24ca48c4cf6fa0a
33,425
py
Python
venv/lib/python3.9/site-packages/sqlalchemy/dialects/postgresql/asyncpg.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
6
2020-10-24T05:05:07.000Z
2022-03-24T09:43:05.000Z
venv/lib/python3.9/site-packages/sqlalchemy/dialects/postgresql/asyncpg.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
venv/lib/python3.9/site-packages/sqlalchemy/dialects/postgresql/asyncpg.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
4
2020-10-18T05:37:47.000Z
2022-03-25T12:28:06.000Z
# postgresql/asyncpg.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors <see AUTHORS # file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php r""" .. dialect:: postgresql+asyncpg :name: asyncpg :dbapi: asyncpg :connectstring: postgresql+asyncpg://user:password@host:port/dbname[?key=value&key=value...] :url: https://magicstack.github.io/asyncpg/ The asyncpg dialect is SQLAlchemy's first Python asyncio dialect. Using a special asyncio mediation layer, the asyncpg dialect is usable as the backend for the :ref:`SQLAlchemy asyncio <asyncio_toplevel>` extension package. This dialect should normally be used only with the :func:`_asyncio.create_async_engine` engine creation function:: from sqlalchemy.ext.asyncio import create_async_engine engine = create_async_engine("postgresql+asyncpg://user:pass@hostname/dbname") The dialect can also be run as a "synchronous" dialect within the :func:`_sa.create_engine` function, which will pass "await" calls into an ad-hoc event loop. This mode of operation is of **limited use** and is for special testing scenarios only. The mode can be enabled by adding the SQLAlchemy-specific flag ``async_fallback`` to the URL in conjunction with :func:`_sa.create_engine`:: # for testing purposes only; do not use in production! engine = create_engine("postgresql+asyncpg://user:pass@hostname/dbname?async_fallback=true") .. versionadded:: 1.4 .. note:: By default asyncpg does not decode the ``json`` and ``jsonb`` types and returns them as strings. SQLAlchemy sets default type decoder for ``json`` and ``jsonb`` types using the python builtin ``json.loads`` function. The json implementation used can be changed by setting the attribute ``json_deserializer`` when creating the engine with :func:`create_engine` or :func:`create_async_engine`. .. _asyncpg_prepared_statement_cache: Prepared Statement Cache -------------------------- The asyncpg SQLAlchemy dialect makes use of ``asyncpg.connection.prepare()`` for all statements. The prepared statement objects are cached after construction which appears to grant a 10% or more performance improvement for statement invocation. The cache is on a per-DBAPI connection basis, which means that the primary storage for prepared statements is within DBAPI connections pooled within the connection pool. The size of this cache defaults to 100 statements per DBAPI connection and may be adjusted using the ``prepared_statement_cache_size`` DBAPI argument (note that while this argument is implemented by SQLAlchemy, it is part of the DBAPI emulation portion of the asyncpg dialect, therefore is handled as a DBAPI argument, not a dialect argument):: engine = create_async_engine("postgresql+asyncpg://user:pass@hostname/dbname?prepared_statement_cache_size=500") To disable the prepared statement cache, use a value of zero:: engine = create_async_engine("postgresql+asyncpg://user:pass@hostname/dbname?prepared_statement_cache_size=0") .. versionadded:: 1.4.0b2 Added ``prepared_statement_cache_size`` for asyncpg. .. warning:: The ``asyncpg`` database driver necessarily uses caches for PostgreSQL type OIDs, which become stale when custom PostgreSQL datatypes such as ``ENUM`` objects are changed via DDL operations. Additionally, prepared statements themselves which are optionally cached by SQLAlchemy's driver as described above may also become "stale" when DDL has been emitted to the PostgreSQL database which modifies the tables or other objects involved in a particular prepared statement. The SQLAlchemy asyncpg dialect will invalidate these caches within its local process when statements that represent DDL are emitted on a local connection, but this is only controllable within a single Python process / database engine. If DDL changes are made from other database engines and/or processes, a running application may encounter asyncpg exceptions ``InvalidCachedStatementError`` and/or ``InternalServerError("cache lookup failed for type <oid>")`` if it refers to pooled database connections which operated upon the previous structures. The SQLAlchemy asyncpg dialect will recover from these error cases when the driver raises these exceptions by clearing its internal caches as well as those of the asyncpg driver in response to them, but cannot prevent them from being raised in the first place if the cached prepared statement or asyncpg type caches have gone stale, nor can it retry the statement as the PostgreSQL transaction is invalidated when these errors occur. """ # noqa import collections import decimal import json as _py_json import re import time from . import json from .base import _DECIMAL_TYPES from .base import _FLOAT_TYPES from .base import _INT_TYPES from .base import ENUM from .base import INTERVAL from .base import OID from .base import PGCompiler from .base import PGDialect from .base import PGExecutionContext from .base import PGIdentifierPreparer from .base import REGCLASS from .base import UUID from ... import exc from ... import pool from ... import processors from ... import util from ...sql import sqltypes from ...util.concurrency import asyncio from ...util.concurrency import await_fallback from ...util.concurrency import await_only try: from uuid import UUID as _python_UUID # noqa except ImportError: _python_UUID = None class AsyncpgTime(sqltypes.Time): def get_dbapi_type(self, dbapi): return dbapi.TIME class AsyncpgDate(sqltypes.Date): def get_dbapi_type(self, dbapi): return dbapi.DATE class AsyncpgDateTime(sqltypes.DateTime): def get_dbapi_type(self, dbapi): if self.timezone: return dbapi.TIMESTAMP_W_TZ else: return dbapi.TIMESTAMP class AsyncpgBoolean(sqltypes.Boolean): def get_dbapi_type(self, dbapi): return dbapi.BOOLEAN class AsyncPgInterval(INTERVAL): def get_dbapi_type(self, dbapi): return dbapi.INTERVAL @classmethod def adapt_emulated_to_native(cls, interval, **kw): return AsyncPgInterval(precision=interval.second_precision) class AsyncPgEnum(ENUM): def get_dbapi_type(self, dbapi): return dbapi.ENUM class AsyncpgInteger(sqltypes.Integer): def get_dbapi_type(self, dbapi): return dbapi.INTEGER class AsyncpgBigInteger(sqltypes.BigInteger): def get_dbapi_type(self, dbapi): return dbapi.BIGINTEGER class AsyncpgJSON(json.JSON): def get_dbapi_type(self, dbapi): return dbapi.JSON def result_processor(self, dialect, coltype): return None class AsyncpgJSONB(json.JSONB): def get_dbapi_type(self, dbapi): return dbapi.JSONB def result_processor(self, dialect, coltype): return None class AsyncpgJSONIndexType(sqltypes.JSON.JSONIndexType): def get_dbapi_type(self, dbapi): raise NotImplementedError("should not be here") class AsyncpgJSONIntIndexType(sqltypes.JSON.JSONIntIndexType): def get_dbapi_type(self, dbapi): return dbapi.INTEGER class AsyncpgJSONStrIndexType(sqltypes.JSON.JSONStrIndexType): def get_dbapi_type(self, dbapi): return dbapi.STRING class AsyncpgJSONPathType(json.JSONPathType): def bind_processor(self, dialect): def process(value): assert isinstance(value, util.collections_abc.Sequence) tokens = [util.text_type(elem) for elem in value] return tokens return process class AsyncpgUUID(UUID): def get_dbapi_type(self, dbapi): return dbapi.UUID def bind_processor(self, dialect): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = _python_UUID(value) return value return process def result_processor(self, dialect, coltype): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = str(value) return value return process class AsyncpgNumeric(sqltypes.Numeric): def bind_processor(self, dialect): return None def result_processor(self, dialect, coltype): if self.asdecimal: if coltype in _FLOAT_TYPES: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: # pg8000 returns Decimal natively for 1700 return None else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) else: if coltype in _FLOAT_TYPES: # pg8000 returns float natively for 701 return None elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: return processors.to_float else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) class AsyncpgREGCLASS(REGCLASS): def get_dbapi_type(self, dbapi): return dbapi.STRING class AsyncpgOID(OID): def get_dbapi_type(self, dbapi): return dbapi.INTEGER class PGExecutionContext_asyncpg(PGExecutionContext): def handle_dbapi_exception(self, e): if isinstance( e, ( self.dialect.dbapi.InvalidCachedStatementError, self.dialect.dbapi.InternalServerError, ), ): self.dialect._invalidate_schema_cache() def pre_exec(self): if self.isddl: self.dialect._invalidate_schema_cache() self.cursor._invalidate_schema_cache_asof = ( self.dialect._invalidate_schema_cache_asof ) if not self.compiled: return # we have to exclude ENUM because "enum" not really a "type" # we can cast to, it has to be the name of the type itself. # for now we just omit it from casting self.exclude_set_input_sizes = {AsyncAdapt_asyncpg_dbapi.ENUM} def create_server_side_cursor(self): return self._dbapi_connection.cursor(server_side=True) class PGCompiler_asyncpg(PGCompiler): pass class PGIdentifierPreparer_asyncpg(PGIdentifierPreparer): pass class AsyncAdapt_asyncpg_cursor: __slots__ = ( "_adapt_connection", "_connection", "_rows", "description", "arraysize", "rowcount", "_inputsizes", "_cursor", "_invalidate_schema_cache_asof", ) server_side = False def __init__(self, adapt_connection): self._adapt_connection = adapt_connection self._connection = adapt_connection._connection self._rows = [] self._cursor = None self.description = None self.arraysize = 1 self.rowcount = -1 self._inputsizes = None self._invalidate_schema_cache_asof = 0 def close(self): self._rows[:] = [] def _handle_exception(self, error): self._adapt_connection._handle_exception(error) def _parameter_placeholders(self, params): if not self._inputsizes: return tuple("$%d" % idx for idx, _ in enumerate(params, 1)) else: return tuple( "$%d::%s" % (idx, typ) if typ else "$%d" % idx for idx, typ in enumerate( (_pg_types.get(typ) for typ in self._inputsizes), 1 ) ) async def _prepare_and_execute(self, operation, parameters): adapt_connection = self._adapt_connection async with adapt_connection._execute_mutex: if not adapt_connection._started: await adapt_connection._start_transaction() if parameters is not None: operation = operation % self._parameter_placeholders( parameters ) else: parameters = () try: prepared_stmt, attributes = await adapt_connection._prepare( operation, self._invalidate_schema_cache_asof ) if attributes: self.description = [ ( attr.name, attr.type.oid, None, None, None, None, None, ) for attr in attributes ] else: self.description = None if self.server_side: self._cursor = await prepared_stmt.cursor(*parameters) self.rowcount = -1 else: self._rows = await prepared_stmt.fetch(*parameters) status = prepared_stmt.get_statusmsg() reg = re.match( r"(?:UPDATE|DELETE|INSERT \d+) (\d+)", status ) if reg: self.rowcount = int(reg.group(1)) else: self.rowcount = -1 except Exception as error: self._handle_exception(error) async def _executemany(self, operation, seq_of_parameters): adapt_connection = self._adapt_connection async with adapt_connection._execute_mutex: await adapt_connection._check_type_cache_invalidation( self._invalidate_schema_cache_asof ) if not adapt_connection._started: await adapt_connection._start_transaction() operation = operation % self._parameter_placeholders( seq_of_parameters[0] ) try: return await self._connection.executemany( operation, seq_of_parameters ) except Exception as error: self._handle_exception(error) def execute(self, operation, parameters=None): self._adapt_connection.await_( self._prepare_and_execute(operation, parameters) ) def executemany(self, operation, seq_of_parameters): return self._adapt_connection.await_( self._executemany(operation, seq_of_parameters) ) def setinputsizes(self, *inputsizes): self._inputsizes = inputsizes def __iter__(self): while self._rows: yield self._rows.pop(0) def fetchone(self): if self._rows: return self._rows.pop(0) else: return None def fetchmany(self, size=None): if size is None: size = self.arraysize retval = self._rows[0:size] self._rows[:] = self._rows[size:] return retval def fetchall(self): retval = self._rows[:] self._rows[:] = [] return retval class AsyncAdapt_asyncpg_ss_cursor(AsyncAdapt_asyncpg_cursor): server_side = True __slots__ = ("_rowbuffer",) def __init__(self, adapt_connection): super(AsyncAdapt_asyncpg_ss_cursor, self).__init__(adapt_connection) self._rowbuffer = None def close(self): self._cursor = None self._rowbuffer = None def _buffer_rows(self): new_rows = self._adapt_connection.await_(self._cursor.fetch(50)) self._rowbuffer = collections.deque(new_rows) def __aiter__(self): return self async def __anext__(self): if not self._rowbuffer: self._buffer_rows() while True: while self._rowbuffer: yield self._rowbuffer.popleft() self._buffer_rows() if not self._rowbuffer: break def fetchone(self): if not self._rowbuffer: self._buffer_rows() if not self._rowbuffer: return None return self._rowbuffer.popleft() def fetchmany(self, size=None): if size is None: return self.fetchall() if not self._rowbuffer: self._buffer_rows() buf = list(self._rowbuffer) lb = len(buf) if size > lb: buf.extend( self._adapt_connection.await_(self._cursor.fetch(size - lb)) ) result = buf[0:size] self._rowbuffer = collections.deque(buf[size:]) return result def fetchall(self): ret = list(self._rowbuffer) + list( self._adapt_connection.await_(self._all()) ) self._rowbuffer.clear() return ret async def _all(self): rows = [] # TODO: looks like we have to hand-roll some kind of batching here. # hardcoding for the moment but this should be improved. while True: batch = await self._cursor.fetch(1000) if batch: rows.extend(batch) continue else: break return rows def executemany(self, operation, seq_of_parameters): raise NotImplementedError( "server side cursor doesn't support executemany yet" ) class AsyncAdapt_asyncpg_connection: __slots__ = ( "dbapi", "_connection", "isolation_level", "_isolation_setting", "readonly", "deferrable", "_transaction", "_started", "_prepared_statement_cache", "_invalidate_schema_cache_asof", "_execute_mutex", ) await_ = staticmethod(await_only) def __init__(self, dbapi, connection, prepared_statement_cache_size=100): self.dbapi = dbapi self._connection = connection self.isolation_level = self._isolation_setting = "read_committed" self.readonly = False self.deferrable = False self._transaction = None self._started = False self._invalidate_schema_cache_asof = time.time() self._execute_mutex = asyncio.Lock() if prepared_statement_cache_size: self._prepared_statement_cache = util.LRUCache( prepared_statement_cache_size ) else: self._prepared_statement_cache = None async def _check_type_cache_invalidation(self, invalidate_timestamp): if invalidate_timestamp > self._invalidate_schema_cache_asof: await self._connection.reload_schema_state() self._invalidate_schema_cache_asof = invalidate_timestamp async def _prepare(self, operation, invalidate_timestamp): await self._check_type_cache_invalidation(invalidate_timestamp) cache = self._prepared_statement_cache if cache is None: prepared_stmt = await self._connection.prepare(operation) attributes = prepared_stmt.get_attributes() return prepared_stmt, attributes # asyncpg uses a type cache for the "attributes" which seems to go # stale independently of the PreparedStatement itself, so place that # collection in the cache as well. if operation in cache: prepared_stmt, attributes, cached_timestamp = cache[operation] # preparedstatements themselves also go stale for certain DDL # changes such as size of a VARCHAR changing, so there is also # a cross-connection invalidation timestamp if cached_timestamp > invalidate_timestamp: return prepared_stmt, attributes prepared_stmt = await self._connection.prepare(operation) attributes = prepared_stmt.get_attributes() cache[operation] = (prepared_stmt, attributes, time.time()) return prepared_stmt, attributes def _handle_exception(self, error): if self._connection.is_closed(): self._transaction = None self._started = False if not isinstance(error, AsyncAdapt_asyncpg_dbapi.Error): exception_mapping = self.dbapi._asyncpg_error_translate for super_ in type(error).__mro__: if super_ in exception_mapping: translated_error = exception_mapping[super_]( "%s: %s" % (type(error), error) ) translated_error.pgcode = ( translated_error.sqlstate ) = getattr(error, "sqlstate", None) raise translated_error from error else: raise error else: raise error @property def autocommit(self): return self.isolation_level == "autocommit" @autocommit.setter def autocommit(self, value): if value: self.isolation_level = "autocommit" else: self.isolation_level = self._isolation_setting def set_isolation_level(self, level): if self._started: self.rollback() self.isolation_level = self._isolation_setting = level async def _start_transaction(self): if self.isolation_level == "autocommit": return try: self._transaction = self._connection.transaction( isolation=self.isolation_level, readonly=self.readonly, deferrable=self.deferrable, ) await self._transaction.start() except Exception as error: self._handle_exception(error) else: self._started = True def cursor(self, server_side=False): if server_side: return AsyncAdapt_asyncpg_ss_cursor(self) else: return AsyncAdapt_asyncpg_cursor(self) def rollback(self): if self._started: try: self.await_(self._transaction.rollback()) except Exception as error: self._handle_exception(error) finally: self._transaction = None self._started = False def commit(self): if self._started: try: self.await_(self._transaction.commit()) except Exception as error: self._handle_exception(error) finally: self._transaction = None self._started = False def close(self): self.rollback() self.await_(self._connection.close()) class AsyncAdaptFallback_asyncpg_connection(AsyncAdapt_asyncpg_connection): __slots__ = () await_ = staticmethod(await_fallback) class AsyncAdapt_asyncpg_dbapi: def __init__(self, asyncpg): self.asyncpg = asyncpg self.paramstyle = "format" def connect(self, *arg, **kw): async_fallback = kw.pop("async_fallback", False) prepared_statement_cache_size = kw.pop( "prepared_statement_cache_size", 100 ) if util.asbool(async_fallback): return AsyncAdaptFallback_asyncpg_connection( self, await_fallback(self.asyncpg.connect(*arg, **kw)), prepared_statement_cache_size=prepared_statement_cache_size, ) else: return AsyncAdapt_asyncpg_connection( self, await_only(self.asyncpg.connect(*arg, **kw)), prepared_statement_cache_size=prepared_statement_cache_size, ) class Error(Exception): pass class Warning(Exception): # noqa pass class InterfaceError(Error): pass class DatabaseError(Error): pass class InternalError(DatabaseError): pass class OperationalError(DatabaseError): pass class ProgrammingError(DatabaseError): pass class IntegrityError(DatabaseError): pass class DataError(DatabaseError): pass class NotSupportedError(DatabaseError): pass class InternalServerError(InternalError): pass class InvalidCachedStatementError(NotSupportedError): def __init__(self, message): super( AsyncAdapt_asyncpg_dbapi.InvalidCachedStatementError, self ).__init__( message + " (SQLAlchemy asyncpg dialect will now invalidate " "all prepared caches in response to this exception)", ) @util.memoized_property def _asyncpg_error_translate(self): import asyncpg return { asyncpg.exceptions.IntegrityConstraintViolationError: self.IntegrityError, # noqa: E501 asyncpg.exceptions.PostgresError: self.Error, asyncpg.exceptions.SyntaxOrAccessError: self.ProgrammingError, asyncpg.exceptions.InterfaceError: self.InterfaceError, asyncpg.exceptions.InvalidCachedStatementError: self.InvalidCachedStatementError, # noqa: E501 asyncpg.exceptions.InternalServerError: self.InternalServerError, } def Binary(self, value): return value STRING = util.symbol("STRING") TIMESTAMP = util.symbol("TIMESTAMP") TIMESTAMP_W_TZ = util.symbol("TIMESTAMP_W_TZ") TIME = util.symbol("TIME") DATE = util.symbol("DATE") INTERVAL = util.symbol("INTERVAL") NUMBER = util.symbol("NUMBER") FLOAT = util.symbol("FLOAT") BOOLEAN = util.symbol("BOOLEAN") INTEGER = util.symbol("INTEGER") BIGINTEGER = util.symbol("BIGINTEGER") BYTES = util.symbol("BYTES") DECIMAL = util.symbol("DECIMAL") JSON = util.symbol("JSON") JSONB = util.symbol("JSONB") ENUM = util.symbol("ENUM") UUID = util.symbol("UUID") BYTEA = util.symbol("BYTEA") DATETIME = TIMESTAMP BINARY = BYTEA _pg_types = { AsyncAdapt_asyncpg_dbapi.STRING: "varchar", AsyncAdapt_asyncpg_dbapi.TIMESTAMP: "timestamp", AsyncAdapt_asyncpg_dbapi.TIMESTAMP_W_TZ: "timestamp with time zone", AsyncAdapt_asyncpg_dbapi.DATE: "date", AsyncAdapt_asyncpg_dbapi.TIME: "time", AsyncAdapt_asyncpg_dbapi.INTERVAL: "interval", AsyncAdapt_asyncpg_dbapi.NUMBER: "numeric", AsyncAdapt_asyncpg_dbapi.FLOAT: "float", AsyncAdapt_asyncpg_dbapi.BOOLEAN: "bool", AsyncAdapt_asyncpg_dbapi.INTEGER: "integer", AsyncAdapt_asyncpg_dbapi.BIGINTEGER: "bigint", AsyncAdapt_asyncpg_dbapi.BYTES: "bytes", AsyncAdapt_asyncpg_dbapi.DECIMAL: "decimal", AsyncAdapt_asyncpg_dbapi.JSON: "json", AsyncAdapt_asyncpg_dbapi.JSONB: "jsonb", AsyncAdapt_asyncpg_dbapi.ENUM: "enum", AsyncAdapt_asyncpg_dbapi.UUID: "uuid", AsyncAdapt_asyncpg_dbapi.BYTEA: "bytea", } class PGDialect_asyncpg(PGDialect): driver = "asyncpg" supports_statement_cache = True supports_unicode_statements = True supports_server_side_cursors = True supports_unicode_binds = True default_paramstyle = "format" supports_sane_multi_rowcount = False execution_ctx_cls = PGExecutionContext_asyncpg statement_compiler = PGCompiler_asyncpg preparer = PGIdentifierPreparer_asyncpg use_setinputsizes = True use_native_uuid = True colspecs = util.update_copy( PGDialect.colspecs, { sqltypes.Time: AsyncpgTime, sqltypes.Date: AsyncpgDate, sqltypes.DateTime: AsyncpgDateTime, sqltypes.Interval: AsyncPgInterval, INTERVAL: AsyncPgInterval, UUID: AsyncpgUUID, sqltypes.Boolean: AsyncpgBoolean, sqltypes.Integer: AsyncpgInteger, sqltypes.BigInteger: AsyncpgBigInteger, sqltypes.Numeric: AsyncpgNumeric, sqltypes.JSON: AsyncpgJSON, json.JSONB: AsyncpgJSONB, sqltypes.JSON.JSONPathType: AsyncpgJSONPathType, sqltypes.JSON.JSONIndexType: AsyncpgJSONIndexType, sqltypes.JSON.JSONIntIndexType: AsyncpgJSONIntIndexType, sqltypes.JSON.JSONStrIndexType: AsyncpgJSONStrIndexType, sqltypes.Enum: AsyncPgEnum, OID: AsyncpgOID, REGCLASS: AsyncpgREGCLASS, }, ) is_async = True _invalidate_schema_cache_asof = 0 def _invalidate_schema_cache(self): self._invalidate_schema_cache_asof = time.time() @util.memoized_property def _dbapi_version(self): if self.dbapi and hasattr(self.dbapi, "__version__"): return tuple( [ int(x) for x in re.findall( r"(\d+)(?:[-\.]?|$)", self.dbapi.__version__ ) ] ) else: return (99, 99, 99) @classmethod def dbapi(cls): return AsyncAdapt_asyncpg_dbapi(__import__("asyncpg")) @util.memoized_property def _isolation_lookup(self): return { "AUTOCOMMIT": "autocommit", "READ COMMITTED": "read_committed", "REPEATABLE READ": "repeatable_read", "SERIALIZABLE": "serializable", } def set_isolation_level(self, connection, level): try: level = self._isolation_lookup[level.replace("_", " ")] except KeyError as err: util.raise_( exc.ArgumentError( "Invalid value '%s' for isolation_level. " "Valid isolation levels for %s are %s" % (level, self.name, ", ".join(self._isolation_lookup)) ), replace_context=err, ) connection.set_isolation_level(level) def set_readonly(self, connection, value): connection.readonly = value def get_readonly(self, connection): return connection.readonly def set_deferrable(self, connection, value): connection.deferrable = value def get_deferrable(self, connection): return connection.deferrable def create_connect_args(self, url): opts = url.translate_connect_args(username="user") opts.update(url.query) util.coerce_kw_type(opts, "prepared_statement_cache_size", int) util.coerce_kw_type(opts, "port", int) return ([], opts) @classmethod def get_pool_class(cls, url): async_fallback = url.query.get("async_fallback", False) if util.asbool(async_fallback): return pool.FallbackAsyncAdaptedQueuePool else: return pool.AsyncAdaptedQueuePool def is_disconnect(self, e, connection, cursor): if connection: return connection._connection.is_closed() else: return isinstance( e, self.dbapi.InterfaceError ) and "connection is closed" in str(e) def do_set_input_sizes(self, cursor, list_of_tuples, context): if self.positional: cursor.setinputsizes( *[dbtype for key, dbtype, sqltype in list_of_tuples] ) else: cursor.setinputsizes( **{ key: dbtype for key, dbtype, sqltype in list_of_tuples if dbtype } ) def on_connect(self): super_connect = super(PGDialect_asyncpg, self).on_connect() def _jsonb_encoder(str_value): # \x01 is the prefix for jsonb used by PostgreSQL. # asyncpg requires it when format='binary' return b"\x01" + str_value.encode() deserializer = self._json_deserializer or _py_json.loads def _json_decoder(bin_value): return deserializer(bin_value.decode()) def _jsonb_decoder(bin_value): # the byte is the \x01 prefix for jsonb used by PostgreSQL. # asyncpg returns it when format='binary' return deserializer(bin_value[1:].decode()) async def _setup_type_codecs(conn): """set up type decoders at the asyncpg level. these are set_type_codec() calls to normalize There was a tentative decoder for the "char" datatype here to have it return strings however this type is actually a binary type that other drivers are likely mis-interpreting. See https://github.com/MagicStack/asyncpg/issues/623 for reference on why it's set up this way. """ await conn._connection.set_type_codec( "json", encoder=str.encode, decoder=_json_decoder, schema="pg_catalog", format="binary", ) await conn._connection.set_type_codec( "jsonb", encoder=_jsonb_encoder, decoder=_jsonb_decoder, schema="pg_catalog", format="binary", ) def connect(conn): conn.await_(_setup_type_codecs(conn)) if super_connect is not None: super_connect(conn) return connect dialect = PGDialect_asyncpg
31.833333
116
0.630217
4a191cd3a75baa6521c06c7831088cce735c0bff
1,727
py
Python
grr/test_lib/stats_test_lib.py
dekoder/grr
27ba38dc0f5ad4f3e0cdbfb146a0a789e3b0d27b
[ "Apache-2.0" ]
3
2018-09-30T01:31:29.000Z
2019-04-22T11:44:54.000Z
grr/test_lib/stats_test_lib.py
tomchop/grr
27ba38dc0f5ad4f3e0cdbfb146a0a789e3b0d27b
[ "Apache-2.0" ]
1
2022-03-02T09:58:05.000Z
2022-03-02T09:58:05.000Z
grr/test_lib/stats_test_lib.py
tomchop/grr
27ba38dc0f5ad4f3e0cdbfb146a0a789e3b0d27b
[ "Apache-2.0" ]
1
2018-08-30T14:50:24.000Z
2018-08-30T14:50:24.000Z
#!/usr/bin/env python """Classes for stats-related testing.""" import mock from grr_response_core.lib import stats class StatsDeltaAssertionContext(object): """A context manager to check the stats variable changes.""" def __init__(self, test, delta, varname, fields=None): self.test = test self.varname = varname self.fields = fields self.delta = delta def __enter__(self): self.prev_count = stats.STATS.GetMetricValue( self.varname, fields=self.fields) # Handle the case when we're dealing with distributions. if hasattr(self.prev_count, "count"): self.prev_count = self.prev_count.count def __exit__(self, unused_type, unused_value, unused_traceback): new_count = stats.STATS.GetMetricValue( varname=self.varname, fields=self.fields) if hasattr(new_count, "count"): new_count = new_count.count self.test.assertEqual( new_count - self.prev_count, self.delta, "%s (fields=%s) expected to change with delta=%d" % (self.varname, self.fields, self.delta)) class StatsTestMixin(object): """Mixing for stats-related assertions.""" def setUp(self): # pylint: disable=invalid-name super(StatsTestMixin, self).setUp() self._stats_patcher = mock.patch.object(stats, "STATS", stats.StatsCollector()) self._stats_patcher.start() def tearDown(self): # pylint: disable=invalid-name self._stats_patcher.stop() super(StatsTestMixin, self).tearDown() # pylint: disable=invalid-name def assertStatsCounterDelta(self, delta, varname, fields=None): return StatsDeltaAssertionContext(self, delta, varname, fields=fields) # pylint: enable=invalid-name
31.4
74
0.693109
4a191cf374f3a4314a764ad3bcb06ed3218a2a9e
1,866
py
Python
tests/fixtures.py
dtpryce/MLServer
02744b3c770141b0b1d9dad2a0256d243051de61
[ "Apache-2.0" ]
null
null
null
tests/fixtures.py
dtpryce/MLServer
02744b3c770141b0b1d9dad2a0256d243051de61
[ "Apache-2.0" ]
null
null
null
tests/fixtures.py
dtpryce/MLServer
02744b3c770141b0b1d9dad2a0256d243051de61
[ "Apache-2.0" ]
null
null
null
import asyncio from mlserver import MLModel from mlserver.types import InferenceRequest, InferenceResponse, Parameters from mlserver.codecs import NumpyCodec from mlserver.handlers.custom import custom_handler from mlserver.errors import MLServerError class SumModel(MLModel): @custom_handler(rest_path="/my-custom-endpoint") async def my_payload(self, payload: list) -> int: return sum(payload) async def predict(self, payload: InferenceRequest) -> InferenceResponse: decoded = self.decode(payload.inputs[0]) total = decoded.sum(axis=1, keepdims=True) output = NumpyCodec.encode(name="total", payload=total) response = InferenceResponse( id=payload.id, model_name=self.name, model_version=self.version, outputs=[output], ) if payload.parameters and payload.parameters.headers: # "Echo" headers back prefixed by `x-` request_headers = payload.parameters.headers response_headers = {} for header_name, header_value in request_headers.items(): if header_name.startswith("x-"): response_headers[header_name] = header_value response.parameters = Parameters(headers=response_headers) return response class ErrorModel(MLModel): error_message = "something really bad happened" async def predict(self, payload: InferenceRequest) -> InferenceResponse: raise MLServerError(self.error_message) class SlowModel(MLModel): async def load(self) -> bool: await asyncio.sleep(10) self.ready = True return self.ready async def infer(self, payload: InferenceRequest) -> InferenceResponse: await asyncio.sleep(10) return InferenceResponse(id=payload.id, model_name=self.name, outputs=[])
33.321429
81
0.680064
4a191dc6c97b69b485766a9c1a70680f676e7182
20,914
py
Python
main.py
joehalliwell/taming-transformers
8f92908403cc25a6edeab1eee0eb89950c08e4a6
[ "MIT" ]
null
null
null
main.py
joehalliwell/taming-transformers
8f92908403cc25a6edeab1eee0eb89950c08e4a6
[ "MIT" ]
null
null
null
main.py
joehalliwell/taming-transformers
8f92908403cc25a6edeab1eee0eb89950c08e4a6
[ "MIT" ]
null
null
null
import argparse, os, sys, datetime, glob, importlib from omegaconf import OmegaConf import numpy as np from PIL import Image import torch import torchvision from torch.utils.data import random_split, DataLoader, Dataset import pytorch_lightning as pl from pytorch_lightning import seed_everything from pytorch_lightning.trainer import Trainer from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor from pytorch_lightning.utilities.distributed import rank_zero_only from taming import get_obj_from_str, instantiate_from_config def get_parser(**parser_kwargs): def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") parser = argparse.ArgumentParser(**parser_kwargs) parser.add_argument( "-n", "--name", type=str, const=True, default="", nargs="?", help="postfix for logdir", ) parser.add_argument( "-r", "--resume", type=str, const=True, default="", nargs="?", help="resume from logdir or checkpoint in logdir", ) parser.add_argument( "-b", "--base", nargs="*", metavar="base_config.yaml", help="paths to base configs. Loaded from left-to-right. " "Parameters can be overwritten or added with command-line options of the form `--key value`.", default=list(), ) parser.add_argument( "-t", "--train", type=str2bool, const=True, default=False, nargs="?", help="train", ) parser.add_argument( "--no-test", type=str2bool, const=True, default=False, nargs="?", help="disable test", ) parser.add_argument("-p", "--project", help="name of new or path to existing project") parser.add_argument( "-d", "--debug", type=str2bool, nargs="?", const=True, default=False, help="enable post-mortem debugging", ) parser.add_argument( "-s", "--seed", type=int, default=23, help="seed for seed_everything", ) parser.add_argument( "-f", "--postfix", type=str, default="", help="post-postfix for default name", ) return parser def nondefault_trainer_args(opt): parser = argparse.ArgumentParser() parser = Trainer.add_argparse_args(parser) args = parser.parse_args([]) return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k)) def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) class WrappedDataset(Dataset): """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset""" def __init__(self, dataset): self.data = dataset def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] class DataModuleFromConfig(pl.LightningDataModule): def __init__(self, batch_size, train=None, validation=None, test=None, wrap=False, num_workers=None): super().__init__() self.batch_size = batch_size self.dataset_configs = dict() self.num_workers = num_workers if num_workers is not None else batch_size*2 if train is not None: self.dataset_configs["train"] = train self.train_dataloader = self._train_dataloader if validation is not None: self.dataset_configs["validation"] = validation self.val_dataloader = self._val_dataloader if test is not None: self.dataset_configs["test"] = test self.test_dataloader = self._test_dataloader self.wrap = wrap def prepare_data(self): for data_cfg in self.dataset_configs.values(): instantiate_from_config(data_cfg) def setup(self, stage=None): self.datasets = dict( (k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) if self.wrap: for k in self.datasets: self.datasets[k] = WrappedDataset(self.datasets[k]) def _train_dataloader(self): return DataLoader(self.datasets["train"], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True) def _val_dataloader(self): return DataLoader(self.datasets["validation"], batch_size=self.batch_size, num_workers=self.num_workers) def _test_dataloader(self): return DataLoader(self.datasets["test"], batch_size=self.batch_size, num_workers=self.num_workers) class SetupCallback(Callback): def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): super().__init__() self.resume = resume self.now = now self.logdir = logdir self.ckptdir = ckptdir self.cfgdir = cfgdir self.config = config self.lightning_config = lightning_config def on_pretrain_routine_start(self, trainer, pl_module): if trainer.global_rank == 0: # Create logdirs and save configs os.makedirs(self.logdir, exist_ok=True) os.makedirs(self.ckptdir, exist_ok=True) os.makedirs(self.cfgdir, exist_ok=True) print("Project config") print(self.config.pretty()) OmegaConf.save(self.config, os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) print("Lightning config") print(self.lightning_config.pretty()) OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) else: # ModelCheckpoint callback created log directory --- remove it if not self.resume and os.path.exists(self.logdir): dst, name = os.path.split(self.logdir) dst = os.path.join(dst, "child_runs", name) os.makedirs(os.path.split(dst)[0], exist_ok=True) try: os.rename(self.logdir, dst) except FileNotFoundError: pass class ImageLogger(Callback): def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True): super().__init__() self.batch_freq = batch_frequency self.max_images = max_images self.logger_log_images = { pl.loggers.WandbLogger: self._wandb, pl.loggers.TestTubeLogger: self._testtube, } self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)] if not increase_log_steps: self.log_steps = [self.batch_freq] self.clamp = clamp @rank_zero_only def _wandb(self, pl_module, images, batch_idx, split): raise ValueError("No way wandb") grids = dict() for k in images: grid = torchvision.utils.make_grid(images[k]) grids[f"{split}/{k}"] = wandb.Image(grid) pl_module.logger.experiment.log(grids) @rank_zero_only def _testtube(self, pl_module, images, batch_idx, split): for k in images: grid = torchvision.utils.make_grid(images[k]) grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w tag = f"{split}/{k}" pl_module.logger.experiment.add_image( tag, grid, global_step=pl_module.global_step) @rank_zero_only def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): root = os.path.join(save_dir, "images", split) for k in images: grid = torchvision.utils.make_grid(images[k], nrow=4) grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w grid = grid.transpose(0,1).transpose(1,2).squeeze(-1) grid = grid.numpy() grid = (grid*255).astype(np.uint8) filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format( k, global_step, current_epoch, batch_idx) path = os.path.join(root, filename) os.makedirs(os.path.split(path)[0], exist_ok=True) Image.fromarray(grid).save(path) def log_img(self, pl_module, batch, batch_idx, split="train"): if (self.check_frequency(batch_idx) and # batch_idx % self.batch_freq == 0 hasattr(pl_module, "log_images") and callable(pl_module.log_images) and self.max_images > 0): logger = type(pl_module.logger) is_train = pl_module.training if is_train: pl_module.eval() with torch.no_grad(): images = pl_module.log_images(batch, split=split) for k in images: N = min(images[k].shape[0], self.max_images) images[k] = images[k][:N] if isinstance(images[k], torch.Tensor): images[k] = images[k].detach().cpu() if self.clamp: images[k] = torch.clamp(images[k], -1., 1.) self.log_local(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch, batch_idx) logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None) logger_log_images(pl_module, images, pl_module.global_step, split) if is_train: pl_module.train() def check_frequency(self, batch_idx): if (batch_idx % self.batch_freq) == 0 or (batch_idx in self.log_steps): try: self.log_steps.pop(0) except IndexError: pass return True return False def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.log_img(pl_module, batch, batch_idx, split="train") def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.log_img(pl_module, batch, batch_idx, split="val") if __name__ == "__main__": # custom parser to specify config files, train, test and debug mode, # postfix, resume. # `--key value` arguments are interpreted as arguments to the trainer. # `nested.key=value` arguments are interpreted as config parameters. # configs are merged from left-to-right followed by command line parameters. # model: # base_learning_rate: float # target: path to lightning module # params: # key: value # data: # target: main.DataModuleFromConfig # params: # batch_size: int # wrap: bool # train: # target: path to train dataset # params: # key: value # validation: # target: path to validation dataset # params: # key: value # test: # target: path to test dataset # params: # key: value # lightning: (optional, has sane defaults and can be specified on cmdline) # trainer: # additional arguments to trainer # logger: # logger to instantiate # modelcheckpoint: # modelcheckpoint to instantiate # callbacks: # callback1: # target: importpath # params: # key: value now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") # add cwd for convenience and to make classes in this file available when # running as `python main.py` # (in particular `main.DataModuleFromConfig`) sys.path.append(os.getcwd()) parser = get_parser() parser = Trainer.add_argparse_args(parser) opt, unknown = parser.parse_known_args() if opt.name and opt.resume: raise ValueError( "-n/--name and -r/--resume cannot be specified both." "If you want to resume training in a new log folder, " "use -n/--name in combination with --resume_from_checkpoint" ) if opt.resume: if not os.path.exists(opt.resume): raise ValueError("Cannot find {}".format(opt.resume)) if os.path.isfile(opt.resume): paths = opt.resume.split("/") idx = len(paths)-paths[::-1].index("logs")+1 logdir = "/".join(paths[:idx]) ckpt = opt.resume else: assert os.path.isdir(opt.resume), opt.resume logdir = opt.resume.rstrip("/") ckpt = os.path.join(logdir, "checkpoints", "last.ckpt") opt.resume_from_checkpoint = ckpt base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml"))) opt.base = base_configs+opt.base _tmp = logdir.split("/") nowname = _tmp[_tmp.index("logs")+1] else: if opt.name: name = "_"+opt.name elif opt.base: cfg_fname = os.path.split(opt.base[0])[-1] cfg_name = os.path.splitext(cfg_fname)[0] name = "_"+cfg_name else: name = "" nowname = now+name+opt.postfix logdir = os.path.join("logs", nowname) ckptdir = os.path.join(logdir, "checkpoints") cfgdir = os.path.join(logdir, "configs") seed_everything(opt.seed) try: # init and save configs configs = [OmegaConf.load(cfg) for cfg in opt.base] cli = OmegaConf.from_dotlist(unknown) config = OmegaConf.merge(*configs, cli) lightning_config = config.pop("lightning", OmegaConf.create()) # merge trainer cli with config trainer_config = lightning_config.get("trainer", OmegaConf.create()) # default to ddp trainer_config["distributed_backend"] = "ddp" for k in nondefault_trainer_args(opt): trainer_config[k] = getattr(opt, k) if not "gpus" in trainer_config: del trainer_config["distributed_backend"] cpu = True else: gpuinfo = trainer_config["gpus"] print(f"Running on GPUs {gpuinfo}") cpu = False trainer_opt = argparse.Namespace(**trainer_config) lightning_config.trainer = trainer_config # model model = instantiate_from_config(config.model) # trainer and callbacks trainer_kwargs = dict() # default logger configs # NOTE wandb < 0.10.0 interferes with shutdown # wandb >= 0.10.0 seems to fix it but still interferes with pudb # debugging (wrongly sized pudb ui) # thus prefer testtube for now default_logger_cfgs = { "wandb": { "target": "pytorch_lightning.loggers.WandbLogger", "params": { "name": nowname, "save_dir": logdir, "offline": opt.debug, "id": nowname, } }, "testtube": { "target": "pytorch_lightning.loggers.TestTubeLogger", "params": { "name": "testtube", "save_dir": logdir, } }, } default_logger_cfg = default_logger_cfgs["testtube"] logger_cfg = lightning_config.logger or OmegaConf.create() logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg) trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to # specify which metric is used to determine best models default_modelckpt_cfg = { "target": "pytorch_lightning.callbacks.ModelCheckpoint", "params": { "dirpath": ckptdir, "filename": "{epoch:06}", "verbose": True, "save_last": True, } } if hasattr(model, "monitor"): print(f"Monitoring {model.monitor} as checkpoint metric.") default_modelckpt_cfg["params"]["monitor"] = model.monitor default_modelckpt_cfg["params"]["save_top_k"] = 3 modelckpt_cfg = lightning_config.modelcheckpoint or OmegaConf.create() modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg) trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg) # add callback which sets up log directory default_callbacks_cfg = { "setup_callback": { "target": "main.SetupCallback", "params": { "resume": opt.resume, "now": now, "logdir": logdir, "ckptdir": ckptdir, "cfgdir": cfgdir, "config": config, "lightning_config": lightning_config, } }, "image_logger": { "target": "main.ImageLogger", "params": { "batch_frequency": 750, "max_images": 4, "clamp": True } }, "learning_rate_logger": { "target": "main.LearningRateMonitor", "params": { "logging_interval": "step", #"log_momentum": True } }, } callbacks_cfg = lightning_config.callbacks or OmegaConf.create() callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg) trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs) # data data = instantiate_from_config(config.data) # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html # calling these ourselves should not be necessary but it is. # lightning still takes care of proper multiprocessing though data.prepare_data() data.setup() # configure learning rate bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate if not cpu: ngpu = len(lightning_config.trainer.gpus.strip(",").split(',')) else: ngpu = 1 accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches or 1 print(f"accumulate_grad_batches = {accumulate_grad_batches}") lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr print("Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format( model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr)) # allow checkpointing via USR1 def melk(*args, **kwargs): # run all checkpoint hooks if trainer.global_rank == 0: print("Summoning checkpoint.") ckpt_path = os.path.join(ckptdir, "last.ckpt") trainer.save_checkpoint(ckpt_path) def divein(*args, **kwargs): if trainer.global_rank == 0: import pudb; pudb.set_trace() import signal signal.signal(signal.SIGUSR1, melk) signal.signal(signal.SIGUSR2, divein) # run if opt.train: try: trainer.fit(model, data) except Exception: melk() raise if not opt.no_test and not trainer.interrupted: trainer.test(model, data) except Exception: if opt.debug and trainer.global_rank==0: try: import pudb as debugger except ImportError: import pdb as debugger debugger.post_mortem() raise finally: # move newly created debug project to debug_runs if opt.debug and not opt.resume and trainer.global_rank==0: dst, name = os.path.split(logdir) dst = os.path.join(dst, "debug_runs", name) os.makedirs(os.path.split(dst)[0], exist_ok=True) os.rename(logdir, dst)
36.246101
138
0.57703
4a191dee830da0ceef82b3ea8706a02a95a1e7e8
43,733
py
Python
tests/unit/api/metadata/test_v0.py
tianruzhou-db/amundsenfrontendlibrary
d1afcf6af17f5c459a5913364138e37f240acfac
[ "Apache-2.0" ]
3
2021-02-09T13:52:03.000Z
2022-02-26T02:36:02.000Z
tests/unit/api/metadata/test_v0.py
tianruzhou-db/amundsenfrontendlibrary
d1afcf6af17f5c459a5913364138e37f240acfac
[ "Apache-2.0" ]
51
2020-12-11T23:23:55.000Z
2022-03-18T23:38:04.000Z
tests/unit/api/metadata/test_v0.py
tianruzhou-db/amundsenfrontendlibrary
d1afcf6af17f5c459a5913364138e37f240acfac
[ "Apache-2.0" ]
2
2021-02-23T18:23:35.000Z
2022-03-18T15:12:25.000Z
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import json import responses import unittest from unittest.mock import patch from http import HTTPStatus from amundsen_application import create_app from amundsen_application.api.metadata.v0 import TABLE_ENDPOINT, LAST_INDEXED_ENDPOINT,\ POPULAR_TABLES_ENDPOINT, TAGS_ENDPOINT, USER_ENDPOINT, DASHBOARD_ENDPOINT from amundsen_application.config import MatchRuleObject from amundsen_application.tests.test_utils import TEST_USER_ID local_app = create_app('amundsen_application.config.TestConfig', 'tests/templates') class MetadataTest(unittest.TestCase): def setUp(self) -> None: self.mock_popular_tables = { 'popular_tables': [ { 'cluster': 'test_cluster', 'database': 'test_db', 'schema': 'test_schema', 'description': 'This is a test', 'name': 'test_table', 'key': 'test_db://test_cluster.test_schema/test_table', } ] } self.expected_parsed_popular_tables = [ { 'cluster': 'test_cluster', 'database': 'test_db', 'description': 'This is a test', 'schema': 'test_schema', 'type': 'table', 'name': 'test_table', 'key': 'test_db://test_cluster.test_schema/test_table', 'last_updated_timestamp': None, } ] self.mock_metadata = { 'cluster': 'test_cluster', 'columns': [ { 'name': 'column_1', 'description': 'This is a test', 'col_type': 'bigint', 'sort_order': 0, 'stats': [ {'stat_type': 'count', 'stat_val': '100', 'start_epoch': 1538352000, 'end_epoch': 1538352000}, {'stat_type': 'count_null', 'stat_val': '0', 'start_epoch': 1538352000, 'end_epoch': 1538352000} ] } ], 'database': 'test_db', 'is_view': False, 'key': 'test_db://test_cluster.test_schema/test_table', 'last_updated_timestamp': 1563872712, 'owners': [], 'schema': 'test_schema', 'name': 'test_table', 'description': 'This is a test', 'resource_reports': [], 'programmatic_descriptions': [ {'source': 'c_1', 'text': 'description c'}, {'source': 'a_1', 'text': 'description a'}, {'source': 'b_1', 'text': 'description b'} ], 'tags': [], 'table_readers': [ {'user': {'email': 'test@test.com', 'first_name': None, 'last_name': None}, 'read_count': 100} ], 'watermarks': [ {'watermark_type': 'low_watermark', 'partition_key': 'ds', 'partition_value': '', 'create_time': ''}, {'watermark_type': 'high_watermark', 'partition_key': 'ds', 'partition_value': '', 'create_time': ''} ], 'table_writer': { 'application_url': 'https://test-test.test.test', 'name': 'test_name', 'id': 'test_id', 'description': 'This is a test' } } self.expected_parsed_metadata = { 'badges': [], 'cluster': 'test_cluster', 'database': 'test_db', 'schema': 'test_schema', 'name': 'test_table', 'key': 'test_db://test_cluster.test_schema/test_table', 'description': 'This is a test', 'tags': [], 'table_readers': [ { 'user': { 'email': 'test@test.com', 'first_name': None, 'last_name': None, 'display_name': 'test@test.com', 'profile_url': '' }, 'read_count': 100 } ], 'partition': { 'is_partitioned': True, 'key': 'ds', 'value': '01-30-2019' }, 'owners': [], 'is_view': False, 'columns': [ { 'name': 'column_1', 'description': 'This is a test', 'col_type': 'bigint', 'sort_order': 0, 'stats': [ {'stat_type': 'count', 'stat_val': '100', 'start_epoch': 1538352000, 'end_epoch': 1538352000}, {'stat_type': 'count_null', 'stat_val': '0', 'start_epoch': 1538352000, 'end_epoch': 1538352000} ], 'is_editable': True } ], "programmatic_descriptions": [ { 'source': 'a', 'text': 'description a' }, { 'source': 'b', 'text': 'description b' }, { 'source': 'c', 'text': 'description c' }, ], 'resource_reports': [], 'table_writer': { 'application_url': 'https://test-test.test.test', 'name': 'test_name', 'id': 'test_id', 'description': 'This is a test' }, 'watermarks': [ {'watermark_type': 'low_watermark', 'partition_key': 'ds', 'partition_value': '', 'create_time': ''}, {'watermark_type': 'high_watermark', 'partition_key': 'ds', 'partition_value': '', 'create_time': ''} ], 'source': '/source', 'is_editable': True, 'last_updated_timestamp': None } self.expected_related_dashboard_response = { "dashboards": [{ "group_name": "Group Test One", "description": None, "cluster": "gold", "group_url": "https://app.mode.com/companyName/spaces/123", "uri": "mode_dashboard://gold.123/234rt78", "last_successful_run_timestamp": 1590505846, "name": "Test Dashboard One", "product": "mode", "url": "https://app.mode.com/companyName/reports/234rt78" }, { "group_name": "Group Test Two", "description": None, "cluster": "gold", "group_url": "https://app.mode.com/companyName/spaces/334", "uri": "mode_dashboard://gold.334/34thyu56", "last_successful_run_timestamp": 1590519704, "name": "Test Dashboard Two", "product": "mode", "url": "https://app.mode.com/companyName/reports/34thyu56" }, { "group_name": "Group Test Three", "description": None, "cluster": "gold", "group_url": "https://app.mode.com/companyName/spaces/789", "uri": "mode_dashboard://gold.789/12ed34", "last_successful_run_timestamp": 1590538191, "name": "Test Dashboard Three", "product": "mode", "url": "https://app.mode.com/companyName/reports/12ed34" }] } self.expected_programmatic_descriptions_with_config = { "programmatic_descriptions": [ { 'source': 'a', 'text': 'description a' }, { 'source': 'b', 'text': 'description b' }, { 'source': 'c', 'text': 'description c' }, ] } self.mock_tags = { 'tag_usages': [ { 'tag_count': 3, 'tag_name': 'tag_0' }, { 'tag_count': 4, 'tag_name': 'tag_1' }, { 'tag_count': 5, 'tag_name': 'tag_2' }, { 'tag_count': 10, 'tag_name': 'tag_3' }, { 'tag_count': 1, 'tag_name': 'tag_4' } ] } self.expected_parsed_tags = [ { 'tag_count': 3, 'tag_name': 'tag_0' }, { 'tag_count': 4, 'tag_name': 'tag_1' }, { 'tag_count': 5, 'tag_name': 'tag_2' }, { 'tag_count': 10, 'tag_name': 'tag_3' }, { 'tag_count': 1, 'tag_name': 'tag_4' } ] self.mock_user = { 'email': 'test@test.com', 'employee_type': 'FTE', 'first_name': 'Firstname', 'full_name': 'Firstname Lastname', 'github_username': 'githubusername', 'is_active': True, 'last_name': 'Lastname', 'manager_id': 'managerid', 'manager_fullname': 'Manager Fullname', 'role_name': 'SWE', 'slack_id': 'slackuserid', 'team_name': 'Amundsen', 'user_id': 'testuserid', } self.expected_parsed_user = { 'display_name': 'Firstname Lastname', 'email': 'test@test.com', 'employee_type': 'FTE', 'first_name': 'Firstname', 'full_name': 'Firstname Lastname', 'github_username': 'githubusername', 'is_active': True, 'last_name': 'Lastname', 'manager_email': None, 'manager_fullname': 'Manager Fullname', 'manager_id': 'managerid', 'profile_url': '', 'role_name': 'SWE', 'slack_id': 'slackuserid', 'team_name': 'Amundsen', 'user_id': 'testuserid', } self.get_user_resource_response = { 'table': [ { 'cluster': 'cluster', 'database': 'database', 'schema': 'schema', 'name': 'table_name_0', 'description': 'description', }, { 'cluster': 'cluster', 'database': 'database', 'schema': 'schema', 'name': 'table_name_1', 'description': 'description', }, ], 'dashboard': [], } self.expected_parsed_user_resources = { 'table': [ { 'cluster': 'cluster', 'database': 'database', 'description': 'description', 'last_updated_timestamp': None, 'name': 'table_name_0', 'schema': 'schema', 'type': 'table', 'key': 'database://cluster.schema/table_name_0', }, { 'cluster': 'cluster', 'database': 'database', 'description': 'description', 'last_updated_timestamp': None, 'name': 'table_name_1', 'schema': 'schema', 'type': 'table', 'key': 'database://cluster.schema/table_name_1', }, ], 'dashboard': [], } self.mock_dashboard_metadata = { "badges": [], "chart_names": [], "cluster": "gold", "created_timestamp": 1558035206, "description": "test description", "frequent_users": [], "group_name": "test group name", "group_url": "test url", "last_run_state": "failed", "last_run_timestamp": 1587395014, "last_successful_run_timestamp": 1578434241, "name": "test report name", "owners": [ { "display_name": "First Last", "email": "email@mail.com", "employee_type": "teamMember", "first_name": "First", "full_name": "First Last", "github_username": "", "is_active": True, "last_name": "Last", "manager_email": "", "manager_fullname": "", "profile_url": "", "role_name": "Test Role", "slack_id": "", "team_name": "Team Name", "user_id": "test_user_id" } ], "product": "mode", "query_names": [ "test query 1", "test query 2", "test query 3", ], "recent_view_count": 8, "tables": [ { "cluster": "cluster", "database": "database", "description": "test description", "key": "database://cluster.schema/name", "last_updated_timestamp": None, "name": "name", "schema": "schema", "type": "table" }, { "cluster": "cluster", "database": "database", "description": "test description", "key": "database://cluster.schema/name_2", "last_updated_timestamp": None, "name": "name_2", "schema": "schema", "type": "table" }, ], "tags": [ { "tag_name": "amundsen", "tag_type": "default" }, ], "updated_timestamp": 1578433917, "uri": "test_dashboard_uri", "url": "test_dashboard_url" } self.expected_parsed_dashboard = { "badges": [], "chart_names": [], "cluster": "gold", "created_timestamp": 1558035206, "description": "test description", "frequent_users": [], "group_name": "test group name", "group_url": "test url", "last_run_state": "failed", "last_run_timestamp": 1587395014, "last_successful_run_timestamp": 1578434241, "name": "test report name", "owners": [ { "display_name": "First Last", "email": "email@mail.com", "employee_type": "teamMember", "first_name": "First", "full_name": "First Last", "github_username": "", "is_active": True, "last_name": "Last", "manager_email": "", "manager_fullname": "", "profile_url": "", "role_name": "Test Role", "slack_id": "", "team_name": "Team Name", "user_id": "test_user_id" } ], "product": "mode", "query_names": [ "test query 1", "test query 2", "test query 3", ], "recent_view_count": 8, "tables": [ { "cluster": "cluster", "database": "database", "description": "test description", "key": "database://cluster.schema/name", "last_updated_timestamp": None, "name": "name", "schema": "schema", "type": "table" }, { "cluster": "cluster", "database": "database", "description": "test description", "key": "database://cluster.schema/name_2", "last_updated_timestamp": None, "name": "name_2", "schema": "schema", "type": "table" }, ], "tags": [ { "tag_name": "amundsen", "tag_type": "default" }, ], "updated_timestamp": 1578433917, "uri": "test_dashboard_uri", "url": "test_dashboard_url" } @responses.activate def test_popular_tables_success(self) -> None: """ Test successful popular_tables request :return: """ mock_url = local_app.config['METADATASERVICE_BASE'] \ + POPULAR_TABLES_ENDPOINT \ + f'/{TEST_USER_ID}' responses.add(responses.GET, mock_url, json=self.mock_popular_tables, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/popular_tables') data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('results'), self.expected_parsed_popular_tables) @responses.activate def test_popular_tables_propagate_failure(self) -> None: """ Test that any error codes from the request are propagated through, to be returned to the React application :return: """ mock_url = local_app.config['METADATASERVICE_BASE'] \ + POPULAR_TABLES_ENDPOINT \ + f'/{TEST_USER_ID}' responses.add(responses.GET, mock_url, json=self.mock_popular_tables, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get('/api/metadata/v0/popular_tables') self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) @responses.activate def test_popular_tables_catch_exception(self) -> None: """ Test catching exception if there is an issue processing the popular table results from the metadata service :return: """ mock_url = local_app.config['METADATASERVICE_BASE'] \ + POPULAR_TABLES_ENDPOINT \ + f'/{TEST_USER_ID}' responses.add(responses.GET, mock_url, json={'popular_tables': None}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/popular_tables') self.assertEqual(response.status_code, HTTPStatus.INTERNAL_SERVER_ERROR) @responses.activate def test_get_table_metadata_success(self) -> None: """ Test successful get_table_metadata request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table' responses.add(responses.GET, url, json=self.mock_metadata, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/table', query_string=dict( key='db://cluster.schema/table', index='0', source='test_source' ) ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('tableData'), self.expected_parsed_metadata) @responses.activate def test_update_table_owner_success(self) -> None: """ Test successful update_table_owner request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/owner/test' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/update_table_owner', json={ 'key': 'db://cluster.schema/table', 'owner': 'test' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_update_table_owner_propagate_failure(self) -> None: """ Test that any error codes from the update_table_owner request are propagated to be returned to the React application :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/owner/test' responses.add(responses.PUT, url, json={}, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/update_table_owner', json={ 'key': 'db://cluster.schema/table', 'owner': 'test' } ) self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) @responses.activate def test_get_last_indexed_success(self) -> None: """ Test successful get_last_indexed request :return: """ responses.add(responses.GET, local_app.config['METADATASERVICE_BASE'] + LAST_INDEXED_ENDPOINT, json={'neo4j_latest_timestamp': 1538352000}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/get_last_indexed') data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertEqual(data.get('timestamp'), 1538352000) @responses.activate def test_get_last_indexed_propagate_failure(self) -> None: """ Test that any error codes from the get_last_indexed request are propagated through, to be returned to the React application :return: """ responses.add(responses.GET, local_app.config['METADATASERVICE_BASE'] + LAST_INDEXED_ENDPOINT, json=None, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get('/api/metadata/v0/get_last_indexed') self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) @responses.activate def test_get_table_description_success(self) -> None: """ Test successful get_table_description request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/description' responses.add(responses.GET, url, json={'description': 'This is a test'}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/get_table_description', query_string=dict(key='db://cluster.schema/table') ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertEqual(data.get('description'), 'This is a test') @responses.activate def test_get_table_description_propagate_failure(self) -> None: """ Test that any error codes from the get_table_description request are propagated through, to be returned to the React application :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/description' responses.add(responses.GET, url, json={'description': 'This is a test'}, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/get_table_description', query_string=dict(key='db://cluster.schema/table') ) self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) @responses.activate def test_put_table_description_success(self) -> None: """ Test successful put_table_description request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/description' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/put_table_description', json={ 'key': 'db://cluster.schema/table', 'description': 'test', 'source': 'source' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_put_table_description_denied(self) -> None: """ Test put_table_description that should be rejected due to permissions. :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + \ '/db://cluster.schema/table/column/colA/description' responses.add(responses.GET, url, json={'description': 'This is a test'}, status=HTTPStatus.OK) with patch.dict(local_app.config, {'UNEDITABLE_SCHEMAS': set(['schema'])}): with local_app.test_client() as test: response = test.put( '/api/metadata/v0/put_table_description', json={ 'key': 'db://cluster.schema/table', 'description': 'test', 'source': 'source' } ) self.assertEqual(response.status_code, HTTPStatus.FORBIDDEN) @responses.activate def test_get_column_description_success(self) -> None: """ Test successful get_column_description request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + \ '/db://cluster.schema/table/column/colA/description' responses.add(responses.GET, url, json={'description': 'This is a test'}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/get_column_description', query_string=dict( key='db://cluster.schema/table', index='0', column_name='colA' ) ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertEqual(data.get('description'), 'This is a test') @responses.activate def test_get_column_description_propagate_failure(self) -> None: """ Test that any error codes from the get_column_description request are propagated through, to be returned to the React application :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + \ '/db://cluster.schema/table/column/colA/description' responses.add(responses.GET, url, json={'description': 'This is a test'}, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/get_column_description', query_string=dict( key='db://cluster.schema/table', index='0', column_name='colA' ) ) self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) @responses.activate def test_put_column_description_success(self) -> None: """ Test successful put_column_description request :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + \ '/db://cluster.schema/table/column/col/description' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/put_column_description', json={ 'key': 'db://cluster.schema/table', 'column_name': 'col', 'description': 'test', 'source': 'source' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_put_column_description_denied(self) -> None: """ Test put_column_description on an unwritable table. :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + \ '/db://cluster.schema/an_uneditable_table/column/col/description' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) rule = MatchRuleObject(table_name_regex=r".*uneditable_table.*") with patch.dict(local_app.config, {'UNEDITABLE_TABLE_DESCRIPTION_MATCH_RULES': [rule]}): with local_app.test_client() as test: response = test.put( '/api/metadata/v0/put_column_description', json={ 'key': 'db://cluster.schema/an_uneditable_table', 'column_name': 'col', 'description': 'test', 'source': 'source' } ) self.assertEqual(response.status_code, HTTPStatus.FORBIDDEN) @responses.activate def test_get_tags(self) -> None: """ Test successful fetch of all tags :return: """ url = local_app.config['METADATASERVICE_BASE'] + TAGS_ENDPOINT responses.add(responses.GET, url, json=self.mock_tags, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/tags') data = json.loads(response.data) self.assertCountEqual(data.get('tags'), self.expected_parsed_tags) @responses.activate def test_update_table_tags_put(self) -> None: """ Test adding a tag on a table :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/tag/tag_5' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/update_table_tags', json={ 'key': 'db://cluster.schema/table', 'tag': 'tag_5' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_update_table_tags_delete(self) -> None: """ Test deleting a tag on a table :return: """ url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/db://cluster.schema/table/tag/tag_5' responses.add(responses.DELETE, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.delete( '/api/metadata/v0/update_table_tags', json={ 'key': 'db://cluster.schema/table', 'tag': 'tag_5' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_update_dashboard_tags_put(self) -> None: """ Test adding a tag on a dashboard :return: """ url = local_app.config['METADATASERVICE_BASE'] + DASHBOARD_ENDPOINT + '/test_dashboard_uri/tag/test_tag' responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/update_dashboard_tags', json={ 'key': 'test_dashboard_uri', 'tag': 'test_tag' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_update_dashboard_tags_delete(self) -> None: """ Test deleting a tag on a dashboard :return: """ url = local_app.config['METADATASERVICE_BASE'] + DASHBOARD_ENDPOINT + '/test_dashboard_uri/tag/test_tag' responses.add(responses.DELETE, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.delete( '/api/metadata/v0/update_dashboard_tags', json={ 'key': 'test_dashboard_uri', 'tag': 'test_tag' } ) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_get_user_failure(self) -> None: """ Test get_user fails when no user_id is specified """ url = local_app.config['METADATASERVICE_BASE'] + USER_ENDPOINT + '/testuser' responses.add(responses.GET, url, json=self.mock_user, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user') self.assertEqual(response.status_code, HTTPStatus.INTERNAL_SERVER_ERROR) @responses.activate def test_get_user_success(self) -> None: """ Test get_user success """ url = local_app.config['METADATASERVICE_BASE'] + USER_ENDPOINT + '/testuser' responses.add(responses.GET, url, json=self.mock_user, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user', query_string=dict(user_id='testuser')) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertEqual(dict(data.get('user'), **self.expected_parsed_user), data.get('user')) @responses.activate def test_get_bookmark(self) -> None: """ Test get_bookmark with no user specified """ url = '{0}{1}/{2}/follow/'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, TEST_USER_ID) responses.add(responses.GET, url, json=self.get_user_resource_response, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user/bookmark') data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('bookmarks'), self.expected_parsed_user_resources) @responses.activate def test_get_bookmark_failure(self) -> None: """ Test correct response returned when get_bookmark fails """ url = f"{local_app.config['METADATASERVICE_BASE']}{USER_ENDPOINT}/{TEST_USER_ID}/follow/" responses.add(responses.GET, url, json=self.mock_user, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user/bookmark') self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) expected = { 'bookmarks': {'table': [], 'dashboard': []}, 'msg': 'Encountered error: failed to get bookmark for user_id: test_user_id', } self.assertEqual(response.json, expected) @responses.activate def test_get_bookmark_for_user(self) -> None: """ Test get_bookmark with a specified user """ specified_user = 'other_user' url = '{0}{1}/{2}/follow/'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, specified_user) responses.add(responses.GET, url, json=self.get_user_resource_response, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user/bookmark', query_string=dict(user_id=specified_user)) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('bookmarks'), self.expected_parsed_user_resources) @responses.activate def test_put_bookmark(self) -> None: """ Test update_bookmark with a PUT request """ resource_type = 'table' key = 'database://cluster.schema/table_name_1' url = '{0}{1}/{2}/follow/{3}/{4}'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, TEST_USER_ID, resource_type, key) responses.add(responses.PUT, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.put( '/api/metadata/v0/user/bookmark', json={ 'type': resource_type, 'key': key, }) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_delete_bookmark(self) -> None: """ Test update_bookmark with a DELETE request """ resource_type = 'table' key = 'database://cluster.schema/table_name_1' url = '{0}{1}/{2}/follow/{3}/{4}'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, TEST_USER_ID, resource_type, key) responses.add(responses.DELETE, url, json={}, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.delete( '/api/metadata/v0/user/bookmark', json={ 'type': resource_type, 'key': key, }) self.assertEqual(response.status_code, HTTPStatus.OK) @responses.activate def test_get_user_read(self) -> None: """ Test get_user_read API request """ test_user = 'test_user' url = '{0}{1}/{2}/read/'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, test_user) responses.add(responses.GET, url, json=self.get_user_resource_response, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user/read', query_string=dict(user_id=test_user)) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('read'), self.expected_parsed_user_resources.get('table')) @responses.activate def test_get_user_own(self) -> None: """ Test get_user_own API request """ test_user = 'test_user' url = '{0}{1}/{2}/own/'.format(local_app.config['METADATASERVICE_BASE'], USER_ENDPOINT, test_user) responses.add(responses.GET, url, json=self.get_user_resource_response, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get('/api/metadata/v0/user/own', query_string=dict(user_id=test_user)) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('own'), self.expected_parsed_user_resources) @responses.activate def test_get_dashboard_success(self) -> None: """ Test get_dashboard API success :return: """ url = local_app.config['METADATASERVICE_BASE'] + DASHBOARD_ENDPOINT + '/test_dashboard_uri' responses.add(responses.GET, url, json=self.mock_dashboard_metadata, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/dashboard', query_string=dict( uri='test_dashboard_uri', index='0', source='test_source' ) ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertCountEqual(data.get('dashboard'), self.expected_parsed_dashboard) @responses.activate def test_get_dashboard_bad_parameters(self) -> None: """ Test get_dashboard API failure with missing URI parameter :return: """ url = local_app.config['METADATASERVICE_BASE'] + DASHBOARD_ENDPOINT + '/test_dashboard_uri' responses.add(responses.GET, url, json=self.mock_dashboard_metadata, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/dashboard', query_string=dict() ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.INTERNAL_SERVER_ERROR) self.assertCountEqual(data.get('dashboard'), {}) @responses.activate def test_get_related_dashboards_success(self) -> None: """ Test get_related_dashboards API success :return: """ test_table = 'db://cluster.schema/table' url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/' + test_table + '/dashboard/' responses.add(responses.GET, url, json=self.expected_related_dashboard_response, status=HTTPStatus.OK) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/table/{0}/dashboards'.format(test_table) ) data = json.loads(response.data) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertEqual( len(data.get('dashboards')), len(self.expected_related_dashboard_response.get('dashboards')) ) @responses.activate def test_get_related_dashboards_failure(self) -> None: """ Test get_related_dashboards API failure :return: """ test_table = 'db://cluster.schema/table' url = local_app.config['METADATASERVICE_BASE'] + TABLE_ENDPOINT + '/' + test_table + '/dashboard/' responses.add(responses.GET, url, json=self.expected_related_dashboard_response, status=HTTPStatus.BAD_REQUEST) with local_app.test_client() as test: response = test.get( '/api/metadata/v0/table/{0}/dashboards'.format(test_table) ) self.assertEqual(response.status_code, HTTPStatus.BAD_REQUEST) expected = { 'dashboards': [], 'msg': 'Encountered 400 Error: Related dashboard metadata request failed', 'status_code': 400 } self.assertEqual(response.json, expected)
39.541591
120
0.51851
4a191f41cf38151b7b62732f50d39730def10538
1,641
py
Python
demos/unpaired_ct_lung/demo_predict.py
Zhiyuan-w/DeepReg
3e372d1835fdc9468c026db3767dcf9e8d4a4b0e
[ "Apache-2.0" ]
379
2020-07-18T22:00:53.000Z
2022-03-31T05:17:29.000Z
demos/unpaired_ct_lung/demo_predict.py
Zhiyuan-w/DeepReg
3e372d1835fdc9468c026db3767dcf9e8d4a4b0e
[ "Apache-2.0" ]
646
2020-07-18T08:55:48.000Z
2022-03-29T02:24:54.000Z
demos/unpaired_ct_lung/demo_predict.py
Zhiyuan-w/DeepReg
3e372d1835fdc9468c026db3767dcf9e8d4a4b0e
[ "Apache-2.0" ]
62
2020-07-26T05:00:23.000Z
2022-02-22T21:58:19.000Z
# pylint: disable=line-too-long import argparse from datetime import datetime from deepreg.predict import predict name = "unpaired_ct_lung" # parser is used to simplify testing, by default it is not used # please run the script with --full flag to ensure non-testing mode # for instance: # python script.py --full parser = argparse.ArgumentParser() parser.add_argument( "--test", help="Execute the script with reduced image size for test purpose.", dest="test", action="store_true", ) parser.add_argument( "--full", help="Execute the script with full configuration.", dest="test", action="store_false", ) parser.set_defaults(test=False) args = parser.parse_args() print( "\n\n\n\n\n" "=========================================================\n" "The prediction can also be launched using the following command.\n" "deepreg_predict --gpu '' " f"--config_path demos/{name}/{name}.yaml " f"--ckpt_path demos/{name}/dataset/pretrained/ckpt-5000 " f"--log_dir demos/{name} " "--exp_name logs_predict " "--save_png --split test\n" "=========================================================\n" "\n\n\n\n\n" ) log_dir = f"demos/{name}" exp_name = "logs_predict/" + datetime.now().strftime("%Y%m%d-%H%M%S") ckpt_path = f"{log_dir}/dataset/pretrained/ckpt-5000" config_path = [f"{log_dir}/{name}.yaml"] if args.test: config_path.append("config/test/demo_unpaired_grouped.yaml") predict( gpu="0", gpu_allow_growth=True, ckpt_path=ckpt_path, split="test", batch_size=1, log_dir=log_dir, exp_name=exp_name, config_path=config_path, )
26.901639
72
0.63376
4a191fdc9709f1f24a5cae7828375ed3683ce21b
2,903
py
Python
src/cfnlint/rules/resources/route53/RecordSetName.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,134
2019-03-02T14:58:34.000Z
2021-05-15T00:57:16.000Z
src/cfnlint/rules/resources/route53/RecordSetName.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,122
2019-03-03T04:27:15.000Z
2021-05-14T20:51:16.000Z
src/cfnlint/rules/resources/route53/RecordSetName.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
297
2019-03-11T09:56:57.000Z
2021-05-14T16:41:19.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ import six from cfnlint.rules import CloudFormationLintRule from cfnlint.rules import RuleMatch class RecordSetName(CloudFormationLintRule): """Check if a Route53 Resoruce Records Name is valid with a HostedZoneName""" id = 'E3041' shortdesc = 'RecordSet HostedZoneName is a superdomain of Name' description = 'In a RecordSet, the HostedZoneName must be a superdomain of the Name being validated' source_url = 'https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-recordset.html#cfn-route53-recordset-name' tags = ['resource', 'properties', 'route53'] def __init__(self): """ Init """ super(RecordSetName, self).__init__() self.resource_property_types = ['AWS::Route53::RecordSet'] def match_resource_properties(self, properties, _, path, cfn): matches = [] property_sets = cfn.get_object_without_conditions(properties, ['Name', 'HostedZoneName']) for property_set in property_sets: props = property_set.get('Object') scenario = property_set.get('Scenario') name = props.get('Name', None) hz_name = props.get('HostedZoneName', None) if isinstance(name, six.string_types) and isinstance(hz_name, six.string_types): if hz_name[-1] != '.': message = 'HostedZoneName must end in a dot at {}' if scenario is None: matches.append( RuleMatch(path[:] + ['HostedZoneName'], message.format('/'.join(map(str, path))))) else: scenario_text = ' and '.join( ['when condition "%s" is %s' % (k, v) for (k, v) in scenario.items()]) matches.append( RuleMatch(path[:] + ['HostedZoneName'], message.format('/'.join(map(str, path)) + ' ' + scenario_text))) if hz_name[-1] == '.': hz_name = hz_name[:-1] if name[-1] == '.': name = name[:-1] if hz_name not in [name, name[-len(hz_name):]]: message = 'Name must be a superdomain of HostedZoneName at {}' if scenario is None: matches.append( RuleMatch(path[:] + ['Name'], message.format('/'.join(map(str, path))))) else: scenario_text = ' and '.join( ['when condition "%s" is %s' % (k, v) for (k, v) in scenario.items()]) matches.append( RuleMatch(path[:] + ['Name'], message.format('/'.join(map(str, path)) + ' ' + scenario_text))) return matches
48.383333
146
0.548398
4a19212d27217f167b2ec7d67bc4081e6dcaae31
7,064
py
Python
samples/python/topology/spl/vwap_event_time/vwap_event_time.py
markheger/streamsx.topology
8118513146399fa6a9490a1debd8037615d7acd1
[ "Apache-2.0" ]
31
2015-06-24T06:21:14.000Z
2020-08-28T21:45:50.000Z
samples/python/topology/spl/vwap_event_time/vwap_event_time.py
markheger/streamsx.topology
8118513146399fa6a9490a1debd8037615d7acd1
[ "Apache-2.0" ]
1,203
2015-06-15T02:11:49.000Z
2021-03-22T09:47:54.000Z
samples/python/topology/spl/vwap_event_time/vwap_event_time.py
markheger/streamsx.topology
8118513146399fa6a9490a1debd8037615d7acd1
[ "Apache-2.0" ]
53
2015-05-28T21:14:16.000Z
2021-12-23T12:58:59.000Z
# Licensed Materials - Property of IBM # Copyright IBM Corp. 2020 import os import streamsx.topology.context as context from streamsx.topology.topology import Topology from streamsx.topology.context import submit, ContextTypes,ConfigParams from streamsx.topology.schema import StreamSchema import streamsx.spl.op as op import streamsx.spl.types import streamsx.standard.files as files from streamsx.standard import Compression, Format import streamsx.standard.relational as R script_dir = os.path.dirname(os.path.realpath(__file__)) def data_source(topo, schema): input_file = 'TradesAndQuotes.csv.gz' sample_file = os.path.join(script_dir, input_file) topo.add_file_dependency(sample_file, 'etc') # add sample file to etc dir in bundle fn = os.path.join('etc', input_file) # file name relative to application dir s = topo.source(files.CSVReader(schema=schema, file=fn, compression=Compression.gzip.name)) # add event-time TQRecTWithEvTime = StreamSchema(schema).extend(StreamSchema('tuple<timestamp evTime>')) fo = R.Functor.map(s, TQRecTWithEvTime) fo.evTime = fo.output(fo.outputs[0], op.Expression.expression('timeStringToTimestamp(date, time, false)')) ev_stream = fo.outputs[0] ev_stream = ev_stream.set_event_time('evTime') return ev_stream def data_sink(stream): fsink_config = { 'format': Format.txt.name } fsink = files.FileSink(file=streamsx.spl.op.Expression.expression('"'+script_dir+'/out.txt"'), **fsink_config) stream.for_each(fsink) def main(): """ This demonstrates the invocation of SPL operators from the SPL standard toolkit using streamsx.standard package. Computes the volume-weighted average price (VWAP) for a stream of stock transactions. Given trades and quotes, this application produces a bargain index for a given list of stocks. The WVAP is calculated over event-time intervals of 10 seconds and is calculated every second. The average is not recalculated if late trades are received (tuples are ignored). The bargain index identifies possible trade opportunities, which occur when the volume-weighted average price for trades executed within the last 10 seconds exceeds the current ask price. This algorithm may be used to identify opportunities to pick up well priced shares in the stream of current transaction data. Given an input file containing trades and quotes, this application produces an output file called `out.txt` in the script's directory. The output file lists the VWAP and bargain index. The bargain index identifies the magnitude of the bargain, where a greater values implies a better bargain. A value of 0 indicates that the VWAP is not greater than the asking price, and is therefore not a bargain. A few records from the output file are show below: {ticker="BK",vwap=32.51,askprice=32.51,asksize=50,date="27-DEC-2005",time="14:30:17.098",index=0} {ticker="BK",vwap=32.51,askprice=32.51,asksize=48,date="27-DEC-2005",time="14:30:17.100",index=0} {ticker="IBM",vwap=83.47991935483871,askprice=83.46,asksize=10,date="27-DEC-2005",time="14:30:17.238",index=10.20119069042564} {ticker="IBM",vwap=83.47991935483871,askprice=83.46,asksize=10,date="27-DEC-2005",time="14:30:17.238",index=10.20119069042564} Each record shows the content of the tuples received on the `bargain_index_stream` stream as a set of tuple attributes. The attributes are formatted as a key-value pair. The `vwap` and `index` attributes contains the value-weighted average price and bargain index, respectively. Example:: python3 vwap_event_time.py Output: Bargain Index reports in file "out.txt" """ topo = Topology(name='VwapEventTime') # schema definitions TQRecT = 'tuple<rstring ticker,rstring date, rstring time, int32 gmtOffset, rstring ttype, rstring exCntrbID, decimal64 price, decimal64 volume, decimal64 vwap, rstring buyerID, decimal64 bidprice, decimal64 bidsize, int32 numbuyers, rstring sellerID, decimal64 askprice, decimal64 asksize, int32 numsellers, rstring qualifiers, int32 seqno, rstring exchtime, decimal64 blockTrd, decimal64 floorTrd, decimal64 PEratio, decimal64 yield, decimal64 newprice, decimal64 newvol, int32 newseqno, decimal64 bidimpvol, decimal64 askimpcol, decimal64 impvol>' TradeInfoT = 'tuple<decimal64 price, decimal64 volume, rstring date, rstring time, timestamp evTime, rstring ticker>' QuoteInfoT = 'tuple<decimal64 bidprice, decimal64 askprice, decimal64 asksize, rstring date, rstring time, timestamp evTime, rstring ticker>' VwapT = 'tuple<rstring ticker, decimal64 minprice, decimal64 maxprice, decimal64 avgprice, decimal64 vwap, timestamp start, timestamp end>' BargainIndexT = 'tuple<rstring ticker, decimal64 vwap, decimal64 askprice, decimal64 asksize, rstring date, rstring time, decimal64 index>' trade_quote_eventtime_stream = data_source(topo, TQRecT) # split quotes and trades fq = R.Functor.map(trade_quote_eventtime_stream, StreamSchema(QuoteInfoT), filter='ttype=="Quote" && (ticker in {"BK", "IBM", "ANR"})', name='QuoteFilter') quotes_stream = fq.outputs[0] ft = R.Functor.map(trade_quote_eventtime_stream, StreamSchema(TradeInfoT), filter='ttype=="Trade" && (ticker in {"BK", "IBM", "ANR"})', name='TradeFilter') trades_stream = ft.outputs[0] # Aggregation over event-time intervals of 10 seconds, calculated every second w = trades_stream.time_interval(interval_duration=10.0, creation_period=1.0).partition('ticker') aggregate_schema = StreamSchema(VwapT).extend(StreamSchema('tuple<decimal64 sumvolume>')) a = R.Aggregate.invoke(w, aggregate_schema, name='PreVwap') a.vwap = a.sum('price * volume') a.minprice = a.min('price') a.maxprice = a.max('price') a.avgprice = a.average('price') a.sumvolume = a.sum('volume') a.start = a.interval_start() a.end = a.interval_end() pre_vwap_stream = a.stream f_vwap = R.Functor.map(pre_vwap_stream, StreamSchema(VwapT), name='Vwap') f_vwap.vwap = f_vwap.output(f_vwap.outputs[0], 'vwap / sumvolume') vwap_stream = f_vwap.outputs[0] # Join quotes with an event-time up to one second greater than the VWAP time */ win_vwap = vwap_stream.last(size=100).partition('ticker') j = R.Join.lookup( reference=win_vwap, reference_key='ticker', lookup=quotes_stream, lookup_key='ticker', schema=BargainIndexT, match='(Vwap.end <= QuoteFilter.evTime) && (QuoteFilter.evTime < add(Vwap.end, (float64)1.0))', name='BargainIndex') j.index = j.output(j.outputs[0], 'vwap > askprice ? asksize * exp(vwap - askprice) : 0d') bargain_index_stream = j.outputs[0] # Write data in output file data_sink(bargain_index_stream) # Now execute the topology by submitting to a standalone context. submit(ContextTypes.STANDALONE, topo) if __name__ == '__main__': main()
50.820144
554
0.73004
4a1921bf3126c915d5a112c662820c243c066207
10,190
py
Python
tests/ci/metrics_lambda/app.py
mrk-andreev/ClickHouse
a36f05d6b892aa714c02661c87e2c28f2239020d
[ "Apache-2.0" ]
8,629
2016-06-14T21:03:01.000Z
2019-09-23T07:46:38.000Z
tests/ci/metrics_lambda/app.py
mrk-andreev/ClickHouse
a36f05d6b892aa714c02661c87e2c28f2239020d
[ "Apache-2.0" ]
4,335
2016-06-15T12:58:31.000Z
2019-09-23T11:18:43.000Z
tests/ci/metrics_lambda/app.py
mrk-andreev/ClickHouse
a36f05d6b892aa714c02661c87e2c28f2239020d
[ "Apache-2.0" ]
1,700
2016-06-15T09:25:11.000Z
2019-09-23T11:16:38.000Z
#!/usr/bin/env python3 import argparse import sys import json import time from collections import namedtuple import jwt import requests import boto3 from botocore.exceptions import ClientError def get_dead_runners_in_ec2(runners): ids = { runner.name: runner for runner in runners # Only `i-deadbead123` are valid names for an instance ID if runner.offline and not runner.busy and runner.name.startswith("i-") } result_to_delete = [ runner for runner in runners if not ids.get(runner.name) and runner.offline and not runner.busy ] if not ids: return [] client = boto3.client("ec2") i = 0 inc = 100 print("Checking ids", ids.keys()) instances_statuses = [] while i < len(ids.keys()): try: instances_statuses.append( client.describe_instance_status( InstanceIds=list(ids.keys())[i : i + inc] ) ) i += inc except ClientError as e: # The list of non-existent instances is in the message: # The instance IDs 'i-069b1c256c06cf4e3, i-0f26430432b044035, # i-0faa2ff44edbc147e, i-0eccf2514585045ec, i-0ee4ee53e0daa7d4a, # i-07928f15acd473bad, i-0eaddda81298f9a85' do not exist message = e.response["Error"]["Message"] if message.startswith("The instance IDs '") and message.endswith( "' do not exist" ): non_existent = message[18:-14].split(", ") for n in non_existent: result_to_delete.append(ids.pop(n)) else: raise found_instances = set([]) print("Response", instances_statuses) for instances_status in instances_statuses: for instance_status in instances_status["InstanceStatuses"]: if instance_status["InstanceState"]["Name"] in ("pending", "running"): found_instances.add(instance_status["InstanceId"]) print("Found instances", found_instances) for runner in result_to_delete: print("Instance", runner.name, "is not alive, going to remove it") for instance_id, runner in ids.items(): if instance_id not in found_instances: print("Instance", instance_id, "is not alive, going to remove it") result_to_delete.append(runner) return result_to_delete def get_key_and_app_from_aws(): import boto3 secret_name = "clickhouse_github_secret_key" session = boto3.session.Session() client = session.client( service_name="secretsmanager", ) get_secret_value_response = client.get_secret_value(SecretId=secret_name) data = json.loads(get_secret_value_response["SecretString"]) return data["clickhouse-app-key"], int(data["clickhouse-app-id"]) def handler(event, context): private_key, app_id = get_key_and_app_from_aws() main(private_key, app_id, True, True) def get_installation_id(jwt_token): headers = { "Authorization": f"Bearer {jwt_token}", "Accept": "application/vnd.github.v3+json", } response = requests.get("https://api.github.com/app/installations", headers=headers) response.raise_for_status() data = response.json() for installation in data: if installation["account"]["login"] == "ClickHouse": installation_id = installation["id"] return installation_id def get_access_token(jwt_token, installation_id): headers = { "Authorization": f"Bearer {jwt_token}", "Accept": "application/vnd.github.v3+json", } response = requests.post( f"https://api.github.com/app/installations/{installation_id}/access_tokens", headers=headers, ) response.raise_for_status() data = response.json() return data["token"] RunnerDescription = namedtuple( "RunnerDescription", ["id", "name", "tags", "offline", "busy"] ) def list_runners(access_token): headers = { "Authorization": f"token {access_token}", "Accept": "application/vnd.github.v3+json", } response = requests.get( "https://api.github.com/orgs/ClickHouse/actions/runners?per_page=100", headers=headers, ) response.raise_for_status() data = response.json() total_runners = data["total_count"] runners = data["runners"] total_pages = int(total_runners / 100 + 1) print("Total pages", total_pages) for i in range(2, total_pages + 1): response = requests.get( "https://api.github.com/orgs/ClickHouse/actions/runners" f"?page={i}&per_page=100", headers=headers, ) response.raise_for_status() data = response.json() runners += data["runners"] print("Total runners", len(runners)) result = [] for runner in runners: tags = [tag["name"] for tag in runner["labels"]] desc = RunnerDescription( id=runner["id"], name=runner["name"], tags=tags, offline=runner["status"] == "offline", busy=runner["busy"], ) result.append(desc) return result def group_runners_by_tag(listed_runners): result = {} RUNNER_TYPE_LABELS = [ "builder", "func-tester", "func-tester-aarch64", "fuzzer-unit-tester", "stress-tester", "style-checker", "style-checker-aarch64", ] for runner in listed_runners: for tag in runner.tags: if tag in RUNNER_TYPE_LABELS: if tag not in result: result[tag] = [] result[tag].append(runner) break else: if "unlabeled" not in result: result["unlabeled"] = [] result["unlabeled"].append(runner) return result def push_metrics_to_cloudwatch(listed_runners, namespace): client = boto3.client("cloudwatch") metrics_data = [] busy_runners = sum( 1 for runner in listed_runners if runner.busy and not runner.offline ) metrics_data.append( { "MetricName": "BusyRunners", "Value": busy_runners, "Unit": "Count", } ) total_active_runners = sum(1 for runner in listed_runners if not runner.offline) metrics_data.append( { "MetricName": "ActiveRunners", "Value": total_active_runners, "Unit": "Count", } ) total_runners = len(listed_runners) metrics_data.append( { "MetricName": "TotalRunners", "Value": total_runners, "Unit": "Count", } ) if total_active_runners == 0: busy_ratio = 100 else: busy_ratio = busy_runners / total_active_runners * 100 metrics_data.append( { "MetricName": "BusyRunnersRatio", "Value": busy_ratio, "Unit": "Percent", } ) client.put_metric_data(Namespace=namespace, MetricData=metrics_data) def delete_runner(access_token, runner): headers = { "Authorization": f"token {access_token}", "Accept": "application/vnd.github.v3+json", } response = requests.delete( f"https://api.github.com/orgs/ClickHouse/actions/runners/{runner.id}", headers=headers, ) response.raise_for_status() print(f"Response code deleting {runner.name} is {response.status_code}") return response.status_code == 204 def main(github_secret_key, github_app_id, push_to_cloudwatch, delete_offline_runners): payload = { "iat": int(time.time()) - 60, "exp": int(time.time()) + (10 * 60), "iss": github_app_id, } encoded_jwt = jwt.encode(payload, github_secret_key, algorithm="RS256") installation_id = get_installation_id(encoded_jwt) access_token = get_access_token(encoded_jwt, installation_id) runners = list_runners(access_token) grouped_runners = group_runners_by_tag(runners) for group, group_runners in grouped_runners.items(): if push_to_cloudwatch: print(group) push_metrics_to_cloudwatch(group_runners, "RunnersMetrics/" + group) else: print(group, f"({len(group_runners)})") for runner in group_runners: print("\t", runner) if delete_offline_runners: print("Going to delete offline runners") dead_runners = get_dead_runners_in_ec2(runners) for runner in dead_runners: print("Deleting runner", runner) delete_runner(access_token, runner) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get list of runners and their states") parser.add_argument( "-p", "--private-key-path", help="Path to file with private key" ) parser.add_argument("-k", "--private-key", help="Private key") parser.add_argument( "-a", "--app-id", type=int, help="GitHub application ID", required=True ) parser.add_argument( "--push-to-cloudwatch", action="store_true", help="Push metrics for active and busy runners to cloudwatch", ) parser.add_argument( "--delete-offline", action="store_true", help="Remove offline runners" ) args = parser.parse_args() if not args.private_key_path and not args.private_key: print( "Either --private-key-path or --private-key must be specified", file=sys.stderr, ) if args.private_key_path and args.private_key: print( "Either --private-key-path or --private-key must be specified", file=sys.stderr, ) if args.private_key: private_key = args.private_key elif args.private_key_path: with open(args.private_key_path, "r") as key_file: private_key = key_file.read() else: print("Attempt to get key and id from AWS secret manager") private_key, args.app_id = get_key_and_app_from_aws() main(private_key, args.app_id, args.push_to_cloudwatch, args.delete_offline)
31.16208
88
0.616683
4a1922b0b5a2a075f6099e9cff40b3e7708bef07
2,275
py
Python
models/public/higher-hrnet-w32-human-pose-estimation/model.py
TolyaTalamanov/open_model_zoo
1697e60712df4ca72635a2080a197b9d3bc24129
[ "Apache-2.0" ]
2,201
2018-10-15T14:37:19.000Z
2020-07-16T02:05:51.000Z
models/public/higher-hrnet-w32-human-pose-estimation/model.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
759
2018-10-18T07:43:55.000Z
2020-07-16T01:23:12.000Z
models/public/higher-hrnet-w32-human-pose-estimation/model.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
808
2018-10-16T14:03:49.000Z
2020-07-15T11:41:45.000Z
# Copyright (c) 2022 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from config import cfg import models class HpeHRNet(torch.nn.Module): def __init__(self, cfg, weights): super().__init__() self.impl = models.pose_higher_hrnet.PoseHigherResolutionNet(cfg) checkpoint = torch.load(weights, map_location='cpu') self.impl.load_state_dict(checkpoint) self.impl.eval() # pooling operation to get nms_heatmaps from heatmaps out of model self.pool = torch.nn.MaxPool2d(kernel_size=5, stride=1, padding=2) # ReLU operation to avoid negative values at heatmap self.relu = torch.nn.ReLU() def forward(self, image): outputs = self.impl(image) # output[0] - heatmaps_lr_and_embeddings out with size [1, 34, h/4, w/4] # output[1] - heatmaps out with size [1, 17, h/2, h/2] # resize low-resolution heatmaps and embeddings (outputs[0]) to heatmaps shape (output[1]) outputs[0] = torch.nn.functional.interpolate( outputs[0], size=(outputs[-1].size(2), outputs[-1].size(3)), mode='bilinear', align_corners=False ) # average of heatmaps and apply relu outputs[1] = (outputs[0][:, :17, :, :] + outputs[1]) / 2 outputs[1] = self.relu(outputs[1]) outputs[0] = outputs[0][:, 17:, :, :] # apply nms for heatmaps pooled = self.pool(outputs[1]) mask = torch.eq(pooled, outputs[1]).float() mask = mask * 2 - 1 outputs[1] *= mask return outputs def get_net(file_config, weights): cfg.defrost() cfg.merge_from_file(file_config) model = HpeHRNet(cfg, weights) return model
37.295082
98
0.643956
4a19242558da7d4b554e5d79860b427096f1b398
1,283
py
Python
matrix_multiplication_complex/matrix_small_d.py
parthrao/PySpark-Projects-MachineLearning
0cbcee5cd1c7a1eb4299b14386e25d4adff4dd72
[ "Unlicense" ]
null
null
null
matrix_multiplication_complex/matrix_small_d.py
parthrao/PySpark-Projects-MachineLearning
0cbcee5cd1c7a1eb4299b14386e25d4adff4dd72
[ "Unlicense" ]
null
null
null
matrix_multiplication_complex/matrix_small_d.py
parthrao/PySpark-Projects-MachineLearning
0cbcee5cd1c7a1eb4299b14386e25d4adff4dd72
[ "Unlicense" ]
null
null
null
from __future__ import print_function from pyspark import SparkContext import sys def mapper(w): arr = w.split(" ") return (arr[0], int(broadcastVectorSmall.value[int(arr[1])-1].split(" ")[1]) * int(arr[2])) if __name__ == "__main__": if len(sys.argv) != 5: print("Usage: matrix_small_c.py vectorfile matrixfile outputfile numberofpartition", file=sys.stderr) exit(-1) sc = SparkContext(appName="MyTestJob") matrix_vector_small= [] for x in range(int(sys.argv[4])): matrix_small = sc.textFile(sys.argv[2] + "/matrix_small"+str(x)+".txt") vector_small = sc.textFile(sys.argv[1]+"/vector_small"+str(x)+".txt") vector = sc.broadcast(sorted(vector_small.collect(),key=lambda val: int(val.split( )[0]))) # vector = [1,1] rddval = matrix_small.map(lambda w: (w.split(" ")[0],int(vector.value[int(w.split(" ")[1])-1].split(" ")[1]) * int(w.split(" ")[2]))).reduceByKey(lambda x,y: int(x)+int(y)) matrix_vector_small.append(rddval) final_rdd = matrix_vector_small[0] for x in range (int(sys.argv[4]) - 1): final_rdd = final_rdd.union( matrix_vector_small[x+1]) final = final_rdd.reduceByKey(lambda x,y: int(x) + int(y)) final.saveAsTextFile(sys.argv[3]) sc.stop()
41.387097
180
0.638348
4a192548320066966389eb1edefc4c7d50946b71
39,902
py
Python
jax/interpreters/xla.py
vballoli/jax
bbf7a432e86053024419ec8adb90aae3d06afb18
[ "ECL-2.0", "Apache-2.0" ]
2
2020-04-11T19:27:34.000Z
2020-07-26T00:31:53.000Z
jax/interpreters/xla.py
lhz1029/jax
a3cc9a7d327f46292d1edc5fcd2d0d771adc2bb9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/interpreters/xla.py
lhz1029/jax
a3cc9a7d327f46292d1edc5fcd2d0d771adc2bb9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import itertools as it import operator as op from typing import Any, Callable, Dict, Sequence, Type from absl import logging import numpy as onp from ..config import flags, bool_env from .. import core from .. import ad_util from .. import dtypes from .. import lazy from .. import linear_util as lu from ..abstract_arrays import (ConcreteArray, ShapedArray, AbstractToken, make_shaped_array, array_types, raise_to_shaped, abstract_token) from ..core import Literal, pp_eqn_compact from ..pprint_util import pp from ..util import (partial, partialmethod, cache, safe_map, prod, unzip2, memoize, extend_name_stack, wrap_name) from ..lib import xla_bridge as xb from ..lib import xla_client as xc from . import partial_eval as pe from . import ad from . import masking from typing import Callable FLAGS = flags.FLAGS flags.DEFINE_bool('jax_debug_nans', bool_env('JAX_DEBUG_NANS', False), 'Add nan checks to every operation.') flags.DEFINE_bool('jax_log_compiles', bool_env('JAX_LOG_COMPILES', False), 'Print a message each time a `jit` computation is compiled.') def _map(f, *xs): return tuple(map(f, *xs)) def identity(x): return x # unit representation def _make_unit(c): return c.Constant(onp.zeros((), dtype=onp.dtype('bool'))) def _make_abstract_unit(_): return xc.Shape.array_shape(onp.dtype('bool'), ()) def _device_put_unit(_, device): return xc.Buffer.from_pyval(onp.zeros((), dtype=onp.dtype('bool')), device, backend=xb.get_device_backend(device)) def _make_array_shape(a): return xc.Shape.array_shape(a.dtype, a.shape) ### handlers xb.register_constant_handler(core.Unit, lambda c, *_: _make_unit(c)) def aval_to_xla_shape(aval): try: return xla_shape_handlers[type(aval)](aval) except KeyError as err: raise TypeError("No xla_shape_handler for type: {}".format(type(aval)) ) from err xla_shape_handlers: Dict[Type[core.AbstractValue], Callable] = {} xla_shape_handlers[core.AbstractUnit] = _make_abstract_unit xla_shape_handlers[ShapedArray] = _make_array_shape xla_shape_handlers[ConcreteArray] = _make_array_shape def aval_to_result_handler(device, aval): try: return xla_result_handlers[type(aval)](device, aval) except KeyError as err: raise TypeError("No xla_result_handler for type: {}".format(type(aval)) ) from err xla_result_handlers: Dict[Type[core.AbstractValue], Callable[..., Callable]] = {} xla_result_handlers[core.AbstractUnit] = lambda _, __: lambda _: core.unit def array_result_handler(device, aval): return partial(DeviceArray, raise_to_shaped(aval), device, lazy.array(aval.shape)) xla_result_handlers[ShapedArray] = array_result_handler xla_result_handlers[ConcreteArray] = array_result_handler def device_put(x, device=None): x = canonicalize_dtype(x) try: return device_put_handlers[type(x)](x, device) except KeyError as err: raise TypeError("No device_put handler for type: {}".format(type(x)) ) from err device_put_handlers: Dict[Any, Callable] = {} device_put_handlers[core.Unit] = _device_put_unit def _device_put_array(x, device): return xc.Buffer.from_pyval(x, device, backend=xb.get_device_backend(device)) for _t in array_types: device_put_handlers[_t] = _device_put_array def _device_put_scalar(x, device): return xc.Buffer.from_pyval(dtypes.coerce_to_array(x), device, backend=xb.get_device_backend(device)) for _t in dtypes.python_scalar_dtypes.keys(): device_put_handlers[_t] = _device_put_array # TODO(mattjj): try to remove this canonicalize_dtype stuff def canonicalize_dtype(x): typ = type(x) handler = canonicalize_dtype_handlers.get(typ) if handler: return handler(x) for typ in typ.mro(): handler = canonicalize_dtype_handlers.get(typ) if handler: return handler(x) raise TypeError("No canonicalize_dtype handler for type: {}".format(type(x))) canonicalize_dtype_handlers: Dict[Any, Callable] = {} canonicalize_dtype_handlers[core.Unit] = identity def _canonicalize_ndarray_dtype(x): return onp.asarray(x, dtypes.canonicalize_dtype(dtypes.result_type(x))) for _t in array_types: canonicalize_dtype_handlers[_t] = _canonicalize_ndarray_dtype def _canonicalize_python_scalar_dtype(typ, x): return onp.asarray( x, dtypes.canonicalize_dtype(dtypes.python_scalar_dtypes[typ])) for _t in dtypes.python_scalar_dtypes.keys(): canonicalize_dtype_handlers[_t] = partial(_canonicalize_python_scalar_dtype, _t) def abstractify(x) -> core.AbstractValue: typ = type(x) aval_fn = pytype_aval_mappings.get(typ) if aval_fn: return aval_fn(x) for typ in typ.mro(): aval_fn = pytype_aval_mappings.get(typ) if aval_fn: return aval_fn(x) raise TypeError("No abstraction handler for type: {}".format(type(x))) pytype_aval_mappings: Dict[Any, Callable[[Any], core.AbstractValue]] = {} pytype_aval_mappings[core.Unit] = lambda _: core.abstract_unit for _t in array_types: pytype_aval_mappings[_t] = make_shaped_array def _make_abstract_python_scalar(typ, _): return ShapedArray((), dtypes.python_scalar_dtypes[typ], weak_type=True) for _t in dtypes.python_scalar_dtypes.keys(): pytype_aval_mappings[_t] = partial(_make_abstract_python_scalar, _t) ### op-by-op execution def arg_spec(x): aval = abstractify(x) try: return aval, x._device except: return aval, None def apply_primitive(prim, *args, **params): """Impl rule that compiles and runs a single primitive 'prim' using XLA.""" compiled_fun = xla_primitive_callable(prim, *map(arg_spec, args), **params) return compiled_fun(*args) @cache() def xla_primitive_callable(prim, *arg_specs, **params): avals, arg_devices = unzip2(arg_specs) device = _device_from_arg_devices(arg_devices) backend = xb.get_device_backend(device) aval_out = prim.abstract_eval(*avals, **params) if not prim.multiple_results: handle_result = aval_to_result_handler(device, aval_out) else: handlers = tuple(map(partial(aval_to_result_handler, device), aval_out)) handle_result = lambda xs: tuple(h(x) for h, x in zip(handlers, xs)) tuple_args = len(avals) > 100 if prim in initial_style_translations: nreps = initial_style_primitive_replicas(params) else: nreps = 1 if nreps > xb.device_count(backend): msg = ("compiling a primitive computation `{}` that requires {} replicas, " "but only {} XLA devices are available on backend {}.") raise ValueError(msg.format(prim, nreps, xb.device_count(backend), backend.platform)) built_c = primitive_computation(prim, AxisEnv(nreps), backend, tuple_args, *avals, **params) options = xb.get_compile_options( num_replicas=nreps, num_partitions=1, device_assignment=device and (device.id,)) options.tuple_arguments = tuple_args compiled = built_c.Compile(compile_options=options, backend=backend) if nreps == 1: return partial(_execute_compiled_primitive, prim, compiled, backend, handle_result) else: return partial(_execute_replicated_primitive, prim, compiled, backend, handle_result) def _device_from_arg_devices(devices): """Given devices of inputs, determine where to perform a computation. Args: devices: list where each element is a either a `Device` instance or `None`. Returns: A `Device` instance or None. Raises: ValueError if input devices are inconsistent. """ try: device, = set(d for d in devices if d is not None) or (None,) return device except ValueError as err: msg = "primitive arguments must be colocated on the same device, got {}" raise ValueError(msg.format(", ".join(map(str, devices)))) from err @cache() def primitive_computation(prim, axis_env, backend, tuple_args, *avals, **params): c = xb.make_computation_builder("primitive_computation_{}".format(prim.name)) c.SetOpMetadata(xc.OpMetadata( op_type=prim.name, op_name=str(pp_eqn_compact(prim.name, params)))) platform = xb.get_backend(backend).platform xla_args = _xla_callable_args(c, avals, tuple_args) # return val always set as a side-effect on c if prim in backend_specific_translations[platform]: rule = backend_specific_translations[platform][prim] rule(c, *xla_args, **params) elif prim in translations: rule = translations[prim] rule(c, *xla_args, **params) elif prim in initial_style_translations: rule = initial_style_translations[prim] rule(c, axis_env, extend_name_stack(prim.name), avals, backend, *xla_args, **params) else: raise NotImplementedError("XLA translation rule for {} not found".format(prim)) c.ClearOpMetadata() try: return c.Build() except RuntimeError as e: msg = (" ".join(map(str, e.args)) + "\n" "This is a bug in JAX's shape-checking rules; please report it!\n" "https://github.com/google/jax/issues\n") raise RuntimeError(msg) from e def primitive_subcomputation(prim, *avals, **params): return primitive_computation(prim, AxisEnv(1), None, False, *avals, **params) def _execute_compiled_primitive(prim, compiled, backend, result_handler, *args): device, = compiled.local_devices() input_bufs = [device_put(x, device) for x in args if x is not token] out_bufs = compiled.Execute(input_bufs) if FLAGS.jax_debug_nans: check_nans(prim, out_bufs) return result_handler(out_bufs if prim.multiple_results else out_bufs[0]) def _execute_replicated_primitive(prim, compiled, backend, result_handler, *args): input_bufs = [ [device_put(x, device) for x in args if x is not token] for device in compiled.local_devices()] out_buf = compiled.ExecuteOnLocalDevices(input_bufs)[0] if not prim.multiple_results: out_buf, = out_buf return result_handler(out_buf) def check_nans(prim, bufs): for buf in bufs: _check_nans(prim.name, buf.shape(), buf) def _check_nans(name, xla_shape, buf): assert not xla_shape.is_tuple() if dtypes.issubdtype(xla_shape.element_type(), onp.inexact): if onp.any(onp.isnan(buf.to_py())): msg = "invalid value (nan) encountered in {}" raise FloatingPointError(msg.format(name)) ### compiling jaxprs def prefetch(x): if isinstance(x, DeviceArray): x.copy_to_host_async() return x def jaxpr_literals(jaxpr): """Generates all the literals inside a jaxpr, including nested subjaxprs.""" for eqn in jaxpr.eqns: for v in eqn.invars: if type(v) is core.Literal: yield v.val for subjaxpr in core.subjaxprs(jaxpr): yield from jaxpr_literals(subjaxpr) def jaxpr_subcomp(c, jaxpr, backend, axis_env, consts, name_stack, *args): platform = xb.get_backend(backend).platform def read(v): if type(v) is Literal: return c.Constant(canonicalize_dtype(v.val)) else: return env[v] def aval(v): if type(v) is Literal: return abstractify(v.val) else: return v.aval def write(v, node): assert node is not None env[v] = node env = {} write(core.unitvar, _make_unit(c)) _map(write, jaxpr.constvars, consts) _map(write, jaxpr.invars, args) for eqn in jaxpr.eqns: c.SetOpMetadata(xc.OpMetadata( op_type=eqn.primitive.name, op_name=str(pp(name_stack) >> pp_eqn_compact( eqn.primitive.name, eqn.params)))) in_nodes = list(map(read, eqn.invars)) if eqn.primitive in backend_specific_translations[platform]: rule = backend_specific_translations[platform][eqn.primitive] ans = rule(c, *in_nodes, **eqn.params) elif eqn.primitive in translations: ans = translations[eqn.primitive](c, *in_nodes, **eqn.params) elif eqn.primitive in initial_style_translations: new_params = check_backend_params(eqn.params, backend) rule = initial_style_translations[eqn.primitive] ans = rule(c, axis_env, extend_name_stack(name_stack, eqn.primitive.name), map(aval, eqn.invars), backend, *in_nodes, **new_params) elif eqn.primitive in parallel_translations: replica_groups = axis_groups(axis_env, eqn.params['axis_name']) new_params = {k: v for k, v in eqn.params.items() if k != 'axis_name'} rule = parallel_translations[eqn.primitive] ans = rule(c, *in_nodes, replica_groups=replica_groups, platform=platform, **new_params) elif eqn.primitive in call_translations: new_params = check_backend_params(eqn.params, backend) rule = call_translations[eqn.primitive] ans = rule(c, axis_env, in_nodes, name_stack, backend=backend, **new_params) else: msg = "XLA translation rule for primitive '{}' not found" raise NotImplementedError(msg.format(eqn.primitive.name)) c.GetShape(ans) # force xla to do shape error checking out_nodes = xla_destructure(c, ans) if eqn.primitive.multiple_results else [ans] c.ClearOpMetadata() _map(write, eqn.outvars, out_nodes) return _map(read, jaxpr.outvars) def xla_destructure(c, ans): num_elements = len(c.GetShape(ans).tuple_shapes()) return [c.GetTupleElement(ans, i) for i in range(num_elements)] def check_backend_params(params, outer_backend): # For nested calls, the outermost call sets the backend for all inner calls; # it's an error if the inner call has a conflicting explicit backend spec. inner_backend = params.get('backend', None) if inner_backend and inner_backend != outer_backend: msg = ( "Outer-jit backend specification {} must match explicit inner-jit " "backend specification {}.") raise ValueError(msg.format(outer_backend, inner_backend)) return {k: params[k] for k in params if k != 'backend'} class AxisEnv(object): def __init__(self, nreps, names=(), sizes=(), devices=None): assert isinstance(names, tuple) assert isinstance(sizes, tuple) self.nreps = nreps self.names = names self.sizes = sizes self.devices = devices def extend_axis_env(env, name, size): return AxisEnv(env.nreps, env.names + (name,), env.sizes + (size,), env.devices) def axis_read(axis_env, axis_name): return max(i for i, name in enumerate(axis_env.names) if name == axis_name) def axis_groups(axis_env, name): if isinstance(name, (list, tuple)): mesh_axes = tuple(map(partial(axis_read, axis_env), name)) else: mesh_axes = (axis_read(axis_env, name),) return _axis_groups(axis_env.nreps, axis_env.sizes, mesh_axes) def _axis_groups(nrep, mesh_spec, mesh_axes): trailing_size, ragged = divmod(nrep, prod(mesh_spec)) assert not ragged full_spec = list(mesh_spec) + [trailing_size] iota = onp.arange(prod(full_spec)).reshape(full_spec) groups = onp.reshape( onp.moveaxis(iota, mesh_axes, onp.arange(len(mesh_axes))), (prod(onp.take(full_spec, mesh_axes)), -1)) return tuple(map(tuple, groups.T)) def jaxpr_replicas(jaxpr): """The number of replicas needed for a jaxpr. For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the subjaxprs. For a list of eqns, take the maximum number of replicas. """ return max(it.chain([1], (eqn_replicas(eqn) for eqn in jaxpr.eqns))) # TODO(mattjj): this function assumes that only pmap has a parameter named # axis_size, and that it corresponds to cross-replica mapping def eqn_replicas(eqn): call_jaxpr = eqn.params.get("call_jaxpr") if call_jaxpr: return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr) elif eqn.primitive in initial_style_translations: return initial_style_primitive_replicas(eqn.params) else: return 1 def initial_style_primitive_replicas(params): nums = (jaxpr_replicas(param if type(param) is core.Jaxpr else param.jaxpr) for param in params.values() if type(param) in (core.Jaxpr, core.TypedJaxpr)) return max(it.chain([1], nums)) # TODO(mattjj,skyewm): the functions here are utilities for checking if # not-yet-supported features are used with multi-host programming def jaxpr_has_pmap(jaxpr): """Whether there is an xla_pmap primitive anywhere inside a Jaxpr.""" for eqn in jaxpr.eqns: if 'xla_pmap' in eqn.primitive.name: return True for subjaxpr in core.subjaxprs(jaxpr): if jaxpr_has_pmap(subjaxpr): return True return False def jaxpr_collectives(jaxpr): """Generates all the collective primitives anywhere inside a Jaxpr.""" for eqn in jaxpr.eqns: if eqn.primitive in parallel_translations: yield eqn.primitive for subjaxpr in core.subjaxprs(jaxpr): yield from jaxpr_collectives(subjaxpr) ### xla_call underlying jit def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name): compiled_fun = _xla_callable(fun, device, backend, name, *map(arg_spec, args)) try: return compiled_fun(*args) except FloatingPointError: print("Invalid value encountered in the output of a jit function. " "Calling the de-optimized version.") return fun.call_wrapped(*args) # probably won't return @lu.cache def _xla_callable(fun: lu.WrappedFun, device, backend, name, *arg_specs): if device is not None and backend is not None: raise ValueError("can't specify both a device and a backend for jit, " "got device={} and backend={}".format(device, backend)) abstract_args, arg_devices = unzip2(arg_specs) pvals: Sequence[pe.PartialVal] = [pe.PartialVal.unknown(aval) for aval in abstract_args] jaxpr, pvals, consts = pe.trace_to_jaxpr( fun, pvals, instantiate=False, stage_out=True, bottom=True) _map(prefetch, it.chain(consts, jaxpr_literals(jaxpr))) nreps = jaxpr_replicas(jaxpr) device = _xla_callable_device(nreps, backend, device, arg_devices) result_handlers = tuple(map(partial(_pval_to_result_handler, device), pvals)) # Computations that only produce constants and/or only rearrange their inputs, # which are often produced from partial evaluation, don't need compilation, # and don't need to force their (potentially lazy) arguments. if not jaxpr.eqns: device = device or xb.get_backend(None).get_default_device_assignment(1)[0] return partial(_execute_trivial, jaxpr, device, consts, result_handlers) log_priority = logging.WARNING if FLAGS.jax_log_compiles else logging.DEBUG logging.log(log_priority, "Compiling {} for args {}.".format(fun.__name__, abstract_args)) if nreps > xb.device_count(backend): msg = ("compiling computation that requires {} replicas, but only {} XLA " "devices are available") raise ValueError(msg.format(nreps, xb.device_count(backend))) if xb.host_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)): raise NotImplementedError( "jit of multi-host pmap not implemented (and jit-of-pmap can cause " "extra data movement anyway, so maybe you don't want it after all).") tuple_args = len(abstract_args) > 100 # pass long arg lists as tuple for TPU c = xb.make_computation_builder("jit_{}".format(fun.__name__)) xla_consts = _map(c.Constant, consts) xla_args = _xla_callable_args(c, abstract_args, tuple_args) out_nodes = jaxpr_subcomp( c, jaxpr, backend, AxisEnv(nreps, (), ()), xla_consts, extend_name_stack(wrap_name(name, 'jit')), *xla_args) built = c.Build(c.Tuple(*out_nodes)) options = xb.get_compile_options( num_replicas=nreps, num_partitions=1, device_assignment=(device.id,) if device else None) options.tuple_arguments = tuple_args compiled = built.Compile(compile_options=options, backend=xb.get_backend(backend)) if nreps == 1: return partial(_execute_compiled, compiled, backend, result_handlers) else: return partial(_execute_replicated, compiled, backend, result_handlers) def _xla_callable_device(nreps, backend, device, arg_devices): if nreps > 1: if device is not None or backend is not None: raise ValueError("can't specify device or backend for jit-of-pmap, " "got device={} and backend={}".format(device, backend)) return None else: if device is None and backend is None: return _device_from_arg_devices(arg_devices) elif device is not None and backend is None: return device elif device is None and backend is not None: return xb.get_backend(backend).get_default_device_assignment(1)[0] else: assert False # Unreachable given the error check in _xla_callable def _xla_callable_args(c, avals, tuple_args): if not tuple_args: xla_args = [c.ParameterWithShape(aval_to_xla_shape(a)) if a is not abstract_token else c.CreateToken() for a in avals] return xla_args else: tuple_param = c.ParameterWithShape(xc.Shape.tuple_shape( [aval_to_xla_shape(a) for a in avals if a is not abstract_token])) xla_inputs = iter(xla_destructure(c, tuple_param)) xla_args = [next(xla_inputs) if a is not abstract_token else c.CreateToken() for a in avals] assert next(xla_inputs, None) is None return xla_args def _pval_to_result_handler(device, pval): pv, const = pval if pv is None: const = _device_put_impl(const, device) if device else const return lambda _: const else: return aval_to_result_handler(device, pv) def _execute_compiled(compiled, backend, handlers, *args): device, = compiled.local_devices() input_bufs = [device_put(x, device) for x in args if x is not token] out_bufs = compiled.Execute(input_bufs) if FLAGS.jax_debug_nans: check_nans(xla_call_p, out_bufs) return [handler(out_buf) for handler, out_buf in zip(handlers, out_bufs)] def _execute_replicated(compiled, backend, handlers, *args): input_bufs = [ [device_put(x, device) for x in args if x is not token] for device in compiled.local_devices()] out_bufs = compiled.ExecuteOnLocalDevices(input_bufs)[0] if FLAGS.jax_debug_nans: check_nans(xla_call_p, out_bufs) return [handler(out_buf) for handler, out_buf in zip(handlers, out_bufs)] def _execute_trivial(jaxpr, device, consts, handlers, *args): env = {core.unitvar: core.unit} _map(env.setdefault, jaxpr.invars, args) _map(env.setdefault, jaxpr.constvars, consts) outs = [canonicalize_dtype(v.val) if type(v) is Literal else env[v] for v in jaxpr.outvars] return [_copy_device_array_to_device(x, device) if type(x) is DeviceArray else h(device_put(x, device)) for h, x in zip(handlers, outs)] @memoize def _get_device(device, backend): # TODO(mattjj): after jaxlib update, avoid compile here, just to get device c = xb.make_computation_builder("get_device") built = c.Build(_make_unit(c)) options = xb.get_compile_options( num_replicas=1, num_partitions=1, device_assignment=(device.id,) if device else None) compiled = built.Compile(compile_options=options, backend=xb.get_backend(backend)) out, = compiled.local_devices() return out xla_call_p = core.Primitive('xla_call') xla_call_p.call_primitive = True xla_call_p.multiple_results = True xla_call = partial(core.call_bind, xla_call_p) xla_call_p.def_custom_bind(xla_call) xla_call_p.def_impl(_xla_call_impl) def _xla_call_translation_rule(c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr, device=None): del device # Ignored. subc = xb.make_computation_builder("jit_{}".format(name)) args = [subc.ParameterWithShape(c.GetShape(n)) for n in in_nodes] out_nodes = jaxpr_subcomp(subc, call_jaxpr, backend, axis_env, (), extend_name_stack(name_stack, wrap_name(name, 'jit')), *args) subc = subc.Build(subc.Tuple(*out_nodes)) return c.Call(subc, list(in_nodes)) ad.primitive_transposes[xla_call_p] = partial(ad.call_transpose, xla_call_p) ### translation tables translations: Dict[core.Primitive, Callable] = {} parallel_translations: Dict[core.Primitive, Callable] = {} initial_style_translations: Dict[core.Primitive, Callable] = {} call_translations: Dict[core.Primitive, Callable] = {} backend_specific_translations: Dict[str, Dict[core.Primitive, Callable]] = defaultdict(dict) translations[core.identity_p] = lambda c, x: x call_translations[xla_call_p] = _xla_call_translation_rule def zeros_like_translation_rule(c, x): shape = c.GetShape(x) assert not shape.is_tuple() zero = c.Constant(onp.array(0, shape.element_type())) return c.Broadcast(zero, shape.dimensions()) translations[ad_util.zeros_like_p] = zeros_like_translation_rule def add_jaxvals_translation_rule(c, x, y): shape = c.GetShape(x) assert not shape.is_tuple() return c.Add(x, y) translations[ad_util.add_jaxvals_p] = add_jaxvals_translation_rule @lu.transformation def _tuple_output(*args, **kwargs): ans = yield args, kwargs yield (ans,) def lower_fun(fun, multiple_results=True): # This function can only be used to lower functions that take JAX array types # as arguments (and e.g. don't accept unit values), because it assumes it can # map from XLA types to JAX types. In general that mapping is not possible (as # the mapping from JAX types to XLA types is not invertible), but for now at # least we assume that the mapping from JAX *array* types to XLA array types # is invertible. This assumption is unchecked! # TODO(mattjj): remove assumption can map XLA array types to JAX array types def f(c, *xla_args, **params): # TODO(mattjj): revise this 'calling convention' avals = [_array_aval_from_xla_shape(c.GetShape(x)) for x in xla_args] pvals = [pe.PartialVal.unknown(a) for a in avals] wrapped_fun = lu.wrap_init(fun, params) if not multiple_results: wrapped_fun = _tuple_output(wrapped_fun) jaxpr, _, consts = pe.trace_to_jaxpr(wrapped_fun, pvals, instantiate=True, stage_out=True) consts = _map(c.Constant, consts) outs = jaxpr_subcomp(c, jaxpr, None, AxisEnv(1), consts, '', *xla_args) if multiple_results: return c.Tuple(*outs) else: assert len(outs) == 1, outs return outs[0] return f def _array_aval_from_xla_shape(xla_shape): # This function instantiates the assumption that we can map fro XLA array # types to JAX array types. # TODO(mattjj): remove assumption can map XLA array types to JAX array types assert not xla_shape.is_tuple() return ShapedArray(xla_shape.dimensions(), xla_shape.numpy_dtype()) def lower_fun_initial_style(fun): def f(c, axis_env, name_stack, avals, backend, *xla_args, **params): pvals = [pe.PartialVal.unknown(a) for a in avals] jaxpr, _, consts = pe.trace_to_jaxpr( lu.wrap_init(fun, params), pvals, instantiate=True, stage_out=True) consts = _map(c.Constant, consts) outs = jaxpr_subcomp(c, jaxpr, backend, axis_env, consts, name_stack, *xla_args) return c.Tuple(*outs) return f ### device-persistent data class Token(object): pass token = Token() pytype_aval_mappings[Token] = lambda _: abstract_token core.pytype_aval_mappings[Token] = lambda _: abstract_token xla_shape_handlers[AbstractToken] = lambda _: xc.Shape.token_shape() xla_result_handlers[AbstractToken] = lambda _, __: lambda _: token canonicalize_dtype_handlers[Token] = identity class DeviceValue(object): """A DeviceValue represents a value backed by device memory.""" __slots__ = ["aval", "device_buffer", "__weakref__"] def __init__(self, aval, device_buffer): self.aval = aval self.device_buffer = device_buffer def _check_if_deleted(self): if self.device_buffer is deleted_buffer: raise ValueError("DeviceValue has been deleted.") def block_until_ready(self): """Blocks the caller until the buffer's value has been computed on device. This method is mostly useful for timing microbenchmarks that wish to time how long a computation takes, without transferring the result back to the host. Returns the buffer object (`self`). """ self._check_if_deleted() self.device_buffer.block_host_until_ready() return self def _forward_method(attrname, self, fun, *args): return fun(getattr(self, attrname), *args) _forward_to_value = partial(_forward_method, "_value") class DeviceArray(DeviceValue): """A DeviceArray is an ndarray backed by a single device memory buffer.""" # We don't subclass ndarray because that would open up a host of issues, # but lax_numpy.py overrides isinstance behavior and attaches ndarray methods. __slots__ = ["_npy_value", "_device", "_lazy_expr"] __array_priority__ = 100 def __init__(self, aval, device, lazy_expr, device_buffer): self.aval = aval self.device_buffer = device_buffer self._device = device self._lazy_expr = lazy_expr self._npy_value = None if not core.skip_checks: assert type(aval) is ShapedArray npy_value = self._value assert npy_value.dtype == aval.dtype and npy_value.shape == aval.shape @property def _value(self): self._check_if_deleted() if self._npy_value is None: if is_device_constant(self): self._npy_value = lazy.eval_lexpr(self._lazy_expr, None) else: self._npy_value = _force(self).device_buffer.to_py() self._npy_value.flags.writeable = False return self._npy_value @property def shape(self): return self.aval.shape @property def dtype(self): return self.aval.dtype @property def size(self): return prod(self.aval.shape) @property def ndim(self): return len(self.aval.shape) def copy(self): """Returns an ndarray (backed by host memory, not device memory).""" return onp.asarray(self) def copy_to_host_async(self): """Requests a copy of the buffer to the host.""" self._check_if_deleted() if self._npy_value is None and not is_device_constant(self): self.device_buffer.copy_to_host_async() def delete(self): """Deletes the device array and any cached copy on the host. It is an error to access the contents of a `DeviceArray` after it has been deleted. Use of this method is optional; device buffers will be reclaimed automatically by Python when a DeviceArray object is garbage collected. However, it is sometimes useful to have more explicit control over the time of deletion. """ self.device_buffer.delete() self.device_buffer = deleted_buffer self._npy_value = None def __repr__(self): line_width = onp.get_printoptions()['linewidth'] prefix = '{}('.format(self.__class__.__name__) s = onp.array2string(self._value, prefix=prefix, suffix=',', separator=', ', max_line_width=line_width) dtype_str = 'dtype={})'.format(self.dtype.name) last_line_len = len(s) - s.rfind('\n') + 1 sep = ' ' if last_line_len + len(dtype_str) + 1 > line_width: sep = ' ' * len(prefix) return "{}{},{}{}".format(prefix, s, sep, dtype_str) def item(self): if dtypes.issubdtype(self.dtype, onp.complexfloating): return complex(self) elif dtypes.issubdtype(self.dtype, onp.floating): return float(self) elif dtypes.issubdtype(self.dtype, onp.integer): return int(self) elif dtypes.issubdtype(self.dtype, onp.bool_): return bool(self) else: raise TypeError(self.dtype) def __len__(self): try: return self.aval.shape[0] except IndexError as err: raise TypeError("len() of unsized object") from err # same as numpy error def __iter__(self): if self.ndim == 0: raise TypeError("iteration over a 0-d array") # same as numpy error else: return self._value.__iter__() def __reversed__(self): if self.ndim == 0: raise TypeError("iteration over a 0-d array") else: return reversed(self._value) def __format__(self, format_spec): # Simulates behavior of https://github.com/numpy/numpy/pull/9883 if self.ndim == 0: return format(self._value[()], format_spec) else: return format(self._value, format_spec) def __array__(self, dtype=None, context=None): return onp.asarray(self._value, dtype=dtype) @property def __cuda_array_interface__(self): return _force(self).device_buffer.__cuda_array_interface__ __str__ = partialmethod(_forward_to_value, str) __bool__ = __nonzero__ = partialmethod(_forward_to_value, bool) def __float__(self): return self._value.__float__() def __int__(self): return self._value.__int__() def __complex__(self): return self._value.__complex__() __hex__ = partialmethod(_forward_to_value, hex) __oct__ = partialmethod(_forward_to_value, oct) __index__ = partialmethod(_forward_to_value, op.index) # pickle saves and loads just like an ndarray __reduce__ = partialmethod(_forward_to_value, op.methodcaller("__reduce__")) # clobbered when jax.numpy is imported, but useful in tests def __eq__(self, other): return self._value == other def __hash__(self): raise TypeError("JAX DeviceArray, like numpy.ndarray, is not hashable.") # The following methods are dynamically overridden in lax_numpy.py. def __getitem__(self, i): raise NotImplementedError class DeletedBuffer(object): pass deleted_buffer = DeletedBuffer() class DeviceConstant(object): __slots__ = ["_device"] def __init__(self, device=None): self._device = device def device(self): return self._device def to_py(self): return None def is_device_constant(x): return type(x) is DeviceArray and type(x.device_buffer) is DeviceConstant core.literalable_types.add(DeviceArray) core.pytype_aval_mappings[DeviceArray] = ConcreteArray pytype_aval_mappings[DeviceArray] = op.attrgetter('aval') canonicalize_dtype_handlers[DeviceArray] = identity def _device_array_constant_handler(c, val, canonicalize_types=True): if is_device_constant(val): return lazy.stage_lexpr(c, val._lazy_expr, None) else: base_val = c.Constant(val.device_buffer.to_py()) return lazy.stage_lexpr(c, val._lazy_expr, base_val) xb.register_constant_handler(DeviceArray, _device_array_constant_handler) def _device_put_device_array(x, device): x = _copy_device_array_to_device(x, device) return _force(x).device_buffer device_put_handlers[DeviceArray] = _device_put_device_array def _copy_device_array_to_device(x, device): if is_device_constant(x): return DeviceArray(x.aval, device, x._lazy_expr, DeviceConstant(device)) elif xb.get_device_backend(device).platform == x.device_buffer.platform(): if device is None or x.device_buffer.device() == device: return x else: moved_buf = x.device_buffer.copy_to_device(device) else: # Buffers from different XLA backends are passed through the host. moved_buf = xc.Buffer.from_pyval(x.device_buffer.to_py(), device, backend=xb.get_device_backend(device)) return DeviceArray(x.aval, device, x._lazy_expr, moved_buf) def _force(x: DeviceArray) -> DeviceArray: if lazy.is_trivial(x._lazy_expr): return x else: # force x on the device where it lives, but preserve stickiness on result if x._device: device = x._device sticky = True else: device = x.device_buffer.device() sticky = False force_fun = _lazy_force_computation(sticky, x.aval, device, x._lazy_expr) return force_fun(x) @cache() def _lazy_force_computation(sticky, aval, device, lexpr) -> Callable[[DeviceArray], DeviceArray]: c = xb.make_computation_builder("lazy_force") if lazy.is_constant(lexpr): param = None else: idxs = [(src, dst) for dst, src in enumerate(lexpr.dims) if src is not None] param_shape = [None] * len(idxs) for src, dst in idxs: param_shape[src] = aval.shape[dst] param = c.ParameterWithShape(xc.Shape.array_shape(aval.dtype, param_shape)) xla_out = lazy.stage_lexpr(c, lexpr, param) built_c = c.Build(xla_out) device = _device_from_arg_devices([device]) options = xb.get_compile_options( num_replicas=1, num_partitions=1, device_assignment=device and (device.id,)) backend = xb.get_device_backend(device) compiled = built_c.Compile(compile_options=options, backend=backend) result_device = device if sticky else None handler = partial(DeviceArray, aval, result_device, lazy.array(aval.shape)) force_fun: Callable[[DeviceValue], DeviceArray] if lazy.is_constant(lexpr): def force_fun(_): return handler(compiled.Execute([])[0]) else: def force_fun(x): return handler(compiled.Execute([x.device_buffer])[0]) return force_fun def _device_put_impl(x, device=None): if type(x) is DeviceArray: return _copy_device_array_to_device(x, device) try: a = abstractify(x) except TypeError as err: raise TypeError("Argument '{}' of type {} is not a valid JAX type" .format(x, type(x))) from err handler = aval_to_result_handler(device, a) return handler(device_put(x, device)) device_put_p = core.Primitive('device_put') device_put_p.def_impl(_device_put_impl) pe.custom_partial_eval_rules[device_put_p] = lambda trace, x, **params: x ad.deflinear(device_put_p, lambda cotangent, **kwargs: [cotangent]) masking.shape_rules[device_put_p] = lambda x, **_: x.shape masking.defvectorized(device_put_p) def _remat_translation_rule(c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr, device=None, concrete=None): """Lower remat to a Conditional which always returns true. This: 1. Circumvents common subexpression elimination. 2. In common case of `jax.grad(jax.remat(f))`, ensures the remat blocks occur after the primal blocks, because cotangent is an input to the Conditional.""" del device, concrete # Unused. # Fake condition which always selects True branch. rng = c.RngUniform(c.Constant(onp.array(0, dtype=onp.float32)), c.Constant(onp.array(1, dtype=onp.float32)), []) pred = c.Lt(rng, c.Constant(onp.array(2, dtype=onp.float32))) true_op = c.Tuple(*in_nodes) remat_subc = xb.make_computation_builder("remat_call_subcomputation") input_op = remat_subc.ParameterWithShape(c.GetShape(true_op), replicated=[]) args = [remat_subc.GetTupleElement(input_op, i) for i in range(len(in_nodes))] out_nodes = jaxpr_subcomp(remat_subc, call_jaxpr, backend, axis_env, (), extend_name_stack(name_stack, wrap_name(name, 'remat')), *args) out_node_shapes = [remat_subc.GetShape(o) for o in out_nodes] remat_subc = remat_subc.Build(remat_subc.Tuple(*out_nodes)) false_op = true_op dummy_subc = xb.make_computation_builder("remat_call_dummy_subcomputation") dummy_subc.ParameterWithShape(c.GetShape(false_op), replicated=[]) def zeros(xla_shape): shape, dtype = xla_shape.dimensions(), xla_shape.numpy_dtype() zero = dummy_subc.Constant(onp.array(0, dtype=dtype)) return dummy_subc.Broadcast(zero, shape) out_nodes = [zeros(s) for s in out_node_shapes] dummy_subc = dummy_subc.Build(dummy_subc.Tuple(*out_nodes)) return c.Conditional(pred, true_op, remat_subc, false_op, dummy_subc) call_translations[pe.remat_call_p] = _remat_translation_rule
38.367308
97
0.717383
4a19254b4ca6a8323ca76214e882e656e33a3498
98,268
py
Python
electroncash/network.py
majcosta/ElectrumBCHA
23f1ec1755c87bc2e44142edc7d6276a07ca7516
[ "MIT" ]
23
2020-11-23T21:49:20.000Z
2022-02-23T05:43:44.000Z
electroncash/network.py
meaze0507/ElectrumABC
262dd0acc00763422eededf5ab20c7cb82674cdb
[ "MIT" ]
73
2020-11-24T19:04:12.000Z
2022-03-25T15:09:37.000Z
electroncash/network.py
meaze0507/ElectrumABC
262dd0acc00763422eededf5ab20c7cb82674cdb
[ "MIT" ]
6
2020-11-24T05:53:14.000Z
2022-01-24T16:09:36.000Z
# Electrum ABC - lightweight eCash client # Copyright (C) 2020 The Electrum ABC developers # Copyright (c) 2011-2016 Thomas Voegtlin # Copyright (C) 2017-2020 The Electron Cash Developers # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import time import queue import os import stat import errno import random import re import select from collections import defaultdict import threading import socket import json from typing import Dict import socks from . import util from . import bitcoin from . import networks from .i18n import _ from .interface import Connection, Interface from . import blockchain from . import version from .tor import TorController, check_proxy_bypass_tor_control from .utils import Event DEFAULT_AUTO_CONNECT = True # Versions prior to 4.0.15 had this set to True, but EC opted for False to # promote network health by allowing clients to connect to new servers easily. # For now it is better to set it to True again to avoid having new users # start on the wrong chain. DEFAULT_WHITELIST_SERVERS_ONLY = True def parse_servers(result): """ parse servers list into dict format""" servers = {} for item in result: try: host = item[1] out = {} version = None pruning_level = '-' if len(item) > 2: for v in item[2]: if re.match(r"[st]\d*", v): protocol, port = v[0], v[1:] if port == '': port = networks.net.DEFAULT_PORTS[protocol] out[protocol] = port elif re.match(r"v(.?)+", v): version = v[1:] elif re.match(r"p\d*", v): pruning_level = v[1:] if pruning_level == '': pruning_level = '0' if out: out['pruning'] = pruning_level out['version'] = version servers[host] = out except (TypeError, ValueError, IndexError, KeyError) as e: util.print_error("parse_servers:", item, repr(e)) return servers def filter_version(servers): def is_recent(vv): try: return version.normalize_version(vv) >= version.normalize_version(version.PROTOCOL_VERSION) except Exception as e: util.print_error("filter_version:", repr(e)) return False return {k: v for k, v in servers.items() if is_recent(v.get('version'))} def filter_protocol(hostmap, protocol = 's'): '''Filters the hostmap for those implementing protocol. Protocol may be: 's', 't', or 'st' for both. The result is a list in serialized form.''' eligible = [] for host, portmap in hostmap.items(): for proto in protocol: port = portmap.get(proto) if port: eligible.append(serialize_server(host, port, proto)) return eligible def get_eligible_servers(hostmap=None, protocol="s", exclude_set=set()): if hostmap is None: hostmap = networks.net.DEFAULT_SERVERS return list(set(filter_protocol(hostmap, protocol)) - exclude_set) def pick_random_server(hostmap = None, protocol = 's', exclude_set = set()): eligible = get_eligible_servers(hostmap, protocol, exclude_set) return random.choice(eligible) if eligible else None def servers_to_hostmap(servers): ''' Takes an iterable of HOST:PORT:PROTOCOL strings and breaks them into a hostmap dict of host -> { protocol : port } suitable to be passed to pick_random_server() and get_eligible_servers() above.''' ret = dict() for s in servers: try: host, port, protocol = deserialize_server(s) except (AssertionError, ValueError, TypeError) as e: util.print_error("[servers_to_hostmap] deserialization failure for server:", s, "error:", str(e)) continue # deserialization error m = ret.get(host, dict()) need_add = len(m) == 0 m[protocol] = port if need_add: m['pruning'] = '-' # hmm. this info is missing, so give defaults just to make the map complete. m['version'] = version.PROTOCOL_VERSION ret[host] = m return ret def hostmap_to_servers(hostmap): ''' The inverse of servers_to_hostmap ''' return filter_protocol(hostmap, protocol = 'st') from .simple_config import SimpleConfig proxy_modes = ['socks4', 'socks5', 'http'] def serialize_proxy(p): if not isinstance(p, dict): return None return ':'.join([p.get('mode'), p.get('host'), p.get('port'), p.get('user', ''), p.get('password', '')]) def deserialize_proxy(s): if not isinstance(s, str): return None if s.lower() == 'none': return None proxy = { "mode":"socks5", "host":"localhost" } args = s.split(':') n = 0 if proxy_modes.count(args[n]) == 1: proxy["mode"] = args[n] n += 1 if len(args) > n: proxy["host"] = args[n] n += 1 if len(args) > n: proxy["port"] = args[n] n += 1 else: proxy["port"] = "8080" if proxy["mode"] == "http" else "1080" if len(args) > n: proxy["user"] = args[n] n += 1 if len(args) > n: proxy["password"] = args[n] try: # Fix for #1182 -- bad proxy can end up in config file int(proxy['port']) except (ValueError, TypeError): return None return proxy def deserialize_server(server_str): host, port, protocol = str(server_str).rsplit(':', 2) assert protocol in 'st' int(port) # Throw if cannot be converted to int return host, port, protocol def serialize_server(host, port, protocol): return str(':'.join([host, port, protocol])) bypass_proxy_filters = [check_proxy_bypass_tor_control] def _socksocket_filtered(*args, **kwargs): """ This function checks bypass_proxy_filters and if any of the filters returns true a raw socket will be returned, otherwise a socks socket will be returned. """ if any(f(*args, **kwargs) for f in bypass_proxy_filters): if socket._socketobject: return socket._socketobject(*args, **kwargs) else: return socket.socket(*args, **kwargs) else: return socks.socksocket(*args, **kwargs) class Network(util.DaemonThread): """The Network class manages a set of connections to remote electrum servers, each connected socket is handled by an Interface() object. Connections are initiated by a Connection() thread which stops once the connection succeeds or fails. Our external API: - Member functions get_header(), get_interfaces(), get_local_height(), get_parameters(), get_server_height(), get_status_value(), is_connected(), set_parameters(), stop() """ INSTANCE = None # Only 1 Network instance is ever alive during app lifetime (it's a singleton) # These defaults are decent for the desktop app. Other platforms may # override these at any time (iOS sets these to lower values). NODES_RETRY_INTERVAL = 60 # How often to retry a node we know about in secs, if we are connected to less than 10 nodes SERVER_RETRY_INTERVAL = 10 # How often to reconnect when server down in secs MAX_MESSAGE_BYTES = 1024*1024*32 # = 32MB. The message size limit in bytes. This is to prevent a DoS vector whereby the server can fill memory with garbage data. tor_controller: TorController = None def __init__(self, config=None): if config is None: config = {} # Do not use mutables as default values! util.DaemonThread.__init__(self) self.config = SimpleConfig(config) if isinstance(config, dict) else config self.num_server = 10 if not self.config.get('oneserver') else 0 self.blockchains = blockchain.read_blockchains(self.config) self.print_error("blockchains", self.blockchains.keys()) self.blockchain_index = config.get('blockchain_index', 0) if self.blockchain_index not in self.blockchains.keys(): self.blockchain_index = 0 # Server for addresses and transactions self.blacklisted_servers = set(self.config.get('server_blacklist', [])) self.whitelisted_servers, self.whitelisted_servers_hostmap = self._compute_whitelist() self.print_error("server blacklist: {} server whitelist: {}".format(self.blacklisted_servers, self.whitelisted_servers)) self.default_server = self.get_config_server() self.bad_certificate_servers: Dict[str, str] = dict() self.server_list_updated = Event() self.tor_controller = TorController(self.config) self.tor_controller.active_port_changed.append(self.on_tor_port_changed) self.tor_controller.start() self.lock = threading.Lock() # locks: if you need to take multiple ones, acquire them in the order they are defined here! self.interface_lock = threading.RLock() # <- re-entrant self.pending_sends_lock = threading.Lock() self.pending_sends = [] self.message_id = util.Monotonic(locking=True) self.verified_checkpoint = False self.verifications_required = 1 # If the height is cleared from the network constants, we're # taking looking to get 3 confirmations of the first verification. if networks.net.VERIFICATION_BLOCK_HEIGHT is None: self.verifications_required = 3 self.checkpoint_servers_verified = {} self.checkpoint_height = networks.net.VERIFICATION_BLOCK_HEIGHT self.debug = False self.irc_servers = {} # returned by interface (list from irc) self.recent_servers = self.read_recent_servers() self.banner = '' self.donation_address = '' self.relay_fee = None # callbacks passed with subscriptions self.subscriptions = defaultdict(list) self.sub_cache = {} # note: needs self.interface_lock # callbacks set by the GUI self.callbacks = defaultdict(list) dir_path = os.path.join( self.config.path, 'certs') if not os.path.exists(dir_path): os.mkdir(dir_path) os.chmod(dir_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) # subscriptions and requests self.subscribed_addresses = set() # Requests from client we've not seen a response to self.unanswered_requests = {} # retry times self.server_retry_time = time.time() self.nodes_retry_time = time.time() # kick off the network. interface is the main server we are currently # communicating with. interfaces is the set of servers we are connecting # to or have an ongoing connection with self.interface = None # note: needs self.interface_lock self.interfaces = {} # note: needs self.interface_lock self.auto_connect = self.config.get('auto_connect', DEFAULT_AUTO_CONNECT) self.connecting = set() self.requested_chunks = set() self.socket_queue = queue.Queue() if Network.INSTANCE: # This happens on iOS which kills and restarts the daemon on app sleep/wake self.print_error("A new instance has started and is replacing the old one.") Network.INSTANCE = self # This implicitly should force stale instances to eventually del self.start_network(deserialize_server(self.default_server)[2], deserialize_proxy(self.config.get('proxy'))) def on_tor_port_changed(self, controller: TorController): if not controller.active_socks_port or not controller.is_enabled() or not self.config.get('tor_use', False): return proxy = deserialize_proxy(self.config.get('proxy')) port = str(controller.active_socks_port) if proxy["port"] == port: return proxy["port"] = port self.config.set_key('proxy', serialize_proxy(proxy)) # This handler can run before `proxy` is present and `load_parameters` needs it if hasattr(self, "proxy"): self.load_parameters() def __del__(self): """ NB: due to Network.INSTANCE keeping the singleton instance alive, this code isn't normally reached, except for in the iOS implementation, which kills the daemon and the network before app sleep, and creates a new daemon and netwok on app awake. """ if Network.INSTANCE is self: # This check is important for iOS Network.INSTANCE = None # <--- Not normally reached, but here for completeness. else: self.print_error("Stale instance deallocated") if hasattr(super(), '__del__'): super().__del__() @staticmethod def get_instance(): """ Returns the extant Network singleton, if any, or None if in offline mode """ return Network.INSTANCE def callback_listener_count(self, event): return len(self.callbacks.get(event, [])) # we intentionally don't take any locks here as a performance optimization def register_callback(self, callback, events): with self.lock: for event in events: self.callbacks[event].append(callback) if event in self._deprecated_alternatives: self._warn_deprecated_callback(event) def unregister_callback(self, callback): with self.lock: for callbacks in self.callbacks.values(): try: callbacks.remove(callback) except ValueError: pass def trigger_callback(self, event, *args): with self.lock: callbacks = self.callbacks[event][:] [callback(event, *args) for callback in callbacks] self._legacy_callback_detector_and_mogrifier(event, *args) def _legacy_callback_detector_and_mogrifier(self, event, *args): if (event in ('blockchain_updated', 'wallet_updated') and 'updated' in self.callbacks): # Translate the blockchain_updated and wallet_updated events # into the legacy 'updated' event for old external plugins that # still rely on this event existing. There are some external # electron cash plugins that still use this event, and we need # to keep this hack here so they don't break on new EC # versions. "Technical debt" :) self.trigger_callback('updated') # we will re-enter this function with event == 'updated' (triggering the warning in the elif clause below) elif event == 'verified2' and 'verified' in self.callbacks: # pop off the 'wallet' arg as the old bad 'verified' callback lacked it. self.trigger_callback('verified', args[1:]) # we will re-enter this function with event == 'verified' (triggering the warning in the elif clause below) elif event in self._deprecated_alternatives: # If we see updated or verified events come through here, warn: # deprecated. Note that the above 2 clauses will also trigger this # execution path. self._warn_deprecated_callback(event) _deprecated_alternatives = { 'updated' : "'blockchain_updated' and/or 'wallet_updated'", 'verified': "'verified2'", } def _warn_deprecated_callback(self, which): alt = self._deprecated_alternatives.get(which) if alt: self.print_error("Warning: Legacy '{}' callback is deprecated, it is recommended that you instead use: {}. Please update your code.".format(which, alt)) else: self.print_error("Warning: Legacy '{}' callback is deprecated. Please update your code.".format(which)) def recent_servers_file(self): return os.path.join(self.config.path, "recent-servers") def read_recent_servers(self): if not self.config.path: return [] try: with open(self.recent_servers_file(), "r", encoding='utf-8') as f: data = f.read() return json.loads(data) except: return [] def save_recent_servers(self): if not self.config.path: return s = json.dumps(self.recent_servers, indent=4, sort_keys=True) try: with open(self.recent_servers_file(), "w", encoding='utf-8') as f: f.write(s) except: pass def get_server_height(self): with self.interface_lock: return self.interface.tip if self.interface else 0 def server_is_lagging(self): sh = self.get_server_height() if not sh: self.print_error('no height for main interface') return True lh = self.get_local_height() result = (lh - sh) > 1 if result: self.print_error('%s is lagging (%d vs %d)' % (self.default_server, sh, lh)) return result def set_status(self, status): self.connection_status = status self.notify('status') def is_connected(self): return self.interface is not None def is_connecting(self): return self.connection_status == 'connecting' def is_up_to_date(self): return self.unanswered_requests == {} def queue_request(self, method, params, interface=None, *, callback=None, max_qlen=None): """ If you want to queue a request on any interface it must go through this function so message ids are properly tracked. Returns the monotonically increasing message id for this request. May return None if queue is too full (max_qlen). (max_qlen is only considered if callback is not None.) Note that the special argument interface='random' will queue the request on a random, currently active (connected) interface. Otherwise `interface` should be None or a valid Interface instance. If no interface is available: - If `callback` is supplied: the request will be enqueued and sent later when an interface becomes available - If callback is not supplied: an AssertionError exception is raised """ if interface is None: interface = self.interface elif interface == 'random': interface = random.choice(self.get_interfaces(interfaces=True) or (None,)) # may set interface to None if no interfaces message_id = self.message_id() # Note: self.message_id is a Monotonic (thread-safe) counter-object, see util.Monotonic if callback: if max_qlen and len(self.unanswered_requests) >= max_qlen: # Indicate to client code we are busy return None self.unanswered_requests[message_id] = [method, params, callback] if not interface: # Request was queued -- it should get sent if/when we get # an interface in the future return message_id # Now, if no interface, we will raise AssertionError assert isinstance(interface, Interface), "queue_request: No interface! (request={} params={})".format(method, params) if self.debug: self.print_error(interface.host, "-->", method, params, message_id) interface.queue_request(method, params, message_id) if self is not Network.INSTANCE: self.print_error("*** WARNING: queueing request on a stale instance!") return message_id def send_subscriptions(self): self.sub_cache.clear() # Resend unanswered requests old_reqs = self.unanswered_requests self.unanswered_requests = {} for m_id, request in old_reqs.items(): message_id = self.queue_request(request[0], request[1], callback = request[2]) assert message_id is not None self.queue_request('server.banner', []) self.queue_request('server.donation_address', []) self.queue_request('server.peers.subscribe', []) self.queue_request('blockchain.relayfee', []) n_defunct = 0 method = 'blockchain.scripthash.subscribe' for h in self.subscribed_addresses.copy(): params = [h] k = self.get_index(method, params) if self.subscriptions.get(k, None): self.queue_request(method, params) else: # If a wallet was closed, we stayed subscribed to its scripthashes # (there is no way to unsubscribe from a scripthash, unfortunately) # However, now that we are connecting to a new server, use this # opportunity to clean house and not subscribe to scripthashes # for closed wallets. We know a scripthash is defunct if it is # missing a callback (no entry in self.subscriptions dict). #self.print_error("removing defunct subscription", h) self.subscribed_addresses.discard(h) self.subscriptions.pop(k, None) # it may be an empty list (or missing), so pop it just in case it's a list. n_defunct += 1 self.print_error('sent subscriptions to', self.interface.server, len(old_reqs),"reqs", len(self.subscribed_addresses), "subs", n_defunct, "defunct subs") def get_status_value(self, key): if key == 'status': value = self.connection_status elif key == 'banner': value = self.banner elif key == 'blockchain_updated': value = (self.get_local_height(), self.get_server_height()) elif key == 'updated': value = (self.get_local_height(), self.get_server_height()) self._warn_deprecated_callback(key) elif key == 'servers': value = self.get_servers() elif key == 'interfaces': value = self.get_interfaces() elif key == 'proxy': value = (self.proxy and self.proxy.copy()) or None else: raise RuntimeError('unexpected trigger key {}'.format(key)) return value def notify(self, key): if key in ('updated',): # Legacy support. Will warn that updated is deprecated. self.trigger_callback(key) else: self.trigger_callback(key, self.get_status_value(key)) def get_parameters(self): host, port, protocol = deserialize_server(self.default_server) return host, port, protocol, self.proxy, self.auto_connect def get_donation_address(self): if self.is_connected(): return self.donation_address def get_interfaces(self, *, interfaces=False): """Returns the servers that are in connected state. Despite its name, this method does not return the actual interfaces unless interfaces=True, but rather returns the server:50002:s style string. """ with self.interface_lock: return list(self.interfaces.values() if interfaces else self.interfaces.keys()) def get_servers(self): out = networks.net.DEFAULT_SERVERS.copy() if self.irc_servers: out.update(filter_version(self.irc_servers.copy())) else: for s in self.recent_servers: try: host, port, protocol = deserialize_server(s) except: continue if host not in out: out[host] = { protocol:port } return out def start_interface(self, server_key): """Start the given server if it is not already active or being connected to. Arguments: server_key --- server specifier in the form of '<host>:<port>:<protocol>' """ if (not server_key in self.interfaces and not server_key in self.connecting): if server_key == self.default_server: self.print_error("connecting to %s as new interface" % server_key) self.set_status('connecting') self.connecting.add(server_key) c = Connection(server_key, self.socket_queue, self.config.path, lambda x: x.bad_certificate.append_weak(self.on_bad_certificate)) def get_unavailable_servers(self): exclude_set = set(self.interfaces) exclude_set = exclude_set.union(self.connecting) exclude_set = exclude_set.union(self.disconnected_servers) exclude_set = exclude_set.union(self.blacklisted_servers) return exclude_set def start_random_interface(self): exclude_set = self.get_unavailable_servers() hostmap = self.get_servers() if not self.is_whitelist_only() else self.whitelisted_servers_hostmap server_key = pick_random_server(hostmap, self.protocol, exclude_set) if server_key: self.start_interface(server_key) def start_interfaces(self): self.start_interface(self.default_server) for i in range(self.num_server - 1): self.start_random_interface() def set_proxy(self, proxy): self.proxy = proxy # Store these somewhere so we can un-monkey-patch if not hasattr(socket, "_socketobject"): socket._socketobject = socket.socket socket._getaddrinfo = socket.getaddrinfo if proxy: self.print_error('setting proxy', proxy) proxy_mode = proxy_modes.index(proxy["mode"]) + 1 socks.setdefaultproxy(proxy_mode, proxy["host"], int(proxy["port"]), # socks.py seems to want either None or a non-empty string username=(proxy.get("user", "") or None), password=(proxy.get("password", "") or None)) socket.socket = _socksocket_filtered # prevent dns leaks, see http://stackoverflow.com/questions/13184205/dns-over-proxy socket.getaddrinfo = lambda *args: [(socket.AF_INET, socket.SOCK_STREAM, 6, '', (args[0], args[1]))] else: socket.socket = socket._socketobject socket.getaddrinfo = socket._getaddrinfo self.notify('proxy') def start_network(self, protocol, proxy): assert not self.interface and not self.interfaces assert not self.connecting and self.socket_queue.empty() self.print_error('starting network') self.disconnected_servers = set([]) self.protocol = protocol self.set_proxy(proxy) self.start_interfaces() def stop_network(self): with self.interface_lock: self.print_error("stopping network") for interface in list(self.interfaces.values()): self.close_interface(interface) if self.interface: self.close_interface(self.interface) assert self.interface is None assert not self.interfaces self.connecting = set() # Get a new queue - no old pending connections thanks! self.socket_queue = queue.Queue() def set_parameters(self, host, port, protocol, proxy, auto_connect): with self.interface_lock: try: self.save_parameters(host, port, protocol, proxy, auto_connect) except ValueError: return self.load_parameters() def save_parameters(self, host, port, protocol, proxy, auto_connect): proxy_str = serialize_proxy(proxy) server = serialize_server(host, port, protocol) # sanitize parameters try: deserialize_server(serialize_server(host, port, protocol)) if proxy: proxy_modes.index(proxy["mode"]) + 1 int(proxy['port']) except: raise ValueError("invalid server or proxy") self.config.set_key('auto_connect', auto_connect, False) self.config.set_key("proxy", proxy_str, False) self.config.set_key("server", server, True) if self.config.get('server') != server or self.config.get('proxy') != proxy_str: raise ValueError("changes were not allowed by config") def load_parameters(self): server = self.get_config_server() protocol = deserialize_server(server)[2] proxy = deserialize_proxy(self.config.get('proxy')) self.auto_connect = self.config.get('auto_connect', DEFAULT_AUTO_CONNECT) if self.proxy != proxy or self.protocol != protocol: # Restart the network defaulting to the given server self.stop_network() self.default_server = server self.start_network(protocol, proxy) elif self.default_server != server: self.switch_to_interface(server, self.SWITCH_SET_PARAMETERS) else: self.switch_lagging_interface() self.notify('blockchain_updated') def get_config_server(self): server = self.config.get('server', None) if server: try: deserialize_server(server) except: self.print_error('Warning: failed to parse server-string; falling back to random.') server = None wl_only = self.is_whitelist_only() if (not server) or (server in self.blacklisted_servers) or (wl_only and server not in self.whitelisted_servers): hostmap = None if not wl_only else self.whitelisted_servers_hostmap server = pick_random_server(hostmap, exclude_set=self.blacklisted_servers) return server def switch_to_random_interface(self): """Switch to a random connected server other than the current one""" servers = self.get_interfaces() # Those in connected state if self.default_server in servers: servers.remove(self.default_server) if servers: self.switch_to_interface(random.choice(servers)) def switch_lagging_interface(self): """If auto_connect and lagging, switch interface""" if self.server_is_lagging() and self.auto_connect: # switch to one that has the correct header (not height) header = self.blockchain().read_header(self.get_local_height()) filtered = list(map(lambda x:x[0], filter(lambda x: x[1].tip_header==header, self.interfaces.items()))) if filtered: choice = random.choice(filtered) self.switch_to_interface(choice, self.SWITCH_LAGGING) SWITCH_DEFAULT = 'SWITCH_DEFAULT' SWITCH_RANDOM = 'SWITCH_RANDOM' SWITCH_LAGGING = 'SWITCH_LAGGING' SWITCH_SOCKET_LOOP = 'SWITCH_SOCKET_LOOP' SWITCH_FOLLOW_CHAIN = 'SWITCH_FOLLOW_CHAIN' SWITCH_SET_PARAMETERS = 'SWITCH_SET_PARAMETERS' def switch_to_interface(self, server, switch_reason=None): """Switch to server as our interface. If no connection exists nor being opened, start a thread to connect. The actual switch will happen on receipt of the connection notification. Do nothing if server already is our interface.""" self.default_server = server if server not in self.interfaces: self.interface = None self.start_interface(server) return i = self.interfaces[server] if self.interface != i: self.print_error("switching to '{}' reason '{}'".format(server, switch_reason)) # stop any current interface in order to terminate subscriptions # fixme: we don't want to close headers sub #self.close_interface(self.interface) self.interface = i self.send_subscriptions() self.set_status('connected') self.notify('blockchain_updated') def close_interface(self, interface): if interface: with self.interface_lock: if interface.server in self.interfaces: self.interfaces.pop(interface.server) if interface.server == self.default_server: self.interface = None interface.close() def add_recent_server(self, server): # list is ordered if server in self.recent_servers: self.recent_servers.remove(server) self.recent_servers.insert(0, server) self.recent_servers = self.recent_servers[0:20] self.save_recent_servers() def process_response(self, interface, request, response, callbacks): if self.debug: self.print_error("<--", response) error = response.get('error') result = response.get('result') method = response.get('method') params = response.get('params') # FIXME: # Do more to enforce result correctness, has the right data type, etc. # This code as it stands has been superficially audited for that but I # suspect it's still possible for a malicious server to cause clients # to throw up a crash reporter by sending unexpected JSON data types # or garbage data in the server response. # We handle some responses; return the rest to the client. if method == 'server.version': if isinstance(result, list): self.on_server_version(interface, result) elif method == 'blockchain.headers.subscribe': if error is None: # on_notify_header below validates result is right type or format self.on_notify_header(interface, result) elif method == 'server.peers.subscribe': if error is None and isinstance(result, list): self.irc_servers = parse_servers(result) self.notify('servers') elif method == 'server.banner': if error is None and isinstance(result, str): # limit banner results to 16kb to avoid minor DoS vector whereby # server sends a huge block of slow-to-render emojis which # brings some platforms to thier knees for a few minutes. self.banner = result[:16384] self.notify('banner') elif method == 'server.donation_address': if error is None and isinstance(result, str): self.donation_address = result elif method == 'blockchain.relayfee': try: if error is None and isinstance(result, (int, float)): self.relay_fee = int(result * bitcoin.CASH) self.print_error("relayfee", self.relay_fee) except (TypeError, ValueError) as e: self.print_error("bad server data in blockchain.relayfee:", result, "error:", repr(e)) elif method == 'blockchain.block.headers': try: self.on_block_headers(interface, request, response) except Exception as e: self.print_error(f"bad server response for {method}: {repr(e)} / {response}") self.connection_down(interface.server) elif method == 'blockchain.block.header': try: self.on_header(interface, request, response) except Exception as e: self.print_error(f"bad server response for {method}: {repr(e)} / {response}") self.connection_down(interface.server) for callback in callbacks: callback(response) def get_index(self, method, params): """ hashable index for subscriptions and cache""" return str(method) + (':' + str(params[0]) if params else '') def process_responses(self, interface): responses = interface.get_responses() for request, response in responses: if request: method, params, message_id = request k = self.get_index(method, params) # client requests go through self.send() with a # callback, are only sent to the current interface, # and are placed in the unanswered_requests dictionary client_req = self.unanswered_requests.pop(message_id, None) if client_req: if interface != self.interface: self.print_error("advisory: response from non-primary {}".format(interface)) callbacks = [client_req[2]] else: # fixme: will only work for subscriptions k = self.get_index(method, params) callbacks = self.subscriptions.get(k, []) # Copy the request method and params to the response response['method'] = method response['params'] = params # Only once we've received a response to an addr subscription # add it to the list; avoids double-sends on reconnection if method == 'blockchain.scripthash.subscribe': self.subscribed_addresses.add(params[0]) else: if not response: # Closed remotely / misbehaving self.connection_down(interface.server) break # Rewrite response shape to match subscription request response method = response.get('method') params = response.get('params') k = self.get_index(method, params) if method == 'blockchain.headers.subscribe': response['result'] = params[0] response['params'] = [] elif method == 'blockchain.scripthash.subscribe': response['params'] = [params[0]] # addr response['result'] = params[1] callbacks = self.subscriptions.get(k, []) # update cache if it's a subscription if method.endswith('.subscribe'): with self.interface_lock: self.sub_cache[k] = response # Response is now in canonical form self.process_response(interface, request, response, callbacks) def subscribe_to_scripthashes(self, scripthashes, callback): msgs = [('blockchain.scripthash.subscribe', [sh]) for sh in scripthashes] self.send(msgs, callback) def request_scripthash_history(self, sh, callback): self.send([('blockchain.scripthash.get_history', [sh])], callback) def send(self, messages, callback): """Messages is a list of (method, params) tuples""" messages = list(messages) if messages: # Guard against empty message-list which is a no-op and just wastes CPU to enque/dequeue (not even callback is called). I've seen the code send empty message lists before in synchronizer.py with self.pending_sends_lock: self.pending_sends.append((messages, callback)) def process_pending_sends(self): # Requests needs connectivity. If we don't have an interface, # we cannot process them. if not self.interface: return with self.pending_sends_lock: sends = self.pending_sends self.pending_sends = [] for messages, callback in sends: for method, params in messages: r = None if method.endswith('.subscribe'): k = self.get_index(method, params) # add callback to list l = self.subscriptions[k] # <-- it's a defaultdict(list) if callback not in l: l.append(callback) # check cached response for subscriptions r = self.sub_cache.get(k) if r is not None: util.print_error("cache hit", k) callback(r) else: self.queue_request(method, params, callback = callback) def _cancel_pending_sends(self, callback): ct = 0 with self.pending_sends_lock: for item in self.pending_sends.copy(): messages, _callback = item if callback == _callback: self.pending_sends.remove(item) ct += 1 return ct def unsubscribe(self, callback): '''Unsubscribe a callback to free object references to enable GC. It is advised that this function only be called from the network thread to avoid race conditions.''' # Note: we can't unsubscribe from the server, so if we receive # subsequent notifications, they will be safely ignored as # no callbacks will exist to process them. For subscriptions we will # however cache the 'result' hash and feed it back in case a wallet that # was closed gets reopened (self.sub_cache). ct = 0 with self.lock: for k,v in self.subscriptions.copy().items(): if callback in v: v.remove(callback) if not v: # remove empty list self.subscriptions.pop(k, None) ct += 1 ct2 = self._cancel_pending_sends(callback) if ct or ct2: qname = getattr(callback, '__qualname__', '<unknown>') self.print_error("Removed {} subscription callbacks and {} pending sends for callback: {}".format(ct, ct2, qname)) def cancel_requests(self, callback): '''Remove a callback to free object references to enable GC. It is advised that this function only be called from the network thread to avoid race conditions.''' # If the interface ends up answering these requests, they will just # be safely ignored. This is better than the alternative which is to # keep references to an object that declared itself defunct. ct = 0 for message_id, client_req in self.unanswered_requests.copy().items(): if callback == client_req[2]: self.unanswered_requests.pop(message_id, None) # guard against race conditions here. Note: this usually is called from the network thread but who knows what future programmers may do. :) ct += 1 ct2 = self._cancel_pending_sends(callback) if ct or ct2: qname = getattr(callback, '__qualname__', repr(callback)) self.print_error("Removed {} unanswered client requests and {} pending sends for callback: {}".format(ct, ct2, qname)) def connection_down(self, server, blacklist=False): '''A connection to server either went down, or was never made. We distinguish by whether it is in self.interfaces.''' if blacklist: self.server_set_blacklisted(server, True, save=True, skip_connection_logic=True) else: self.disconnected_servers.add(server) if server == self.default_server: self.set_status('disconnected') if server in self.interfaces: self.close_interface(self.interfaces[server]) self.notify('interfaces') for b in self.blockchains.values(): if b.catch_up == server: b.catch_up = None def new_interface(self, server_key, socket): self.add_recent_server(server_key) interface = Interface(server_key, socket, max_message_bytes=self.MAX_MESSAGE_BYTES, config=self.config) interface.blockchain = None interface.tip_header = None interface.tip = 0 interface.set_mode(Interface.MODE_VERIFICATION) with self.interface_lock: self.interfaces[server_key] = interface # server.version should be the first message params = [version.PACKAGE_VERSION, version.PROTOCOL_VERSION] self.queue_request('server.version', params, interface) # The interface will immediately respond with it's last known header. self.queue_request('blockchain.headers.subscribe', [], interface) if server_key == self.default_server: self.switch_to_interface(server_key, self.SWITCH_DEFAULT) def maintain_sockets(self): '''Socket maintenance.''' # Responses to connection attempts? while not self.socket_queue.empty(): server, socket = self.socket_queue.get() if server in self.connecting: self.connecting.remove(server) if socket: self.remove_bad_certificate(server) self.new_interface(server, socket) else: self.connection_down(server) # Send pings and shut down stale interfaces # must use copy of values with self.interface_lock: interfaces = list(self.interfaces.values()) for interface in interfaces: if interface.has_timed_out(): self.connection_down(interface.server) elif interface.ping_required(): self.queue_request('server.ping', [], interface) now = time.time() # nodes with self.interface_lock: server_count = len(self.interfaces) + len(self.connecting) if server_count < self.num_server: self.start_random_interface() if now - self.nodes_retry_time > self.NODES_RETRY_INTERVAL: self.print_error('network: retrying connections') self.disconnected_servers = set([]) self.nodes_retry_time = now # main interface with self.interface_lock: if not self.is_connected(): if self.auto_connect: if not self.is_connecting(): self.switch_to_random_interface() else: if self.default_server in self.disconnected_servers: if now - self.server_retry_time > self.SERVER_RETRY_INTERVAL: self.disconnected_servers.remove(self.default_server) self.server_retry_time = now else: self.switch_to_interface(self.default_server, self.SWITCH_SOCKET_LOOP) def request_chunk(self, interface, chunk_index): if chunk_index in self.requested_chunks: return False self.requested_chunks.add(chunk_index) interface.print_error("requesting chunk {}".format(chunk_index)) chunk_base_height = chunk_index * 2016 chunk_count = 2016 return self.request_headers(interface, chunk_base_height, chunk_count, silent=True) def request_headers(self, interface, base_height, count, silent=False): if not silent: interface.print_error("requesting multiple consecutive headers, from {} count {}".format(base_height, count)) if count > 2016: raise Exception("Server does not support requesting more than 2016 consecutive headers") top_height = base_height + count - 1 if top_height > networks.net.VERIFICATION_BLOCK_HEIGHT: if base_height < networks.net.VERIFICATION_BLOCK_HEIGHT: # As part of the verification process, we fetched the set of headers that allowed manual verification of the post-checkpoint headers that were fetched # as part of the "catch-up" process. This requested header batch overlaps the checkpoint, so we know we have the post-checkpoint segment from the # "catch-up". This leaves us needing some header preceding the checkpoint, and we can clip the batch to the checkpoint to ensure we can verify the # fetched batch, which we wouldn't otherwise be able to do manually as we cannot guarantee we have the headers preceding the batch. interface.print_error("clipping request across checkpoint height {} ({} -> {})".format(networks.net.VERIFICATION_BLOCK_HEIGHT, base_height, top_height)) verified_count = networks.net.VERIFICATION_BLOCK_HEIGHT - base_height + 1 return self._request_headers(interface, base_height, verified_count, networks.net.VERIFICATION_BLOCK_HEIGHT) else: return self._request_headers(interface, base_height, count) else: return self._request_headers(interface, base_height, count, networks.net.VERIFICATION_BLOCK_HEIGHT) def _request_headers(self, interface, base_height, count, checkpoint_height=0): params = [base_height, count, checkpoint_height] return self.queue_request('blockchain.block.headers', params, interface) is not None def on_block_headers(self, interface, request, response): '''Handle receiving a chunk of block headers''' error = response.get('error') result = response.get('result') params = response.get('params') if not request or result is None or params is None or error is not None: interface.print_error(error or 'bad response') # Ensure the chunk can be rerequested, but only if the request originated from us. if request and request[1][0] // 2016 in self.requested_chunks: self.requested_chunks.remove(request[1][0] // 2016) return # Ignore unsolicited chunks request_params = request[1] request_base_height = request_params[0] expected_header_count = request_params[1] index = request_base_height // 2016 if request_params != params: interface.print_error("unsolicited chunk base_height={} count={}".format(request_base_height, expected_header_count)) return if index in self.requested_chunks: self.requested_chunks.remove(index) header_hexsize = blockchain.HEADER_SIZE * 2 hexdata = result['hex'] actual_header_count = len(hexdata) // header_hexsize # We accept less headers than we asked for, to cover the case where the distance to the tip was unknown. if actual_header_count > expected_header_count: interface.print_error("chunk data size incorrect expected_size={} actual_size={}".format(expected_header_count * header_hexsize, len(hexdata))) return proof_was_provided = False if 'root' in result and 'branch' in result: header_height = request_base_height + actual_header_count - 1 header_offset = (actual_header_count - 1) * header_hexsize header = hexdata[header_offset : header_offset + header_hexsize] if not self.validate_checkpoint_result(interface, result["root"], result["branch"], header, header_height): # Got checkpoint validation data, server failed to provide proof. interface.print_error("disconnecting server for incorrect checkpoint proof") self.connection_down(interface.server, blacklist=True) return data = bytes.fromhex(hexdata) try: blockchain.verify_proven_chunk(request_base_height, data) except blockchain.VerifyError as e: interface.print_error('disconnecting server for failed verify_proven_chunk: {}'.format(e)) self.connection_down(interface.server, blacklist=True) return proof_was_provided = True elif len(request_params) == 3 and request_params[2] != 0: # Expected checkpoint validation data, did not receive it. self.connection_down(interface.server) return verification_top_height = self.checkpoint_servers_verified.get(interface.server, {}).get('height', None) was_verification_request = verification_top_height and request_base_height == verification_top_height - 147 + 1 and actual_header_count == 147 initial_interface_mode = interface.mode if interface.mode == Interface.MODE_VERIFICATION: if not was_verification_request: interface.print_error("disconnecting unverified server for sending unrelated header chunk") self.connection_down(interface.server, blacklist=True) return if not proof_was_provided: interface.print_error("disconnecting unverified server for sending verification header chunk without proof") self.connection_down(interface.server, blacklist=True) return if not self.apply_successful_verification(interface, request_params[2], result['root']): return # We connect this verification chunk into the longest chain. target_blockchain = self.blockchains[0] else: target_blockchain = interface.blockchain chunk_data = bytes.fromhex(hexdata) connect_state = (target_blockchain.connect_chunk(request_base_height, chunk_data, proof_was_provided) if target_blockchain else blockchain.CHUNK_BAD) # fix #1079 -- invariant is violated here due to extant bugs, so rather than raise an exception, just trigger a connection_down below... if connect_state == blockchain.CHUNK_ACCEPTED: interface.print_error("connected chunk, height={} count={} proof_was_provided={}".format(request_base_height, actual_header_count, proof_was_provided)) elif connect_state == blockchain.CHUNK_FORKS: interface.print_error("identified forking chunk, height={} count={}".format(request_base_height, actual_header_count)) # We actually have all the headers up to the bad point. In theory we # can use them to detect a fork point in some cases. But that's bonus # work for someone later. # Discard the chunk and do a normal search for the fork point. # Note that this will not give us the right blockchain, the # syncing does not work that way historically. That might # wait until either a new block appears, or if False: interface.blockchain = None interface.set_mode(Interface.MODE_BACKWARD) interface.bad = request_base_height + actual_header_count - 1 interface.bad_header = blockchain.HeaderChunk(request_base_height, chunk_data).get_header_at_height(interface.bad) self.request_header(interface, min(interface.tip, interface.bad - 1)) return else: interface.print_error("discarded bad chunk, height={} count={} reason={}".format(request_base_height, actual_header_count, connect_state)) self.connection_down(interface.server) return # This interface was verified above. Get it syncing. if initial_interface_mode == Interface.MODE_VERIFICATION: self._process_latest_tip(interface) return # If not finished, get the next chunk. if proof_was_provided and not was_verification_request: # the verifier must have asked for this chunk. It has been overlaid into the file. pass else: if interface.blockchain.height() < interface.tip: self.request_headers(interface, request_base_height + actual_header_count, 2016) else: interface.set_mode(Interface.MODE_DEFAULT) interface.print_error('catch up done', interface.blockchain.height()) interface.blockchain.catch_up = None self.notify('blockchain_updated') def request_header(self, interface, height): """ This works for all modes except for 'default'. If it is to be used for piecemeal filling of the sparse blockchain headers file before the checkpoint height, it needs extra handling for the 'default' mode. A server interface does not get associated with a blockchain until it gets handled in the response to its first header request. """ interface.print_error(f"requesting header {height}") if height > networks.net.VERIFICATION_BLOCK_HEIGHT: params = [height] else: params = [height, networks.net.VERIFICATION_BLOCK_HEIGHT] self.queue_request('blockchain.block.header', params, interface) return True def on_header(self, interface, request, response): """Handle receiving a single block header""" result = response.get('result') if not result: interface.print_error(response) self.connection_down(interface.server) return if not request: interface.print_error("disconnecting server for sending unsolicited header, no request, params={}".format(response['params']), blacklist=True) self.connection_down(interface.server) return request_params = request[1] height = request_params[0] response_height = response['params'][0] # This check can be removed if request/response params are reconciled in some sort of rewrite. if height != response_height: interface.print_error("unsolicited header request={} request_height={} response_height={}".format(request_params, height, response_height)) self.connection_down(interface.server) return proof_was_provided = False hexheader = None if 'root' in result and 'branch' in result and 'header' in result: hexheader = result["header"] if not self.validate_checkpoint_result(interface, result["root"], result["branch"], hexheader, height): # Got checkpoint validation data, failed to provide proof. interface.print_error("unprovable header request={} height={}".format(request_params, height)) self.connection_down(interface.server) return proof_was_provided = True else: hexheader = result # Simple header request. header = blockchain.deserialize_header(bytes.fromhex(hexheader), height) # Is there a blockchain that already includes this header? chain = blockchain.check_header(header) if interface.mode == Interface.MODE_BACKWARD: if chain: interface.print_error("binary search") interface.set_mode(Interface.MODE_BINARY) interface.blockchain = chain interface.good = height next_height = (interface.bad + interface.good) // 2 else: # A backwards header request should not happen before the # checkpoint height. It isn't requested in this context, and it # isn't requested anywhere else. If this happens it is an error. # Additionally, if the checkpoint height header was requested # and it does not connect, then there's not much Electron Cash # can do about it (that we're going to bother). We depend on the # checkpoint being relevant for the blockchain the user is # running against. if height <= networks.net.VERIFICATION_BLOCK_HEIGHT: self.connection_down(interface.server) next_height = None else: interface.bad = height interface.bad_header = header delta = interface.tip - height # If the longest chain does not connect at any point we check to the chain this interface is # serving, then we fall back on the checkpoint height which is expected to work. next_height = max(networks.net.VERIFICATION_BLOCK_HEIGHT, interface.tip - 2 * delta) elif interface.mode == Interface.MODE_BINARY: if chain: interface.good = height interface.blockchain = chain else: interface.bad = height interface.bad_header = header if interface.bad != interface.good + 1: next_height = (interface.bad + interface.good) // 2 elif not interface.blockchain.can_connect(interface.bad_header, check_height=False): self.connection_down(interface.server) next_height = None else: branch = self.blockchains.get(interface.bad) if branch is not None: if branch.check_header(interface.bad_header): interface.print_error('joining chain', interface.bad) next_height = None elif branch.parent().check_header(header): interface.print_error('reorg', interface.bad, interface.tip) interface.blockchain = branch.parent() next_height = None else: interface.print_error('checkpoint conflicts with existing fork', branch.path()) branch.write(b'', 0) branch.save_header(interface.bad_header) interface.set_mode(Interface.MODE_CATCH_UP) interface.blockchain = branch next_height = interface.bad + 1 interface.blockchain.catch_up = interface.server else: bh = interface.blockchain.height() next_height = None if bh > interface.good: if not interface.blockchain.check_header(interface.bad_header): b = interface.blockchain.fork(interface.bad_header) self.blockchains[interface.bad] = b interface.blockchain = b interface.print_error("new chain", b.base_height) interface.set_mode(Interface.MODE_CATCH_UP) next_height = interface.bad + 1 interface.blockchain.catch_up = interface.server else: assert bh == interface.good if interface.blockchain.catch_up is None and bh < interface.tip: interface.print_error("catching up from %d"% (bh + 1)) interface.set_mode(Interface.MODE_CATCH_UP) next_height = bh + 1 interface.blockchain.catch_up = interface.server self.notify('blockchain_updated') elif interface.mode == Interface.MODE_CATCH_UP: can_connect = interface.blockchain.can_connect(header) if can_connect: interface.blockchain.save_header(header) next_height = height + 1 if height < interface.tip else None else: # go back interface.print_error("cannot connect", height) interface.set_mode(Interface.MODE_BACKWARD) interface.bad = height interface.bad_header = header next_height = height - 1 if next_height is None: # exit catch_up state interface.print_error('catch up done', interface.blockchain.height()) interface.blockchain.catch_up = None self.switch_lagging_interface() self.notify('blockchain_updated') elif interface.mode == Interface.MODE_DEFAULT: interface.print_error("ignored header {} received in default mode".format(height)) return # If not finished, get the next header if next_height: if interface.mode == Interface.MODE_CATCH_UP and interface.tip > next_height: self.request_headers(interface, next_height, 2016) else: self.request_header(interface, next_height) else: interface.set_mode(Interface.MODE_DEFAULT) self.notify('blockchain_updated') # refresh network dialog self.notify('interfaces') def find_bad_fds_and_kill(self): bad = [] with self.interface_lock: for s,i in self.interfaces.copy().items(): try: r, w, x = select.select([i],[i],[],0) # non-blocking select to test if fd's are good. except (OSError, ValueError): i.print_error("Bad file descriptor {}, closing".format(i.fileno())) self.connection_down(s) bad.append(i) if bad: self.print_error("{} bad file descriptors detected and shut down: {}".format(len(bad), bad)) return bad def wait_on_sockets(self): def try_to_recover(err): self.print_error("wait_on_sockets: {} raised by select() call.. trying to recover...".format(err)) self.find_bad_fds_and_kill() rin = [] win = [] r_immed = [] with self.interface_lock: interfaces = list(self.interfaces.values()) for interface in interfaces: if interface.fileno() < 0: continue read_pending, write_pending = interface.pipe.get_selectloop_info() if read_pending: r_immed.append(interface) else: rin.append(interface) if write_pending or interface.num_requests(): win.append(interface) timeout = 0 if r_immed else 0.1 try: # Python docs say Windows doesn't like empty selects. if win or rin: rout, wout, xout = select.select(rin, win, [], timeout) else: rout = wout = xout = () if timeout: # Sleep to prevent busy looping time.sleep(timeout) except socket.error as e: code = None if isinstance(e, OSError): # Should always be the case unless ancient python3 code = e.errno if code == errno.EINTR: return # calling loop will try again later elif code == errno.EBADF: # A filedescriptor was closed from underneath us because we have race conditions in this class. :( # Note that due to race conditions with the gui thread even with the checks above it's entirely possible # for the socket fd to become -1, or to be not -1 but still be invalid/closed. try_to_recover("EBADF") return # calling loop will try again later raise # ruh ruh. user will get a crash dialog screen and network will die. FIXME: figure out a way to restart network.. except ValueError: # Note sometimes select() ends up getting a file descriptor that's -1 because race conditions, in which case it raises # ValueError try_to_recover("ValueError") return # calling loop will try again later assert not xout for interface in wout: if not interface.send_requests(): self.connection_down(interface.server) for interface in r_immed: self.process_responses(interface) for interface in rout: self.process_responses(interface) def init_headers_file(self): b = self.blockchains[0] filename = b.path() # NB: HEADER_SIZE = 80 bytes length = blockchain.HEADER_SIZE * (networks.net.VERIFICATION_BLOCK_HEIGHT + 1) if not os.path.exists(filename) or os.path.getsize(filename) < length: with open(filename, 'wb') as f: if length>0: f.seek(length-1) f.write(b'\x00') util.ensure_sparse_file(filename) with b.lock: b.update_size() def run(self): b = self.blockchains[0] header = None if networks.net.VERIFICATION_BLOCK_HEIGHT is not None: self.init_headers_file() header = b.read_header(networks.net.VERIFICATION_BLOCK_HEIGHT) if header is not None: self.verified_checkpoint = True while self.is_running(): self.maintain_sockets() self.wait_on_sockets() if self.verified_checkpoint: self.run_jobs() # Synchronizer and Verifier and Fx self.process_pending_sends() self.stop_network() self.tor_controller.active_port_changed.remove(self.on_tor_port_changed) self.tor_controller.stop() self.tor_controller = None self.on_stop() def on_server_version(self, interface, version_data): interface.server_version = version_data def on_notify_header(self, interface, header_dict): """ When we subscribe for 'blockchain.headers.subscribe', a server will send us it's topmost header. After that, it will forward on any additional headers as it receives them. """ if (not isinstance(header_dict, dict) or 'hex' not in header_dict or 'height' not in header_dict): # bad and/or unexpected response from server. self.connection_down(interface.server) return header_hex = header_dict['hex'] height = header_dict['height'] header = blockchain.deserialize_header(bytes.fromhex(header_hex), height) # If the server is behind the verification height, then something is wrong with it. Drop it. if networks.net.VERIFICATION_BLOCK_HEIGHT is not None and height <= networks.net.VERIFICATION_BLOCK_HEIGHT: self.connection_down(interface.server) return # We will always update the tip for the server. interface.tip_header = header interface.tip = height if interface.mode == Interface.MODE_VERIFICATION: # If the server has already had this requested, this will be a no-op. self.request_initial_proof_and_headers(interface) return self._process_latest_tip(interface) def _process_latest_tip(self, interface): if interface.mode != Interface.MODE_DEFAULT: return header = interface.tip_header height = interface.tip b = blockchain.check_header(header) # Does it match the hash of a known header. if b: interface.blockchain = b self.switch_lagging_interface() self.notify('blockchain_updated') self.notify('interfaces') return b = blockchain.can_connect(header) # Is it the next header on a given blockchain. if b: interface.blockchain = b b.save_header(header) self.switch_lagging_interface() self.notify('blockchain_updated') self.notify('interfaces') return heights = [x.height() for x in self.blockchains.values()] tip = max(heights) if tip > networks.net.VERIFICATION_BLOCK_HEIGHT: interface.print_error("attempt to reconcile longest chain tip={} heights={}".format(tip, heights)) interface.set_mode(Interface.MODE_BACKWARD) interface.bad = height interface.bad_header = header self.request_header(interface, min(tip, height - 1)) else: interface.print_error("attempt to catch up tip={} heights={}".format(tip, heights)) chain = self.blockchains[0] if chain.catch_up is None: chain.catch_up = interface interface.set_mode(Interface.MODE_CATCH_UP) interface.blockchain = chain interface.print_error("switching to catchup mode", tip) self.request_header(interface, networks.net.VERIFICATION_BLOCK_HEIGHT + 1) else: interface.print_error("chain already catching up with", chain.catch_up.server) def request_initial_proof_and_headers(self, interface): # This will be the initial topmost header response. But we might get new blocks. if interface.server not in self.checkpoint_servers_verified: interface.print_error("request_initial_proof_and_headers pending") top_height = self.checkpoint_height # If there is no known checkpoint height for this network, we look to get # a given number of confirmations for the same conservative height. if self.checkpoint_height is None: self.checkpoint_height = interface.tip - 100 self.checkpoint_servers_verified[interface.server] = { 'root': None, 'height': self.checkpoint_height } # We need at least 147 headers before the post checkpoint headers for daa calculations. self._request_headers(interface, self.checkpoint_height - 147 + 1, 147, self.checkpoint_height) else: # We already have them verified, maybe we got disconnected. interface.print_error("request_initial_proof_and_headers bypassed") interface.set_mode(Interface.MODE_DEFAULT) self._process_latest_tip(interface) def apply_successful_verification(self, interface, checkpoint_height, checkpoint_root): known_roots = [ v['root'] for v in self.checkpoint_servers_verified.values() if v['root'] is not None ] if len(known_roots) > 0 and checkpoint_root != known_roots[0]: interface.print_error("server sent inconsistent root '{}'".format(checkpoint_root)) self.connection_down(interface.server) return False self.checkpoint_servers_verified[interface.server]['root'] = checkpoint_root # rt12 --- checkpoint generation currently disabled. if False: interface.print_error("received verification {}".format(self.verifications_required)) self.verifications_required -= 1 if self.verifications_required > 0: return False if networks.net.VERIFICATION_BLOCK_HEIGHT is None: networks.net.VERIFICATION_BLOCK_HEIGHT = checkpoint_height networks.net.VERIFICATION_BLOCK_MERKLE_ROOT = checkpoint_root network_name = "TESTNET" if networks.net.TESTNET else "MAINNET" self.print_error("found verified checkpoint for {} at height {} with merkle root {!r}".format(network_name, checkpoint_height, checkpoint_root)) if not self.verified_checkpoint: self.init_headers_file() self.verified_checkpoint = True # rt12 --- checkpoint generation currently disabled. if False: with self.interface_lock: interfaces = list(self.interfaces.values()) for interface_entry in interfaces: interface_entry.blockchain = self.blockchains[0] interface_entry.set_mode(Interface.MODE_DEFAULT) interface.print_error("server was verified correctly") interface.set_mode(Interface.MODE_DEFAULT) return True def validate_checkpoint_result(self, interface, merkle_root, merkle_branch, header, header_height): """ header: hex representation of the block header. merkle_root: hex representation of the server's calculated merkle root. branch: list of hex representations of the server's calculated merkle root branches. Returns a boolean to represent whether the server's proof is correct. """ received_merkle_root = bytes(reversed(bytes.fromhex(merkle_root))) if networks.net.VERIFICATION_BLOCK_MERKLE_ROOT: expected_merkle_root = bytes(reversed( bytes.fromhex(networks.net.VERIFICATION_BLOCK_MERKLE_ROOT))) else: expected_merkle_root = received_merkle_root if received_merkle_root != expected_merkle_root: interface.print_error("Sent unexpected merkle root, expected: {}, got: {}".format(networks.net.VERIFICATION_BLOCK_MERKLE_ROOT, merkle_root)) return False header_hash = bitcoin.Hash(bytes.fromhex(header)) byte_branches = [ bytes(reversed(bytes.fromhex(v))) for v in merkle_branch ] proven_merkle_root = blockchain.root_from_proof(header_hash, byte_branches, header_height) if proven_merkle_root != expected_merkle_root: interface.print_error("Sent incorrect merkle branch, expected: {}, proved: {}".format(networks.net.VERIFICATION_BLOCK_MERKLE_ROOT, util.hfu(reversed(proven_merkle_root)))) return False return True def blockchain(self): with self.interface_lock: if self.interface and self.interface.blockchain is not None: self.blockchain_index = self.interface.blockchain.base_height return self.blockchains[self.blockchain_index] def get_blockchains(self): out = {} for k, b in self.blockchains.items(): r = list(filter(lambda i: i.blockchain==b, list(self.interfaces.values()))) if r: out[k] = r return out def follow_chain(self, index): blockchain = self.blockchains.get(index) if blockchain: self.blockchain_index = index self.config.set_key('blockchain_index', index) with self.interface_lock: interfaces = list(self.interfaces.values()) for i in interfaces: if i.blockchain == blockchain: self.switch_to_interface(i.server, self.SWITCH_FOLLOW_CHAIN) break else: raise BaseException('blockchain not found', index) with self.interface_lock: if self.interface: server = self.interface.server host, port, protocol, proxy, auto_connect = self.get_parameters() host, port, protocol = server.split(':') self.set_parameters(host, port, protocol, proxy, auto_connect) def get_local_height(self): return self.blockchain().height() def synchronous_get(self, request, timeout=30): q = queue.Queue() self.send([request], q.put) try: r = q.get(True, timeout) except queue.Empty: raise util.TimeoutException('Server did not answer') if r.get('error'): raise util.ServerError(r.get('error')) return r.get('result') def get_raw_tx_for_txid(self, txid, timeout=30): """ Used by UI code to retrieve a transaction from the blockchain by txid. (Qt Gui: Tools -> Load transaction -> From the blockchain) param: txid, a transaction hash returns: tuple(True, raw_tx) on success tuple(False, error_msg) on failure. error_msg is suitable to be displayed in a UI as it is not a server string, but rather an error based on what the server replied with (with a generic fallback message is used if the server message is not recognized). """ txid = str(txid).strip() try: r = self.synchronous_get(('blockchain.transaction.get',[txid]), timeout=timeout) return True, r except BaseException as e: self.print_error("Exception retrieving transaction for '{}': {}".format(txid, repr(e))) msg = str(e).lower().strip() if 'should be a transaction hash' in msg: msg = _("Input data is not a transaction hash.") elif 'still in the process of being indexed' in msg: msg = _("This server is still indexing transactions. You should switch to another server for now.") elif 'no such' in msg: msg = _("No such mempool or blockchain transaction exists.") elif 'did not answer' in msg: msg = _("The server did not answer; network may be down.") else: # fall back to something generic. msg = _("Could not retrieve transaction for the specified hash.") return False, msg @staticmethod def __wait_for(it, timeout=30): """Wait for the result of calling lambda `it`. Will raise util.TimeoutException or util.ServerErrorResponse on failure.""" q = queue.Queue() it(q.put) try: result = q.get(block=True, timeout=(timeout or 0.010)) # does not support non-blocking except queue.Empty: raise util.TimeoutException(_('Server did not answer')) if result.get('error'): raise util.ServerErrorResponse(_("Server returned an error response"), result.get('error')) return result.get('result') @staticmethod def __with_default_synchronous_callback(invocation, callback): """ Use this method if you want to make the network request synchronous. """ if not callback: return Network.__wait_for(invocation) invocation(callback) def broadcast_transaction(self, transaction, callback=None): """ This is the legacy EC/Electrum API that we still need to support for plugins and other code, but it has been improved to not allow for phishing attacks by calling broadcast_transaction2 which actually deduces a more intelligent and phishing-proof error message. If you want the actual server response, use broadcast_transaction2 and catch exceptions. """ if callback: command = 'blockchain.transaction.broadcast' self.send([(command, [str(transaction)])], callback) return try: out = self.broadcast_transaction2(transaction) except BaseException as e: #catch-all. May be util.TimeoutException, util.ServerError subclass or other. return False, "error: " + str(e) # Ergh. To remain compatible with old code we prepend this ugly "error: " return True, out def broadcast_transaction2(self, transaction, timeout=30): """ Very similar to broadcast_transation() but it actually tells calling code what the nature of the error was in a more explicit manner by raising an Exception. Normally a util.TimeoutException, util.TxHashMismatch, or util.ServerErrorResonse is raised on broadcast error or warning. TxHashMismatch indicates the broadcast succeeded but that the tx hash returned by the server does not match the tx hash of the specified transaction. All other exceptions indicate no broadcast has successfully occurred. Does not support using a callback function.""" command = 'blockchain.transaction.broadcast' invocation = lambda c: self.send([(command, [str(transaction)])], c) try: out = Network.__wait_for(invocation, timeout=timeout) # may raise util.TimeoutException, util.ServerErrorResponse except util.ServerErrorResponse as e: # rephrase the generic message to something more suitable self.print_error("Server error response was:", str(e.server_msg)) raise util.ServerErrorResponse(Network.transmogrify_broadcast_response_for_gui(e.server_msg), e.server_msg) if out != transaction.txid(): self.print_error("Server replied with a mismatching txid:", str(out)) raise util.TxHashMismatch(_("Server response does not match signed transaction ID."), str(out)) return out @staticmethod def transmogrify_broadcast_response_for_gui(server_msg): # NB: the server_msg is usually a dict but not always. # Unfortunately, ElectrumX doesn't return a good error code. It's always '1'. # So, we must use substring matching to grok the error message. # We do NOT ever want to print to the user the server message as this has potential for a phishing exploit. # See: https://github.com/spesmilo/electrum/issues/4968 # So.. these messages mostly come from groking the source code of BU and Bitcoin ABC. If that fails, # a generic error string is returned. if not isinstance(server_msg, str): server_msg = str(server_msg) server_msg = server_msg.replace("\n", r"\n") # replace \n with slash-n because dict does this. if r'dust' in server_msg: dust_thold = 546 try: from .wallet import dust_threshold dust_thold = dust_threshold(Network.get_instance()) except: pass return _("Transaction could not be broadcast due to dust outputs (dust threshold is {} satoshis).").format(dust_thold) elif r'Missing inputs' in server_msg or r'Inputs unavailable' in server_msg or r"bad-txns-inputs-spent" in server_msg or r"bad-txns-inputs-missingorspent" in server_msg: return _("Transaction could not be broadcast due to missing, already-spent, or otherwise invalid inputs.") elif r"transaction already in block chain" in server_msg: # We get this message whenever any of this transaction's outputs are already in confirmed utxo set (and are unspent). # For confirmed txn with all outputs already spent, we will see "missing inputs" instead. return _("The transaction already exists in the blockchain.") elif r'insufficient priority' in server_msg or r'rate limited free transaction' in server_msg or r'min relay fee not met' in server_msg: return _("The transaction was rejected due to paying insufficient fees.") elif r'mempool min fee not met' in server_msg or r"mempool full" in server_msg: return _("The transaction was rejected due to paying insufficient fees (possibly due to network congestion).") elif r'bad-txns-premature-spend-of-coinbase' in server_msg: return _("Transaction could not be broadcast due to an attempt to spend a coinbase input before maturity.") elif r"txn-already-in-mempool" in server_msg or r"txn-already-known" in server_msg: return _("The transaction already exists in the server's mempool.") elif r"txn-mempool-conflict" in server_msg: return _("The transaction conflicts with a transaction already in the server's mempool.") elif r'too-long-mempool-chain' in server_msg: return _("The transaction was rejected due to having too many mempool ancestors. Wait for confirmations and try again.") elif r"bad-txns-nonstandard-inputs" in server_msg: return _("The transaction was rejected due to its use of non-standard inputs.") elif r"absurdly-high-fee" in server_msg: return _("The transaction was rejected because it specifies an absurdly high fee.") elif r"non-mandatory-script-verify-flag" in server_msg or r"mandatory-script-verify-flag-failed" in server_msg or r"upgrade-conditional-script-failure" in server_msg: return _("The transaction was rejected due to an error in script execution.") elif r"tx-size" in server_msg or r"bad-txns-oversize" in server_msg: return _("The transaction was rejected because it is too large (in bytes).") elif r"scriptsig-size" in server_msg: return _("The transaction was rejected because it contains a script that is too large.") elif r"scriptpubkey" in server_msg: return _("The transaction was rejected because it contains a non-standard output script.") elif r"bare-multisig" in server_msg: return _("The transaction was rejected because it contains a bare multisig output.") elif r"multi-op-return" in server_msg: return _("The transaction was rejected because it contains multiple OP_RETURN outputs.") elif r"scriptsig-not-pushonly" in server_msg: return _("The transaction was rejected because it contains non-push-only script sigs.") elif r'bad-txns-nonfinal' in server_msg or r'non-BIP68-final' in server_msg: return _("The transaction was rejected because it is not considered final according to network rules.") elif r"bad-txns-too-many-sigops" in server_msg or r"bad-txn-sigops" in server_msg: # std limit is 4000; this is basically impossible to reach on mainnet using normal txes, due to the 100kB size limit. return _("The transaction was rejected because it contains too many signature-check opcodes.") elif r"bad-txns-inputvalues-outofrange" in server_msg or r"bad-txns-vout-negative" in server_msg or r"bad-txns-vout-toolarge" in server_msg or r"bad-txns-txouttotal-toolarge" in server_msg: return _("The transaction was rejected because its amounts are out of range.") elif r"bad-txns-in-belowout" in server_msg or r"bad-txns-fee-outofrange" in server_msg: return _("The transaction was rejected because it pays a negative or huge fee.") elif r"bad-tx-coinbase" in server_msg: return _("The transaction was rejected because it is a coinbase transaction.") elif r"bad-txns-prevout-null" in server_msg or r"bad-txns-inputs-duplicate" in server_msg: return _("The transaction was rejected because it contains null or duplicate inputs.") elif r"bad-txns-vin-empty" in server_msg or r"bad-txns-vout-empty" in server_msg: return _("The transaction was rejected because it is has no inputs or no outputs.") elif r"bad-txns-undersize" in server_msg: return _("The transaction was rejected because it is too small.") elif r'version' in server_msg: return _("The transaction was rejected because it uses a non-standard version.") elif r'TX decode failed' in server_msg: return _("The transaction could not be decoded.") return _("An error occurred broadcasting the transaction") # Used by the verifier job. def get_merkle_for_transaction(self, tx_hash, tx_height, callback, max_qlen=10): """ Asynchronously enqueue a request for a merkle proof for a tx. Note that the callback param is required. May return None if too many requests were enqueued (max_qlen) or if there is no interface. Client code should handle the None return case appropriately. """ return self.queue_request('blockchain.transaction.get_merkle', [tx_hash, tx_height], callback=callback, max_qlen=max_qlen) def get_proxies(self): """ Returns a proxies dictionary suitable to be passed to the requests module, or None if no proxy is set for this instance. """ proxy = self.proxy and self.proxy.copy() # retain a copy in case another thread messes with it if proxy: pre = '' # proxies format for requests lib is eg: # { # 'http' : 'socks[45]://user:password@host:port', # 'https' : 'socks[45]://user:password@host:port' # } # with user:password@ being omitted if no user/password. if proxy.get('user') and proxy.get('password'): pre = '{}:{}@'.format(proxy.get('user'), proxy.get('password')) mode = proxy.get('mode') if mode and mode.lower() == "socks5": mode += 'h' # socks5 with hostname resolution on the server side so it works with tor & even onion! socks = '{}://{}{}:{}'.format(mode, pre, proxy.get('host'), proxy.get('port')) proxies = { # transform it to requests format 'http' : socks, 'https' : socks } return proxies return None def on_bad_certificate(self, server, certificate): if server in self.bad_certificate_servers: return self.bad_certificate_servers[server] = certificate self.server_list_updated() def remove_bad_certificate(self, server): if server not in self.bad_certificate_servers: return del self.bad_certificate_servers[server] self.server_list_updated() def remove_pinned_certificate(self, server): cert_file = self.bad_certificate_servers.get(server) if not cert_file: return False try: os.unlink(cert_file) self.print_error("Removed pinned certificate:", cert_file) except OSError as e: self.print_error("Could not remove pinned certificate:", cert_file, repr(e)) if os.path.exists(cert_file): # Don't remove from bad certificate list if we failed to unpin return False self.remove_bad_certificate(server) return True def server_is_bad_certificate(self, server): return server in self.bad_certificate_servers def server_set_blacklisted(self, server, b, save=True, skip_connection_logic=False): assert isinstance(server, str) if b: self.blacklisted_servers |= {server} else: self.blacklisted_servers -= {server} self.config.set_key("server_blacklist", list(self.blacklisted_servers), save) if b and not skip_connection_logic and server in self.interfaces: self.connection_down(server, False) # if blacklisting, this disconnects (if we were connected) def server_is_blacklisted(self, server): return server in self.blacklisted_servers def server_set_whitelisted(self, server, b, save=True): assert isinstance(server, str) adds = set(self.config.get('server_whitelist_added', [])) rems = set(self.config.get('server_whitelist_removed', [])) is_hardcoded = server in self._hardcoded_whitelist s = {server} # make a set so |= and -= work len0 = len(self.whitelisted_servers) if b: # the below logic keeps the adds list from containing redundant 'whitelisted' servers that are already defined in servers.json # it also makes it so that if the developers remove a server from servers.json, it goes away from the whitelist automatically. if is_hardcoded: adds -= s # it's in the hardcoded list anyway, remove it from adds to keep adds from being redundant else: adds |= s # it's not a hardcoded server, add it to 'adds' rems -= s self.whitelisted_servers |= s else: adds -= s if is_hardcoded: rems |= s # it's in the hardcoded set, so it needs to explicitly be added to the 'rems' set to be taken out of the dynamically computed whitelist (_compute_whitelist()) else: rems -= s # it's not in the hardcoded list, so no need to add it to the rems as it will be not whitelisted on next run since it's gone from 'adds' self.whitelisted_servers -= s if len0 != len(self.whitelisted_servers): # it changed. So re-cache hostmap which we use as an argument to pick_random_server() elsewhere in this class self.whitelisted_servers_hostmap = servers_to_hostmap(self.whitelisted_servers) self.config.set_key('server_whitelist_added', list(adds), save) self.config.set_key('server_whitelist_removed', list(rems), save) def server_is_whitelisted(self, server): return server in self.whitelisted_servers def _compute_whitelist(self): if not hasattr(self, '_hardcoded_whitelist'): self._hardcoded_whitelist = frozenset(hostmap_to_servers(networks.net.DEFAULT_SERVERS)) ret = set(self._hardcoded_whitelist) ret |= set(self.config.get('server_whitelist_added', [])) # this key is all the servers that weren't in the hardcoded whitelist that the user explicitly added ret -= set(self.config.get('server_whitelist_removed', [])) # this key is all the servers that were hardcoded in the whitelist that the user explicitly removed return ret, servers_to_hostmap(ret) def is_whitelist_only(self): return bool(self.config.get('whitelist_servers_only', DEFAULT_WHITELIST_SERVERS_ONLY)) def set_whitelist_only(self, b): if bool(b) == self.is_whitelist_only(): return # disallow redundant/noop calls self.config.set_key('whitelist_servers_only', b, True) if b: with self.interface_lock: # now, disconnect from all non-whitelisted servers for s in self.interfaces.copy(): if s not in self.whitelisted_servers: self.connection_down(s)
48.265226
210
0.629086
4a1925abf207946c8961a7053be98febf5ab4e6b
1,244
py
Python
apprtc/fabfile.py
walterfan/webrtc_snippets
6964560a91ad3338fe8c50a9a250d0a0978eb42a
[ "Apache-2.0" ]
null
null
null
apprtc/fabfile.py
walterfan/webrtc_snippets
6964560a91ad3338fe8c50a9a250d0a0978eb42a
[ "Apache-2.0" ]
null
null
null
apprtc/fabfile.py
walterfan/webrtc_snippets
6964560a91ad3338fe8c50a9a250d0a0978eb42a
[ "Apache-2.0" ]
null
null
null
from asyncio import tasks from fabric.api import * from fabric.context_managers import * from fabric.contrib.console import confirm from datetime import date from sys import platform import os, subprocess import psutil import platform BASE_PATH = os.path.dirname(__file__) appserver_ports = {} """ Linux: Linux Mac: Darwin Windows: Windows """ @task def test(): os_type = platform.system() print(os_type) @task def start_server(local_ip=None): if not local_ip: cmd0 = "ifconfig en0 | grep inet | awk '$1==\"inet\" {print $2}'" stdoutput = subprocess.check_output(cmd0, shell=True) local_ip = stdoutput.decode('utf-8') print(local_ip) os_type = platform.system() if os_type == 'Darwin': cmd1 = """ docker run --rm \ -p 8080:8080 -p 8089:8089 -p 3478:3478 -p 3478:3478/udp -p 3033:3033 \ -p 59000-65000:59000-65000/udp \ -e PUBLIC_IP=%s \ -it piasy/apprtc-server """ local(cmd1.strip() % local_ip.strip()) elif os_type == 'Linux': cmd1 = "docker run --rm --net=host \ -e PUBLIC_IP=%s \ -it piasy/apprtc-server" print(cmd1.strip() % local_ip.strip())
24.392157
82
0.610129
4a19261fa844d1ce31be1c9d05b03407baed57c7
8,552
py
Python
pygeotoolbox/workflow/rest/workflows.py
raugustyn/doctest
c37b0e2fa11ebd30d600923020b1ce44145a0250
[ "MIT" ]
null
null
null
pygeotoolbox/workflow/rest/workflows.py
raugustyn/doctest
c37b0e2fa11ebd30d600923020b1ce44145a0250
[ "MIT" ]
null
null
null
pygeotoolbox/workflow/rest/workflows.py
raugustyn/doctest
c37b0e2fa11ebd30d600923020b1ce44145a0250
[ "MIT" ]
null
null
null
#!c:/python27/python.exe # -*- coding: utf-8 -*- from workflow.workflowsequence import WorkflowSequence __version__ = 0.1 import sys, os, urllib, codecs import web # http://webpy.org/cookbook/ import sharedtools TEPMLATE_RequestNotHandled = """ <p style="text-align:left"> <table> <tr><td><a href="Workflows">Workflows</a></td><td>Registered workflows</td></tr> </table> <hr> <h4>Request Details</h4> <p>Path: #PATH#</p> <table> #QUERY_LINES# </table> </p> """ import sharedtools.log as log if __name__ == "__main__": logger = log.createLogger("workflows") from workflow import getRegisteredWorkflows, WorkflowItem from workflow import buildHTMLPageContent from workflow.rest import buildFloatingListPage import sharedtools.config as config workflowItems = None defaultPath = "workflows" __paths = { } def registerPath(path, requestProcessor): global __paths path = path.lower() __paths[path] = requestProcessor class HTTPResponse(): def __init__(self, handled, mimeFormat = "text/html", htmlData = ""): self.handled = handled self.mimeFormat = mimeFormat self.htmlData = htmlData urls = ('/(.*)', 'handler', 'createsituation') def ProcessRequest(fullPathList, queryParams, response): global _registeredRunObjects, workflowItems if fullPathList: mainPath = fullPathList[0].lower() if mainPath == "workflows": if len(fullPathList) == 1: if len(workflowItems) == 0: html = buildHTMLPageContent("Registrovaná workflow", "Žádná workflow nejsou registrována") else: content = [] for workflowItem in workflowItems: content.append({ "title" : workflowItem.caption, "shortdesc" : workflowItem.getShortDescription(), "link": 'workflows/' + workflowItem.id }) html = buildFloatingListPage("Registrovaná workflow", "", content) else: workflowItem = WorkflowItem.getItemById(fullPathList[1]) if workflowItem: if len(fullPathList) == 3 and fullPathList[2].lower() == "execute": startNumberOfLines = log.logger.getNumberOfLines() workflowItem.execute() lines = log.logger.getLines(startNumberOfLines-1, log.logger.getNumberOfLines()-1) html = lines; elif len(fullPathList) == 3 and fullPathList[2].lower() == "validate": isValid, message = workflowItem.validate() html = "%s:%s" % (str(isValid), message) else: html = workflowItem.getHTML() else: html = buildHTMLPageContent("Requested Workflow", "%s not found!!!" % fullPathList[1]) elif mainPath == "config": content = [] for info in config.valueInfos.values(): content.append({ "title": info.caption, "shortdesc" : info.getFullDescription(), "link": "" }) html = buildFloatingListPage("Konfigurace", "", content) html = html.replace("height: 140px;", "height: 260px;") elif mainPath == "console": html = log.logger.getLines(0, None, "\n") response.mimeFormat = "text/plain" elif mainPath == "statusinfo": html = sharedtools.getStatusInfo() response.mimeFormat = "text/plain" elif mainPath == "values": if len(fullPathList) == 3 and fullPathList[2].lower() == "set": valueName = fullPathList[1] value = urllib.unquote(queryParams["newValue"]) html = "%s=%s" % (valueName, value) config.setValue(valueName, value) config.save() elif mainPath in __paths: response = __paths[mainPath](fullPathList[1:], queryParams, response) else: html = "Empty" if not response.handled: response.handled = True response.htmlData = html if not response.handled: response.handled = True queryLines = "" for key, value in queryParams.iteritems(): queryLines += "%s %s" % (key, value) if not queryLines: queryLines = "No query params provided." dynamicContent = TEPMLATE_RequestNotHandled dynamicContent = dynamicContent.replace("#QUERY_LINES#", queryLines) page = "/".join(fullPathList) if not page: page = "No script path provided in query." dynamicContent = dynamicContent.replace("#PATH#", page) html = buildHTMLPageContent("Workflow Manager", dynamicContent) response.htmlData = html return response class WorkflowsApplication(web.application): def run(self, port, *middleware): func = self.wsgifunc(*middleware) return web.httpserver.runsimple(func, ("localhost", port)) class handler: def doProcessRequest(self, page): web.header('Access-Control-Allow-Origin', '*') web.header('Access-Control-Allow-Credentials', 'true') if not page and defaultPath: web.header("Content-Type", "text/html;charset=utf-8") web.redirect(defaultPath) return None else: response = ProcessRequest(page.split("/"), web.input(), HTTPResponse(False)) web.header("Content-Type", response.mimeFormat + ";charset=utf-8") return response.htmlData def GET(self, page): return self.doProcessRequest(page) def POST(self, page): return self.doProcessRequest(page) def runServer(loggerName="RunWorkflowServer", port=65423, registeredWorkflows = None, aDefaultPath = None): global workflowItems, defaultPath if loggerName: import sharedtools.log as log logger = log.createLogger(loggerName) logger.debug("Configuration file:%s" % config.configFileName) if registeredWorkflows: if isinstance(registeredWorkflows, list): workflowItems = registeredWorkflows elif isinstance(registeredWorkflows, WorkflowItem) or isinstance(registeredWorkflows, WorkflowSequence): workflowItems = [registeredWorkflows] defaultPath = "workflows/" + registeredWorkflows.id else: workflowItems = getRegisteredWorkflows() if aDefaultPath: defaultPath = aDefaultPath import os if os.environ.has_key('SERVER_SOFTWARE'): import cgi import cgitb cgitb.enable() form = cgi.FieldStorage() if os.environ.has_key('PATH_INFO'): pathInfo = os.environ['PATH_INFO'] else: pathInfo = "" if pathInfo[:1] == "/": pathInfo = pathInfo[1:] fullPathList = pathInfo.replace("//", "/") fullPathList = fullPathList.split("/") # REST parametry query = {} queryList = form.list for item in queryList: decodedValue = urllib.unquote(item.value) try: decodedValue = unicode(decodedValue, "utf-8") except: decodedValue = codecs.decode(decodedValue, "latin-1") decodedValue = urllib.unquote(decodedValue) query[item.name] = decodedValue response = ProcessRequest(fullPathList, query, HTTPResponse(False)) if response.mimeFormat in ["text/html", "text/javascript", "text/plain"]: print "Content-Type: " + response.mimeFormat + ";charset=utf-8" # HTML is following print # blank line, end of headers sys.stdout.write(response.htmlData.encode('utf-8')) else: print "Content-Type: " + "application/octet-stream" # response.mimeFormat print # blank line, end of headers if sys.platform != "win32": sys.stdout.write(response.htmlData) sys.stdout.flush() else: import os, msvcrt msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) sys.stdout.write(response.htmlData) sys.stdout.flush() msvcrt.setmode(sys.stdout.fileno(), os.O_TEXT) else: app = WorkflowsApplication(urls, globals()) app.run(port=port)
35.193416
112
0.588167
4a192638d3b16f8740d341c8bc848e6e2d253a9f
4,701
py
Python
library_samples/Python3/ocs_sample_library_preview/BaseClient.py
osi-awoodall/OSI-Samples-OCS
1995ccda20e4fe2ae66f3b67afbc1127d638a6fc
[ "Apache-2.0" ]
null
null
null
library_samples/Python3/ocs_sample_library_preview/BaseClient.py
osi-awoodall/OSI-Samples-OCS
1995ccda20e4fe2ae66f3b67afbc1127d638a6fc
[ "Apache-2.0" ]
null
null
null
library_samples/Python3/ocs_sample_library_preview/BaseClient.py
osi-awoodall/OSI-Samples-OCS
1995ccda20e4fe2ae66f3b67afbc1127d638a6fc
[ "Apache-2.0" ]
null
null
null
# BaseClient.py # import json from .SdsError import SdsError import requests import time class BaseClient(object): """Handles communication with Sds Service. Internal Use""" def __init__(self, apiversion, tenant, url, clientId, clientSecret, acceptVerbosity=False): self.__apiversion = apiversion self.__tenant = tenant self.__clientId = clientId self.__clientSecret = clientSecret self.__url = url # if resource.endswith("/") else resource + "/" self.__token = "" self.__expiration = 0 self.__getToken() self.__acceptVerbosity = acceptVerbosity self.__requestTimeout = None self.__uri_API = url + '/api/' + apiversion @property def uri(self): """ Gets the base url :return: """ return self.__url @property def uri_API(self): """ Returns the base URL plus api versioning information :return: """ return self.__uri_API @property def api_version(self): """ Returns just the base api versioning information :return: """ return self.__apiversion @property def tenant(self): """ Returns the tenant ID :return: """ return self.__tenant @property def AcceptVerbosity(self): return self.__acceptVerbosity @AcceptVerbosity.setter def AcceptVerbosity(self, accept_verbosity): self.__acceptVerbosity = accept_verbosity @property def RequestTimeout(self): return self.__requestTimeout @RequestTimeout.setter def RequestTimeout(self, timeout): self.__requestTimeout = timeout def __getToken(self): """ Gets the bearer token :return: """ if ((self.__expiration - time.time()) > 5 * 60): return self.__token discoveryUrl = requests.get( self.__url + "/identity/.well-known/openid-configuration", headers={"Accept": "application/json"}) if discoveryUrl.status_code < 200 or discoveryUrl.status_code >= 300: discoveryUrl.close() status = discoveryUrl.status_code reason = discoveryUrl.text raise SdsError(f"Failed to get access token endpoint " f"from discovery URL: {status}:{reason}") tokenEndpoint = json.loads(discoveryUrl.content)["token_endpoint"] tokenInformation = requests.post( tokenEndpoint, data={"client_id": self.__clientId, "client_secret": self.__clientSecret, "grant_type": "client_credentials"}) token = json.loads(tokenInformation.content) expiration = token.get("expires_in", None) if expiration is None: raise SdsError(f"Failed to get token, check client id/secret: {token['error']}") self.__expiration = float(expiration) + time.time() self.__token = token['access_token'] return self.__token def sdsHeaders(self): """ Gets the base headers needed for OCS call :return: """ headers = {"Authorization": "Bearer %s" % self.__getToken(), "Content-type": "application/json", "Accept": "application/json"} if (self.__acceptVerbosity): headers['Accept-Verbosity'] = "verbose" if self.__requestTimeout is not None: headers['Request-Timeout'] = str(self.__requestTimeout) return headers def checkResponse(self, response, main_message): if response.status_code < 200 or response.status_code >= 300: status = response.status_code reason = response.text url = response.url opId = response.headers["Operation-Id"] error = f" {status}:{reason}. URL {url} OperationId {opId}" response.close() message = main_message + error raise SdsError(message) #this happens on a collection return that is partially successful if response.status_code == 207: status = response.status_code error = response.json["Error"] reason = response.json["Reason"] errors = str(response.json["ChildErrors"]) url = response.url opId = response.headers["Operation-Id"] errorToWrite = f" {status}:{error}:{reason}. \n\n{errors}\n\n URL {url} OperationId {opId}" response.close() message = main_message + errorToWrite raise SdsError(message)
30.134615
106
0.588598
4a192751f2597b6f48a108b1bcee8c03ee37d5a5
110
py
Python
test/celery_test_utils.py
lxkaka/celery-prometheus-exporter
967e8dc2320f4ce8be6e61d05ea2bf506a811140
[ "MIT" ]
null
null
null
test/celery_test_utils.py
lxkaka/celery-prometheus-exporter
967e8dc2320f4ce8be6e61d05ea2bf506a811140
[ "MIT" ]
null
null
null
test/celery_test_utils.py
lxkaka/celery-prometheus-exporter
967e8dc2320f4ce8be6e61d05ea2bf506a811140
[ "MIT" ]
null
null
null
import celery def get_celery_app(): return celery.Celery(broker='memory://', backend='cache+memory://')
18.333333
71
0.7
4a19276f4faa66c88b6f3c4f13f6b034f81e63e0
80
py
Python
ex08a EMOJI.py
RODRIGOKTK/Python-exercicios
f7985f2c277aae8b158bdeea4f2493febaaf06c5
[ "Unlicense" ]
null
null
null
ex08a EMOJI.py
RODRIGOKTK/Python-exercicios
f7985f2c277aae8b158bdeea4f2493febaaf06c5
[ "Unlicense" ]
null
null
null
ex08a EMOJI.py
RODRIGOKTK/Python-exercicios
f7985f2c277aae8b158bdeea4f2493febaaf06c5
[ "Unlicense" ]
null
null
null
import emoji print(emoji.emojize('Olá mundo :sunglasses:', use_aliases=True))
26.666667
65
0.7625
4a192875b85bb9f574d68dd60e6cbc6e1b126483
6,257
py
Python
seqal/datasets.py
tech-sketch/SeqAL
05999f722438fbb418768393d8dc209a18383b6b
[ "MIT" ]
null
null
null
seqal/datasets.py
tech-sketch/SeqAL
05999f722438fbb418768393d8dc209a18383b6b
[ "MIT" ]
20
2022-01-13T05:14:51.000Z
2022-03-11T07:30:40.000Z
seqal/datasets.py
tech-sketch/SeqAL
05999f722438fbb418768393d8dc209a18383b6b
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Dict, List, Union from flair.data import Corpus as ParentCorpus from flair.data import Sentence from flair.datasets import ColumnDataset as ParentColumnDataset from flair.datasets.base import find_train_dev_test_files from torch.utils.data import Dataset from torch.utils.data.dataset import ConcatDataset class Corpus(ParentCorpus): """The modified Corpus class. Args: ParentCorpus: The original Corpus class. """ def get_all_sentences(self) -> Dataset: """Refactor method of flair.data.corpus Returns: Dataset: flair dataset. """ parts = [] if self.train: parts.append(self.train.sentences) if self.dev: parts.append(self.dev.sentences) if self.test: parts.append(self.test.sentences) return ConcatDataset(parts) def add_queried_samples(self, queried_samples: List[Sentence]) -> None: """Add queried data to labeled data. Args: queried_samples (List[Sentence]): Queried data. """ for sample in queried_samples: self.train.sentences.append(sample) class ColumnCorpus(Corpus): def __init__( self, data_folder: Union[str, Path], column_format: Dict[int, str], train_file=None, test_file=None, dev_file=None, tag_to_bioes=None, column_delimiter: str = r"\s+", comment_symbol: str = None, encoding: str = "utf-8", document_separator_token: str = None, skip_first_line: bool = False, in_memory: bool = True, label_name_map: Dict[str, str] = None, banned_sentences: List[str] = None, autofind_splits: bool = True, **corpusargs, ): """Instantiates a Corpus from CoNLL column-formatted task data such as CoNLL03 or CoNLL2000. Args: data_folder (Union[str, Path]): Base folder with the task data column_format (Dict[int, str]): A map specifying the column format train_file ([type], optional): The name of the train file test_file ([type], optional): The name of the test file dev_file ([type], optional): The name of the dev file, if None, dev data is sampled from train tag_to_bioes ([type], optional): Whether to convert to BIOES tagging scheme column_delimiter (str, optional): Default is to split on any separatator, but you can overwrite for instance with "\t" to split only on tabs comment_symbol (str, optional): If set, lines that begin with this symbol are treated as comments encoding (str, optional): Encodings. Defaults to "utf-8". document_separator_token (str, optional): If provided, sentences that function as document boundaries are so marked skip_first_line (bool, optional): Set to True if your dataset has a header line in_memory (bool, optional): If set to True, the dataset is kept in memory as Sentence objects, otherwise does disk reads label_name_map (Dict[str, str], optional): Optionally map tag names to different schema. banned_sentences (List[str], optional): Optionally remove sentences from the corpus. Works only if `in_memory` is true autofind_splits (bool, optional): Defaults to True. Returns: Dataset: a Corpus with annotated train, dev and test data """ # find train, dev and test files if not specified dev_file, test_file, train_file = find_train_dev_test_files( data_folder, dev_file, test_file, train_file, autofind_splits ) # get train data train = ( ColumnDataset( train_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, column_delimiter=column_delimiter, # banned_sentences=banned_sentences, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, label_name_map=label_name_map, ) if train_file is not None else None ) # read in test file if exists test = ( ColumnDataset( test_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, column_delimiter=column_delimiter, # banned_sentences=banned_sentences, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, label_name_map=label_name_map, ) if test_file is not None else None ) # read in dev file if exists dev = ( ColumnDataset( dev_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, # banned_sentences=banned_sentences, column_delimiter=column_delimiter, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, label_name_map=label_name_map, ) if dev_file is not None else None ) super(ColumnCorpus, self).__init__( train, dev, test, name=str(data_folder), **corpusargs ) class ColumnDataset(ParentColumnDataset): def __len__(self): """Override method""" return len(self.sentences) def obtain_statistics(self, name: str = "Pool", tag_type: str = None): return Corpus._obtain_statistics_for( self.sentences, name=name, tag_type=tag_type )
37.467066
112
0.590858
4a1929283b90e99fe8fcadbf60bb6d8a151fad6c
486
py
Python
tests/conftest.py
ftbernales/groundmotion-processing
5be88da75e7168bd2421973d6f1e54a91c679dc8
[ "Unlicense" ]
null
null
null
tests/conftest.py
ftbernales/groundmotion-processing
5be88da75e7168bd2421973d6f1e54a91c679dc8
[ "Unlicense" ]
null
null
null
tests/conftest.py
ftbernales/groundmotion-processing
5be88da75e7168bd2421973d6f1e54a91c679dc8
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os # # This is needed here so that the matplotlib backend gets # set before any other imports of matplotlib # import matplotlib matplotlib.use('Agg') def pytest_configure(config): # # This tells get_config_paths() (shakemap.utils.config) to # return paths into the testing part of the repo # os.environ['CALLED_FROM_PYTEST'] = 'True' def pytest_unconfigure(config): del os.environ['CALLED_FROM_PYTEST']
20.25
62
0.707819
4a19298fecc095356a3a0676b768ae3949d31293
3,479
py
Python
python/paddle/fluid/tests/unittests/test_fill_constant_batch_size_like_op.py
Sand3r-/Paddle
1217a521554d63caa1381b8716910d0268dfc22d
[ "Apache-2.0" ]
1
2020-02-26T13:44:57.000Z
2020-02-26T13:44:57.000Z
python/paddle/fluid/tests/unittests/test_fill_constant_batch_size_like_op.py
Sand3r-/Paddle
1217a521554d63caa1381b8716910d0268dfc22d
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/test_fill_constant_batch_size_like_op.py
Sand3r-/Paddle
1217a521554d63caa1381b8716910d0268dfc22d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid from op_test import OpTest class TestFillConstantBatchSizeLikeWhenFirstDimIsBatchSize(OpTest): def setUp(self): self.op_type = "fill_constant_batch_size_like" self.inputs = {'Input': np.random.random((219, 232)).astype("float32")} self.attrs = {'value': 3.5, 'shape': [-1, 132, 7]} out = np.random.random((219, 132, 7)).astype("float32") out.fill(3.5) self.outputs = {'Out': out} def test_check_output(self): self.check_output() class TestFillConstantBatchSizeLikeWhenSecondDimIsBatchSize(OpTest): def setUp(self): self.op_type = "fill_constant_batch_size_like" self.inputs = {'Input': np.random.random((219, 232)).astype("float32")} self.attrs = { 'value': 3.5, 'shape': [132, -1, 7], 'input_dim_idx': 0, 'output_dim_idx': 1 } out = np.random.random((132, 219, 7)).astype("float32") out.fill(3.5) self.outputs = {'Out': out} def test_check_output(self): self.check_output() class TestFillConstantBatchSizeLikeInt64(OpTest): def setUp(self): self.op_type = "fill_constant_batch_size_like" self.inputs = {'Input': np.random.random((219, 232)).astype("int64")} self.attrs = {'value': 5894589485094, 'shape': [-1, 132, 7]} out = np.random.random((219, 132, 7)).astype("int64") out.fill(5894589485094) self.outputs = {'Out': out} def test_check_output(self): self.check_output() class TestFillConstantBatchSizeLikeWithLoDTensor(OpTest): def setUp(self): self.op_type = "fill_constant_batch_size_like" self.inputs = { 'Input': (np.random.random((31, 28)).astype("float32"), [[9, 14, 8]]) } self.attrs = { 'value': 3.5, 'shape': [-1, 16], 'input_dim_idx': 0, 'output_dim_idx': 0 } out = np.random.random((3, 16)).astype("float32") out.fill(3.5) self.outputs = {'Out': out} def test_check_output(self): self.check_output() # Test python API class TestFillConstantBatchSizeLikeAPI(unittest.TestCase): def test_api(self): like = fluid.layers.fill_constant( shape=[1, 200], value=10, dtype='int64') out = fluid.layers.fill_constant_batch_size_like( input=like, shape=[2, 300], value=1315454564656, dtype='int64') exe = fluid.Executor(place=fluid.CPUPlace()) res, = exe.run(fluid.default_main_program(), fetch_list=[out]) assert np.array_equal( res[0], np.full( [300], 1315454564656, dtype="int64")) if __name__ == "__main__": unittest.main()
31.917431
79
0.626329
4a192a0a19d29cea9b57847ccd8d9060b304dcfe
22,367
py
Python
allauth/account/forms.py
iarp/django-allauth
116b7a89c37149aeab083d1542539e6c99ba91a7
[ "MIT" ]
null
null
null
allauth/account/forms.py
iarp/django-allauth
116b7a89c37149aeab083d1542539e6c99ba91a7
[ "MIT" ]
null
null
null
allauth/account/forms.py
iarp/django-allauth
116b7a89c37149aeab083d1542539e6c99ba91a7
[ "MIT" ]
null
null
null
from __future__ import absolute_import import warnings from importlib import import_module from django import forms from django.contrib.auth.tokens import PasswordResetTokenGenerator from django.contrib.sites.shortcuts import get_current_site from django.core import exceptions, validators from django.urls import reverse from django.utils.translation import gettext, gettext_lazy as _, pgettext from ..utils import ( build_absolute_uri, get_username_max_length, set_form_field_order, ) from . import app_settings from .adapter import get_adapter from .app_settings import AuthenticationMethod from .models import EmailAddress from .utils import ( filter_users_by_email, get_user_model, perform_login, setup_user_email, sync_user_email_addresses, url_str_to_user_pk, user_email, user_pk_to_url_str, user_username, ) class EmailAwarePasswordResetTokenGenerator(PasswordResetTokenGenerator): def _make_hash_value(self, user, timestamp): ret = super(EmailAwarePasswordResetTokenGenerator, self)._make_hash_value( user, timestamp ) sync_user_email_addresses(user) email = user_email(user) emails = set([email] if email else []) emails.update( EmailAddress.objects.filter(user=user).values_list("email", flat=True) ) ret += "|".join(sorted(emails)) return ret default_token_generator = EmailAwarePasswordResetTokenGenerator() class PasswordVerificationMixin(object): def clean(self): cleaned_data = super(PasswordVerificationMixin, self).clean() password1 = cleaned_data.get("password1") password2 = cleaned_data.get("password2") if (password1 and password2) and password1 != password2: self.add_error("password2", _("You must type the same password each time.")) return cleaned_data class PasswordField(forms.CharField): def __init__(self, *args, **kwargs): render_value = kwargs.pop( "render_value", app_settings.PASSWORD_INPUT_RENDER_VALUE ) kwargs["widget"] = forms.PasswordInput( render_value=render_value, attrs={"placeholder": kwargs.get("label")}, ) autocomplete = kwargs.pop("autocomplete", None) if autocomplete is not None: kwargs["widget"].attrs["autocomplete"] = autocomplete super(PasswordField, self).__init__(*args, **kwargs) class SetPasswordField(PasswordField): def __init__(self, *args, **kwargs): kwargs["autocomplete"] = "new-password" super(SetPasswordField, self).__init__(*args, **kwargs) self.user = None def clean(self, value): value = super(SetPasswordField, self).clean(value) value = get_adapter().clean_password(value, user=self.user) return value class LoginForm(forms.Form): password = PasswordField(label=_("Password"), autocomplete="current-password") remember = forms.BooleanField(label=_("Remember Me"), required=False) user = None error_messages = { "account_inactive": _("This account is currently inactive."), "email_password_mismatch": _( "The e-mail address and/or password you specified are not correct." ), "username_password_mismatch": _( "The username and/or password you specified are not correct." ), } def __init__(self, *args, **kwargs): self.request = kwargs.pop("request", None) super(LoginForm, self).__init__(*args, **kwargs) if app_settings.AUTHENTICATION_METHOD == AuthenticationMethod.EMAIL: login_widget = forms.TextInput( attrs={ "type": "email", "placeholder": _("E-mail address"), "autocomplete": "email", } ) login_field = forms.EmailField(label=_("E-mail"), widget=login_widget) elif app_settings.AUTHENTICATION_METHOD == AuthenticationMethod.USERNAME: login_widget = forms.TextInput( attrs={"placeholder": _("Username"), "autocomplete": "username"} ) login_field = forms.CharField( label=_("Username"), widget=login_widget, max_length=get_username_max_length(), ) else: assert ( app_settings.AUTHENTICATION_METHOD == AuthenticationMethod.USERNAME_EMAIL ) login_widget = forms.TextInput( attrs={"placeholder": _("Username or e-mail"), "autocomplete": "email"} ) login_field = forms.CharField( label=pgettext("field label", "Login"), widget=login_widget ) self.fields["login"] = login_field set_form_field_order(self, ["login", "password", "remember"]) if app_settings.SESSION_REMEMBER is not None: del self.fields["remember"] def user_credentials(self): """ Provides the credentials required to authenticate the user for login. """ credentials = {} login = self.cleaned_data["login"] if app_settings.AUTHENTICATION_METHOD == AuthenticationMethod.EMAIL: credentials["email"] = login elif app_settings.AUTHENTICATION_METHOD == AuthenticationMethod.USERNAME: credentials["username"] = login else: if self._is_login_email(login): credentials["email"] = login credentials["username"] = login credentials["password"] = self.cleaned_data["password"] return credentials def clean_login(self): login = self.cleaned_data["login"] return login.strip() def _is_login_email(self, login): try: validators.validate_email(login) ret = True except exceptions.ValidationError: ret = False return ret def clean(self): super(LoginForm, self).clean() if self._errors: return credentials = self.user_credentials() user = get_adapter(self.request).authenticate(self.request, **credentials) if user: self.user = user else: auth_method = app_settings.AUTHENTICATION_METHOD if auth_method == app_settings.AuthenticationMethod.USERNAME_EMAIL: login = self.cleaned_data["login"] if self._is_login_email(login): auth_method = app_settings.AuthenticationMethod.EMAIL else: auth_method = app_settings.AuthenticationMethod.USERNAME raise forms.ValidationError( self.error_messages["%s_password_mismatch" % auth_method] ) return self.cleaned_data def login(self, request, redirect_url=None): email = self.user_credentials().get("email") ret = perform_login( request, self.user, email_verification=app_settings.EMAIL_VERIFICATION, redirect_url=redirect_url, email=email, ) remember = app_settings.SESSION_REMEMBER if remember is None: remember = self.cleaned_data["remember"] if remember: request.session.set_expiry(app_settings.SESSION_COOKIE_AGE) else: request.session.set_expiry(0) return ret class _DummyCustomSignupForm(forms.Form): def signup(self, request, user): """ Invoked at signup time to complete the signup of the user. """ pass def _base_signup_form_class(): """ Currently, we inherit from the custom form, if any. This is all not very elegant, though it serves a purpose: - There are two signup forms: one for local accounts, and one for social accounts - Both share a common base (BaseSignupForm) - Given the above, how to put in a custom signup form? Which form would your custom form derive from, the local or the social one? """ if not app_settings.SIGNUP_FORM_CLASS: return _DummyCustomSignupForm try: fc_module, fc_classname = app_settings.SIGNUP_FORM_CLASS.rsplit(".", 1) except ValueError: raise exceptions.ImproperlyConfigured( "%s does not point to a form class" % app_settings.SIGNUP_FORM_CLASS ) try: mod = import_module(fc_module) except ImportError as e: raise exceptions.ImproperlyConfigured( "Error importing form class %s:" ' "%s"' % (fc_module, e) ) try: fc_class = getattr(mod, fc_classname) except AttributeError: raise exceptions.ImproperlyConfigured( 'Module "%s" does not define a' ' "%s" class' % (fc_module, fc_classname) ) if not hasattr(fc_class, "signup"): if hasattr(fc_class, "save"): warnings.warn( "The custom signup form must offer" " a `def signup(self, request, user)` method", DeprecationWarning, ) else: raise exceptions.ImproperlyConfigured( 'The custom signup form must implement a "signup" method' ) return fc_class class BaseSignupForm(_base_signup_form_class()): username = forms.CharField( label=_("Username"), min_length=app_settings.USERNAME_MIN_LENGTH, widget=forms.TextInput( attrs={"placeholder": _("Username"), "autocomplete": "username"} ), ) email = forms.EmailField( widget=forms.TextInput( attrs={ "type": "email", "placeholder": _("E-mail address"), "autocomplete": "email", } ) ) def __init__(self, *args, **kwargs): email_required = kwargs.pop("email_required", app_settings.EMAIL_REQUIRED) self.username_required = kwargs.pop( "username_required", app_settings.USERNAME_REQUIRED ) super(BaseSignupForm, self).__init__(*args, **kwargs) username_field = self.fields["username"] username_field.max_length = get_username_max_length() username_field.validators.append( validators.MaxLengthValidator(username_field.max_length) ) username_field.widget.attrs["maxlength"] = str(username_field.max_length) default_field_order = [ "email", "email2", # ignored when not present "username", "password1", "password2", # ignored when not present ] if app_settings.SIGNUP_EMAIL_ENTER_TWICE: self.fields["email2"] = forms.EmailField( label=_("E-mail (again)"), widget=forms.TextInput( attrs={ "type": "email", "placeholder": _("E-mail address confirmation"), } ), ) if email_required: self.fields["email"].label = gettext("E-mail") self.fields["email"].required = True else: self.fields["email"].label = gettext("E-mail (optional)") self.fields["email"].required = False self.fields["email"].widget.is_required = False if self.username_required: default_field_order = [ "username", "email", "email2", # ignored when not present "password1", "password2", # ignored when not present ] if not self.username_required: del self.fields["username"] set_form_field_order( self, getattr(self, "field_order", None) or default_field_order ) def clean_username(self): value = self.cleaned_data["username"] value = get_adapter().clean_username(value) return value def clean_email(self): value = self.cleaned_data["email"] value = get_adapter().clean_email(value) if value and app_settings.UNIQUE_EMAIL: value = self.validate_unique_email(value) return value def validate_unique_email(self, value): return get_adapter().validate_unique_email(value) def clean(self): cleaned_data = super(BaseSignupForm, self).clean() if app_settings.SIGNUP_EMAIL_ENTER_TWICE: email = cleaned_data.get("email") email2 = cleaned_data.get("email2") if (email and email2) and email != email2: self.add_error("email2", _("You must type the same email each time.")) return cleaned_data def custom_signup(self, request, user): custom_form = super(BaseSignupForm, self) if hasattr(custom_form, "signup") and callable(custom_form.signup): custom_form.signup(request, user) else: warnings.warn( "The custom signup form must offer" " a `def signup(self, request, user)` method", DeprecationWarning, ) # Historically, it was called .save, but this is confusing # in case of ModelForm custom_form.save(user) class SignupForm(BaseSignupForm): def __init__(self, *args, **kwargs): super(SignupForm, self).__init__(*args, **kwargs) self.fields["password1"] = PasswordField( label=_("Password"), autocomplete="new-password" ) if app_settings.SIGNUP_PASSWORD_ENTER_TWICE: self.fields["password2"] = PasswordField(label=_("Password (again)")) if hasattr(self, "field_order"): set_form_field_order(self, self.field_order) def clean(self): super(SignupForm, self).clean() # `password` cannot be of type `SetPasswordField`, as we don't # have a `User` yet. So, let's populate a dummy user to be used # for password validaton. dummy_user = get_user_model() user_username(dummy_user, self.cleaned_data.get("username")) user_email(dummy_user, self.cleaned_data.get("email")) password = self.cleaned_data.get("password1") if password: try: get_adapter().clean_password(password, user=dummy_user) except forms.ValidationError as e: self.add_error("password1", e) if ( app_settings.SIGNUP_PASSWORD_ENTER_TWICE and "password1" in self.cleaned_data and "password2" in self.cleaned_data ): if self.cleaned_data["password1"] != self.cleaned_data["password2"]: self.add_error( "password2", _("You must type the same password each time."), ) return self.cleaned_data def save(self, request): adapter = get_adapter(request) user = adapter.new_user(request) adapter.save_user(request, user, self) self.custom_signup(request, user) # TODO: Move into adapter `save_user` ? setup_user_email(request, user, []) return user class UserForm(forms.Form): def __init__(self, user=None, *args, **kwargs): self.user = user super(UserForm, self).__init__(*args, **kwargs) class AddEmailForm(UserForm): email = forms.EmailField( label=_("E-mail"), required=True, widget=forms.TextInput( attrs={"type": "email", "placeholder": _("E-mail address")} ), ) def clean_email(self): value = self.cleaned_data["email"] value = get_adapter().clean_email(value) errors = { "this_account": _( "This e-mail address is already associated with this account." ), "different_account": _( "This e-mail address is already associated with another account." ), "max_email_addresses": _("You cannot add more than %d e-mail addresses."), } users = filter_users_by_email(value) on_this_account = [u for u in users if u.pk == self.user.pk] on_diff_account = [u for u in users if u.pk != self.user.pk] if on_this_account: raise forms.ValidationError(errors["this_account"]) if on_diff_account and app_settings.UNIQUE_EMAIL: raise forms.ValidationError(errors["different_account"]) if not EmailAddress.objects.can_add_email(self.user): raise forms.ValidationError( errors["max_email_addresses"] % app_settings.MAX_EMAIL_ADDRESSES ) return value def save(self, request): return EmailAddress.objects.add_email( request, self.user, self.cleaned_data["email"], confirm=True ) class ChangePasswordForm(PasswordVerificationMixin, UserForm): oldpassword = PasswordField( label=_("Current Password"), autocomplete="current-password" ) password1 = SetPasswordField(label=_("New Password")) password2 = PasswordField(label=_("New Password (again)")) def __init__(self, *args, **kwargs): super(ChangePasswordForm, self).__init__(*args, **kwargs) self.fields["password1"].user = self.user def clean_oldpassword(self): if not self.user.check_password(self.cleaned_data.get("oldpassword")): raise forms.ValidationError(_("Please type your current password.")) return self.cleaned_data["oldpassword"] def save(self): get_adapter().set_password(self.user, self.cleaned_data["password1"]) class SetPasswordForm(PasswordVerificationMixin, UserForm): password1 = SetPasswordField(label=_("Password")) password2 = PasswordField(label=_("Password (again)")) def __init__(self, *args, **kwargs): super(SetPasswordForm, self).__init__(*args, **kwargs) self.fields["password1"].user = self.user def save(self): get_adapter().set_password(self.user, self.cleaned_data["password1"]) class ResetPasswordForm(forms.Form): email = forms.EmailField( label=_("E-mail"), required=True, widget=forms.TextInput( attrs={ "type": "email", "placeholder": _("E-mail address"), "autocomplete": "email", } ), ) def clean_email(self): email = self.cleaned_data["email"] email = get_adapter().clean_email(email) self.users = filter_users_by_email(email, is_active=True) if not self.users and not app_settings.PREVENT_ENUMERATION: raise forms.ValidationError( _("The e-mail address is not assigned to any user account") ) return self.cleaned_data["email"] def save(self, request, **kwargs): email = self.cleaned_data["email"] if not self.users: self._send_unknown_account_mail(request, email) else: self._send_password_reset_mail(request, email, self.users, **kwargs) return email def _send_unknown_account_mail(self, request, email): signup_url = build_absolute_uri(request, reverse("account_signup")) context = { "current_site": get_current_site(request), "email": email, "request": request, "signup_url": signup_url, } get_adapter(request).send_mail("account/email/unknown_account", email, context) def _send_password_reset_mail(self, request, email, users, **kwargs): token_generator = kwargs.get("token_generator", default_token_generator) for user in users: temp_key = token_generator.make_token(user) # save it to the password reset model # password_reset = PasswordReset(user=user, temp_key=temp_key) # password_reset.save() # send the password reset email path = reverse( "account_reset_password_from_key", kwargs=dict(uidb36=user_pk_to_url_str(user), key=temp_key), ) url = build_absolute_uri(request, path) context = { "current_site": get_current_site(request), "user": user, "password_reset_url": url, "request": request, } if app_settings.AUTHENTICATION_METHOD != AuthenticationMethod.EMAIL: context["username"] = user_username(user) get_adapter(request).send_mail( "account/email/password_reset_key", email, context ) class ResetPasswordKeyForm(PasswordVerificationMixin, forms.Form): password1 = SetPasswordField(label=_("New Password")) password2 = PasswordField(label=_("New Password (again)")) def __init__(self, *args, **kwargs): self.user = kwargs.pop("user", None) self.temp_key = kwargs.pop("temp_key", None) super(ResetPasswordKeyForm, self).__init__(*args, **kwargs) self.fields["password1"].user = self.user def save(self): get_adapter().set_password(self.user, self.cleaned_data["password1"]) class UserTokenForm(forms.Form): uidb36 = forms.CharField() key = forms.CharField() reset_user = None token_generator = default_token_generator error_messages = { "token_invalid": _("The password reset token was invalid."), } def _get_user(self, uidb36): User = get_user_model() try: pk = url_str_to_user_pk(uidb36) return User.objects.get(pk=pk) except (ValueError, User.DoesNotExist): return None def clean(self): cleaned_data = super(UserTokenForm, self).clean() uidb36 = cleaned_data.get("uidb36", None) key = cleaned_data.get("key", None) if not key: raise forms.ValidationError(self.error_messages["token_invalid"]) self.reset_user = self._get_user(uidb36) if self.reset_user is None or not self.token_generator.check_token( self.reset_user, key ): raise forms.ValidationError(self.error_messages["token_invalid"]) return cleaned_data
35.27918
88
0.611705
4a192a224a42a622ff9cba7d41e4c09c8b5b683b
12,874
py
Python
sdk/python/pulumi_command/local/command.py
pulumi/pulumi-command
0f04bbaaaf0d69d959389139fc2e60cefdb8b9c0
[ "Apache-2.0" ]
13
2021-12-30T10:08:57.000Z
2022-03-20T18:51:01.000Z
sdk/python/pulumi_command/local/command.py
pulumi/pulumi-command
0f04bbaaaf0d69d959389139fc2e60cefdb8b9c0
[ "Apache-2.0" ]
33
2021-12-15T10:14:25.000Z
2022-03-28T23:53:28.000Z
sdk/python/pulumi_command/local/command.py
pulumi/pulumi-command
0f04bbaaaf0d69d959389139fc2e60cefdb8b9c0
[ "Apache-2.0" ]
9
2022-01-10T12:05:16.000Z
2022-03-14T21:40:17.000Z
# coding=utf-8 # *** WARNING: this file was generated by pulumigen. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['CommandArgs', 'Command'] @pulumi.input_type class CommandArgs: def __init__(__self__, *, create: Optional[pulumi.Input[str]] = None, delete: Optional[pulumi.Input[str]] = None, dir: Optional[pulumi.Input[str]] = None, environment: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, interpreter: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, stdin: Optional[pulumi.Input[str]] = None, triggers: Optional[pulumi.Input[Sequence[Any]]] = None): """ The set of arguments for constructing a Command resource. :param pulumi.Input[str] create: The command to run on create. :param pulumi.Input[str] delete: The command to run on delete. :param pulumi.Input[str] dir: The working directory in which to run the command from. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] environment: Additional environment variables available to the command's process. :param pulumi.Input[Sequence[pulumi.Input[str]]] interpreter: The program and arguments to run the command. On Linux and macOS, defaults to: `["/bin/sh", "-c"]`. On Windows, defaults to: `["cmd", "/C"]` :param pulumi.Input[str] stdin: Pass a string to the command's process as standard in """ if create is not None: pulumi.set(__self__, "create", create) if delete is not None: pulumi.set(__self__, "delete", delete) if dir is not None: pulumi.set(__self__, "dir", dir) if environment is not None: pulumi.set(__self__, "environment", environment) if interpreter is not None: pulumi.set(__self__, "interpreter", interpreter) if stdin is not None: pulumi.set(__self__, "stdin", stdin) if triggers is not None: pulumi.set(__self__, "triggers", triggers) @property @pulumi.getter def create(self) -> Optional[pulumi.Input[str]]: """ The command to run on create. """ return pulumi.get(self, "create") @create.setter def create(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "create", value) @property @pulumi.getter def delete(self) -> Optional[pulumi.Input[str]]: """ The command to run on delete. """ return pulumi.get(self, "delete") @delete.setter def delete(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "delete", value) @property @pulumi.getter def dir(self) -> Optional[pulumi.Input[str]]: """ The working directory in which to run the command from. """ return pulumi.get(self, "dir") @dir.setter def dir(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "dir", value) @property @pulumi.getter def environment(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Additional environment variables available to the command's process. """ return pulumi.get(self, "environment") @environment.setter def environment(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "environment", value) @property @pulumi.getter def interpreter(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The program and arguments to run the command. On Linux and macOS, defaults to: `["/bin/sh", "-c"]`. On Windows, defaults to: `["cmd", "/C"]` """ return pulumi.get(self, "interpreter") @interpreter.setter def interpreter(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "interpreter", value) @property @pulumi.getter def stdin(self) -> Optional[pulumi.Input[str]]: """ Pass a string to the command's process as standard in """ return pulumi.get(self, "stdin") @stdin.setter def stdin(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "stdin", value) @property @pulumi.getter def triggers(self) -> Optional[pulumi.Input[Sequence[Any]]]: return pulumi.get(self, "triggers") @triggers.setter def triggers(self, value: Optional[pulumi.Input[Sequence[Any]]]): pulumi.set(self, "triggers", value) class Command(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, create: Optional[pulumi.Input[str]] = None, delete: Optional[pulumi.Input[str]] = None, dir: Optional[pulumi.Input[str]] = None, environment: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, interpreter: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, stdin: Optional[pulumi.Input[str]] = None, triggers: Optional[pulumi.Input[Sequence[Any]]] = None, __props__=None): """ A local command to be executed. This command can be inserted into the life cycles of other resources using the `dependsOn` or `parent` resource options. A command is considered to have failed when it finished with a non-zero exit code. This will fail the CRUD step of the `Command` resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] create: The command to run on create. :param pulumi.Input[str] delete: The command to run on delete. :param pulumi.Input[str] dir: The working directory in which to run the command from. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] environment: Additional environment variables available to the command's process. :param pulumi.Input[Sequence[pulumi.Input[str]]] interpreter: The program and arguments to run the command. On Linux and macOS, defaults to: `["/bin/sh", "-c"]`. On Windows, defaults to: `["cmd", "/C"]` :param pulumi.Input[str] stdin: Pass a string to the command's process as standard in """ ... @overload def __init__(__self__, resource_name: str, args: Optional[CommandArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ A local command to be executed. This command can be inserted into the life cycles of other resources using the `dependsOn` or `parent` resource options. A command is considered to have failed when it finished with a non-zero exit code. This will fail the CRUD step of the `Command` resource. :param str resource_name: The name of the resource. :param CommandArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(CommandArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, create: Optional[pulumi.Input[str]] = None, delete: Optional[pulumi.Input[str]] = None, dir: Optional[pulumi.Input[str]] = None, environment: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, interpreter: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, stdin: Optional[pulumi.Input[str]] = None, triggers: Optional[pulumi.Input[Sequence[Any]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = CommandArgs.__new__(CommandArgs) __props__.__dict__["create"] = create __props__.__dict__["delete"] = delete __props__.__dict__["dir"] = dir __props__.__dict__["environment"] = environment __props__.__dict__["interpreter"] = interpreter __props__.__dict__["stdin"] = stdin __props__.__dict__["triggers"] = triggers __props__.__dict__["stderr"] = None __props__.__dict__["stdout"] = None super(Command, __self__).__init__( 'command:local:Command', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Command': """ Get an existing Command resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = CommandArgs.__new__(CommandArgs) __props__.__dict__["create"] = None __props__.__dict__["delete"] = None __props__.__dict__["dir"] = None __props__.__dict__["environment"] = None __props__.__dict__["interpreter"] = None __props__.__dict__["stderr"] = None __props__.__dict__["stdin"] = None __props__.__dict__["stdout"] = None __props__.__dict__["triggers"] = None return Command(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def create(self) -> pulumi.Output[Optional[str]]: """ The command to run on create. """ return pulumi.get(self, "create") @property @pulumi.getter def delete(self) -> pulumi.Output[Optional[str]]: """ The command to run on delete. """ return pulumi.get(self, "delete") @property @pulumi.getter def dir(self) -> pulumi.Output[Optional[str]]: """ The directory from which to run the command from. If `dir` does not exist, then `Command` will fail. """ return pulumi.get(self, "dir") @property @pulumi.getter def environment(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Additional environment variables available to the command's process. """ return pulumi.get(self, "environment") @property @pulumi.getter def interpreter(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The program and arguments to run the command. For example: `["/bin/sh", "-c"]` """ return pulumi.get(self, "interpreter") @property @pulumi.getter def stderr(self) -> pulumi.Output[str]: """ The standard error of the command's process """ return pulumi.get(self, "stderr") @property @pulumi.getter def stdin(self) -> pulumi.Output[Optional[str]]: """ Pass a string to the command's process as standard in """ return pulumi.get(self, "stdin") @property @pulumi.getter def stdout(self) -> pulumi.Output[str]: """ The standard output of the command's process """ return pulumi.get(self, "stdout") @property @pulumi.getter def triggers(self) -> pulumi.Output[Optional[Sequence[Any]]]: """ Trigger replacements on changes to this input. """ return pulumi.get(self, "triggers")
39.734568
142
0.615659
4a192a317785a1947a04a588328a5979d7df9f47
89,128
py
Python
venv/lib/python3.9/site-packages/pyarrow/parquet.py
CMU-IDS-2022/final-project-the-evaluators
3b9262ad1a0f7315208a94a05ea1ce38e679d01d
[ "BSD-3-Clause" ]
1
2022-01-17T02:58:50.000Z
2022-01-17T02:58:50.000Z
venv/lib/python3.9/site-packages/pyarrow/parquet.py
CMU-IDS-2022/final-project-the-evaluators
3b9262ad1a0f7315208a94a05ea1ce38e679d01d
[ "BSD-3-Clause" ]
2
2021-12-03T08:48:53.000Z
2021-12-06T16:42:29.000Z
venv/lib/python3.9/site-packages/pyarrow/parquet.py
CMU-IDS-2022/final-project-the-evaluators
3b9262ad1a0f7315208a94a05ea1ce38e679d01d
[ "BSD-3-Clause" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import defaultdict from concurrent import futures from functools import partial, reduce import json from collections.abc import Collection import numpy as np import os import re import operator import urllib.parse import warnings import pyarrow as pa import pyarrow.lib as lib import pyarrow._parquet as _parquet from pyarrow._parquet import (ParquetReader, Statistics, # noqa FileMetaData, RowGroupMetaData, ColumnChunkMetaData, ParquetSchema, ColumnSchema) from pyarrow.fs import (LocalFileSystem, FileSystem, _resolve_filesystem_and_path, _ensure_filesystem) from pyarrow import filesystem as legacyfs from pyarrow.util import guid, _is_path_like, _stringify_path _URI_STRIP_SCHEMES = ('hdfs',) def _parse_uri(path): path = _stringify_path(path) parsed_uri = urllib.parse.urlparse(path) if parsed_uri.scheme in _URI_STRIP_SCHEMES: return parsed_uri.path else: # ARROW-4073: On Windows returning the path with the scheme # stripped removes the drive letter, if any return path def _get_filesystem_and_path(passed_filesystem, path): if passed_filesystem is None: return legacyfs.resolve_filesystem_and_path(path, passed_filesystem) else: passed_filesystem = legacyfs._ensure_filesystem(passed_filesystem) parsed_path = _parse_uri(path) return passed_filesystem, parsed_path def _check_contains_null(val): if isinstance(val, bytes): for byte in val: if isinstance(byte, bytes): compare_to = chr(0) else: compare_to = 0 if byte == compare_to: return True elif isinstance(val, str): return '\x00' in val return False def _check_filters(filters, check_null_strings=True): """ Check if filters are well-formed. """ if filters is not None: if len(filters) == 0 or any(len(f) == 0 for f in filters): raise ValueError("Malformed filters") if isinstance(filters[0][0], str): # We have encountered the situation where we have one nesting level # too few: # We have [(,,), ..] instead of [[(,,), ..]] filters = [filters] if check_null_strings: for conjunction in filters: for col, op, val in conjunction: if ( isinstance(val, list) and all(_check_contains_null(v) for v in val) or _check_contains_null(val) ): raise NotImplementedError( "Null-terminated binary strings are not supported " "as filter values." ) return filters _DNF_filter_doc = """Predicates are expressed in disjunctive normal form (DNF), like ``[[('x', '=', 0), ...], ...]``. DNF allows arbitrary boolean logical combinations of single column predicates. The innermost tuples each describe a single column predicate. The list of inner predicates is interpreted as a conjunction (AND), forming a more selective and multiple column predicate. Finally, the most outer list combines these filters as a disjunction (OR). Predicates may also be passed as List[Tuple]. This form is interpreted as a single conjunction. To express OR in predicates, one must use the (preferred) List[List[Tuple]] notation. Each tuple has format: (``key``, ``op``, ``value``) and compares the ``key`` with the ``value``. The supported ``op`` are: ``=`` or ``==``, ``!=``, ``<``, ``>``, ``<=``, ``>=``, ``in`` and ``not in``. If the ``op`` is ``in`` or ``not in``, the ``value`` must be a collection such as a ``list``, a ``set`` or a ``tuple``. Examples: .. code-block:: python ('x', '=', 0) ('y', 'in', ['a', 'b', 'c']) ('z', 'not in', {'a','b'}) """ def _filters_to_expression(filters): """ Check if filters are well-formed. See _DNF_filter_doc above for more details. """ import pyarrow.dataset as ds if isinstance(filters, ds.Expression): return filters filters = _check_filters(filters, check_null_strings=False) def convert_single_predicate(col, op, val): field = ds.field(col) if op == "=" or op == "==": return field == val elif op == "!=": return field != val elif op == '<': return field < val elif op == '>': return field > val elif op == '<=': return field <= val elif op == '>=': return field >= val elif op == 'in': return field.isin(val) elif op == 'not in': return ~field.isin(val) else: raise ValueError( '"{0}" is not a valid operator in predicates.'.format( (col, op, val))) disjunction_members = [] for conjunction in filters: conjunction_members = [ convert_single_predicate(col, op, val) for col, op, val in conjunction ] disjunction_members.append(reduce(operator.and_, conjunction_members)) return reduce(operator.or_, disjunction_members) # ---------------------------------------------------------------------- # Reading a single Parquet file class ParquetFile: """ Reader interface for a single Parquet file. Parameters ---------- source : str, pathlib.Path, pyarrow.NativeFile, or file-like object Readable source. For passing bytes or buffer-like file containing a Parquet file, use pyarrow.BufferReader. metadata : FileMetaData, default None Use existing metadata object, rather than reading from file. common_metadata : FileMetaData, default None Will be used in reads for pandas schema metadata if not found in the main file's metadata, no other uses at the moment. memory_map : bool, default False If the source is a file path, use a memory map to read file, which can improve performance in some environments. buffer_size : int, default 0 If positive, perform read buffering when deserializing individual column chunks. Otherwise IO calls are unbuffered. pre_buffer : bool, default False Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. read_dictionary : list List of column names to read directly as DictionaryArray. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be infered as timestamps in nanoseconds. """ def __init__(self, source, metadata=None, common_metadata=None, read_dictionary=None, memory_map=False, buffer_size=0, pre_buffer=False, coerce_int96_timestamp_unit=None): self.reader = ParquetReader() self.reader.open( source, use_memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, read_dictionary=read_dictionary, metadata=metadata, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) self.common_metadata = common_metadata self._nested_paths_by_prefix = self._build_nested_paths() def _build_nested_paths(self): paths = self.reader.column_paths result = defaultdict(list) for i, path in enumerate(paths): key = path[0] rest = path[1:] while True: result[key].append(i) if not rest: break key = '.'.join((key, rest[0])) rest = rest[1:] return result @property def metadata(self): return self.reader.metadata @property def schema(self): """ Return the Parquet schema, unconverted to Arrow types """ return self.metadata.schema @property def schema_arrow(self): """ Return the inferred Arrow schema, converted from the whole Parquet file's schema """ return self.reader.schema_arrow @property def num_row_groups(self): return self.reader.num_row_groups def read_row_group(self, i, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a single row group from a Parquet file. Parameters ---------- i : int Index of the individual row group that we want to read. columns : list If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the row group as a table (of columns) """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_row_group(i, column_indices=column_indices, use_threads=use_threads) def read_row_groups(self, row_groups, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a multiple row groups from a Parquet file. Parameters ---------- row_groups : list Only these row groups will be read from the file. columns : list If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the row groups as a table (of columns). """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_row_groups(row_groups, column_indices=column_indices, use_threads=use_threads) def iter_batches(self, batch_size=65536, row_groups=None, columns=None, use_threads=True, use_pandas_metadata=False): """ Read streaming batches from a Parquet file Parameters ---------- batch_size : int, default 64K Maximum number of records to yield per batch. Batches may be smaller if there aren't enough rows in the file. row_groups : list Only these row groups will be read from the file. columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : boolean, default True Perform multi-threaded column reads. use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- iterator of pyarrow.RecordBatch Contents of each batch as a record batch """ if row_groups is None: row_groups = range(0, self.metadata.num_row_groups) column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) batches = self.reader.iter_batches(batch_size, row_groups=row_groups, column_indices=column_indices, use_threads=use_threads) return batches def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a Table from Parquet format, Parameters ---------- columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the file as a table (of columns). """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_all(column_indices=column_indices, use_threads=use_threads) def scan_contents(self, columns=None, batch_size=65536): """ Read contents of file for the given columns and batch size. Notes ----- This function's primary purpose is benchmarking. The scan is executed on a single thread. Parameters ---------- columns : list of integers, default None Select columns to read, if None scan all columns. batch_size : int, default 64K Number of rows to read at a time internally. Returns ------- num_rows : number of rows in file """ column_indices = self._get_column_indices(columns) return self.reader.scan_contents(column_indices, batch_size=batch_size) def _get_column_indices(self, column_names, use_pandas_metadata=False): if column_names is None: return None indices = [] for name in column_names: if name in self._nested_paths_by_prefix: indices.extend(self._nested_paths_by_prefix[name]) if use_pandas_metadata: file_keyvalues = self.metadata.metadata common_keyvalues = (self.common_metadata.metadata if self.common_metadata is not None else None) if file_keyvalues and b'pandas' in file_keyvalues: index_columns = _get_pandas_index_columns(file_keyvalues) elif common_keyvalues and b'pandas' in common_keyvalues: index_columns = _get_pandas_index_columns(common_keyvalues) else: index_columns = [] if indices is not None and index_columns: indices += [self.reader.column_name_idx(descr) for descr in index_columns if not isinstance(descr, dict)] return indices _SPARK_DISALLOWED_CHARS = re.compile('[ ,;{}()\n\t=]') def _sanitized_spark_field_name(name): return _SPARK_DISALLOWED_CHARS.sub('_', name) def _sanitize_schema(schema, flavor): if 'spark' in flavor: sanitized_fields = [] schema_changed = False for field in schema: name = field.name sanitized_name = _sanitized_spark_field_name(name) if sanitized_name != name: schema_changed = True sanitized_field = pa.field(sanitized_name, field.type, field.nullable, field.metadata) sanitized_fields.append(sanitized_field) else: sanitized_fields.append(field) new_schema = pa.schema(sanitized_fields, metadata=schema.metadata) return new_schema, schema_changed else: return schema, False def _sanitize_table(table, new_schema, flavor): # TODO: This will not handle prohibited characters in nested field names if 'spark' in flavor: column_data = [table[i] for i in range(table.num_columns)] return pa.Table.from_arrays(column_data, schema=new_schema) else: return table _parquet_writer_arg_docs = """version : {"1.0", "2.4", "2.6"}, default "1.0" Determine which Parquet logical types are available for use, whether the reduced set from the Parquet 1.x.x format or the expanded logical types added in later format versions. Files written with version='2.4' or '2.6' may not be readable in all Parquet implementations, so version='1.0' is likely the choice that maximizes file compatibility. UINT32 and some logical types are only available with version '2.4'. Nanosecond timestamps are only available with version '2.6'. Other features such as compression algorithms or the new serialized data page format must be enabled separately (see 'compression' and 'data_page_version'). use_dictionary : bool or list Specify if we should use dictionary encoding in general or only for some columns. use_deprecated_int96_timestamps : bool, default None Write timestamps to INT96 Parquet format. Defaults to False unless enabled by flavor argument. This take priority over the coerce_timestamps option. coerce_timestamps : str, default None Cast timestamps to a particular resolution. If omitted, defaults are chosen depending on `version`. By default, for ``version='1.0'`` (the default) and ``version='2.4'``, nanoseconds are cast to microseconds ('us'), while for other `version` values, they are written natively without loss of resolution. Seconds are always cast to milliseconds ('ms') by default, as Parquet does not have any temporal type with seconds resolution. If the casting results in loss of data, it will raise an exception unless ``allow_truncated_timestamps=True`` is given. Valid values: {None, 'ms', 'us'} data_page_size : int, default None Set a target threshold for the approximate encoded size of data pages within a column chunk (in bytes). If None, use the default data page size of 1MByte. allow_truncated_timestamps : bool, default False Allow loss of data when coercing timestamps to a particular resolution. E.g. if microsecond or nanosecond data is lost when coercing to 'ms', do not raise an exception. Passing ``allow_truncated_timestamp=True`` will NOT result in the truncation exception being ignored unless ``coerce_timestamps`` is not None. compression : str or dict Specify the compression codec, either on a general basis or per-column. Valid values: {'NONE', 'SNAPPY', 'GZIP', 'BROTLI', 'LZ4', 'ZSTD'}. write_statistics : bool or list Specify if we should write statistics in general (default is True) or only for some columns. flavor : {'spark'}, default None Sanitize schema or set other compatibility options to work with various target systems. filesystem : FileSystem, default None If nothing passed, will be inferred from `where` if path-like, else `where` is already a file-like object so no filesystem is needed. compression_level : int or dict, default None Specify the compression level for a codec, either on a general basis or per-column. If None is passed, arrow selects the compression level for the compression codec in use. The compression level has a different meaning for each codec, so you have to read the documentation of the codec you are using. An exception is thrown if the compression codec does not allow specifying a compression level. use_byte_stream_split : bool or list, default False Specify if the byte_stream_split encoding should be used in general or only for some columns. If both dictionary and byte_stream_stream are enabled, then dictionary is preferred. The byte_stream_split encoding is valid only for floating-point data types and should be combined with a compression codec. column_encoding : string or dict, default None Specify the encoding scheme on a per column basis. Currently supported values: {'PLAIN', 'BYTE_STREAM_SPLIT'}. Certain encodings are only compatible with certain data types. Please refer to the encodings section of `Reading and writing Parquet files <https://arrow.apache.org/docs/cpp/parquet.html#encodings>`_. data_page_version : {"1.0", "2.0"}, default "1.0" The serialized Parquet data page format version to write, defaults to 1.0. This does not impact the file schema logical types and Arrow to Parquet type casting behavior; for that use the "version" option. use_compliant_nested_type : bool, default False Whether to write compliant Parquet nested type (lists) as defined `here <https://github.com/apache/parquet-format/blob/master/ LogicalTypes.md#nested-types>`_, defaults to ``False``. For ``use_compliant_nested_type=True``, this will write into a list with 3-level structure where the middle level, named ``list``, is a repeated group with a single field named ``element``:: <list-repetition> group <name> (LIST) { repeated group list { <element-repetition> <element-type> element; } } For ``use_compliant_nested_type=False``, this will also write into a list with 3-level structure, where the name of the single field of the middle level ``list`` is taken from the element name for nested columns in Arrow, which defaults to ``item``:: <list-repetition> group <name> (LIST) { repeated group list { <element-repetition> <element-type> item; } } """ class ParquetWriter: __doc__ = """ Class for incrementally building a Parquet file for Arrow tables. Parameters ---------- where : path or file-like object schema : pyarrow.Schema {} writer_engine_version : unused **options : dict If options contains a key `metadata_collector` then the corresponding value is assumed to be a list (or any object with `.append` method) that will be filled with the file metadata instance of the written file. """.format(_parquet_writer_arg_docs) def __init__(self, where, schema, filesystem=None, flavor=None, version='1.0', use_dictionary=True, compression='snappy', write_statistics=True, use_deprecated_int96_timestamps=None, compression_level=None, use_byte_stream_split=False, column_encoding=None, writer_engine_version=None, data_page_version='1.0', use_compliant_nested_type=False, **options): if use_deprecated_int96_timestamps is None: # Use int96 timestamps for Spark if flavor is not None and 'spark' in flavor: use_deprecated_int96_timestamps = True else: use_deprecated_int96_timestamps = False self.flavor = flavor if flavor is not None: schema, self.schema_changed = _sanitize_schema(schema, flavor) else: self.schema_changed = False self.schema = schema self.where = where # If we open a file using a filesystem, store file handle so we can be # sure to close it when `self.close` is called. self.file_handle = None filesystem, path = _resolve_filesystem_and_path( where, filesystem, allow_legacy_filesystem=True ) if filesystem is not None: if isinstance(filesystem, legacyfs.FileSystem): # legacy filesystem (eg custom subclass) # TODO deprecate sink = self.file_handle = filesystem.open(path, 'wb') else: # ARROW-10480: do not auto-detect compression. While # a filename like foo.parquet.gz is nonconforming, it # shouldn't implicitly apply compression. sink = self.file_handle = filesystem.open_output_stream( path, compression=None) else: sink = where self._metadata_collector = options.pop('metadata_collector', None) engine_version = 'V2' self.writer = _parquet.ParquetWriter( sink, schema, version=version, compression=compression, use_dictionary=use_dictionary, write_statistics=write_statistics, use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, compression_level=compression_level, use_byte_stream_split=use_byte_stream_split, column_encoding=column_encoding, writer_engine_version=engine_version, data_page_version=data_page_version, use_compliant_nested_type=use_compliant_nested_type, **options) self.is_open = True def __del__(self): if getattr(self, 'is_open', False): self.close() def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close() # return false since we want to propagate exceptions return False def write(self, table_or_batch, row_group_size=None): """ Write RecordBatch or Table to the Parquet file. Parameters ---------- table_or_batch : {RecordBatch, Table} row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the input table or batch length and 64 * 1024 * 1024. """ if isinstance(table_or_batch, pa.RecordBatch): self.write_batch(table_or_batch, row_group_size) elif isinstance(table_or_batch, pa.Table): self.write_table(table_or_batch, row_group_size) else: raise TypeError(type(table_or_batch)) def write_batch(self, batch, row_group_size=None): """ Write RecordBatch to the Parquet file. Parameters ---------- batch : RecordBatch row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the RecordBatch size and 64 * 1024 * 1024. """ table = pa.Table.from_batches([batch], batch.schema) self.write_table(table, row_group_size) def write_table(self, table, row_group_size=None): """ Write Table to the Parquet file. Parameters ---------- table : Table row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the Table size and 64 * 1024 * 1024. """ if self.schema_changed: table = _sanitize_table(table, self.schema, self.flavor) assert self.is_open if not table.schema.equals(self.schema, check_metadata=False): msg = ('Table schema does not match schema used to create file: ' '\ntable:\n{!s} vs. \nfile:\n{!s}' .format(table.schema, self.schema)) raise ValueError(msg) self.writer.write_table(table, row_group_size=row_group_size) def close(self): if self.is_open: self.writer.close() self.is_open = False if self._metadata_collector is not None: self._metadata_collector.append(self.writer.metadata) if self.file_handle is not None: self.file_handle.close() def _get_pandas_index_columns(keyvalues): return (json.loads(keyvalues[b'pandas'].decode('utf8')) ['index_columns']) # ---------------------------------------------------------------------- # Metadata container providing instructions about reading a single Parquet # file, possibly part of a partitioned dataset class ParquetDatasetPiece: """ DEPRECATED: A single chunk of a potentially larger Parquet dataset to read. The arguments will indicate to read either a single row group or all row groups, and whether to add partition keys to the resulting pyarrow.Table. .. deprecated:: 5.0 Directly constructing a ``ParquetDatasetPiece`` is deprecated, as well as accessing the pieces of a ``ParquetDataset`` object. Specify ``use_legacy_dataset=False`` when constructing the ``ParquetDataset`` and use the ``ParquetDataset.fragments`` attribute instead. Parameters ---------- path : str or pathlib.Path Path to file in the file system where this piece is located. open_file_func : callable Function to use for obtaining file handle to dataset piece. partition_keys : list of tuples Two-element tuples of ``(column name, ordinal index)``. row_group : int, default None Row group to load. By default, reads all row groups. file_options : dict Options """ def __init__(self, path, open_file_func=partial(open, mode='rb'), file_options=None, row_group=None, partition_keys=None): warnings.warn( "ParquetDatasetPiece is deprecated as of pyarrow 5.0.0 and will " "be removed in a future version.", DeprecationWarning, stacklevel=2) self._init( path, open_file_func, file_options, row_group, partition_keys) @staticmethod def _create(path, open_file_func=partial(open, mode='rb'), file_options=None, row_group=None, partition_keys=None): self = ParquetDatasetPiece.__new__(ParquetDatasetPiece) self._init( path, open_file_func, file_options, row_group, partition_keys) return self def _init(self, path, open_file_func, file_options, row_group, partition_keys): self.path = _stringify_path(path) self.open_file_func = open_file_func self.row_group = row_group self.partition_keys = partition_keys or [] self.file_options = file_options or {} def __eq__(self, other): if not isinstance(other, ParquetDatasetPiece): return False return (self.path == other.path and self.row_group == other.row_group and self.partition_keys == other.partition_keys) def __repr__(self): return ('{}({!r}, row_group={!r}, partition_keys={!r})' .format(type(self).__name__, self.path, self.row_group, self.partition_keys)) def __str__(self): result = '' if len(self.partition_keys) > 0: partition_str = ', '.join('{}={}'.format(name, index) for name, index in self.partition_keys) result += 'partition[{}] '.format(partition_str) result += self.path if self.row_group is not None: result += ' | row_group={}'.format(self.row_group) return result def get_metadata(self): """ Return the file's metadata. Returns ------- metadata : FileMetaData """ f = self.open() return f.metadata def open(self): """ Return instance of ParquetFile. """ reader = self.open_file_func(self.path) if not isinstance(reader, ParquetFile): reader = ParquetFile(reader, **self.file_options) return reader def read(self, columns=None, use_threads=True, partitions=None, file=None, use_pandas_metadata=False): """ Read this piece as a pyarrow.Table. Parameters ---------- columns : list of column names, default None use_threads : bool, default True Perform multi-threaded column reads. partitions : ParquetPartitions, default None file : file-like object Passed to ParquetFile. use_pandas_metadata : bool If pandas metadata should be used or not. Returns ------- table : pyarrow.Table """ if self.open_file_func is not None: reader = self.open() elif file is not None: reader = ParquetFile(file, **self.file_options) else: # try to read the local path reader = ParquetFile(self.path, **self.file_options) options = dict(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) if self.row_group is not None: table = reader.read_row_group(self.row_group, **options) else: table = reader.read(**options) if len(self.partition_keys) > 0: if partitions is None: raise ValueError('Must pass partition sets') # Here, the index is the categorical code of the partition where # this piece is located. Suppose we had # # /foo=a/0.parq # /foo=b/0.parq # /foo=c/0.parq # # Then we assign a=0, b=1, c=2. And the resulting Table pieces will # have a DictionaryArray column named foo having the constant index # value as indicated. The distinct categories of the partition have # been computed in the ParquetManifest for i, (name, index) in enumerate(self.partition_keys): # The partition code is the same for all values in this piece indices = np.full(len(table), index, dtype='i4') # This is set of all partition values, computed as part of the # manifest, so ['a', 'b', 'c'] as in our example above. dictionary = partitions.levels[i].dictionary arr = pa.DictionaryArray.from_arrays(indices, dictionary) table = table.append_column(name, arr) return table class PartitionSet: """ A data structure for cataloguing the observed Parquet partitions at a particular level. So if we have /foo=a/bar=0 /foo=a/bar=1 /foo=a/bar=2 /foo=b/bar=0 /foo=b/bar=1 /foo=b/bar=2 Then we have two partition sets, one for foo, another for bar. As we visit levels of the partition hierarchy, a PartitionSet tracks the distinct values and assigns categorical codes to use when reading the pieces Parameters ---------- name : str Name of the partition set. Under which key to collect all values. keys : list All possible values that have been collected for that partition set. """ def __init__(self, name, keys=None): self.name = name self.keys = keys or [] self.key_indices = {k: i for i, k in enumerate(self.keys)} self._dictionary = None def get_index(self, key): """ Get the index of the partition value if it is known, otherwise assign one Parameters ---------- key : The value for which we want to known the index. """ if key in self.key_indices: return self.key_indices[key] else: index = len(self.key_indices) self.keys.append(key) self.key_indices[key] = index return index @property def dictionary(self): if self._dictionary is not None: return self._dictionary if len(self.keys) == 0: raise ValueError('No known partition keys') # Only integer and string partition types are supported right now try: integer_keys = [int(x) for x in self.keys] dictionary = lib.array(integer_keys) except ValueError: dictionary = lib.array(self.keys) self._dictionary = dictionary return dictionary @property def is_sorted(self): return list(self.keys) == sorted(self.keys) class ParquetPartitions: def __init__(self): self.levels = [] self.partition_names = set() def __len__(self): return len(self.levels) def __getitem__(self, i): return self.levels[i] def equals(self, other): if not isinstance(other, ParquetPartitions): raise TypeError('`other` must be an instance of ParquetPartitions') return (self.levels == other.levels and self.partition_names == other.partition_names) def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def get_index(self, level, name, key): """ Record a partition value at a particular level, returning the distinct code for that value at that level. Examples -------- partitions.get_index(1, 'foo', 'a') returns 0 partitions.get_index(1, 'foo', 'b') returns 1 partitions.get_index(1, 'foo', 'c') returns 2 partitions.get_index(1, 'foo', 'a') returns 0 Parameters ---------- level : int The nesting level of the partition we are observing name : str The partition name key : str or int The partition value """ if level == len(self.levels): if name in self.partition_names: raise ValueError('{} was the name of the partition in ' 'another level'.format(name)) part_set = PartitionSet(name) self.levels.append(part_set) self.partition_names.add(name) return self.levels[level].get_index(key) def filter_accepts_partition(self, part_key, filter, level): p_column, p_value_index = part_key f_column, op, f_value = filter if p_column != f_column: return True f_type = type(f_value) if op in {'in', 'not in'}: if not isinstance(f_value, Collection): raise TypeError( "'%s' object is not a collection", f_type.__name__) if not f_value: raise ValueError("Cannot use empty collection as filter value") if len({type(item) for item in f_value}) != 1: raise ValueError("All elements of the collection '%s' must be" " of same type", f_value) f_type = type(next(iter(f_value))) elif not isinstance(f_value, str) and isinstance(f_value, Collection): raise ValueError( "Op '%s' not supported with a collection value", op) p_value = f_type(self.levels[level] .dictionary[p_value_index].as_py()) if op == "=" or op == "==": return p_value == f_value elif op == "!=": return p_value != f_value elif op == '<': return p_value < f_value elif op == '>': return p_value > f_value elif op == '<=': return p_value <= f_value elif op == '>=': return p_value >= f_value elif op == 'in': return p_value in f_value elif op == 'not in': return p_value not in f_value else: raise ValueError("'%s' is not a valid operator in predicates.", filter[1]) class ParquetManifest: def __init__(self, dirpath, open_file_func=None, filesystem=None, pathsep='/', partition_scheme='hive', metadata_nthreads=1): filesystem, dirpath = _get_filesystem_and_path(filesystem, dirpath) self.filesystem = filesystem self.open_file_func = open_file_func self.pathsep = pathsep self.dirpath = _stringify_path(dirpath) self.partition_scheme = partition_scheme self.partitions = ParquetPartitions() self.pieces = [] self._metadata_nthreads = metadata_nthreads self._thread_pool = futures.ThreadPoolExecutor( max_workers=metadata_nthreads) self.common_metadata_path = None self.metadata_path = None self._visit_level(0, self.dirpath, []) # Due to concurrency, pieces will potentially by out of order if the # dataset is partitioned so we sort them to yield stable results self.pieces.sort(key=lambda piece: piece.path) if self.common_metadata_path is None: # _common_metadata is a subset of _metadata self.common_metadata_path = self.metadata_path self._thread_pool.shutdown() def _visit_level(self, level, base_path, part_keys): fs = self.filesystem _, directories, files = next(fs.walk(base_path)) filtered_files = [] for path in files: full_path = self.pathsep.join((base_path, path)) if path.endswith('_common_metadata'): self.common_metadata_path = full_path elif path.endswith('_metadata'): self.metadata_path = full_path elif self._should_silently_exclude(path): continue else: filtered_files.append(full_path) # ARROW-1079: Filter out "private" directories starting with underscore filtered_directories = [self.pathsep.join((base_path, x)) for x in directories if not _is_private_directory(x)] filtered_files.sort() filtered_directories.sort() if len(filtered_files) > 0 and len(filtered_directories) > 0: raise ValueError('Found files in an intermediate ' 'directory: {}'.format(base_path)) elif len(filtered_directories) > 0: self._visit_directories(level, filtered_directories, part_keys) else: self._push_pieces(filtered_files, part_keys) def _should_silently_exclude(self, file_name): return (file_name.endswith('.crc') or # Checksums file_name.endswith('_$folder$') or # HDFS directories in S3 file_name.startswith('.') or # Hidden files starting with . file_name.startswith('_') or # Hidden files starting with _ file_name in EXCLUDED_PARQUET_PATHS) def _visit_directories(self, level, directories, part_keys): futures_list = [] for path in directories: head, tail = _path_split(path, self.pathsep) name, key = _parse_hive_partition(tail) index = self.partitions.get_index(level, name, key) dir_part_keys = part_keys + [(name, index)] # If you have less threads than levels, the wait call will block # indefinitely due to multiple waits within a thread. if level < self._metadata_nthreads: future = self._thread_pool.submit(self._visit_level, level + 1, path, dir_part_keys) futures_list.append(future) else: self._visit_level(level + 1, path, dir_part_keys) if futures_list: futures.wait(futures_list) def _parse_partition(self, dirname): if self.partition_scheme == 'hive': return _parse_hive_partition(dirname) else: raise NotImplementedError('partition schema: {}' .format(self.partition_scheme)) def _push_pieces(self, files, part_keys): self.pieces.extend([ ParquetDatasetPiece._create(path, partition_keys=part_keys, open_file_func=self.open_file_func) for path in files ]) def _parse_hive_partition(value): if '=' not in value: raise ValueError('Directory name did not appear to be a ' 'partition: {}'.format(value)) return value.split('=', 1) def _is_private_directory(x): _, tail = os.path.split(x) return (tail.startswith('_') or tail.startswith('.')) and '=' not in tail def _path_split(path, sep): i = path.rfind(sep) + 1 head, tail = path[:i], path[i:] head = head.rstrip(sep) return head, tail EXCLUDED_PARQUET_PATHS = {'_SUCCESS'} class _ParquetDatasetMetadata: __slots__ = ('fs', 'memory_map', 'read_dictionary', 'common_metadata', 'buffer_size') def _open_dataset_file(dataset, path, meta=None): if (dataset.fs is not None and not isinstance(dataset.fs, legacyfs.LocalFileSystem)): path = dataset.fs.open(path, mode='rb') return ParquetFile( path, metadata=meta, memory_map=dataset.memory_map, read_dictionary=dataset.read_dictionary, common_metadata=dataset.common_metadata, buffer_size=dataset.buffer_size ) _DEPR_MSG = ( "'{}' attribute is deprecated as of pyarrow 5.0.0 and will be removed " "in a future version.{}" ) _read_docstring_common = """\ read_dictionary : list, default None List of names or column paths (for nested types) to read directly as DictionaryArray. Only supported for BYTE_ARRAY storage. To read a flat column as dictionary-encoded pass the column name. For nested types, you must pass the full column "path", which could be something like level1.level2.list.item. Refer to the Parquet file's schema to obtain the paths. memory_map : bool, default False If the source is a file path, use a memory map to read file, which can improve performance in some environments. buffer_size : int, default 0 If positive, perform read buffering when deserializing individual column chunks. Otherwise IO calls are unbuffered. partitioning : pyarrow.dataset.Partitioning or str or list of str, \ default "hive" The partitioning scheme for a partitioned dataset. The default of "hive" assumes directory names with key=value pairs like "/year=2009/month=11". In addition, a scheme like "/2009/11" is also supported, in which case you need to specify the field names or a full schema. See the ``pyarrow.dataset.partitioning()`` function for more details.""" class ParquetDataset: __doc__ = """ Encapsulates details of reading a complete Parquet dataset possibly consisting of multiple files and partitions in subdirectories. Parameters ---------- path_or_paths : str or List[str] A directory name, single file name, or list of file names. filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem. metadata : pyarrow.parquet.FileMetaData Use metadata obtained elsewhere to validate file schemas. schema : pyarrow.parquet.Schema Use schema obtained elsewhere to validate file schemas. Alternative to metadata parameter. split_row_groups : bool, default False Divide files into pieces for each row group in the file. validate_schema : bool, default True Check that individual file schemas are all the same / compatible. filters : List[Tuple] or List[List[Tuple]] or None (default) Rows which do not match the filter predicate will be removed from scanned data. Partition keys embedded in a nested directory structure will be exploited to avoid loading files at all if they contain no matching rows. If `use_legacy_dataset` is True, filters can only reference partition keys and only a hive-style directory structure is supported. When setting `use_legacy_dataset` to False, also within-file level filtering and different partitioning schemes are supported. {1} metadata_nthreads : int, default 1 How many threads to allow the thread pool which is used to read the dataset metadata. Increasing this is helpful to read partitioned datasets. {0} use_legacy_dataset : bool, default True Set to False to enable the new code path (experimental, using the new Arrow Dataset API). Among other things, this allows to pass `filters` for all columns and not only the partition keys, enables different partitioning schemes, etc. pre_buffer : bool, default True Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. This option is only supported for use_legacy_dataset=False. If using a filesystem layer that itself performs readahead (e.g. fsspec's S3FS), disable readahead for best results. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be infered as timestamps in nanoseconds. """.format(_read_docstring_common, _DNF_filter_doc) def __new__(cls, path_or_paths=None, filesystem=None, schema=None, metadata=None, split_row_groups=False, validate_schema=True, filters=None, metadata_nthreads=1, read_dictionary=None, memory_map=False, buffer_size=0, partitioning="hive", use_legacy_dataset=None, pre_buffer=True, coerce_int96_timestamp_unit=None): if use_legacy_dataset is None: # if a new filesystem is passed -> default to new implementation if isinstance(filesystem, FileSystem): use_legacy_dataset = False # otherwise the default is still True else: use_legacy_dataset = True if not use_legacy_dataset: return _ParquetDatasetV2( path_or_paths, filesystem=filesystem, filters=filters, partitioning=partitioning, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, # unsupported keywords schema=schema, metadata=metadata, split_row_groups=split_row_groups, validate_schema=validate_schema, metadata_nthreads=metadata_nthreads ) self = object.__new__(cls) return self def __init__(self, path_or_paths, filesystem=None, schema=None, metadata=None, split_row_groups=False, validate_schema=True, filters=None, metadata_nthreads=1, read_dictionary=None, memory_map=False, buffer_size=0, partitioning="hive", use_legacy_dataset=True, pre_buffer=True, coerce_int96_timestamp_unit=None): if partitioning != "hive": raise ValueError( 'Only "hive" for hive-like partitioning is supported when ' 'using use_legacy_dataset=True') self._metadata = _ParquetDatasetMetadata() a_path = path_or_paths if isinstance(a_path, list): a_path = a_path[0] self._metadata.fs, _ = _get_filesystem_and_path(filesystem, a_path) if isinstance(path_or_paths, list): self.paths = [_parse_uri(path) for path in path_or_paths] else: self.paths = _parse_uri(path_or_paths) self._metadata.read_dictionary = read_dictionary self._metadata.memory_map = memory_map self._metadata.buffer_size = buffer_size (self._pieces, self._partitions, self.common_metadata_path, self.metadata_path) = _make_manifest( path_or_paths, self._fs, metadata_nthreads=metadata_nthreads, open_file_func=partial(_open_dataset_file, self._metadata) ) if self.common_metadata_path is not None: with self._fs.open(self.common_metadata_path) as f: self._metadata.common_metadata = read_metadata( f, memory_map=memory_map ) else: self._metadata.common_metadata = None if metadata is None and self.metadata_path is not None: with self._fs.open(self.metadata_path) as f: self.metadata = read_metadata(f, memory_map=memory_map) else: self.metadata = metadata self.schema = schema self.split_row_groups = split_row_groups if split_row_groups: raise NotImplementedError("split_row_groups not yet implemented") if filters is not None: filters = _check_filters(filters) self._filter(filters) if validate_schema: self.validate_schemas() def equals(self, other): if not isinstance(other, ParquetDataset): raise TypeError('`other` must be an instance of ParquetDataset') if self._fs.__class__ != other._fs.__class__: return False for prop in ('paths', '_pieces', '_partitions', 'common_metadata_path', 'metadata_path', 'common_metadata', 'metadata', 'schema', 'split_row_groups'): if getattr(self, prop) != getattr(other, prop): return False for prop in ('memory_map', 'buffer_size'): if getattr(self._metadata, prop) != getattr(other._metadata, prop): return False return True def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def validate_schemas(self): if self.metadata is None and self.schema is None: if self.common_metadata is not None: self.schema = self.common_metadata.schema else: self.schema = self._pieces[0].get_metadata().schema elif self.schema is None: self.schema = self.metadata.schema # Verify schemas are all compatible dataset_schema = self.schema.to_arrow_schema() # Exclude the partition columns from the schema, they are provided # by the path, not the DatasetPiece if self._partitions is not None: for partition_name in self._partitions.partition_names: if dataset_schema.get_field_index(partition_name) != -1: field_idx = dataset_schema.get_field_index(partition_name) dataset_schema = dataset_schema.remove(field_idx) for piece in self._pieces: file_metadata = piece.get_metadata() file_schema = file_metadata.schema.to_arrow_schema() if not dataset_schema.equals(file_schema, check_metadata=False): raise ValueError('Schema in {!s} was different. \n' '{!s}\n\nvs\n\n{!s}' .format(piece, file_schema, dataset_schema)) def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read multiple Parquet files as a single pyarrow.Table. Parameters ---------- columns : List[str] Names of columns to read from the file. use_threads : bool, default True Perform multi-threaded column reads use_pandas_metadata : bool, default False Passed through to each dataset piece. Returns ------- pyarrow.Table Content of the file as a table (of columns). """ tables = [] for piece in self._pieces: table = piece.read(columns=columns, use_threads=use_threads, partitions=self._partitions, use_pandas_metadata=use_pandas_metadata) tables.append(table) all_data = lib.concat_tables(tables) if use_pandas_metadata: # We need to ensure that this metadata is set in the Table's schema # so that Table.to_pandas will construct pandas.DataFrame with the # right index common_metadata = self._get_common_pandas_metadata() current_metadata = all_data.schema.metadata or {} if common_metadata and b'pandas' not in current_metadata: all_data = all_data.replace_schema_metadata({ b'pandas': common_metadata}) return all_data def read_pandas(self, **kwargs): """ Read dataset including pandas metadata, if any. Other arguments passed through to ParquetDataset.read, see docstring for further details. Parameters ---------- **kwargs : optional All additional options to pass to the reader. Returns ------- pyarrow.Table Content of the file as a table (of columns). """ return self.read(use_pandas_metadata=True, **kwargs) def _get_common_pandas_metadata(self): if self.common_metadata is None: return None keyvalues = self.common_metadata.metadata return keyvalues.get(b'pandas', None) def _filter(self, filters): accepts_filter = self._partitions.filter_accepts_partition def one_filter_accepts(piece, filter): return all(accepts_filter(part_key, filter, level) for level, part_key in enumerate(piece.partition_keys)) def all_filters_accept(piece): return any(all(one_filter_accepts(piece, f) for f in conjunction) for conjunction in filters) self._pieces = [p for p in self._pieces if all_filters_accept(p)] @property def pieces(self): warnings.warn( _DEPR_MSG.format( "ParquetDataset.pieces", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.fragments' attribute " "instead."), DeprecationWarning, stacklevel=2) return self._pieces @property def partitions(self): warnings.warn( _DEPR_MSG.format( "ParquetDataset.partitions", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.partitioning' attribute " "instead."), DeprecationWarning, stacklevel=2) return self._partitions @property def memory_map(self): warnings.warn( _DEPR_MSG.format("ParquetDataset.memory_map", ""), DeprecationWarning, stacklevel=2) return self._metadata.memory_map @property def read_dictionary(self): warnings.warn( _DEPR_MSG.format("ParquetDataset.read_dictionary", ""), DeprecationWarning, stacklevel=2) return self._metadata.read_dictionary @property def buffer_size(self): warnings.warn( _DEPR_MSG.format("ParquetDataset.buffer_size", ""), DeprecationWarning, stacklevel=2) return self._metadata.buffer_size _fs = property( operator.attrgetter('_metadata.fs') ) @property def fs(self): warnings.warn( _DEPR_MSG.format( "ParquetDataset.fs", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.filesystem' attribute " "instead."), DeprecationWarning, stacklevel=2) return self._metadata.fs common_metadata = property( operator.attrgetter('_metadata.common_metadata') ) def _make_manifest(path_or_paths, fs, pathsep='/', metadata_nthreads=1, open_file_func=None): partitions = None common_metadata_path = None metadata_path = None if isinstance(path_or_paths, list) and len(path_or_paths) == 1: # Dask passes a directory as a list of length 1 path_or_paths = path_or_paths[0] if _is_path_like(path_or_paths) and fs.isdir(path_or_paths): manifest = ParquetManifest(path_or_paths, filesystem=fs, open_file_func=open_file_func, pathsep=getattr(fs, "pathsep", "/"), metadata_nthreads=metadata_nthreads) common_metadata_path = manifest.common_metadata_path metadata_path = manifest.metadata_path pieces = manifest.pieces partitions = manifest.partitions else: if not isinstance(path_or_paths, list): path_or_paths = [path_or_paths] # List of paths if len(path_or_paths) == 0: raise ValueError('Must pass at least one file path') pieces = [] for path in path_or_paths: if not fs.isfile(path): raise OSError('Passed non-file path: {}' .format(path)) piece = ParquetDatasetPiece._create( path, open_file_func=open_file_func) pieces.append(piece) return pieces, partitions, common_metadata_path, metadata_path def _is_local_file_system(fs): return isinstance(fs, LocalFileSystem) or isinstance( fs, legacyfs.LocalFileSystem ) class _ParquetDatasetV2: """ ParquetDataset shim using the Dataset API under the hood. """ def __init__(self, path_or_paths, filesystem=None, filters=None, partitioning="hive", read_dictionary=None, buffer_size=None, memory_map=False, ignore_prefixes=None, pre_buffer=True, coerce_int96_timestamp_unit=None, **kwargs): import pyarrow.dataset as ds # Raise error for not supported keywords for keyword, default in [ ("schema", None), ("metadata", None), ("split_row_groups", False), ("validate_schema", True), ("metadata_nthreads", 1)]: if keyword in kwargs and kwargs[keyword] is not default: raise ValueError( "Keyword '{0}' is not yet supported with the new " "Dataset API".format(keyword)) # map format arguments read_options = { "pre_buffer": pre_buffer, "coerce_int96_timestamp_unit": coerce_int96_timestamp_unit } if buffer_size: read_options.update(use_buffered_stream=True, buffer_size=buffer_size) if read_dictionary is not None: read_options.update(dictionary_columns=read_dictionary) # map filters to Expressions self._filters = filters self._filter_expression = filters and _filters_to_expression(filters) # map old filesystems to new one if filesystem is not None: filesystem = _ensure_filesystem( filesystem, use_mmap=memory_map) elif filesystem is None and memory_map: # if memory_map is specified, assume local file system (string # path can in principle be URI for any filesystem) filesystem = LocalFileSystem(use_mmap=memory_map) # This needs to be checked after _ensure_filesystem, because that # handles the case of an fsspec LocalFileSystem if ( hasattr(path_or_paths, "__fspath__") and filesystem is not None and not _is_local_file_system(filesystem) ): raise TypeError( "Path-like objects with __fspath__ must only be used with " f"local file systems, not {type(filesystem)}" ) # check for single fragment dataset single_file = None if isinstance(path_or_paths, list): if len(path_or_paths) == 1: single_file = path_or_paths[0] else: if _is_path_like(path_or_paths): path_or_paths = _stringify_path(path_or_paths) if filesystem is None: # path might be a URI describing the FileSystem as well try: filesystem, path_or_paths = FileSystem.from_uri( path_or_paths) except ValueError: filesystem = LocalFileSystem(use_mmap=memory_map) if filesystem.get_file_info(path_or_paths).is_file: single_file = path_or_paths else: single_file = path_or_paths if single_file is not None: self._enable_parallel_column_conversion = True read_options.update(enable_parallel_column_conversion=True) parquet_format = ds.ParquetFileFormat(**read_options) fragment = parquet_format.make_fragment(single_file, filesystem) self._dataset = ds.FileSystemDataset( [fragment], schema=fragment.physical_schema, format=parquet_format, filesystem=fragment.filesystem ) return else: self._enable_parallel_column_conversion = False parquet_format = ds.ParquetFileFormat(**read_options) # check partitioning to enable dictionary encoding if partitioning == "hive": partitioning = ds.HivePartitioning.discover( infer_dictionary=True) self._dataset = ds.dataset(path_or_paths, filesystem=filesystem, format=parquet_format, partitioning=partitioning, ignore_prefixes=ignore_prefixes) @property def schema(self): return self._dataset.schema def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read (multiple) Parquet files as a single pyarrow.Table. Parameters ---------- columns : List[str] Names of columns to read from the dataset. The partition fields are not automatically included (in contrast to when setting ``use_legacy_dataset=True``). use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.Table Content of the file as a table (of columns). """ # if use_pandas_metadata, we need to include index columns in the # column selection, to be able to restore those in the pandas DataFrame metadata = self.schema.metadata if columns is not None and use_pandas_metadata: if metadata and b'pandas' in metadata: # RangeIndex can be represented as dict instead of column name index_columns = [ col for col in _get_pandas_index_columns(metadata) if not isinstance(col, dict) ] columns = ( list(columns) + list(set(index_columns) - set(columns)) ) if self._enable_parallel_column_conversion: if use_threads: # Allow per-column parallelism; would otherwise cause # contention in the presence of per-file parallelism. use_threads = False table = self._dataset.to_table( columns=columns, filter=self._filter_expression, use_threads=use_threads ) # if use_pandas_metadata, restore the pandas metadata (which gets # lost if doing a specific `columns` selection in to_table) if use_pandas_metadata: if metadata and b"pandas" in metadata: new_metadata = table.schema.metadata or {} new_metadata.update({b"pandas": metadata[b"pandas"]}) table = table.replace_schema_metadata(new_metadata) return table def read_pandas(self, **kwargs): """ Read dataset including pandas metadata, if any. Other arguments passed through to ParquetDataset.read, see docstring for further details. """ return self.read(use_pandas_metadata=True, **kwargs) @property def pieces(self): warnings.warn( _DEPR_MSG.format("ParquetDataset.pieces", " Use the '.fragments' attribute instead"), DeprecationWarning, stacklevel=2) return list(self._dataset.get_fragments()) @property def fragments(self): return list(self._dataset.get_fragments()) @property def files(self): return self._dataset.files @property def filesystem(self): return self._dataset.filesystem @property def partitioning(self): """ The partitioning of the Dataset source, if discovered. """ return self._dataset.partitioning _read_table_docstring = """ {0} Parameters ---------- source : str, pyarrow.NativeFile, or file-like object If a string passed, can be a single file name or directory name. For file-like objects, only read a single file. Use pyarrow.BufferReader to read a file contained in a bytes or buffer-like object. columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. If empty, no columns will be read. Note that the table will still have the correct num_rows set despite having no columns. use_threads : bool, default True Perform multi-threaded column reads. metadata : FileMetaData If separately computed {1} use_legacy_dataset : bool, default False By default, `read_table` uses the new Arrow Datasets API since pyarrow 1.0.0. Among other things, this allows to pass `filters` for all columns and not only the partition keys, enables different partitioning schemes, etc. Set to True to use the legacy behaviour. ignore_prefixes : list, optional Files matching any of these prefixes will be ignored by the discovery process if use_legacy_dataset=False. This is matched to the basename of a path. By default this is ['.', '_']. Note that discovery happens only if a directory is passed as source. filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem. filters : List[Tuple] or List[List[Tuple]] or None (default) Rows which do not match the filter predicate will be removed from scanned data. Partition keys embedded in a nested directory structure will be exploited to avoid loading files at all if they contain no matching rows. If `use_legacy_dataset` is True, filters can only reference partition keys and only a hive-style directory structure is supported. When setting `use_legacy_dataset` to False, also within-file level filtering and different partitioning schemes are supported. {3} pre_buffer : bool, default True Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. This option is only supported for use_legacy_dataset=False. If using a filesystem layer that itself performs readahead (e.g. fsspec's S3FS), disable readahead for best results. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be infered as timestamps in nanoseconds. Returns ------- {2} """ def read_table(source, columns=None, use_threads=True, metadata=None, use_pandas_metadata=False, memory_map=False, read_dictionary=None, filesystem=None, filters=None, buffer_size=0, partitioning="hive", use_legacy_dataset=False, ignore_prefixes=None, pre_buffer=True, coerce_int96_timestamp_unit=None): if not use_legacy_dataset: if metadata is not None: raise ValueError( "The 'metadata' keyword is no longer supported with the new " "datasets-based implementation. Specify " "'use_legacy_dataset=True' to temporarily recover the old " "behaviour." ) try: dataset = _ParquetDatasetV2( source, filesystem=filesystem, partitioning=partitioning, memory_map=memory_map, read_dictionary=read_dictionary, buffer_size=buffer_size, filters=filters, ignore_prefixes=ignore_prefixes, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) except ImportError: # fall back on ParquetFile for simple cases when pyarrow.dataset # module is not available if filters is not None: raise ValueError( "the 'filters' keyword is not supported when the " "pyarrow.dataset module is not available" ) if partitioning != "hive": raise ValueError( "the 'partitioning' keyword is not supported when the " "pyarrow.dataset module is not available" ) filesystem, path = _resolve_filesystem_and_path(source, filesystem) if filesystem is not None: source = filesystem.open_input_file(path) # TODO test that source is not a directory or a list dataset = ParquetFile( source, metadata=metadata, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) return dataset.read(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) if ignore_prefixes is not None: raise ValueError( "The 'ignore_prefixes' keyword is only supported when " "use_legacy_dataset=False") if _is_path_like(source): pf = ParquetDataset( source, metadata=metadata, memory_map=memory_map, read_dictionary=read_dictionary, buffer_size=buffer_size, filesystem=filesystem, filters=filters, partitioning=partitioning, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) else: pf = ParquetFile( source, metadata=metadata, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) return pf.read(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) read_table.__doc__ = _read_table_docstring.format( """Read a Table from Parquet format Note: starting with pyarrow 1.0, the default for `use_legacy_dataset` is switched to False.""", "\n".join((_read_docstring_common, """use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded.""")), """pyarrow.Table Content of the file as a table (of columns)""", _DNF_filter_doc) def read_pandas(source, columns=None, **kwargs): return read_table( source, columns=columns, use_pandas_metadata=True, **kwargs ) read_pandas.__doc__ = _read_table_docstring.format( 'Read a Table from Parquet format, also reading DataFrame\n' 'index values if known in the file metadata', "\n".join((_read_docstring_common, """**kwargs additional options for :func:`read_table`""")), """pyarrow.Table Content of the file as a Table of Columns, including DataFrame indexes as columns""", _DNF_filter_doc) def write_table(table, where, row_group_size=None, version='1.0', use_dictionary=True, compression='snappy', write_statistics=True, use_deprecated_int96_timestamps=None, coerce_timestamps=None, allow_truncated_timestamps=False, data_page_size=None, flavor=None, filesystem=None, compression_level=None, use_byte_stream_split=False, column_encoding=None, data_page_version='1.0', use_compliant_nested_type=False, **kwargs): row_group_size = kwargs.pop('chunk_size', row_group_size) use_int96 = use_deprecated_int96_timestamps try: with ParquetWriter( where, table.schema, filesystem=filesystem, version=version, flavor=flavor, use_dictionary=use_dictionary, write_statistics=write_statistics, coerce_timestamps=coerce_timestamps, data_page_size=data_page_size, allow_truncated_timestamps=allow_truncated_timestamps, compression=compression, use_deprecated_int96_timestamps=use_int96, compression_level=compression_level, use_byte_stream_split=use_byte_stream_split, column_encoding=column_encoding, data_page_version=data_page_version, use_compliant_nested_type=use_compliant_nested_type, **kwargs) as writer: writer.write_table(table, row_group_size=row_group_size) except Exception: if _is_path_like(where): try: os.remove(_stringify_path(where)) except os.error: pass raise write_table.__doc__ = """ Write a Table to Parquet format. Parameters ---------- table : pyarrow.Table where : string or pyarrow.NativeFile row_group_size : int Maximum size of each written row group. If None, the row group size will be the minimum of the Table size and 64 * 1024 * 1024. {} **kwargs : optional Additional options for ParquetWriter """.format(_parquet_writer_arg_docs) def _mkdir_if_not_exists(fs, path): if fs._isfilestore() and not fs.exists(path): try: fs.mkdir(path) except OSError: assert fs.exists(path) def write_to_dataset(table, root_path, partition_cols=None, partition_filename_cb=None, filesystem=None, use_legacy_dataset=None, **kwargs): """Wrapper around parquet.write_table for writing a Table to Parquet format by partitions. For each combination of partition columns and values, a subdirectories are created in the following manner: root_dir/ group1=value1 group2=value1 <uuid>.parquet group2=value2 <uuid>.parquet group1=valueN group2=value1 <uuid>.parquet group2=valueN <uuid>.parquet Parameters ---------- table : pyarrow.Table root_path : str, pathlib.Path The root directory of the dataset filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem partition_cols : list, Column names by which to partition the dataset Columns are partitioned in the order they are given partition_filename_cb : callable, A callback function that takes the partition key(s) as an argument and allow you to override the partition filename. If nothing is passed, the filename will consist of a uuid. use_legacy_dataset : bool Default is True unless a ``pyarrow.fs`` filesystem is passed. Set to False to enable the new code path (experimental, using the new Arrow Dataset API). This is more efficient when using partition columns, but does not (yet) support `partition_filename_cb` and `metadata_collector` keywords. **kwargs : dict, Additional kwargs for write_table function. See docstring for `write_table` or `ParquetWriter` for more information. Using `metadata_collector` in kwargs allows one to collect the file metadata instances of dataset pieces. The file paths in the ColumnChunkMetaData will be set relative to `root_path`. """ if use_legacy_dataset is None: # if a new filesystem is passed -> default to new implementation if isinstance(filesystem, FileSystem): use_legacy_dataset = False # otherwise the default is still True else: use_legacy_dataset = True if not use_legacy_dataset: import pyarrow.dataset as ds # extract non-file format options schema = kwargs.pop("schema", None) use_threads = kwargs.pop("use_threads", True) # raise for unsupported keywords msg = ( "The '{}' argument is not supported with the new dataset " "implementation." ) metadata_collector = kwargs.pop('metadata_collector', None) file_visitor = None if metadata_collector is not None: def file_visitor(written_file): metadata_collector.append(written_file.metadata) if partition_filename_cb is not None: raise ValueError(msg.format("partition_filename_cb")) # map format arguments parquet_format = ds.ParquetFileFormat() write_options = parquet_format.make_write_options(**kwargs) # map old filesystems to new one if filesystem is not None: filesystem = _ensure_filesystem(filesystem) partitioning = None if partition_cols: part_schema = table.select(partition_cols).schema partitioning = ds.partitioning(part_schema, flavor="hive") ds.write_dataset( table, root_path, filesystem=filesystem, format=parquet_format, file_options=write_options, schema=schema, partitioning=partitioning, use_threads=use_threads, file_visitor=file_visitor) return fs, root_path = legacyfs.resolve_filesystem_and_path(root_path, filesystem) _mkdir_if_not_exists(fs, root_path) metadata_collector = kwargs.pop('metadata_collector', None) if partition_cols is not None and len(partition_cols) > 0: df = table.to_pandas() partition_keys = [df[col] for col in partition_cols] data_df = df.drop(partition_cols, axis='columns') data_cols = df.columns.drop(partition_cols) if len(data_cols) == 0: raise ValueError('No data left to save outside partition columns') subschema = table.schema # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset for col in table.schema.names: if col in partition_cols: subschema = subschema.remove(subschema.get_field_index(col)) for keys, subgroup in data_df.groupby(partition_keys): if not isinstance(keys, tuple): keys = (keys,) subdir = '/'.join( ['{colname}={value}'.format(colname=name, value=val) for name, val in zip(partition_cols, keys)]) subtable = pa.Table.from_pandas(subgroup, schema=subschema, safe=False) _mkdir_if_not_exists(fs, '/'.join([root_path, subdir])) if partition_filename_cb: outfile = partition_filename_cb(keys) else: outfile = guid() + '.parquet' relative_path = '/'.join([subdir, outfile]) full_path = '/'.join([root_path, relative_path]) with fs.open(full_path, 'wb') as f: write_table(subtable, f, metadata_collector=metadata_collector, **kwargs) if metadata_collector is not None: metadata_collector[-1].set_file_path(relative_path) else: if partition_filename_cb: outfile = partition_filename_cb(None) else: outfile = guid() + '.parquet' full_path = '/'.join([root_path, outfile]) with fs.open(full_path, 'wb') as f: write_table(table, f, metadata_collector=metadata_collector, **kwargs) if metadata_collector is not None: metadata_collector[-1].set_file_path(outfile) def write_metadata(schema, where, metadata_collector=None, **kwargs): """ Write metadata-only Parquet file from schema. This can be used with `write_to_dataset` to generate `_common_metadata` and `_metadata` sidecar files. Parameters ---------- schema : pyarrow.Schema where : string or pyarrow.NativeFile metadata_collector : list where to collect metadata information. **kwargs : dict, Additional kwargs for ParquetWriter class. See docstring for `ParquetWriter` for more information. Examples -------- Write a dataset and collect metadata information. >>> metadata_collector = [] >>> write_to_dataset( ... table, root_path, ... metadata_collector=metadata_collector, **writer_kwargs) Write the `_common_metadata` parquet file without row groups statistics. >>> write_metadata( ... table.schema, root_path / '_common_metadata', **writer_kwargs) Write the `_metadata` parquet file with row groups statistics. >>> write_metadata( ... table.schema, root_path / '_metadata', ... metadata_collector=metadata_collector, **writer_kwargs) """ writer = ParquetWriter(where, schema, **kwargs) writer.close() if metadata_collector is not None: # ParquetWriter doesn't expose the metadata until it's written. Write # it and read it again. metadata = read_metadata(where) for m in metadata_collector: metadata.append_row_groups(m) metadata.write_metadata_file(where) def read_metadata(where, memory_map=False): """ Read FileMetadata from footer of a single Parquet file. Parameters ---------- where : str (file path) or file-like object memory_map : bool, default False Create memory map when the source is a file path. Returns ------- metadata : FileMetadata """ return ParquetFile(where, memory_map=memory_map).metadata def read_schema(where, memory_map=False): """ Read effective Arrow schema from Parquet file metadata. Parameters ---------- where : str (file path) or file-like object memory_map : bool, default False Create memory map when the source is a file path. Returns ------- schema : pyarrow.Schema """ return ParquetFile(where, memory_map=memory_map).schema.to_arrow_schema()
37.766102
84
0.621802
4a192a443d13fda45694dd9139d3e10fac04331a
14,859
py
Python
Lib/site-packages/matplotlib/textpath.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/matplotlib/textpath.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/matplotlib/textpath.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
from collections import OrderedDict import functools import logging import urllib.parse import numpy as np from matplotlib import _text_helpers, dviread, font_manager from matplotlib.font_manager import FontProperties, get_font from matplotlib.ft2font import LOAD_NO_HINTING, LOAD_TARGET_LIGHT from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Affine2D _log = logging.getLogger(__name__) class TextToPath: """A class that converts strings to paths.""" FONT_SCALE = 100. DPI = 72 def __init__(self): self.mathtext_parser = MathTextParser('path') self._texmanager = None def _get_font(self, prop): """ Find the `FT2Font` matching font properties *prop*, with its size set. """ fname = font_manager.findfont(prop) font = get_font(fname) font.set_size(self.FONT_SCALE, self.DPI) return font def _get_hinting_flag(self): return LOAD_NO_HINTING def _get_char_id(self, font, ccode): """ Return a unique id for the given font and character-code set. """ return urllib.parse.quote(f"{font.postscript_name}-{ccode:x}") def get_text_width_height_descent(self, s, prop, ismath): if ismath == "TeX": texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=None) return w, h, d fontsize = prop.get_size_in_points() scale = fontsize / self.FONT_SCALE if ismath: prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, *_ = \ self.mathtext_parser.parse(s, 72, prop) return width * scale, height * scale, descent * scale font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w * scale, h * scale, d * scale def get_text_path(self, prop, s, ismath=False): """ Convert text *s* to path (a tuple of vertices and codes for matplotlib.path.Path). Parameters ---------- prop : `~matplotlib.font_manager.FontProperties` The font properties for the text. s : str The text to be converted. ismath : {False, True, "TeX"} If True, use mathtext parser. If "TeX", use tex for rendering. Returns ------- verts : list A list of numpy arrays containing the x and y coordinates of the vertices. codes : list A list of path codes. Examples -------- Create a list of vertices and codes from a text, and create a `.Path` from those:: from matplotlib.path import Path from matplotlib.textpath import TextToPath from matplotlib.font_manager import FontProperties fp = FontProperties(family="Humor Sans", style="italic") verts, codes = TextToPath().get_text_path(fp, "ABC") path = Path(verts, codes, closed=False) Also see `TextPath` for a more direct way to create a path from a text. """ if ismath == "TeX": glyph_info, glyph_map, rects = self.get_glyphs_tex(prop, s) elif not ismath: font = self._get_font(prop) glyph_info, glyph_map, rects = self.get_glyphs_with_font(font, s) else: glyph_info, glyph_map, rects = self.get_glyphs_mathtext(prop, s) verts, codes = [], [] for glyph_id, xposition, yposition, scale in glyph_info: verts1, codes1 = glyph_map[glyph_id] if len(verts1): verts1 = np.array(verts1) * scale + [xposition, yposition] verts.extend(verts1) codes.extend(codes1) for verts1, codes1 in rects: verts.extend(verts1) codes.extend(codes1) # Make sure an empty string or one with nothing to print # (e.g. only spaces & newlines) will be valid/empty path if not verts: verts = np.empty((0, 2)) return verts, codes def get_glyphs_with_font(self, font, s, glyph_map=None, return_new_glyphs_only=False): """ Convert string *s* to vertices and codes using the provided ttf font. """ if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map xpositions = [] glyph_ids = [] for item in _text_helpers.layout(s, font): char_id = self._get_char_id(font, ord(item.char)) glyph_ids.append(char_id) xpositions.append(item.x) if char_id not in glyph_map: glyph_map_new[char_id] = font.get_path() ypositions = [0] * len(xpositions) sizes = [1.] * len(xpositions) rects = [] return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, rects) def get_glyphs_mathtext(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ Parse mathtext string *s* and convert it to a (vertices, codes) pair. """ prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.DPI, prop) if not glyph_map: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map xpositions = [] ypositions = [] glyph_ids = [] sizes = [] for font, fontsize, ccode, ox, oy in glyphs: char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) font.load_char(ccode, flags=LOAD_NO_HINTING) glyph_map_new[char_id] = font.get_path() xpositions.append(ox) ypositions.append(oy) glyph_ids.append(char_id) size = fontsize / self.FONT_SCALE sizes.append(size) myrects = [] for ox, oy, w, h in rects: vert1 = [(ox, oy), (ox, oy + h), (ox + w, oy + h), (ox + w, oy), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) def get_texmanager(self): """Return the cached `~.texmanager.TexManager` instance.""" if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_glyphs_tex(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """Convert the string *s* to vertices and codes using usetex mode.""" # Mostly borrowed from pdf backend. dvifile = self.get_texmanager().make_dvi(s, self.FONT_SCALE) with dviread.Dvi(dvifile, self.DPI) as dvi: page, = dvi if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map glyph_ids, xpositions, ypositions, sizes = [], [], [], [] # Gather font information and do some setup for combining # characters into strings. for x1, y1, dvifont, glyph, width in page.text: font, enc = self._get_ps_font_and_encoding(dvifont.texname) char_id = self._get_char_id(font, glyph) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) # See comments in _get_ps_font_and_encoding. if enc is not None: index = font.get_name_index(enc[glyph]) font.load_glyph(index, flags=LOAD_TARGET_LIGHT) else: font.load_char(glyph, flags=LOAD_TARGET_LIGHT) glyph_map_new[char_id] = font.get_path() glyph_ids.append(char_id) xpositions.append(x1) ypositions.append(y1) sizes.append(dvifont.size / self.FONT_SCALE) myrects = [] for ox, oy, h, w in page.boxes: vert1 = [(ox, oy), (ox + w, oy), (ox + w, oy + h), (ox, oy + h), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) @staticmethod @functools.lru_cache(50) def _get_ps_font_and_encoding(texname): tex_font_map = dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) psfont = tex_font_map[texname] if psfont.filename is None: raise ValueError( f"No usable font file found for {psfont.psname} ({texname}). " f"The font may lack a Type-1 version.") font = get_font(psfont.filename) if psfont.encoding: # If psfonts.map specifies an encoding, use it: it gives us a # mapping of glyph indices to Adobe glyph names; use it to convert # dvi indices to glyph names and use the FreeType-synthesized # unicode charmap to convert glyph names to glyph indices (with # FT_Get_Name_Index/get_name_index), and load the glyph using # FT_Load_Glyph/load_glyph. (That charmap has a coverage at least # as good as, and possibly better than, the native charmaps.) enc = dviread._parse_enc(psfont.encoding) else: # If psfonts.map specifies no encoding, the indices directly # map to the font's "native" charmap; so don't use the # FreeType-synthesized charmap but the native ones (we can't # directly identify it but it's typically an Adobe charmap), and # directly load the dvi glyph indices using FT_Load_Char/load_char. for charmap_code in [ 1094992451, # ADOBE_CUSTOM. 1094995778, # ADOBE_STANDARD. ]: try: font.select_charmap(charmap_code) except (ValueError, RuntimeError): pass else: break else: _log.warning("No supported encoding in font (%s).", psfont.filename) enc = None return font, enc text_to_path = TextToPath() class TextPath(Path): """ Create a path from the text. """ def __init__(self, xy, s, size=None, prop=None, _interpolation_steps=1, usetex=False): r""" Create a path from the text. Note that it simply is a path, not an artist. You need to use the `.PathPatch` (or other artists) to draw this path onto the canvas. Parameters ---------- xy : tuple or array of two float values Position of the text. For no offset, use ``xy=(0, 0)``. s : str The text to convert to a path. size : float, optional Font size in points. Defaults to the size specified via the font properties *prop*. prop : `matplotlib.font_manager.FontProperties`, optional Font property. If not provided, will use a default ``FontProperties`` with parameters from the :ref:`rcParams<customizing-with-dynamic-rc-settings>`. _interpolation_steps : int, optional (Currently ignored) usetex : bool, default: False Whether to use tex rendering. Examples -------- The following creates a path from the string "ABC" with Helvetica font face; and another path from the latex fraction 1/2:: from matplotlib.textpath import TextPath from matplotlib.font_manager import FontProperties fp = FontProperties(family="Helvetica", style="italic") path1 = TextPath((12, 12), "ABC", size=12, prop=fp) path2 = TextPath((0, 0), r"$\frac{1}{2}$", size=12, usetex=True) Also see :doc:`/gallery/text_labels_and_annotations/demo_text_path`. """ # Circular import. from matplotlib.text import Text prop = FontProperties._from_any(prop) if size is None: size = prop.get_size_in_points() self._xy = xy self.set_size(size) self._cached_vertices = None s, ismath = Text(usetex=usetex)._preprocess_math(s) super().__init__( *text_to_path.get_text_path(prop, s, ismath=ismath), _interpolation_steps=_interpolation_steps, readonly=True) self._should_simplify = False def set_size(self, size): """Set the text size.""" self._size = size self._invalid = True def get_size(self): """Get the text size.""" return self._size @property def vertices(self): """ Return the cached path after updating it if necessary. """ self._revalidate_path() return self._cached_vertices @property def codes(self): """ Return the codes """ return self._codes def _revalidate_path(self): """ Update the path if necessary. The path for the text is initially create with the font size of `.FONT_SCALE`, and this path is rescaled to other size when necessary. """ if self._invalid or self._cached_vertices is None: tr = (Affine2D() .scale(self._size / text_to_path.FONT_SCALE) .translate(*self._xy)) self._cached_vertices = tr.transform(self._vertices) self._cached_vertices.flags.writeable = False self._invalid = False
34.002288
79
0.574063
4a192aed91e139345584bb3b14c7c7de858ad814
1,435
py
Python
modelr/rock_properties.py
kwinkunks/modelr
24f338941c3c2fb87e29c0433bc175e63dc21656
[ "Apache-2.0" ]
5
2015-04-20T08:55:13.000Z
2019-08-13T17:51:43.000Z
modelr/rock_properties.py
kwinkunks/modelr
24f338941c3c2fb87e29c0433bc175e63dc21656
[ "Apache-2.0" ]
2
2015-06-04T13:52:38.000Z
2016-05-04T19:56:19.000Z
modelr/rock_properties.py
kwinkunks/modelr
24f338941c3c2fb87e29c0433bc175e63dc21656
[ "Apache-2.0" ]
4
2016-02-12T15:10:47.000Z
2020-12-23T00:46:29.000Z
''' ========================= modelr.rock_properties ========================= Container for physical rock properties ''' from bruges.rockphysics import moduli_dict as moduli class RockProperties(object): ''' Class to store rock properties. :param vp: pressure wave velocity :param vs: shear wave velocity :param rho: bulk density ''' def __init__(self, vp, vs=None, rho=None, vp_sig=0, vs_sig=0, rho_sig=0, units='si'): # Deal with Imperial units if units != 'si': vp = vp * 0.30480 vs = vs * 0.30480 rho = rho * 1000.0 vp_sig = vp_sig * 0.30480 vs_sig = vs_sig * 0.30480 rho_sig = rho_sig * 1000.0 # Deal with missing values # Simple Vp/Vs ratio if vs is None: vs = vp / 2.0 else: vs = vs # Gardner equation if rho is None: rho = 1000 * 0.23 * (vp * 3.28084)**0.25 else: rho = rho # Set properties self.vp = vp self.vs = vs self.rho = rho self.vp_sig = vp_sig self.vs_sig = vs_sig self.rho_sig = rho_sig def __repr__(self): return 'RockProperties(vp=%r, rho=%r, vs=%r)' % \ (self.vp, self.rho, self.vs) def get_moduli(self): return moduli(vp=self.vp, vs=self.vs, rho=self.rho)
21.41791
59
0.503136
4a192b79ec1b5c17e4c6f29d444b8907b79555ff
30,562
py
Python
client/commands/v2/tests/start_test.py
zhuang-93/pyre-check
460b4c7bd81b152f386d6867c963564e1b20f19c
[ "MIT" ]
null
null
null
client/commands/v2/tests/start_test.py
zhuang-93/pyre-check
460b4c7bd81b152f386d6867c963564e1b20f19c
[ "MIT" ]
null
null
null
client/commands/v2/tests/start_test.py
zhuang-93/pyre-check
460b4c7bd81b152f386d6867c963564e1b20f19c
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tempfile from pathlib import Path from typing import Iterable, Tuple import testslide from .... import command_arguments, configuration from ....tests import setup from ..start import ( Arguments, CriticalFile, LoadSavedStateFromFile, LoadSavedStateFromProject, StoreSavedStateToFile, RemoteLogging, MatchPolicy, SimpleSourcePath, BuckSourcePath, create_server_arguments, find_watchman_root, find_buck_root, get_critical_files, get_saved_state_action, get_server_identifier, get_profiling_log_path, get_source_path, background_server_log_file, ARTIFACT_ROOT_NAME, ) class ArgumentTest(testslide.TestCase): def test_serialize_critical_file(self) -> None: self.assertDictEqual( CriticalFile(policy=MatchPolicy.BASE_NAME, path="foo").serialize(), {"base_name": "foo"}, ) self.assertDictEqual( CriticalFile(policy=MatchPolicy.EXTENSION, path="foo").serialize(), {"extension": "foo"}, ) self.assertDictEqual( CriticalFile(policy=MatchPolicy.FULL_PATH, path="/foo/bar").serialize(), {"full_path": "/foo/bar"}, ) def test_serialize_saved_state_action(self) -> None: self.assertTupleEqual( LoadSavedStateFromFile(shared_memory_path="/foo/bar").serialize(), ("load_from_file", {"shared_memory_path": "/foo/bar"}), ) self.assertTupleEqual( LoadSavedStateFromFile( shared_memory_path="/foo/bar", changed_files_path="derp.txt" ).serialize(), ( "load_from_file", {"shared_memory_path": "/foo/bar", "changed_files_path": "derp.txt"}, ), ) self.assertTupleEqual( LoadSavedStateFromProject(project_name="my_project").serialize(), ("load_from_project", {"project_name": "my_project"}), ) self.assertTupleEqual( LoadSavedStateFromProject( project_name="my_project", project_metadata="my_metadata" ).serialize(), ( "load_from_project", {"project_name": "my_project", "project_metadata": "my_metadata"}, ), ) self.assertTupleEqual( StoreSavedStateToFile(shared_memory_path="/foo/bar").serialize(), ("save_to_file", {"shared_memory_path": "/foo/bar"}), ) def test_serialize_remote_logging(self) -> None: self.assertDictEqual( RemoteLogging(logger="/bin/logger").serialize(), {"logger": "/bin/logger", "identifier": ""}, ) self.assertDictEqual( RemoteLogging(logger="/bin/logger", identifier="foo").serialize(), {"logger": "/bin/logger", "identifier": "foo"}, ) def test_serialize_source_paths(self) -> None: self.assertDictEqual( SimpleSourcePath( [ configuration.SimpleSearchPathElement("/source0"), configuration.SimpleSearchPathElement("/source1"), ] ).serialize(), {"kind": "simple", "paths": ["/source0", "/source1"]}, ) self.assertDictEqual( BuckSourcePath( source_root=Path("/source"), artifact_root=Path("/artifact"), checked_directory=Path("/source"), targets=["//foo:bar", "//foo:baz"], ).serialize(), { "kind": "buck", "source_root": "/source", "artifact_root": "/artifact", "targets": ["//foo:bar", "//foo:baz"], }, ) self.assertDictEqual( BuckSourcePath( source_root=Path("/source"), artifact_root=Path("/artifact"), checked_directory=Path("/source"), targets=["//foo:bar"], mode="opt", isolation_prefix=".lsp", ).serialize(), { "kind": "buck", "source_root": "/source", "artifact_root": "/artifact", "targets": ["//foo:bar"], "mode": "opt", "isolation_prefix": ".lsp", }, ) def test_serialize_arguments(self) -> None: def assert_serialized( arguments: Arguments, items: Iterable[Tuple[str, object]] ) -> None: serialized = arguments.serialize() for key, value in items: if key not in serialized: self.fail(f"Cannot find key `{key}` in serialized arguments") else: self.assertEqual(value, serialized[key]) assert_serialized( Arguments( log_path="foo", global_root="bar", source_paths=SimpleSourcePath( [configuration.SimpleSearchPathElement("source")] ), ), [ ("log_path", "foo"), ("global_root", "bar"), ("source_paths", {"kind": "simple", "paths": ["source"]}), ], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), excludes=["/excludes"], checked_directory_allowlist=["/allows"], checked_directory_blocklist=["/blocks"], extensions=[".typsy"], taint_models_path=["/taint/model"], ), [ ("excludes", ["/excludes"]), ("checked_directory_allowlist", ["/allows"]), ("checked_directory_blocklist", ["/blocks"]), ("extensions", [".typsy"]), ("taint_model_paths", ["/taint/model"]), ], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), debug=True, strict=True, show_error_traces=True, store_type_check_resolution=True, critical_files=[ CriticalFile(policy=MatchPolicy.BASE_NAME, path="foo.py"), CriticalFile(policy=MatchPolicy.EXTENSION, path="txt"), CriticalFile(policy=MatchPolicy.FULL_PATH, path="/home/bar.txt"), ], ), [ ("debug", True), ("strict", True), ("show_error_traces", True), ("store_type_check_resolution", True), ( "critical_files", [ {"base_name": "foo.py"}, {"extension": "txt"}, {"full_path": "/home/bar.txt"}, ], ), ], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), parallel=True, number_of_workers=20, ), [("parallel", True), ("number_of_workers", 20)], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), relative_local_root="local", watchman_root=Path("/project"), ), [("local_root", "/project/local"), ("watchman_root", "/project")], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), saved_state_action=LoadSavedStateFromProject( project_name="my_project", project_metadata="my_metadata" ), ), [ ( "saved_state_action", ( "load_from_project", { "project_name": "my_project", "project_metadata": "my_metadata", }, ), ) ], ) assert_serialized( Arguments( log_path="/log", global_root="/project", source_paths=SimpleSourcePath(), additional_logging_sections=["foo", "bar"], remote_logging=RemoteLogging(logger="/logger", identifier="baz"), profiling_output=Path("/derp"), memory_profiling_output=Path("/derp2"), ), [ ("additional_logging_sections", ["foo", "bar"]), ("profiling_output", "/derp"), ("remote_logging", {"logger": "/logger", "identifier": "baz"}), ("memory_profiling_output", "/derp2"), ], ) class ServerIdentifierTest(testslide.TestCase): def test_server_identifier(self) -> None: def assert_server_identifier( client_configuration: configuration.Configuration, expected: str ) -> None: self.assertEqual(get_server_identifier(client_configuration), expected) assert_server_identifier( configuration.Configuration( project_root="project", dot_pyre_directory=Path(".pyre") ), "project", ) assert_server_identifier( configuration.Configuration( project_root="my/project", dot_pyre_directory=Path(".pyre") ), "project", ) assert_server_identifier( configuration.Configuration( project_root="my/project", dot_pyre_directory=Path(".pyre"), relative_local_root="foo", ), "project/foo", ) assert_server_identifier( configuration.Configuration( project_root="my/project", dot_pyre_directory=Path(".pyre"), relative_local_root="foo/bar", ), "project/foo/bar", ) class StartTest(testslide.TestCase): def test_get_critical_files(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "project/local"]) setup.write_configuration_file( root_path, {"critical_files": ["foo", "bar/baz"]} ) setup.write_configuration_file( root_path, {"source_directories": ["."]}, relative="local" ) setup.ensure_files_exist(root_path, ["foo", "bar/baz"]) self.assertCountEqual( get_critical_files( configuration.create_configuration( command_arguments.CommandArguments(local_configuration="local"), root_path, ) ), [ CriticalFile( MatchPolicy.FULL_PATH, str(root_path / ".pyre_configuration") ), CriticalFile( MatchPolicy.FULL_PATH, str(root_path / "local/.pyre_configuration.local"), ), CriticalFile(MatchPolicy.FULL_PATH, str(root_path / "foo")), CriticalFile(MatchPolicy.FULL_PATH, str(root_path / "bar/baz")), ], ) def test_get_saved_state_action(self) -> None: self.assertIsNone(get_saved_state_action(command_arguments.StartArguments())) self.assertEqual( get_saved_state_action( command_arguments.StartArguments(load_initial_state_from="foo") ), LoadSavedStateFromFile(shared_memory_path="foo"), ) self.assertEqual( get_saved_state_action( command_arguments.StartArguments( load_initial_state_from="foo", changed_files_path="bar" ) ), LoadSavedStateFromFile(shared_memory_path="foo", changed_files_path="bar"), ) self.assertEqual( get_saved_state_action( command_arguments.StartArguments(saved_state_project="my_project") ), LoadSavedStateFromProject(project_name="my_project"), ) self.assertEqual( get_saved_state_action( command_arguments.StartArguments(saved_state_project="my_project"), relative_local_root="local/root", ), LoadSavedStateFromProject( project_name="my_project", project_metadata="local$root" ), ) self.assertEqual( get_saved_state_action( command_arguments.StartArguments( load_initial_state_from="foo", changed_files_path="bar" ), relative_local_root="local/root", ), LoadSavedStateFromFile(shared_memory_path="foo", changed_files_path="bar"), ) self.assertEqual( get_saved_state_action( command_arguments.StartArguments(save_initial_state_to="/foo") ), StoreSavedStateToFile(shared_memory_path="/foo"), ) def test_find_watchman_root(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_files_exist( root_path, ["foo/qux/derp", "foo/bar/.watchmanconfig", "foo/bar/baz/derp"], ) expected_root = root_path / "foo/bar" self.assertEqual( find_watchman_root(root_path / "foo/bar/baz"), expected_root ) self.assertEqual(find_watchman_root(root_path / "foo/bar"), expected_root) self.assertIsNone(find_watchman_root(root_path / "foo/qux")) self.assertIsNone(find_watchman_root(root_path / "foo")) self.assertIsNone(find_watchman_root(root_path)) def test_find_buck_root(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_files_exist( root_path, ["foo/qux/derp", "foo/bar/.buckconfig", "foo/bar/baz/derp"], ) expected_root = root_path / "foo/bar" self.assertEqual(find_buck_root(root_path / "foo/bar/baz"), expected_root) self.assertEqual(find_buck_root(root_path / "foo/bar"), expected_root) self.assertIsNone(find_buck_root(root_path / "foo/qux")) self.assertIsNone(find_buck_root(root_path / "foo")) self.assertIsNone(find_buck_root(root_path)) def test_get_simple_source_path__exists(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "src"]) element = configuration.SimpleSearchPathElement(str(root_path / "src")) self.assertEqual( get_source_path( configuration.Configuration( project_root=str(root_path / "project"), dot_pyre_directory=(root_path / ".pyre"), source_directories=[element], ).filter_nonexistent_paths() ), SimpleSourcePath([element]), ) def test_get_simple_source_path__nonexists(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre"]) element = configuration.SimpleSearchPathElement(str(root_path / "src")) self.assertEqual( get_source_path( configuration.Configuration( project_root=str(root_path / "project"), dot_pyre_directory=(root_path / ".pyre"), source_directories=[element], ).filter_nonexistent_paths() ), SimpleSourcePath([]), ) def test_get_buck_source_path__global(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "buck_root"]) setup.ensure_files_exist(root_path, ["buck_root/.buckconfig"]) setup.write_configuration_file( root_path / "buck_root", { "targets": ["//ct:marle", "//ct:lucca"], "buck_mode": "opt", "isolation_prefix": ".lsp", }, ) self.assertEqual( get_source_path( configuration.create_configuration( command_arguments.CommandArguments( dot_pyre_directory=root_path / ".pyre", ), root_path / "buck_root", ) ), BuckSourcePath( source_root=root_path / "buck_root", artifact_root=root_path / ".pyre" / ARTIFACT_ROOT_NAME, checked_directory=root_path / "buck_root", targets=["//ct:marle", "//ct:lucca"], mode="opt", isolation_prefix=".lsp", ), ) def test_get_buck_source_path__local(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "project/local"]) setup.ensure_files_exist(root_path, ["project/local/.buckconfig"]) setup.write_configuration_file( root_path / "project", { "buck_mode": "opt", "isolation_prefix": ".lsp", }, ) setup.write_configuration_file( root_path / "project", {"targets": ["//ct:chrono"]}, relative="local", ) self.assertEqual( get_source_path( configuration.create_configuration( command_arguments.CommandArguments( local_configuration="local", dot_pyre_directory=root_path / ".pyre", ), root_path / "project", ) ), BuckSourcePath( source_root=root_path / "project/local", artifact_root=root_path / ".pyre" / ARTIFACT_ROOT_NAME / "local", checked_directory=root_path / "project/local", targets=["//ct:chrono"], mode="opt", isolation_prefix=".lsp", ), ) def test_get_buck_source_path__no_buck_root(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "project"]) with self.assertRaises(configuration.InvalidConfiguration): get_source_path( configuration.Configuration( project_root=str(root_path / "project"), dot_pyre_directory=(root_path / ".pyre"), targets=["//ct:frog"], ).filter_nonexistent_paths() ) def test_get_source_path__no_source_specified(self) -> None: with self.assertRaises(configuration.InvalidConfiguration): get_source_path( configuration.Configuration( project_root="project", dot_pyre_directory=Path(".pyre"), source_directories=None, targets=None, ).filter_nonexistent_paths() ) def test_get_source_path__confliciting_source_specified(self) -> None: with self.assertRaises(configuration.InvalidConfiguration): get_source_path( configuration.Configuration( project_root="project", dot_pyre_directory=Path(".pyre"), source_directories=[configuration.SimpleSearchPathElement("src")], targets=["//ct:ayla"], ).filter_nonexistent_paths() ) def test_get_checked_directory_for_simple_source_path(self) -> None: element0 = configuration.SimpleSearchPathElement("ozzie") element1 = configuration.SubdirectorySearchPathElement("diva", "flea") element2 = configuration.SitePackageSearchPathElement("super", "slash") self.assertCountEqual( SimpleSourcePath( [element0, element1, element2, element0] ).get_checked_directory_allowlist(), [element0.path(), element1.path(), element2.path()], ) def test_get_checked_directory_for_buck_source_path(self) -> None: self.assertCountEqual( BuckSourcePath( source_root=Path("/source"), artifact_root=Path("/artifact"), checked_directory=Path("/source/ct"), targets=[ "//ct:robo", "//ct:magus", "future//ct/guardia/...", "//ct/guardia:schala", ], ).get_checked_directory_allowlist(), ["/source/ct"], ) def test_create_server_arguments(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists( root_path, [".pyre", "allows", "blocks", "search", "taint", "local/src"] ) setup.ensure_files_exist(root_path, ["critical", ".watchmanconfig"]) setup.write_configuration_file( root_path, { "do_not_ignore_errors_in": ["allows", "nonexistent"], "ignore_all_errors": ["blocks", "nonexistent"], "critical_files": ["critical"], "exclude": ["exclude"], "extensions": [".ext", "invalid_extension"], "workers": 42, "search_path": ["search", "nonexistent"], "strict": True, "taint_models_path": ["taint"], }, ) setup.write_configuration_file( root_path, {"source_directories": ["src"]}, relative="local" ) server_configuration = configuration.create_configuration( command_arguments.CommandArguments( local_configuration="local", dot_pyre_directory=root_path / ".pyre", ), root_path, ) self.assertEqual( create_server_arguments( server_configuration, command_arguments.StartArguments( debug=True, no_watchman=False, saved_state_project="project", sequential=False, show_error_traces=True, store_type_check_resolution=True, ), ), Arguments( log_path=str(root_path / ".pyre/local"), global_root=str(root_path), additional_logging_sections=["server"], checked_directory_allowlist=[ str(root_path / "local/src"), str(root_path / "allows"), ], checked_directory_blocklist=[str(root_path / "blocks")], critical_files=[ CriticalFile( MatchPolicy.FULL_PATH, str(root_path / ".pyre_configuration"), ), CriticalFile( MatchPolicy.FULL_PATH, str(root_path / "local/.pyre_configuration.local"), ), CriticalFile( MatchPolicy.FULL_PATH, str(root_path / "critical") ), ], debug=True, excludes=["exclude"], extensions=[".ext"], relative_local_root="local", number_of_workers=42, parallel=True, python_version=server_configuration.get_python_version(), saved_state_action=LoadSavedStateFromProject( project_name="project", project_metadata="local" ), search_paths=[ configuration.SimpleSearchPathElement(str(root_path / "search")) ], show_error_traces=True, source_paths=SimpleSourcePath( [ configuration.SimpleSearchPathElement( str(root_path / "local/src") ) ] ), store_type_check_resolution=True, strict=True, taint_models_path=[str(root_path / "taint")], watchman_root=root_path, ), ) def test_create_server_arguments_watchman_not_found(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "src"]) setup.write_configuration_file( root_path, {"source_directories": ["src"]}, ) arguments = create_server_arguments( configuration.create_configuration( command_arguments.CommandArguments( dot_pyre_directory=root_path / ".pyre", ), root_path, ), command_arguments.StartArguments( no_watchman=False, ), ) self.assertIsNone(arguments.watchman_root) def test_create_server_arguments_disable_saved_state(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() setup.ensure_directories_exists(root_path, [".pyre", "src"]) setup.write_configuration_file( root_path, {"source_directories": ["src"]}, ) arguments = create_server_arguments( configuration.create_configuration( command_arguments.CommandArguments( dot_pyre_directory=root_path / ".pyre", ), root_path, ), command_arguments.StartArguments( no_saved_state=True, saved_state_project="some/project" ), ) self.assertIsNone(arguments.saved_state_action) def test_create_server_arguments_logging(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() log_path = root_path / ".pyre" logger_path = root_path / "logger" setup.ensure_directories_exists(root_path, [".pyre", "src"]) setup.ensure_files_exist(root_path, ["logger"]) setup.write_configuration_file( root_path, {"source_directories": ["src"], "logger": str(logger_path)}, ) arguments = create_server_arguments( configuration.create_configuration( command_arguments.CommandArguments(dot_pyre_directory=log_path), root_path, ), command_arguments.StartArguments( logging_sections="foo,bar,-baz", noninteractive=True, enable_profiling=True, enable_memory_profiling=True, log_identifier="derp", ), ) self.assertListEqual( list(arguments.additional_logging_sections), ["foo", "bar", "-baz", "-progress", "server"], ) self.assertEqual( arguments.profiling_output, get_profiling_log_path(log_path) ) self.assertEqual( arguments.memory_profiling_output, get_profiling_log_path(log_path) ) self.assertEqual( arguments.remote_logging, RemoteLogging(logger=str(logger_path), identifier="derp"), ) def test_background_server_log_placement(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() with background_server_log_file(root_path) as log_file: print("foo", file=log_file) # Make sure that the log content can be read from a known location. self.assertEqual( (root_path / "new_server" / "server.stderr").read_text().strip(), "foo" )
39.536869
88
0.511158
4a192c97d8837d81f550bca1e1b97b8bcbda9b37
7,242
py
Python
bentoml/_internal/utils/tensorflow.py
joswlv/BentoML
3e4e66ebeaec76fb5a43f9897ebf3a60ed6718e4
[ "Apache-2.0" ]
null
null
null
bentoml/_internal/utils/tensorflow.py
joswlv/BentoML
3e4e66ebeaec76fb5a43f9897ebf3a60ed6718e4
[ "Apache-2.0" ]
null
null
null
bentoml/_internal/utils/tensorflow.py
joswlv/BentoML
3e4e66ebeaec76fb5a43f9897ebf3a60ed6718e4
[ "Apache-2.0" ]
null
null
null
import logging from typing import TYPE_CHECKING, Sequence, TypeVar, Union from bentoml.exceptions import MissingDependencyException if TYPE_CHECKING: # fmt: off from tensorflow.python.framework.type_spec import ( # noqa # pylint: disable=unused-import TypeSpec, ) # fmt: on logger = logging.getLogger(__name__) TF_KERAS_DEFAULT_FUNCTIONS = { "_default_save_signature", "call_and_return_all_conditional_losses", } TENSOR_CLASS_NAMES = ( "RaggedTensor", "SparseTensor", "TensorArray", "EagerTensor", "Tensor", ) ST = TypeVar("ST") def _isinstance_wrapper(obj: ST, sobj: Union[str, type, Sequence]) -> bool: """ `isinstance` wrapper to check tensor spec Args: obj: tensor class to check. sobj: class used to check with :obj:`obj`. Follows `TENSOR_CLASS_NAME` Returns: :obj:`bool` """ if not sobj: return False if isinstance(sobj, str): return type(obj).__name__ == sobj.split(".")[-1] if isinstance(sobj, (tuple, list, set)): return any(_isinstance_wrapper(obj, k) for k in sobj) return isinstance(obj, sobj) def normalize_spec(value: ST) -> "TypeSpec": """normalize tensor spec""" if not _isinstance_wrapper(value, TENSOR_CLASS_NAMES): return value import tensorflow as tf if _isinstance_wrapper(value, "RaggedTensor"): return tf.RaggedTensorSpec.from_value(value) if _isinstance_wrapper(value, "SparseTensor"): return tf.SparseTensorSpec.from_value(value) if _isinstance_wrapper(value, "TensorArray"): return tf.TensorArraySpec.from_tensor(value) if _isinstance_wrapper(value, ("Tensor", "EagerTensor")): return tf.TensorSpec.from_tensor(value) return value def get_input_signatures(func): if hasattr(func, "function_spec"): # for RestoredFunction if func.function_spec.input_signature: return ((func.function_spec.input_signature, {}),) else: return tuple( s for conc in func.concrete_functions for s in get_input_signatures(conc) ) if hasattr(func, "structured_input_signature"): # for ConcreteFunction if func.structured_input_signature is not None: return (func.structured_input_signature,) if func._arg_keywords is not None: # TODO(bojiang): using private API return ( ( tuple(), { k: normalize_spec(v) for k, v in zip(func._arg_keywords, func.inputs) }, ), ) return tuple() def get_arg_names(func): if hasattr(func, "function_spec"): # for RestoredFunction return func.function_spec.arg_names if hasattr(func, "structured_input_signature"): # for ConcreteFunction return func._arg_keywords return tuple() def get_output_signature(func): if hasattr(func, "function_spec"): # for RestoredFunction # assume all concrete functions have same signature return get_output_signature(func.concrete_functions[0]) if hasattr(func, "structured_input_signature"): # for ConcreteFunction if func.structured_outputs is not None: if isinstance(func.structured_outputs, dict): return { k: normalize_spec(v) for k, v in func.structured_outputs.items() } return func.structured_outputs else: return tuple(normalize_spec(v) for v in func.outputs) return tuple() def get_restored_functions(m): function_map = {k: getattr(m, k, None) for k in dir(m)} return { k: v for k, v in function_map.items() if k not in TF_KERAS_DEFAULT_FUNCTIONS and hasattr(v, "function_spec") } def get_serving_default_function(m): try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use TfSavedModelArtifact" ) return m.signatures.get(tf.compat.v2.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY) def cast_tensor_by_spec(_input, spec): """ transform dtype & shape following spec """ try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use TfSavedModelArtifact" ) if not _isinstance_wrapper(spec, "TensorSpec"): return _input if _isinstance_wrapper(_input, ["Tensor", "EagerTensor"]): # TensorFlow issue #43038 # pylint: disable=unexpected-keyword-arg, no-value-for-parameter return tf.cast(_input, dtype=spec.dtype, name=spec.name) else: return tf.constant(_input, dtype=spec.dtype, name=spec.name) def _pretty_format_function_call(base, name, arg_names): if arg_names: part_sigs = ", ".join(f"{k}" for k in arg_names) else: part_sigs = "" if name == "__call__": return f"{base}({part_sigs})" return f"{base}.{name}({part_sigs})" def _pretty_format_positional(positional): return f'Positional arguments ({len(positional)} total):\n * \n{" * ".join(str(a) for a in positional)}' # noqa def pretty_format_function(function, obj="<object>", name="<function>"): ret = "" outs = get_output_signature(function) sigs = get_input_signatures(function) arg_names = get_arg_names(function) if hasattr(function, "function_spec"): arg_names = function.function_spec.arg_names else: arg_names = function._arg_keywords ret += _pretty_format_function_call(obj, name, arg_names) ret += "\n------------\n" signature_descriptions = [] for index, sig in enumerate(sigs): positional, keyword = sig signature_descriptions.append( "Arguments Option {}:\n {}\n Keyword arguments:\n {}".format( index + 1, _pretty_format_positional(positional), keyword ) ) ret += "\n\n".join(signature_descriptions) ret += f"\n\nReturn:\n {outs}\n\n" return ret def pretty_format_restored_model(model): part_functions = "" restored_functions = get_restored_functions(model) for name, func in restored_functions.items(): part_functions += pretty_format_function(func, "model", name) part_functions += "\n" serving_default = get_serving_default_function(model) if serving_default: part_functions += pretty_format_function( serving_default, "model", "signature['serving_default']" ) part_functions += "\n" if not restored_functions and not serving_default: return ( "No serving function was found in the saved model. " "In the model implementation, use `tf.function` decorator to mark " "the method needed for model serving. \n" "Find more details in related TensorFlow docs here " "https://www.tensorflow.org/api_docs/python/tf/saved_model/save" ) return f"Found restored functions:\n{part_functions}"
30.556962
122
0.640431
4a192e35c61f6874e92fe39403f9f299220b6c2b
5,245
py
Python
PaddleCV/PaddleDetection/tools/eval.py
Jie5216/models-1
4e3828a606d0cc3f1e93e9716a71a10765a88dfe
[ "Apache-2.0" ]
1
2019-08-09T06:54:02.000Z
2019-08-09T06:54:02.000Z
PaddleCV/PaddleDetection/tools/eval.py
Jie5216/models-1
4e3828a606d0cc3f1e93e9716a71a10765a88dfe
[ "Apache-2.0" ]
null
null
null
PaddleCV/PaddleDetection/tools/eval.py
Jie5216/models-1
4e3828a606d0cc3f1e93e9716a71a10765a88dfe
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import multiprocessing def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be set before # `import paddle`. Otherwise, it would not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import paddle.fluid as fluid from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results import ppdet.utils.checkpoint as checkpoint from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu from ppdet.modeling.model_input import create_feed from ppdet.data.data_feed import create_reader from ppdet.core.workspace import load_config, merge_config, create import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): """ Main evaluate function """ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) # define executor place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir) pyreader.decorate_sample_list_generator(reader, place) # eval already exists json file if FLAGS.json_eval: json_eval_results( eval_feed, cfg.metric, json_directory=FLAGS.output_eval) return # compile program for multi-devices if devices_num <= 1: compile_program = fluid.compiler.CompiledProgram(eval_prog) else: build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False compile_program = fluid.compiler.CompiledProgram( eval_prog).with_data_parallel(build_strategy=build_strategy) # load model exe.run(startup_prog) if 'weights' in cfg: checkpoint.load_pretrain(exe, eval_prog, cfg.weights) assert cfg.metric in ['COCO', 'VOC'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_box', 'gt_label', 'is_difficult'] keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() results = eval_run(exe, compile_program, pyreader, keys, values, cls) # evaluation resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval) if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "--json_eval", action='store_true', default=False, help="Whether to re eval with already exists bbox.json or mask.json") parser.add_argument( "-d", "--dataset_dir", default=None, type=str, help="Dataset path, same as DataFeed.dataset.dataset_dir") parser.add_argument( "-f", "--output_eval", default=None, type=str, help="Evaluation file directory, default is current directory.") FLAGS = parser.parse_args() main()
32.78125
91
0.693041
4a192efbc96f0f23b36c71d4bbd9671e27dae76d
1,672
py
Python
package/spack-r-dicekriging/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
1
2018-07-17T07:45:09.000Z
2018-07-17T07:45:09.000Z
package/spack-r-dicekriging/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
package/spack-r-dicekriging/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RDicekriging(RPackage): """Estimation, validation and prediction of kriging models. Important functions : km, print.km, plot.km, predict.km.""" homepage = "http://dice.emse.fr/" url = "https://cran.r-project.org/src/contrib/DiceKriging_1.5.5.tar.gz" list_url = "https://cran.r-project.org/src/contrib/Archive/DiceKriging" version('1.5.5', 'ee3e2d7a91d4a712467ef4f0b69c2844')
45.189189
80
0.677632
4a192f5e3dc916e0ae06cfb5a7ad378e1d679ef9
1,630
py
Python
src/decisionengine/framework/util/tests/fixtures.py
moibenko/decisionengine
4c458e0c225ec2ce1e82d56e752724983331b7d1
[ "Apache-2.0" ]
null
null
null
src/decisionengine/framework/util/tests/fixtures.py
moibenko/decisionengine
4c458e0c225ec2ce1e82d56e752724983331b7d1
[ "Apache-2.0" ]
null
null
null
src/decisionengine/framework/util/tests/fixtures.py
moibenko/decisionengine
4c458e0c225ec2ce1e82d56e752724983331b7d1
[ "Apache-2.0" ]
null
null
null
# SPDX-FileCopyrightText: 2017 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 import pytest __all__ = ["prometheus_env_setup", "Gauge", "Counter", "OtherMetric"] @pytest.fixture(autouse=True) def prometheus_env_setup(tmp_path, monkeypatch): """Make sure we have a directory set for PROMETHEUS_MULTIPROC_DIR so that metric instantiation gives us multiprocess metrics""" # Get a fixed dir d = tmp_path monkeypatch.setenv("PROMETHEUS_MULTIPROC_DIR", str(d)) yield monkeypatch.delenv("PROMETHEUS_MULTIPROC_DIR") # Put these metrics declarations in fixtures because we need the env_setup # fixture to be set before importing any of the metrics @pytest.fixture() def Gauge(): from decisionengine.framework.util.metrics import Gauge pytest.gauge_default_multiproc_mode = Gauge._DEFAULT_MULTIPROC_MODE def _gauge(*args, **kwargs): return Gauge(*args, **kwargs) yield _gauge @pytest.fixture() def Counter(): from decisionengine.framework.util.metrics import Counter def _counter(*args, **kwargs): return Counter(*args, **kwargs) yield _counter @pytest.fixture() def OtherMetric(): from decisionengine.framework.util.metrics import Histogram, Summary def _decider(metric_type): if metric_type == "histogram": def _histogram(*args, **kwargs): return Histogram(*args, **kwargs) return _histogram elif metric_type == "summary": def _summary(*args, **kwargs): return Summary(*args, **kwargs) return _summary yield _decider
25.873016
77
0.693865
4a192f6b754bad4ffc3c8493bd5e5cff7624a2f6
3,293
py
Python
test/test_configuration.py
mmadsen/axelrod-ct
90ea4319dd571546888c4d2a50255514e7d7fb94
[ "Apache-2.0" ]
5
2015-05-03T08:49:11.000Z
2022-03-23T11:44:00.000Z
test/test_configuration.py
mmadsen/axelrod-ct
90ea4319dd571546888c4d2a50255514e7d7fb94
[ "Apache-2.0" ]
null
null
null
test/test_configuration.py
mmadsen/axelrod-ct
90ea4319dd571546888c4d2a50255514e7d7fb94
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2013. Mark E. Madsen <mark@madsenlab.org> # # This work is licensed under the terms of the Apache Software License, Version 2.0. See the file LICENSE for details. """ Description here """ import unittest import madsenlab.axelrod.utils as utils import os import tempfile class ConfigurationTest(unittest.TestCase): filename = "test" def setUp(self): self.tf = tempfile.NamedTemporaryFile(dir="/tmp", delete=False) self.tf.write(""" { "REPLICATIONS_PER_PARAM_SET" : 5, "POPULATION_SIZES_STUDIED" : [500,1000], "NUMBER_OF_DIMENSIONS_OR_FEATURES" : [1,2,4,8,16], "NUMBER_OF_TRAITS_PER_DIMENSION" : [2,3,4,6,8,12,16,32] } """) self.tf.flush() def tearDown(self): os.remove(self.tf.name) def test_configuration(self): print "tempfile: %s" % self.tf.name config = utils.AxelrodConfiguration(self.tf.name) print "configured REPLICATIONS_PER_PARAM_SET: %s" % config.REPLICATIONS_PER_PARAM_SET self.assertEqual(5, config.REPLICATIONS_PER_PARAM_SET, "Config file value does not match") def test_latex_output(self): config = utils.AxelrodConfiguration(self.tf.name) table = config.to_latex_table("test") print table def test_pandoc_output(self): config = utils.AxelrodConfiguration(self.tf.name) table = config.to_pandoc_table("test") print table class TreeConfigurationTest(unittest.TestCase): def setUp(self): self.tf = tempfile.NamedTemporaryFile(dir="/tmp", delete=False) self.tf.write("""{ "REPLICATIONS_PER_PARAM_SET" : 10, "POPULATION_SIZES_STUDIED" : [100], "TRAIT_LEARNING_RATE" : [0.1, 0.2, 0.3, 0.5], "TRAIT_LOSS_RATE" : [0.00001, 0.00005, 0.0001, 0.00002], "INNOVATION_RATE" : [0.00001, 0.00005, 0.0001, 0.00002], "MAXIMUM_INITIAL_TRAITS" : [4,8,16,32], "NUM_TRAIT_TREES" : [4,8,12,16], "TREE_BRANCHING_FACTOR" : [2,3,4,6], "TREE_DEPTH_FACTOR" : [3,4,6,8], "SIMULATION_CUTOFF_TIME" : 3000000, "POPULATION_STRUCTURE_CLASS" : "madsenlab.axelrod.population.TreeTraitStructurePopulation", "INTERACTION_RULE_CLASS" : "madsenlab.axelrod.rules.MultipleTreePrerequisitesLearningCopyingRule", "NETWORK_FACTORY_CLASS" : "madsenlab.axelrod.population.SquareLatticeFactory", "TRAIT_FACTORY_CLASS" : "madsenlab.axelrod.traits.MultipleBalancedTreeStructuredTraitFactory" } """) self.tf.flush() def tearDown(self): os.remove(self.tf.name) def test_configuration(self): print "tempfile: %s" % self.tf.name config = utils.TreeStructuredConfiguration(self.tf.name) print "configured REPLICATIONS_PER_PARAM_SET: %s" % config.REPLICATIONS_PER_PARAM_SET self.assertEqual(10, config.REPLICATIONS_PER_PARAM_SET, "Config file value does not match") def test_latex_output(self): config = utils.TreeStructuredConfiguration(self.tf.name) table = config.to_latex_table("test") print table def test_pandoc_output(self): config = utils.TreeStructuredConfiguration(self.tf.name) table = config.to_pandoc_table("test") print table if __name__ == "__main__": unittest.main()
29.401786
119
0.681445
4a193006755101ee451d82a7a6b9cac61c37dfdb
19,283
py
Python
airflow/providers/google/cloud/operators/functions.py
MohammedDiab/airflow
4fa7df5de9d9bfe0509722599baf1be91ffea3b8
[ "Apache-2.0" ]
null
null
null
airflow/providers/google/cloud/operators/functions.py
MohammedDiab/airflow
4fa7df5de9d9bfe0509722599baf1be91ffea3b8
[ "Apache-2.0" ]
null
null
null
airflow/providers/google/cloud/operators/functions.py
MohammedDiab/airflow
4fa7df5de9d9bfe0509722599baf1be91ffea3b8
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module contains Google Cloud Functions operators. """ import re from typing import Any, Dict, List, Optional, Sequence, Union from googleapiclient.errors import HttpError from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.functions import CloudFunctionsHook from airflow.providers.google.cloud.utils.field_validator import ( GcpBodyFieldValidator, GcpFieldValidationException, ) from airflow.utils.decorators import apply_defaults from airflow.version import version def _validate_available_memory_in_mb(value): if int(value) <= 0: raise GcpFieldValidationException("The available memory has to be greater than 0") def _validate_max_instances(value): if int(value) <= 0: raise GcpFieldValidationException( "The max instances parameter has to be greater than 0") CLOUD_FUNCTION_VALIDATION = [ dict(name="name", regexp="^.+$"), dict(name="description", regexp="^.+$", optional=True), dict(name="entryPoint", regexp=r'^.+$', optional=True), dict(name="runtime", regexp=r'^.+$', optional=True), dict(name="timeout", regexp=r'^.+$', optional=True), dict(name="availableMemoryMb", custom_validation=_validate_available_memory_in_mb, optional=True), dict(name="labels", optional=True), dict(name="environmentVariables", optional=True), dict(name="network", regexp=r'^.+$', optional=True), dict(name="maxInstances", optional=True, custom_validation=_validate_max_instances), dict(name="source_code", type="union", fields=[ dict(name="sourceArchiveUrl", regexp=r'^.+$'), dict(name="sourceRepositoryUrl", regexp=r'^.+$', api_version='v1beta2'), dict(name="sourceRepository", type="dict", fields=[ dict(name="url", regexp=r'^.+$') ]), dict(name="sourceUploadUrl") ]), dict(name="trigger", type="union", fields=[ dict(name="httpsTrigger", type="dict", fields=[ # This dict should be empty at input (url is added at output) ]), dict(name="eventTrigger", type="dict", fields=[ dict(name="eventType", regexp=r'^.+$'), dict(name="resource", regexp=r'^.+$'), dict(name="service", regexp=r'^.+$', optional=True), dict(name="failurePolicy", type="dict", optional=True, fields=[ dict(name="retry", type="dict", optional=True) ]) ]) ]), ] # type: List[Dict[str, Any]] class CloudFunctionDeployFunctionOperator(BaseOperator): """ Creates a function in Google Cloud Functions. If a function with this name already exists, it will be updated. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CloudFunctionDeployFunctionOperator` :param location: Google Cloud Platform region where the function should be created. :type location: str :param body: Body of the Cloud Functions definition. The body must be a Cloud Functions dictionary as described in: https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions . Different API versions require different variants of the Cloud Functions dictionary. :type body: dict or google.cloud.functions.v1.CloudFunction :param project_id: (Optional) Google Cloud Platform project ID where the function should be created. :type project_id: str :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform - default 'google_cloud_default'. :type gcp_conn_id: str :param api_version: (Optional) API version used (for example v1 - default - or v1beta1). :type api_version: str :param zip_path: Path to zip file containing source code of the function. If the path is set, the sourceUploadUrl should not be specified in the body or it should be empty. Then the zip file will be uploaded using the upload URL generated via generateUploadUrl from the Cloud Functions API. :type zip_path: str :param validate_body: If set to False, body validation is not performed. :type validate_body: bool :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gcf_function_deploy_template_fields] template_fields = ('body', 'project_id', 'location', 'gcp_conn_id', 'api_version', 'impersonation_chain',) # [END gcf_function_deploy_template_fields] @apply_defaults def __init__(self, *, location: str, body: Dict, project_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', zip_path: Optional[str] = None, validate_body: bool = True, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs) -> None: self.project_id = project_id self.location = location self.body = body self.gcp_conn_id = gcp_conn_id self.api_version = api_version self.zip_path = zip_path self.zip_path_preprocessor = ZipPathPreprocessor(body, zip_path) self._field_validator = None # type: Optional[GcpBodyFieldValidator] self.impersonation_chain = impersonation_chain if validate_body: self._field_validator = GcpBodyFieldValidator(CLOUD_FUNCTION_VALIDATION, api_version=api_version) self._validate_inputs() super().__init__(**kwargs) def _validate_inputs(self): if not self.location: raise AirflowException("The required parameter 'location' is missing") if not self.body: raise AirflowException("The required parameter 'body' is missing") self.zip_path_preprocessor.preprocess_body() def _validate_all_body_fields(self): if self._field_validator: self._field_validator.validate(self.body) def _create_new_function(self, hook): hook.create_new_function( project_id=self.project_id, location=self.location, body=self.body) def _update_function(self, hook): hook.update_function(self.body['name'], self.body, self.body.keys()) def _check_if_function_exists(self, hook): name = self.body.get('name') if not name: raise GcpFieldValidationException("The 'name' field should be present in " "body: '{}'.".format(self.body)) try: hook.get_function(name) except HttpError as e: status = e.resp.status if status == 404: return False raise e return True def _upload_source_code(self, hook): return hook.upload_function_zip(project_id=self.project_id, location=self.location, zip_path=self.zip_path) def _set_airflow_version_label(self): if 'labels' not in self.body.keys(): self.body['labels'] = {} self.body['labels'].update( {'airflow-version': 'v' + version.replace('.', '-').replace('+', '-')}) def execute(self, context): hook = CloudFunctionsHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) if self.zip_path_preprocessor.should_upload_function(): self.body[GCF_SOURCE_UPLOAD_URL] = self._upload_source_code(hook) self._validate_all_body_fields() self._set_airflow_version_label() if not self._check_if_function_exists(hook): self._create_new_function(hook) else: self._update_function(hook) GCF_SOURCE_ARCHIVE_URL = 'sourceArchiveUrl' GCF_SOURCE_UPLOAD_URL = 'sourceUploadUrl' SOURCE_REPOSITORY = 'sourceRepository' GCF_ZIP_PATH = 'zip_path' class ZipPathPreprocessor: """ Pre-processes zip path parameter. Responsible for checking if the zip path parameter is correctly specified in relation with source_code body fields. Non empty zip path parameter is special because it is mutually exclusive with sourceArchiveUrl and sourceRepository body fields. It is also mutually exclusive with non-empty sourceUploadUrl. The pre-process modifies sourceUploadUrl body field in special way when zip_path is not empty. An extra step is run when execute method is called and sourceUploadUrl field value is set in the body with the value returned by generateUploadUrl Cloud Function API method. :param body: Body passed to the create/update method calls. :type body: dict :param zip_path: (optional) Path to zip file containing source code of the function. If the path is set, the sourceUploadUrl should not be specified in the body or it should be empty. Then the zip file will be uploaded using the upload URL generated via generateUploadUrl from the Cloud Functions API. :type zip_path: str """ upload_function = None # type: Optional[bool] def __init__(self, body: dict, zip_path: Optional[str] = None) -> None: self.body = body self.zip_path = zip_path @staticmethod def _is_present_and_empty(dictionary, field): return field in dictionary and not dictionary[field] def _verify_upload_url_and_no_zip_path(self): if self._is_present_and_empty(self.body, GCF_SOURCE_UPLOAD_URL): if not self.zip_path: raise AirflowException( "Parameter '{url}' is empty in the body and argument '{path}' " "is missing or empty. You need to have non empty '{path}' " "when '{url}' is present and empty.".format( url=GCF_SOURCE_UPLOAD_URL, path=GCF_ZIP_PATH) ) def _verify_upload_url_and_zip_path(self): if GCF_SOURCE_UPLOAD_URL in self.body and self.zip_path: if not self.body[GCF_SOURCE_UPLOAD_URL]: self.upload_function = True else: raise AirflowException("Only one of '{}' in body or '{}' argument " "allowed. Found both." .format(GCF_SOURCE_UPLOAD_URL, GCF_ZIP_PATH)) def _verify_archive_url_and_zip_path(self): if GCF_SOURCE_ARCHIVE_URL in self.body and self.zip_path: raise AirflowException("Only one of '{}' in body or '{}' argument " "allowed. Found both." .format(GCF_SOURCE_ARCHIVE_URL, GCF_ZIP_PATH)) def should_upload_function(self) -> bool: """ Checks if function source should be uploaded. :rtype: bool """ if self.upload_function is None: raise AirflowException('validate() method has to be invoked before ' 'should_upload_function') return self.upload_function def preprocess_body(self): """ Modifies sourceUploadUrl body field in special way when zip_path is not empty. """ self._verify_archive_url_and_zip_path() self._verify_upload_url_and_zip_path() self._verify_upload_url_and_no_zip_path() if self.upload_function is None: self.upload_function = False FUNCTION_NAME_PATTERN = '^projects/[^/]+/locations/[^/]+/functions/[^/]+$' FUNCTION_NAME_COMPILED_PATTERN = re.compile(FUNCTION_NAME_PATTERN) class CloudFunctionDeleteFunctionOperator(BaseOperator): """ Deletes the specified function from Google Cloud Functions. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CloudFunctionDeleteFunctionOperator` :param name: A fully-qualified function name, matching the pattern: `^projects/[^/]+/locations/[^/]+/functions/[^/]+$` :type name: str :param gcp_conn_id: The connection ID to use to connect to Google Cloud Platform. :type gcp_conn_id: str :param api_version: API version used (for example v1 or v1beta1). :type api_version: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gcf_function_delete_template_fields] template_fields = ('name', 'gcp_conn_id', 'api_version', 'impersonation_chain',) # [END gcf_function_delete_template_fields] @apply_defaults def __init__(self, *, name: str, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs) -> None: self.name = name self.gcp_conn_id = gcp_conn_id self.api_version = api_version self.impersonation_chain = impersonation_chain self._validate_inputs() super().__init__(**kwargs) def _validate_inputs(self): if not self.name: raise AttributeError('Empty parameter: name') else: pattern = FUNCTION_NAME_COMPILED_PATTERN if not pattern.match(self.name): raise AttributeError( 'Parameter name must match pattern: {}'.format(FUNCTION_NAME_PATTERN)) def execute(self, context): hook = CloudFunctionsHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) try: return hook.delete_function(self.name) except HttpError as e: status = e.resp.status if status == 404: self.log.info('The function does not exist in this project') else: self.log.error('An error occurred. Exiting.') raise e class CloudFunctionInvokeFunctionOperator(BaseOperator): """ Invokes a deployed Cloud Function. To be used for testing purposes as very limited traffic is allowed. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CloudFunctionDeployFunctionOperator` :param function_id: ID of the function to be called :type function_id: str :param input_data: Input to be passed to the function :type input_data: Dict :param location: The location where the function is located. :type location: str :param project_id: Optional, Google Cloud Project project_id where the function belongs. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] :return: None """ template_fields = ('function_id', 'input_data', 'location', 'project_id', 'impersonation_chain',) @apply_defaults def __init__( self, *, function_id: str, input_data: Dict, location: str, project_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs ) -> None: super().__init__(**kwargs) self.function_id = function_id self.input_data = input_data self.location = location self.project_id = project_id self.gcp_conn_id = gcp_conn_id self.api_version = api_version self.impersonation_chain = impersonation_chain def execute(self, context: Dict): hook = CloudFunctionsHook( api_version=self.api_version, gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info('Calling function %s.', self.function_id) result = hook.call_function( function_id=self.function_id, input_data=self.input_data, location=self.location, project_id=self.project_id ) self.log.info('Function called successfully. Execution id %s', result.get('executionId', None)) self.xcom_push(context=context, key='execution_id', value=result.get('executionId', None)) return result
42.756098
103
0.658507
4a19301deaf612d4c4129390e18b1339437feb72
4,425
py
Python
v0.7/medical_imaging/3d-unet/run.py
kahmed10/inference
4ab7690e3ebbc1a1ba56bf492437f3de92119758
[ "Apache-2.0" ]
null
null
null
v0.7/medical_imaging/3d-unet/run.py
kahmed10/inference
4ab7690e3ebbc1a1ba56bf492437f3de92119758
[ "Apache-2.0" ]
null
null
null
v0.7/medical_imaging/3d-unet/run.py
kahmed10/inference
4ab7690e3ebbc1a1ba56bf492437f3de92119758
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, os.getcwd()) import argparse import mlperf_loadgen as lg import subprocess def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--backend", choices=["pytorch", "onnxruntime", "tf"], default="pytorch", help="Backend") parser.add_argument( "--scenario", choices=["SingleStream", "Offline", "Server", "MultiStream"], default="Offline", help="Scenario") parser.add_argument("--accuracy", action="store_true", help="enable accuracy pass") parser.add_argument("--mlperf_conf", default="build/mlperf.conf", help="mlperf rules config") parser.add_argument("--user_conf", default="user.conf", help="mlperf rules config") parser.add_argument( "--model_dir", default= "build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1", help="Path to the directory containing plans.pkl") parser.add_argument("--model", help="Path to the ONNX or TF model") parser.add_argument("--preprocessed_data_dir", default="build/preprocessed_data", help="path to preprocessed data") parser.add_argument("--performance_count", type=int, default=16, help="performance count") args = parser.parse_args() return args scenario_map = { "SingleStream": lg.TestScenario.SingleStream, "Offline": lg.TestScenario.Offline, "Server": lg.TestScenario.Server, "MultiStream": lg.TestScenario.MultiStream } def main(): args = get_args() if args.backend == "pytorch": from pytorch_SUT import get_pytorch_sut sut = get_pytorch_sut(args.model_dir, args.preprocessed_data_dir, args.performance_count) elif args.backend == "onnxruntime": from onnxruntime_SUT import get_onnxruntime_sut sut = get_onnxruntime_sut(args.model, args.preprocessed_data_dir, args.performance_count) elif args.backend == "tf": from tf_SUT import get_tf_sut sut = get_tf_sut(args.model, args.preprocessed_data_dir, args.performance_count) else: raise ValueError("Unknown backend: {:}".format(args.backend)) settings = lg.TestSettings() settings.scenario = scenario_map[args.scenario] settings.FromConfig(args.mlperf_conf, "3d-unet", args.scenario) settings.FromConfig(args.user_conf, "3d-unet", args.scenario) if args.accuracy: settings.mode = lg.TestMode.AccuracyOnly else: settings.mode = lg.TestMode.PerformanceOnly log_path = "build/logs" if not os.path.exists(log_path): os.makedirs(log_path) log_output_settings = lg.LogOutputSettings() log_output_settings.outdir = log_path log_output_settings.copy_summary_to_stdout = True log_settings = lg.LogSettings() log_settings.log_output = log_output_settings print("Running Loadgen test...") lg.StartTestWithLogSettings(sut.sut, sut.qsl.qsl, settings, log_settings) if args.accuracy: print("Running accuracy script...") cmd = "python3 brats_eval.py" subprocess.check_call(cmd, shell=True) print("Done!") print("Destroying SUT...") lg.DestroySUT(sut.sut) print("Destroying QSL...") lg.DestroyQSL(sut.qsl.qsl) if __name__ == "__main__": main()
34.84252
111
0.642712
4a19303ee7b011f638b707a750972783e6d375f9
21,528
py
Python
venv/Lib/site-packages/sklearn/tests/test_calibration.py
baleshwari/Predict-Zomato-Restaurant-Ratings
32505433ebcd8358c52b22775cc146f875c4e190
[ "BSD-3-Clause" ]
13
2020-05-03T18:42:05.000Z
2022-03-23T07:44:19.000Z
venv/Lib/site-packages/sklearn/tests/test_calibration.py
baleshwari/Predict-Zomato-Restaurant-Ratings
32505433ebcd8358c52b22775cc146f875c4e190
[ "BSD-3-Clause" ]
25
2020-11-16T15:36:41.000Z
2021-06-01T05:15:31.000Z
venv/Lib/site-packages/sklearn/tests/test_calibration.py
baleshwari/Predict-Zomato-Restaurant-Ratings
32505433ebcd8358c52b22775cc146f875c4e190
[ "BSD-3-Clause" ]
8
2020-10-05T20:56:08.000Z
2020-10-27T23:30:03.000Z
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # License: BSD 3 clause import pytest import numpy as np from numpy.testing import assert_allclose from scipy import sparse from sklearn.base import BaseEstimator from sklearn.model_selection import LeaveOneOut, train_test_split from sklearn.utils._testing import (assert_array_almost_equal, assert_almost_equal, assert_array_equal, assert_raises, ignore_warnings) from sklearn.utils.extmath import softmax from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification, make_blobs from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import KFold, cross_val_predict from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.isotonic import IsotonicRegression from sklearn.feature_extraction import DictVectorizer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @pytest.fixture(scope="module") def data(): X, y = make_classification( n_samples=200, n_features=6, random_state=42 ) return X, y @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration(data, method, ensemble): # Test calibration objects with isotonic and sigmoid n_samples = 100 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble) assert_raises(ValueError, cal_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) # Note that this fit overwrites the fit on the entire training # set cal_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(y_test, prob_pos_cal_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_cal_clf, 1 - prob_pos_cal_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss((y_test + 1) % 2, prob_pos_cal_clf_relabeled)) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_bad_method(data, ensemble): # Check only "isotonic" and "sigmoid" are accepted as methods X, y = data clf = LinearSVC() clf_invalid_method = CalibratedClassifierCV( clf, method="foo", ensemble=ensemble ) with pytest.raises(ValueError): clf_invalid_method.fit(X, y) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_regressor(data, ensemble): # `base-estimator` should provide either decision_function or # predict_proba (most regressors, for instance, should fail) X, y = data clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), ensemble=ensemble) with pytest.raises(RuntimeError): clf_base_regressor.fit(X, y) def test_calibration_default_estimator(data): # Check base_estimator default is LinearSVC X, y = data calib_clf = CalibratedClassifierCV(cv=2) calib_clf.fit(X, y) base_est = calib_clf.calibrated_classifiers_[0].base_estimator assert isinstance(base_est, LinearSVC) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_cv_splitter(data, ensemble): # Check when `cv` is a CV splitter X, y = data splits = 5 kfold = KFold(n_splits=splits) calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble) assert isinstance(calib_clf.cv, KFold) assert calib_clf.cv.n_splits == splits calib_clf.fit(X, y) expected_n_clf = splits if ensemble else 1 assert len(calib_clf.calibrated_classifiers_) == expected_n_clf @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_sample_weight(data, method, ensemble): n_samples = 100 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV( base_estimator, method=method, ensemble=ensemble ) calibrated_clf.fit(X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert diff > 0.1 @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_parallel_execution(data, method, ensemble): """Test parallel calibration""" X, y = data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) base_estimator = LinearSVC(random_state=42) cal_clf_parallel = CalibratedClassifierCV( base_estimator, method=method, n_jobs=2, ensemble=ensemble ) cal_clf_parallel.fit(X_train, y_train) probs_parallel = cal_clf_parallel.predict_proba(X_test) cal_clf_sequential = CalibratedClassifierCV( base_estimator, method=method, n_jobs=1, ensemble=ensemble ) cal_clf_sequential.fit(X_train, y_train) probs_sequential = cal_clf_sequential.predict_proba(X_test) assert_allclose(probs_parallel, probs_sequential) @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) # increase the number of RNG seeds to assess the statistical stability of this # test: @pytest.mark.parametrize('seed', range(2)) def test_calibration_multiclass(method, ensemble, seed): def multiclass_brier(y_true, proba_pred, n_classes): Y_onehot = np.eye(n_classes)[y_true] return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0] # Test calibration for multiclass with classifier that implements # only decision function. clf = LinearSVC(random_state=7) X, y = make_blobs(n_samples=500, n_features=100, random_state=seed, centers=10, cluster_std=15.0) # Use an unbalanced dataset by collapsing 8 clusters into one class # to make the naive calibration based on a softmax more unlikely # to work. y[y > 2] = 2 n_classes = np.unique(y).shape[0] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) # Check probabilities sum to 1 assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that the dataset is not too trivial, otherwise it's hard # to get interesting calibration data during the internal # cross-validation loop. assert 0.65 < clf.score(X_test, y_test) < 0.95 # Check that the accuracy of the calibrated model is never degraded # too much compared to the original classifier. assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test) # Check that Brier loss of calibrated classifier is smaller than # loss obtained by naively turning OvR decision function to # probabilities via a softmax uncalibrated_brier = \ multiclass_brier(y_test, softmax(clf.decision_function(X_test)), n_classes=n_classes) calibrated_brier = multiclass_brier(y_test, probas, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier clf = RandomForestClassifier(n_estimators=30, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) uncalibrated_brier = multiclass_brier(y_test, clf_probs, n_classes=n_classes) cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) calibrated_brier = multiclass_brier(y_test, cal_clf_probs, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() # Check error if clf not prefit unfit_clf = CalibratedClassifierCV(clf, cv="prefit") with pytest.raises(NotFittedError): unfit_clf.fit(X_calib, y_calib) clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: cal_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = cal_clf.predict_proba(this_X_test) y_pred = cal_clf.predict(this_X_test) prob_pos_cal_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(y_test, prob_pos_cal_clf)) @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) def test_calibration_ensemble_false(data, method): # Test that `ensemble=False` is the same as using predictions from # `cross_val_predict` to train calibrator. X, y = data clf = LinearSVC(random_state=7) cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False) cal_clf.fit(X, y) cal_probas = cal_clf.predict_proba(X) # Get probas manually unbiased_preds = cross_val_predict( clf, X, y, cv=3, method='decision_function' ) if method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') else: calibrator = _SigmoidCalibration() calibrator.fit(unbiased_preds, y) # Use `clf` fit on all data clf.fit(X, y) clf_df = clf.decision_function(X) manual_probas = calibrator.predict(clf_df) assert_allclose(cal_probas[:, 1], manual_probas) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert len(prob_true) == len(prob_pred) assert len(prob_true) == 2 assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) # test that quantiles work as expected y_true2 = np.array([0, 0, 0, 0, 1, 1]) y_pred2 = np.array([0., 0.1, 0.2, 0.5, 0.9, 1.]) prob_true_quantile, prob_pred_quantile = calibration_curve( y_true2, y_pred2, n_bins=2, strategy='quantile') assert len(prob_true_quantile) == len(prob_pred_quantile) assert len(prob_true_quantile) == 2 assert_almost_equal(prob_true_quantile, [0, 2 / 3]) assert_almost_equal(prob_pred_quantile, [0.1, 0.8]) # Check that error is raised when invalid strategy is selected assert_raises(ValueError, calibration_curve, y_true2, y_pred2, strategy='percentile') @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_nan_imputer(ensemble): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', SimpleImputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV( clf, cv=2, method='isotonic', ensemble=ensemble ) clf_c.fit(X, y) clf_c.predict(X) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_prob_sum(ensemble): # Test that sum of probabilities is 1. A non-regression test for # issue #7796 num_classes = 2 X, y = make_classification(n_samples=10, n_features=5, n_classes=num_classes) clf = LinearSVC(C=1.0, random_state=7) clf_prob = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) clf_prob.fit(X, y) probs = clf_prob.predict_proba(X) assert_array_almost_equal(probs.sum(axis=1), np.ones(probs.shape[0])) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_less_classes(ensemble): # Test to check calibration works fine when train set in a test-train # split does not contain all classes # Since this test uses LOO, at each iteration train set will not contain a # class label X = np.random.randn(10, 5) y = np.arange(10) clf = LinearSVC(C=1.0, random_state=7) cal_clf = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) cal_clf.fit(X, y) for i, calibrated_classifier in \ enumerate(cal_clf.calibrated_classifiers_): proba = calibrated_classifier.predict_proba(X) if ensemble: # Check that the unobserved class has proba=0 assert_array_equal(proba[:, i], np.zeros(len(y))) # Check for all other classes proba>0 assert np.all(proba[:, :i] > 0) assert np.all(proba[:, i + 1:] > 0) else: # Check `proba` are all 1/n_classes assert np.allclose(proba, 1 / proba.shape[0]) @ignore_warnings(category=FutureWarning) @pytest.mark.parametrize('X', [np.random.RandomState(42).randn(15, 5, 2), np.random.RandomState(42).randn(15, 5, 2, 6)]) def test_calibration_accepts_ndarray(X): """Test that calibration accepts n-dimensional arrays as input""" y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0] class MockTensorClassifier(BaseEstimator): """A toy estimator that accepts tensor inputs""" def fit(self, X, y): self.classes_ = np.unique(y) return self def decision_function(self, X): # toy decision function that just needs to have the right shape: return X.reshape(X.shape[0], -1).sum(axis=1) calibrated_clf = CalibratedClassifierCV(MockTensorClassifier()) # we should be able to fit this classifier with no error calibrated_clf.fit(X, y) @pytest.fixture def text_data(): text_data = [ {'state': 'NY', 'age': 'adult'}, {'state': 'TX', 'age': 'adult'}, {'state': 'VT', 'age': 'child'}, ] text_labels = [1, 0, 1] return text_data, text_labels @pytest.fixture def text_data_pipeline(text_data): X, y = text_data pipeline_prefit = Pipeline([ ('vectorizer', DictVectorizer()), ('clf', RandomForestClassifier()) ]) return pipeline_prefit.fit(X, y) def test_calibration_pipeline(text_data, text_data_pipeline): # Test that calibration works in prefit pipeline with transformer, # where `X` is not array-like, sparse matrix or dataframe at the start. # See https://github.com/scikit-learn/scikit-learn/issues/8710 X, y = text_data clf = text_data_pipeline calib_clf = CalibratedClassifierCV(clf, cv='prefit') calib_clf.fit(X, y) # Check attributes are obtained from fitted estimator assert_array_equal(calib_clf.classes_, clf.classes_) msg = "'CalibratedClassifierCV' object has no attribute" with pytest.raises(AttributeError, match=msg): calib_clf.n_features_in_ @pytest.mark.parametrize('clf, cv', [ pytest.param(LinearSVC(C=1), 2), pytest.param(LinearSVC(C=1), 'prefit'), ]) def test_calibration_attributes(clf, cv): # Check that `n_features_in_` and `classes_` attributes created properly X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) if cv == 'prefit': clf = clf.fit(X, y) calib_clf = CalibratedClassifierCV(clf, cv=cv) calib_clf.fit(X, y) if cv == 'prefit': assert_array_equal(calib_clf.classes_, clf.classes_) assert calib_clf.n_features_in_ == clf.n_features_in_ else: classes = LabelEncoder().fit(y).classes_ assert_array_equal(calib_clf.classes_, classes) assert calib_clf.n_features_in_ == X.shape[1] # FIXME: remove in 1.1 def test_calibrated_classifier_cv_deprecation(data): # Check that we raise the proper deprecation warning if accessing # `calibrators_` from the `_CalibratedClassifier`. X, y = data calib_clf = CalibratedClassifierCV(cv=2).fit(X, y) with pytest.warns(FutureWarning): calibrators = calib_clf.calibrated_classifiers_[0].calibrators_ for clf1, clf2 in zip( calibrators, calib_clf.calibrated_classifiers_[0].calibrators ): assert clf1 is clf2
38.374332
79
0.674935
4a193127fb81782028e542a41370ab8a66738c54
2,938
py
Python
venv/lib/python3.8/site-packages/pyqtgraph/util/mutex.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
23
2017-09-04T13:20:38.000Z
2022-03-08T08:15:17.000Z
venv/lib/python3.8/site-packages/pyqtgraph/util/mutex.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
102
2021-01-20T11:14:21.000Z
2021-12-12T17:34:42.000Z
venv/lib/python3.8/site-packages/pyqtgraph/util/mutex.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
5
2017-11-26T19:40:46.000Z
2021-03-11T17:25:23.000Z
# -*- coding: utf-8 -*- from ..Qt import QtCore import traceback class Mutex(QtCore.QMutex): """ Subclass of QMutex that provides useful debugging information during deadlocks--tracebacks are printed for both the code location that is attempting to lock the mutex as well as the location that has already acquired the lock. Also provides __enter__ and __exit__ methods for use in "with" statements. """ def __init__(self, *args, **kargs): if kargs.get('recursive', False): args = (QtCore.QMutex.Recursive,) QtCore.QMutex.__init__(self, *args) self.l = QtCore.QMutex() ## for serializing access to self.tb self.tb = [] self.debug = True ## True to enable debugging functions def tryLock(self, timeout=None, id=None): if timeout is None: locked = QtCore.QMutex.tryLock(self) else: locked = QtCore.QMutex.tryLock(self, timeout) if self.debug and locked: self.l.lock() try: if id is None: self.tb.append(''.join(traceback.format_stack()[:-1])) else: self.tb.append(" " + str(id)) #print 'trylock', self, len(self.tb) finally: self.l.unlock() return locked def lock(self, id=None): c = 0 waitTime = 5000 # in ms while True: if self.tryLock(waitTime, id): break c += 1 if self.debug: self.l.lock() try: print("Waiting for mutex lock (%0.1f sec). Traceback follows:" % (c*waitTime/1000.)) traceback.print_stack() if len(self.tb) > 0: print("Mutex is currently locked from:\n") print(self.tb[-1]) else: print("Mutex is currently locked from [???]") finally: self.l.unlock() #print 'lock', self, len(self.tb) def unlock(self): QtCore.QMutex.unlock(self) if self.debug: self.l.lock() try: #print 'unlock', self, len(self.tb) if len(self.tb) > 0: self.tb.pop() else: raise Exception("Attempt to unlock mutex before it has been locked") finally: self.l.unlock() def depth(self): self.l.lock() n = len(self.tb) self.l.unlock() return n def traceback(self): self.l.lock() try: ret = self.tb[:] finally: self.l.unlock() return ret def __exit__(self, *args): self.unlock() def __enter__(self): self.lock() return self
31.255319
88
0.491491
4a193134a3f42db292126dcf4985e83a0cb7c180
129
py
Python
src/lesson_language_tools/dis_constant_folding.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
3
2018-08-14T09:33:52.000Z
2022-03-21T12:31:58.000Z
src/lesson_language_tools/dis_constant_folding.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
src/lesson_language_tools/dis_constant_folding.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
# Folded i = 1 + 2 f = 3.4 * 5.6 s = 'Hello,' + ' World!' # Not folded I = i * 3 * 4 F = f / 2 / 3 S = s + '\n' + 'Fantastic!'
11.727273
27
0.418605
4a19321fda065d8068d96856531af52c42d555f9
3,006
py
Python
env/lib/python3.8/site-packages/plotly/graph_objs/layout/__init__.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/layout/__init__.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/layout/__init__.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import sys if sys.version_info < (3, 7): from ._activeshape import Activeshape from ._angularaxis import AngularAxis from ._annotation import Annotation from ._coloraxis import Coloraxis from ._colorscale import Colorscale from ._font import Font from ._geo import Geo from ._grid import Grid from ._hoverlabel import Hoverlabel from ._image import Image from ._legend import Legend from ._mapbox import Mapbox from ._margin import Margin from ._modebar import Modebar from ._newshape import Newshape from ._polar import Polar from ._radialaxis import RadialAxis from ._scene import Scene from ._shape import Shape from ._slider import Slider from ._template import Template from ._ternary import Ternary from ._title import Title from ._transition import Transition from ._uniformtext import Uniformtext from ._updatemenu import Updatemenu from ._xaxis import XAxis from ._yaxis import YAxis from . import annotation from . import coloraxis from . import geo from . import grid from . import hoverlabel from . import legend from . import mapbox from . import newshape from . import polar from . import scene from . import shape from . import slider from . import template from . import ternary from . import title from . import updatemenu from . import xaxis from . import yaxis else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [ ".annotation", ".coloraxis", ".geo", ".grid", ".hoverlabel", ".legend", ".mapbox", ".newshape", ".polar", ".scene", ".shape", ".slider", ".template", ".ternary", ".title", ".updatemenu", ".xaxis", ".yaxis", ], [ "._activeshape.Activeshape", "._angularaxis.AngularAxis", "._annotation.Annotation", "._coloraxis.Coloraxis", "._colorscale.Colorscale", "._font.Font", "._geo.Geo", "._grid.Grid", "._hoverlabel.Hoverlabel", "._image.Image", "._legend.Legend", "._mapbox.Mapbox", "._margin.Margin", "._modebar.Modebar", "._newshape.Newshape", "._polar.Polar", "._radialaxis.RadialAxis", "._scene.Scene", "._shape.Shape", "._slider.Slider", "._template.Template", "._ternary.Ternary", "._title.Title", "._transition.Transition", "._uniformtext.Uniformtext", "._updatemenu.Updatemenu", "._xaxis.XAxis", "._yaxis.YAxis", ], )
28.358491
55
0.560546
4a19323113ce9d7a6cd11ca8aa76ae0cd7e5f908
50
py
Python
AFluentPython/tools/__init__.py
RoboCuper-hujinlei/AI-Job
cf7a081d59700d75f0f2dc73b6d5130863796f01
[ "Apache-2.0" ]
null
null
null
AFluentPython/tools/__init__.py
RoboCuper-hujinlei/AI-Job
cf7a081d59700d75f0f2dc73b6d5130863796f01
[ "Apache-2.0" ]
null
null
null
AFluentPython/tools/__init__.py
RoboCuper-hujinlei/AI-Job
cf7a081d59700d75f0f2dc73b6d5130863796f01
[ "Apache-2.0" ]
null
null
null
""" 介绍python常用的内建模块 """ print("this is __init__")
10
25
0.68
4a193565211429ecf40cc8b9f3eece94bbe2e516
1,455
py
Python
tables/utilities.py
seanbreckenridge/rotten_tomatoes_cli
e250ad0d8bc70bf385540ab9264c440feb90d02c
[ "MIT" ]
null
null
null
tables/utilities.py
seanbreckenridge/rotten_tomatoes_cli
e250ad0d8bc70bf385540ab9264c440feb90d02c
[ "MIT" ]
null
null
null
tables/utilities.py
seanbreckenridge/rotten_tomatoes_cli
e250ad0d8bc70bf385540ab9264c440feb90d02c
[ "MIT" ]
null
null
null
import re from termcolor import colored class RottenTomatoesScoreFormatter: def __init__(self): pass def format(self, rating): if rating is None: return "N/A" return colored(text="{rating}% ".format(rating=rating), color=self.rating_color(rating=rating)) def rating_color(self, rating): if rating < 25: return "cyan" elif rating < 50: return "green" elif rating < 75: return "white" elif rating < 90: return "yellow" else: return "red" class MpaaRatingFormatter: def __init__(self): pass def format(self, rating): return colored(text=rating, color=self.rating_color(rating=rating)) def rating_color(self, rating): if rating == "NR": return "white" elif rating == "G": return "green" elif rating == "PG": return "cyan" elif rating == "PG13": return "yellow" elif rating == "R": return "red" else: return "magenta" def convert_to_ascii(text): return text.encode("ascii", "ignore").decode("ascii") def clean_html(raw_html): clean = re.compile("<.*?>") clean_text = re.sub(clean, "", raw_html) return clean_text def formatted_header(text): return colored(text=convert_to_ascii(text=text), attrs=["bold", "underline"])
20.208333
103
0.564948
4a1935f66a581ad2a2efdc8fce23ca4a9bf5f6c1
76,614
py
Python
sdk/textanalytics/azure-ai-textanalytics/tests/test_analyze.py
jalauzon-msft/azure-sdk-for-python
15967f5c6d3376f2334a382486ba86339786e028
[ "MIT" ]
null
null
null
sdk/textanalytics/azure-ai-textanalytics/tests/test_analyze.py
jalauzon-msft/azure-sdk-for-python
15967f5c6d3376f2334a382486ba86339786e028
[ "MIT" ]
null
null
null
sdk/textanalytics/azure-ai-textanalytics/tests/test_analyze.py
jalauzon-msft/azure-sdk-for-python
15967f5c6d3376f2334a382486ba86339786e028
[ "MIT" ]
null
null
null
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from collections import defaultdict import os import pytest import functools import itertools import datetime import json from unittest import mock from azure.core.exceptions import HttpResponseError, ClientAuthenticationError from azure.core.credentials import AzureKeyCredential from testcase import TextAnalyticsTest, TextAnalyticsPreparer, is_public_cloud from testcase import TextAnalyticsClientPreparer as _TextAnalyticsClientPreparer from devtools_testutils import recorded_by_proxy, set_bodiless_matcher from azure.ai.textanalytics import ( TextAnalyticsClient, RecognizeEntitiesAction, RecognizeLinkedEntitiesAction, RecognizePiiEntitiesAction, ExtractKeyPhrasesAction, AnalyzeSentimentAction, TextDocumentInput, VERSION, TextAnalyticsApiVersion, _AnalyzeActionsType, ExtractKeyPhrasesResult, AnalyzeSentimentResult, RecognizeLinkedEntitiesResult, RecognizeEntitiesResult, RecognizePiiEntitiesResult, PiiEntityCategory, SingleCategoryClassifyAction, MultiCategoryClassifyAction, RecognizeCustomEntitiesAction, SingleCategoryClassifyResult, MultiCategoryClassifyResult, RecognizeCustomEntitiesResult, AnalyzeHealthcareEntitiesAction ) # pre-apply the client_cls positional argument so it needn't be explicitly passed below TextAnalyticsClientPreparer = functools.partial(_TextAnalyticsClientPreparer, TextAnalyticsClient) TextAnalyticsCustomPreparer = functools.partial( TextAnalyticsPreparer, textanalytics_custom_text_endpoint="https://fakeendpoint.cognitiveservices.azure.com", textanalytics_custom_text_key="fakeZmFrZV9hY29jdW50X2tleQ==", textanalytics_single_category_classify_project_name="single_category_classify_project_name", textanalytics_single_category_classify_deployment_name="single_category_classify_deployment_name", textanalytics_multi_category_classify_project_name="multi_category_classify_project_name", textanalytics_multi_category_classify_deployment_name="multi_category_classify_deployment_name", textanalytics_custom_entities_project_name="custom_entities_project_name", textanalytics_custom_entities_deployment_name="custom_entities_deployment_name", ) class TestAnalyze(TextAnalyticsTest): def _interval(self): return 5 if self.is_live else 0 @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() def test_no_single_input(self, **kwargs): client = kwargs.pop("client") with pytest.raises(TypeError): response = client.begin_analyze_actions("hello world", actions=[], polling_interval=self._interval()) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_all_successful_passing_dict_key_phrase_task(self, client): docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen"}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = client.begin_analyze_actions( docs, actions=[ExtractKeyPhrasesAction()], show_stats=True, polling_interval=self._interval(), ).result() document_results = list(response) assert len(document_results) == 2 for document_result in document_results: assert len(document_result) == 1 for document_result in document_result: assert isinstance(document_result, ExtractKeyPhrasesResult) assert "Paul Allen" in document_result.key_phrases assert "Bill Gates" in document_result.key_phrases assert "Microsoft" in document_result.key_phrases assert document_result.id is not None @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_all_successful_passing_dict_sentiment_task(self, client): docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen."}, {"id": "2", "language": "en", "text": "I did not like the hotel we stayed at. It was too expensive."}, {"id": "3", "language": "en", "text": "The restaurant had really good food. I recommend you try it."}] response = client.begin_analyze_actions( docs, actions=[AnalyzeSentimentAction()], show_stats=True, polling_interval=self._interval(), ).result() pages = list(response) assert len(pages) == len(docs) for idx, document_results in enumerate(pages): assert len(document_results) == 1 document_result = document_results[0] assert isinstance(document_result, AnalyzeSentimentResult) assert document_result.id is not None assert document_result.statistics is not None self.validateConfidenceScores(document_result.confidence_scores) assert document_result.sentences is not None if idx == 0: assert document_result.sentiment == "neutral" assert len(document_result.sentences) == 1 assert document_result.sentences[0].text == "Microsoft was founded by Bill Gates and Paul Allen." elif idx == 1: assert document_result.sentiment == "negative" assert len(document_result.sentences) == 2 assert document_result.sentences[0].text == "I did not like the hotel we stayed at." assert document_result.sentences[1].text == "It was too expensive." else: assert document_result.sentiment == "positive" assert len(document_result.sentences) == 2 assert document_result.sentences[0].text == "The restaurant had really good food." assert document_result.sentences[1].text == "I recommend you try it." @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_sentiment_analysis_task_with_opinion_mining(self, client): documents = [ "It has a sleek premium aluminum design that makes it beautiful to look at.", "The food and service is not good" ] response = client.begin_analyze_actions( documents, actions=[AnalyzeSentimentAction(show_opinion_mining=True)], show_stats=True, polling_interval=self._interval(), ).result() pages = list(response) assert len(pages) == len(documents) for idx, document_results in enumerate(pages): assert len(document_results) == 1 document_result = document_results[0] assert isinstance(document_result, AnalyzeSentimentResult) for sentence in document_result.sentences: if idx == 0: for mined_opinion in sentence.mined_opinions: target = mined_opinion.target assert 'design' == target.text assert 'positive' == target.sentiment assert 0.0 == target.confidence_scores.neutral self.validateConfidenceScores(target.confidence_scores) assert 32 == target.offset sleek_opinion = mined_opinion.assessments[0] assert 'sleek' == sleek_opinion.text assert 'positive' == sleek_opinion.sentiment assert 0.0 == sleek_opinion.confidence_scores.neutral self.validateConfidenceScores(sleek_opinion.confidence_scores) assert 9 == sleek_opinion.offset assert not sleek_opinion.is_negated premium_opinion = mined_opinion.assessments[1] assert 'premium' == premium_opinion.text assert 'positive' == premium_opinion.sentiment assert 0.0 == premium_opinion.confidence_scores.neutral self.validateConfidenceScores(premium_opinion.confidence_scores) assert 15 == premium_opinion.offset assert not premium_opinion.is_negated else: food_target = sentence.mined_opinions[0].target service_target = sentence.mined_opinions[1].target self.validateConfidenceScores(food_target.confidence_scores) assert 4 == food_target.offset assert 'service' == service_target.text assert 'negative' == service_target.sentiment assert 0.0 == service_target.confidence_scores.neutral self.validateConfidenceScores(service_target.confidence_scores) assert 13 == service_target.offset food_opinion = sentence.mined_opinions[0].assessments[0] service_opinion = sentence.mined_opinions[1].assessments[0] self.assertOpinionsEqual(food_opinion, service_opinion) assert 'good' == food_opinion.text assert 'negative' == food_opinion.sentiment assert 0.0 == food_opinion.confidence_scores.neutral self.validateConfidenceScores(food_opinion.confidence_scores) assert 28 == food_opinion.offset assert food_opinion.is_negated service_target = sentence.mined_opinions[1].target assert 'food' == food_target.text assert 'negative' == food_target.sentiment assert 0.0 == food_target.confidence_scores.neutral @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_all_successful_passing_text_document_input_entities_task(self, client): docs = [ TextDocumentInput(id="1", text="Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975", language="en"), TextDocumentInput(id="2", text="Microsoft fue fundado por Bill Gates y Paul Allen el 4 de abril de 1975.", language="es"), TextDocumentInput(id="3", text="Microsoft wurde am 4. April 1975 von Bill Gates und Paul Allen gegründet.", language="de"), ] response = client.begin_analyze_actions( docs, actions=[RecognizeEntitiesAction()], show_stats=True, polling_interval=self._interval(), ).result() pages = list(response) assert len(pages) == len(docs) for document_results in pages: assert len(document_results) == 1 document_result = document_results[0] assert isinstance(document_result, RecognizeEntitiesResult) assert len(document_result.entities) == 4 assert document_result.id is not None for entity in document_result.entities: assert entity.text is not None assert entity.category is not None assert entity.offset is not None assert entity.confidence_score is not None assert entity.category is not None assert entity.offset is not None assert entity.confidence_score is not None @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_all_successful_passing_string_pii_entities_task(self, client): docs = ["My SSN is 859-98-0987.", "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check.", "Is 998.214.865-68 your Brazilian CPF number?" ] response = client.begin_analyze_actions( docs, actions=[RecognizePiiEntitiesAction()], show_stats=True, polling_interval=self._interval(), ).result() pages = list(response) assert len(pages) == len(docs) for idx, document_results in enumerate(pages): assert len(document_results) == 1 document_result = document_results[0] assert isinstance(document_result, RecognizePiiEntitiesResult) if idx == 0: assert document_result.entities[0].text == "859-98-0987" assert document_result.entities[0].category == "USSocialSecurityNumber" elif idx == 1: assert document_result.entities[0].text == "111000025" for entity in document_result.entities: assert entity.text is not None assert entity.category is not None assert entity.offset is not None assert entity.confidence_score is not None @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_bad_request_on_empty_document(self, client): docs = [""] with pytest.raises(HttpResponseError): response = client.begin_analyze_actions( docs, actions=[ExtractKeyPhrasesAction()], polling_interval=self._interval(), ) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer(client_kwargs={ "textanalytics_test_api_key": "", }) @recorded_by_proxy def test_empty_credential_class(self, client): with pytest.raises(ClientAuthenticationError): response = client.begin_analyze_actions( ["This is written in English."], actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer(client_kwargs={ "textanalytics_test_api_key": "xxxxxxxxxxxx", }) @recorded_by_proxy def test_bad_credentials(self, client): with pytest.raises(ClientAuthenticationError): response = client.begin_analyze_actions( ["This is written in English."], actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_out_of_order_ids_multiple_tasks(self, client): docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ).result() results = list(response) assert len(results) == len(docs) document_order = ["56", "0", "19", "1"] action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, ] for doc_idx, document_results in enumerate(results): assert len(document_results) == 5 for action_idx, document_result in enumerate(document_results): assert document_result.id == document_order[doc_idx] assert self.document_result_to_action_type(document_result) == action_order[action_idx] @TextAnalyticsPreparer() @TextAnalyticsClientPreparer(client_kwargs={"api_version": "v3.1"}) @recorded_by_proxy def test_show_stats_and_model_version_multiple_tasks_v3_1(self, client): def callback(resp): assert resp.raw_response tasks = resp.raw_response['tasks'] assert tasks['completed'] == 5 assert tasks['inProgress'] == 0 assert tasks['failed'] == 0 assert tasks['total'] == 5 num_tasks = 0 for key, task in tasks.items(): if "Tasks" in key: num_tasks += 1 assert len(task) == 1 task_stats = task[0]['results']['statistics'] assert task_stats['documentsCount'] == 4 assert task_stats['validDocumentsCount'] == 4 assert task_stats['erroneousDocumentsCount'] == 0 assert task_stats['transactionsCount'] == 4 assert num_tasks == 5 docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] poller = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(model_version="latest"), ExtractKeyPhrasesAction(model_version="latest"), RecognizePiiEntitiesAction(model_version="latest"), RecognizeLinkedEntitiesAction(model_version="latest"), AnalyzeSentimentAction(model_version="latest"), ], show_stats=True, polling_interval=self._interval(), raw_response_hook=callback, ) response = poller.result() pages = list(response) assert len(pages) == len(docs) action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, ] for document_results in pages: assert len(document_results) == len(action_order) for document_result in document_results: assert document_result.statistics assert document_result.statistics.character_count assert document_result.statistics.transaction_count @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_show_stats_and_model_version_multiple_tasks(self, client): def callback(resp): assert resp.raw_response tasks = resp.raw_response['tasks'] assert tasks['completed'] == 5 assert tasks['inProgress'] == 0 assert tasks['failed'] == 0 assert tasks['total'] == 5 num_tasks = 0 for task in tasks["items"]: num_tasks += 1 task_stats = task['results']['statistics'] assert task_stats['documentsCount'] == 4 assert task_stats['validDocumentsCount'] == 4 assert task_stats['erroneousDocumentsCount'] == 0 assert task_stats['transactionsCount'] == 4 assert num_tasks == 5 docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] poller = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(model_version="latest"), ExtractKeyPhrasesAction(model_version="latest"), RecognizePiiEntitiesAction(model_version="latest"), RecognizeLinkedEntitiesAction(model_version="latest"), AnalyzeSentimentAction(model_version="latest"), ], show_stats=True, polling_interval=self._interval(), raw_response_hook=callback, ) response = poller.result() pages = list(response) assert len(pages) == len(docs) action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, ] for document_results in pages: assert len(document_results) == len(action_order) for document_result in document_results: assert document_result.statistics assert document_result.statistics.character_count assert document_result.statistics.transaction_count @pytest.mark.skip("code changes needed before we can run test") @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_poller_metadata(self, client): docs = [{"id": "56", "text": ":)"}] poller = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(model_version="latest") ], show_stats=True, polling_interval=self._interval(), ) poller.result() assert isinstance(poller.created_on, datetime.datetime) assert not poller.display_name assert isinstance(poller.expires_on, datetime.datetime) assert poller.actions_failed_count == 0 assert poller.actions_in_progress_count == 0 assert poller.actions_succeeded_count == 1 assert isinstance(poller.last_modified_on, datetime.datetime) assert poller.total_actions_count == 1 assert poller.id @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_invalid_language_hint_method(self, client): response = list(client.begin_analyze_actions( ["This should fail because we're passing in an invalid language hint"], language="notalanguage", actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ).result()) for document_results in response: for doc in document_results: assert doc.is_error @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_bad_model_version_error_multiple_tasks(self, client): docs = [{"id": "1", "language": "en", "text": "I did not like the hotel we stayed at."}] with pytest.raises(HttpResponseError): res = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(model_version="latest"), ExtractKeyPhrasesAction(model_version="bad"), RecognizePiiEntitiesAction(model_version="bad"), RecognizeLinkedEntitiesAction(model_version="bad"), AnalyzeSentimentAction(model_version="bad"), ], polling_interval=self._interval(), ).result() @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_bad_model_version_error_all_tasks(self, client): # TODO: verify behavior of service docs = [{"id": "1", "language": "en", "text": "I did not like the hotel we stayed at."}] with pytest.raises(HttpResponseError): client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(model_version="bad"), ExtractKeyPhrasesAction(model_version="bad"), RecognizePiiEntitiesAction(model_version="bad"), RecognizeLinkedEntitiesAction(model_version="bad"), AnalyzeSentimentAction(model_version="bad"), ], polling_interval=self._interval(), ).result() @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() def test_missing_input_records_error(self, **kwargs): client = kwargs.pop("client") docs = [] with pytest.raises(ValueError) as excinfo: client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ) assert "Input documents can not be empty or None" in str(excinfo.value) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() def test_passing_none_docs(self, **kwargs): client = kwargs.pop("client") with pytest.raises(ValueError) as excinfo: client.begin_analyze_actions(None, None) assert "Input documents can not be empty or None" in str(excinfo.value) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_pass_cls(self, client): def callback(pipeline_response, deserialized, _): return "cls result" res = client.begin_analyze_actions( documents=["Test passing cls to endpoint"], actions=[ RecognizeEntitiesAction(), ], cls=callback, polling_interval=self._interval(), ).result() assert res == "cls result" @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_multiple_pages_of_results_returned_successfully(self, client): single_doc = "hello world" docs = [{"id": str(idx), "text": val} for (idx, val) in enumerate(list(itertools.repeat(single_doc, 25)))] # max number of documents is 25 result = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], show_stats=True, polling_interval=self._interval(), ).result() pages = list(result) assert len(pages) == len(docs) action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, ] action_type_to_document_results = defaultdict(list) for doc_idx, page in enumerate(pages): for action_idx, document_result in enumerate(page): assert document_result.id == str(doc_idx) action_type = self.document_result_to_action_type(document_result) assert action_type == action_order[action_idx] action_type_to_document_results[action_type].append(document_result) assert len(action_type_to_document_results) == len(action_order) for document_results in action_type_to_document_results.values(): assert len(document_results) == len(docs) @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_too_many_documents(self, client): docs = list(itertools.repeat("input document", 26)) # Maximum number of documents per request is 25 with pytest.raises(HttpResponseError) as excinfo: client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], polling_interval=self._interval(), ) assert excinfo.value.status_code == 400 @pytest.mark.skipif(not is_public_cloud(), reason='Usgov and China Cloud are not supported') @TextAnalyticsCustomPreparer() @recorded_by_proxy def test_disable_service_logs( self, textanalytics_custom_text_endpoint, textanalytics_custom_text_key, textanalytics_single_category_classify_project_name, textanalytics_single_category_classify_deployment_name, textanalytics_multi_category_classify_project_name, textanalytics_multi_category_classify_deployment_name, textanalytics_custom_entities_project_name, textanalytics_custom_entities_deployment_name ): set_bodiless_matcher() # don't match on body for this test since we scrub the proj/deployment values client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key)) actions = [ RecognizeEntitiesAction(disable_service_logs=True), ExtractKeyPhrasesAction(disable_service_logs=True), RecognizePiiEntitiesAction(disable_service_logs=True), RecognizeLinkedEntitiesAction(disable_service_logs=True), AnalyzeSentimentAction(disable_service_logs=True), SingleCategoryClassifyAction( project_name=textanalytics_single_category_classify_project_name, deployment_name=textanalytics_single_category_classify_deployment_name, disable_service_logs=True ), MultiCategoryClassifyAction( project_name=textanalytics_multi_category_classify_project_name, deployment_name=textanalytics_multi_category_classify_deployment_name, disable_service_logs=True ), RecognizeCustomEntitiesAction( project_name=textanalytics_custom_entities_project_name, deployment_name=textanalytics_custom_entities_deployment_name, disable_service_logs=True ), AnalyzeHealthcareEntitiesAction(disable_service_logs=True) ] for action in actions: assert action.disable_service_logs def callback(resp): tasks = json.loads(resp.http_request.body)["tasks"] assert len(tasks) == len(actions) for task in tasks.values(): assert task[0]["parameters"]["loggingOptOut"] client.begin_analyze_actions( documents=["Test for logging disable"], actions=actions, polling_interval=self._interval(), raw_response_hook=callback, ).result() @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_pii_action_categories_filter(self, client): docs = [{"id": "1", "text": "My SSN is 859-98-0987."}, {"id": "2", "text": "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check."}, {"id": "3", "text": "Is 998.214.865-68 your Brazilian CPF number?"}] actions = [ RecognizePiiEntitiesAction( categories_filter=[ PiiEntityCategory.US_SOCIAL_SECURITY_NUMBER, PiiEntityCategory.ABA_ROUTING_NUMBER, ] ), ] result = client.begin_analyze_actions(documents=docs, actions=actions, polling_interval=self._interval()).result() action_results = list(result) assert len(action_results) == 3 assert action_results[0][0].entities[0].text == "859-98-0987" assert action_results[0][0].entities[0].category == PiiEntityCategory.US_SOCIAL_SECURITY_NUMBER assert action_results[1][0].entities[0].text == "111000025" assert action_results[1][0].entities[0].category == PiiEntityCategory.ABA_ROUTING_NUMBER assert action_results[2][0].entities == [] # No Brazilian CPF since not in categories_filter @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_partial_success_for_actions(self, client): docs = [{"id": "1", "language": "tr", "text": "I did not like the hotel we stayed at."}, {"id": "2", "language": "en", "text": "I did not like the hotel we stayed at."}] response = client.begin_analyze_actions( docs, actions=[ AnalyzeSentimentAction(), RecognizePiiEntitiesAction(), ], polling_interval=self._interval(), ).result() action_results = list(response) assert len(action_results) == len(docs) action_order = [ _AnalyzeActionsType.ANALYZE_SENTIMENT, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, ] assert len(action_results[0]) == len(action_order) assert len(action_results[1]) == len(action_order) # first doc assert isinstance(action_results[0][0], AnalyzeSentimentResult) assert action_results[0][0].id == "1" assert action_results[0][1].is_error assert action_results[0][1].id == "1" # second doc assert isinstance(action_results[1][0], AnalyzeSentimentResult) assert action_results[1][0].id == "2" assert isinstance(action_results[1][1], RecognizePiiEntitiesResult) assert action_results[1][1].id == "2" @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_multiple_of_same_action(self, client): docs = [ {"id": "28", "text": "My SSN is 859-98-0987. Here is another sentence."}, {"id": "3", "text": "Is 998.214.865-68 your Brazilian CPF number? Here is another sentence."}, {"id": "5", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, ] actions = [ AnalyzeSentimentAction(), RecognizePiiEntitiesAction(), RecognizeEntitiesAction(), RecognizeLinkedEntitiesAction(), RecognizePiiEntitiesAction(categories_filter=[PiiEntityCategory.US_SOCIAL_SECURITY_NUMBER]), ExtractKeyPhrasesAction(), RecognizeEntitiesAction(), AnalyzeSentimentAction(show_opinion_mining=True), RecognizeLinkedEntitiesAction(), ExtractKeyPhrasesAction(), ] response = client.begin_analyze_actions( docs, actions=actions, polling_interval=self._interval(), ).result() action_results = list(response) assert len(action_results) == len(docs) assert len(action_results[0]) == len(actions) assert len(action_results[1]) == len(actions) assert len(action_results[2]) == len(actions) for idx, action_result in enumerate(action_results): if idx == 0: doc_id = "28" elif idx == 1: doc_id = "3" else: doc_id = "5" assert isinstance(action_result[0], AnalyzeSentimentResult) assert not all([sentence.mined_opinions for sentence in action_result[0].sentences]) assert action_result[0].id == doc_id assert isinstance(action_result[1], RecognizePiiEntitiesResult) assert action_result[1].id == doc_id assert isinstance(action_result[2], RecognizeEntitiesResult) assert action_result[2].id == doc_id assert isinstance(action_result[3], RecognizeLinkedEntitiesResult) assert action_result[3].id == doc_id assert isinstance(action_result[4], RecognizePiiEntitiesResult) assert action_result[4].id == doc_id if doc_id == "28": assert action_result[4].entities else: assert not action_result[4].entities assert isinstance(action_result[5], ExtractKeyPhrasesResult) assert action_result[5].id == doc_id assert isinstance(action_result[6], RecognizeEntitiesResult) assert action_result[6].id == doc_id assert isinstance(action_result[7], AnalyzeSentimentResult) assert [sentence.mined_opinions for sentence in action_result[0].sentences] assert action_result[7].id == doc_id assert isinstance(action_result[8], RecognizeLinkedEntitiesResult) assert action_result[8].id == doc_id assert isinstance(action_result[9], ExtractKeyPhrasesResult) assert action_result[9].id == doc_id @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_multiple_of_same_action_with_partial_results(self, client): docs = [{"id": "5", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "text": ""}] actions = [ RecognizeEntitiesAction(), RecognizePiiEntitiesAction(), RecognizeEntitiesAction(disable_service_logs=True) ] response = client.begin_analyze_actions( docs, actions=actions, polling_interval=self._interval(), ).result() action_results = list(response) assert len(action_results) == len(docs) assert len(action_results[0]) == len(actions) assert len(action_results[1]) == len(actions) # first doc assert isinstance(action_results[0][0], RecognizeEntitiesResult) assert action_results[0][0].id == "5" assert isinstance(action_results[0][1], RecognizePiiEntitiesResult) assert action_results[0][1].id == "5" assert isinstance(action_results[0][2], RecognizeEntitiesResult) assert action_results[0][2].id == "5" # second doc assert action_results[1][0].is_error assert action_results[1][1].is_error assert action_results[1][2].is_error @pytest.mark.skip("code changes needed before we can run test") @pytest.mark.skipif(not is_public_cloud(), reason='Usgov and China Cloud are not supported') @TextAnalyticsCustomPreparer() @recorded_by_proxy def test_single_category_classify( self, textanalytics_custom_text_endpoint, textanalytics_custom_text_key, textanalytics_single_category_classify_project_name, textanalytics_single_category_classify_deployment_name ): set_bodiless_matcher() # don't match on body for this test since we scrub the proj/deployment values client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key)) docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": "David Schmidt, senior vice president--Food Safety, International Food Information Council (IFIC), Washington, D.C., discussed the physical activity component."}, {"id": "3", "language": "en", "text": "I need a reservation for an indoor restaurant in China. Please don't stop the music. Play music and add it to my playlist"}, ] response = client.begin_analyze_actions( docs, actions=[ SingleCategoryClassifyAction( project_name=textanalytics_single_category_classify_project_name, deployment_name=textanalytics_single_category_classify_deployment_name ) ], show_stats=True, polling_interval=self._interval(), ).result() document_results = list(response) for doc_result in document_results: for result in doc_result: assert result.id assert not result.is_error assert not result.warnings assert result.statistics assert result.classification.category assert result.classification.confidence_score @pytest.mark.skipif(not is_public_cloud(), reason='Usgov and China Cloud are not supported') @TextAnalyticsCustomPreparer() @recorded_by_proxy def test_multi_category_classify( self, textanalytics_custom_text_endpoint, textanalytics_custom_text_key, textanalytics_multi_category_classify_project_name, textanalytics_multi_category_classify_deployment_name ): set_bodiless_matcher() # don't match on body for this test since we scrub the proj/deployment values client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key)) docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": "David Schmidt, senior vice president--Food Safety, International Food Information Council (IFIC), Washington, D.C., discussed the physical activity component."}, {"id": "3", "language": "en", "text": "I need a reservation for an indoor restaurant in China. Please don't stop the music. Play music and add it to my playlist"}, ] response = client.begin_analyze_actions( docs, actions=[ MultiCategoryClassifyAction( project_name=textanalytics_multi_category_classify_project_name, deployment_name=textanalytics_multi_category_classify_deployment_name ) ], show_stats=True, polling_interval=self._interval(), ).result() document_results = list(response) for doc_result in document_results: for result in doc_result: assert result.id assert not result.is_error assert not result.warnings assert result.statistics for classification in result.classifications: assert classification.category assert classification.confidence_score @pytest.mark.skipif(not is_public_cloud(), reason='Usgov and China Cloud are not supported') @TextAnalyticsCustomPreparer() @recorded_by_proxy def test_recognize_custom_entities( self, textanalytics_custom_text_endpoint, textanalytics_custom_text_key, textanalytics_custom_entities_project_name, textanalytics_custom_entities_deployment_name ): set_bodiless_matcher() # don't match on body for this test since we scrub the proj/deployment values client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key)) docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": "David Schmidt, senior vice president--Food Safety, International Food Information Council (IFIC), Washington, D.C., discussed the physical activity component."}, {"id": "3", "language": "en", "text": "I need a reservation for an indoor restaurant in China. Please don't stop the music. Play music and add it to my playlist"}, ] response = client.begin_analyze_actions( docs, actions=[ RecognizeCustomEntitiesAction( project_name=textanalytics_custom_entities_project_name, deployment_name=textanalytics_custom_entities_deployment_name ) ], show_stats=True, polling_interval=self._interval(), ).result() document_results = list(response) for doc_result in document_results: for result in doc_result: assert result.id assert not result.is_error assert not result.warnings assert result.statistics for entity in result.entities: assert entity.text assert entity.category assert entity.offset is not None assert entity.length is not None assert entity.confidence_score is not None @pytest.mark.skip("code changes needed before we can run test") @pytest.mark.skipif(not is_public_cloud(), reason='Usgov and China Cloud are not supported') @TextAnalyticsCustomPreparer() @recorded_by_proxy def test_custom_partial_error( self, textanalytics_custom_text_endpoint, textanalytics_custom_text_key, textanalytics_single_category_classify_project_name, textanalytics_single_category_classify_deployment_name, textanalytics_multi_category_classify_project_name, textanalytics_multi_category_classify_deployment_name, textanalytics_custom_entities_project_name, textanalytics_custom_entities_deployment_name ): set_bodiless_matcher() # don't match on body for this test since we scrub the proj/deployment values client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key)) docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = client.begin_analyze_actions( docs, actions=[ SingleCategoryClassifyAction( project_name=textanalytics_single_category_classify_project_name, deployment_name=textanalytics_single_category_classify_deployment_name ), MultiCategoryClassifyAction( project_name=textanalytics_multi_category_classify_project_name, deployment_name=textanalytics_multi_category_classify_deployment_name ), RecognizeCustomEntitiesAction( project_name=textanalytics_custom_entities_project_name, deployment_name=textanalytics_custom_entities_deployment_name ) ], show_stats=True, polling_interval=self._interval(), ).result() document_results = list(response) assert len(document_results) == 2 assert isinstance(document_results[0][0], SingleCategoryClassifyResult) assert isinstance(document_results[0][1], MultiCategoryClassifyResult) assert isinstance(document_results[0][2], RecognizeCustomEntitiesResult) assert document_results[1][0].is_error assert document_results[1][1].is_error assert document_results[1][2].is_error @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_analyze_continuation_token(self, client): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": "David Schmidt, senior vice president--Food Safety, International Food Information Council (IFIC), Washington, D.C., discussed the physical activity component."}, {"id": "3", "text": ""}, {"id": "4", "language": "en", "text": "I need a reservation for an indoor restaurant in China. Please don't stop the music. Play music and add it to my playlist"}, ] actions = [ RecognizeEntitiesAction(), RecognizePiiEntitiesAction(), AnalyzeSentimentAction(), ExtractKeyPhrasesAction(), ] initial_poller = client.begin_analyze_actions( docs, actions=actions, show_stats=True, polling_interval=self._interval(), ) cont_token = initial_poller.continuation_token() poller = client.begin_analyze_actions( None, None, continuation_token=cont_token, polling_interval=self._interval(), ) response = poller.result() action_results = list(response) assert len(action_results) == len(docs) action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, ] document_order = ["1", "2", "3", "4"] for doc_idx, document_results in enumerate(action_results): assert len(document_results) == 4 for action_idx, document_result in enumerate(document_results): if doc_idx == 2: assert document_result.id == document_order[doc_idx] assert document_result.is_error else: assert document_result.id == document_order[doc_idx] assert document_result.statistics assert self.document_result_to_action_type(document_result) == action_order[action_idx] initial_poller.wait() # necessary so azure-devtools doesn't throw assertion error @TextAnalyticsPreparer() def test_generic_action_error_no_target_v3_1( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_error_no_target.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport, api_version="v3.1") with pytest.raises(HttpResponseError) as e: response = list(client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), RecognizeLinkedEntitiesAction(), RecognizePiiEntitiesAction() ], show_stats=True, polling_interval=self._interval(), ).result()) assert e.value.message == "(InternalServerError) 1 out of 3 job tasks failed. Failed job tasks : v3.1/entities/general." @TextAnalyticsPreparer() def test_generic_action_error_no_target( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_error_no_target_language.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport) # workaround to get mocked response to work with deserialized polymorphic response type def get_deserialized_for_mock(response, deserialized, headers): from azure.ai.textanalytics._generated.models import AnalyzeTextJobState, AnalyzeTextJobsInput from azure.ai.textanalytics._response_handlers import analyze_paged_result deserialized = AnalyzeTextJobState.deserialize(response.raw_response) return analyze_paged_result( ["1", "2"], [(_AnalyzeActionsType.RECOGNIZE_ENTITIES, '0'), (_AnalyzeActionsType.EXTRACT_KEY_PHRASES, '1'), (_AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, '2'), (_AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, '3'), (_AnalyzeActionsType.ANALYZE_SENTIMENT, '4'), ], client._client.analyze_text_job_status, response, deserialized, headers, show_stats=True, ) with pytest.raises(HttpResponseError) as e: response = list(client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), ], show_stats=True, polling_interval=self._interval(), raw_response_hook=lambda resp: resp, cls=get_deserialized_for_mock ).result()) assert e.value.message == "(InternalServerError) 1 out of 5 job tasks failed. Failed job tasks : keyphrasescomposite." @TextAnalyticsPreparer() def test_action_errors_with_targets_v3_1( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) # a mix of action errors to translate to doc errors, regular doc errors, and a successful response path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_error_with_targets.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport, api_version="v3.1") response = list(client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), RecognizePiiEntitiesAction(domain_filter="phi"), AnalyzeSentimentAction(), ], show_stats=True, polling_interval=self._interval(), ).result()) assert len(response) == len(docs) for idx, result in enumerate(response[0]): assert result.id == "1" if idx == 6: assert not result.is_error assert isinstance(result, AnalyzeSentimentResult) else: assert result.is_error assert result.error.code == "InvalidRequest" assert result.error.message == "Some error" + str(idx) # confirms correct doc error order for idx, result in enumerate(response[1]): assert result.id == "2" assert result.is_error if idx == 6: assert result.error.code == "InvalidDocument" assert result.error.message == "Document text is empty." else: assert result.error.code == "InvalidRequest" assert result.error.message == "Some error" + str(idx) # confirms correct doc error order @TextAnalyticsPreparer() def test_action_errors_with_targets( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) # a mix of action errors to translate to doc errors, regular doc errors, and a successful response path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_error_with_targets_language.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport) # workaround to get mocked response to work with deserialized polymorphic response type def get_deserialized_for_mock(response, deserialized, headers): from azure.ai.textanalytics._generated.models import AnalyzeTextJobState, AnalyzeTextJobsInput from azure.ai.textanalytics._response_handlers import analyze_paged_result deserialized = AnalyzeTextJobState.deserialize(response.raw_response) return analyze_paged_result( ["1", "2"], [(_AnalyzeActionsType.RECOGNIZE_ENTITIES, '0'), (_AnalyzeActionsType.EXTRACT_KEY_PHRASES, '1'), (_AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, '2'), (_AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, '3'), (_AnalyzeActionsType.ANALYZE_SENTIMENT, '4'), (_AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, '5'), (_AnalyzeActionsType.ANALYZE_SENTIMENT, '6') ], client._client.analyze_text_job_status, response, deserialized, headers, show_stats=True, ) response = list(client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction(), RecognizePiiEntitiesAction(domain_filter="phi"), AnalyzeSentimentAction(), ], show_stats=True, polling_interval=self._interval(), raw_response_hook=lambda resp: resp, cls=get_deserialized_for_mock ).result()) assert len(response) == len(docs) for idx, result in enumerate(response[0]): assert result.id == "1" if idx == 6: assert not result.is_error assert isinstance(result, AnalyzeSentimentResult) else: assert result.is_error assert result.error.code == "InvalidRequest" assert result.error.message == "Some error" + str(idx) # confirms correct doc error order for idx, result in enumerate(response[1]): assert result.id == "2" assert result.is_error if idx == 6: assert result.error.code == "InvalidDocument" assert result.error.message == "Document text is empty." else: assert result.error.code == "InvalidRequest" assert result.error.message == "Some error" + str(idx) # confirms correct doc error order @TextAnalyticsPreparer() def test_action_job_failure_v3_1( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) # action job failure with status=="failed", no partial results so we raise an exception in this case path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_job_failure.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport, api_version="v3.1") with pytest.raises(HttpResponseError) as e: response = list(client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ], show_stats=True, polling_interval=self._interval(), ).result()) assert len(response) == len(docs) assert e.value.message == "(InternalServerError) 1 out of 1 job tasks failed. Failed job tasks : v3.1/entities/general." @TextAnalyticsPreparer() def test_action_job_failure( self, **kwargs ): docs = [ {"id": "1", "language": "en", "text": "A recent report by the Government Accountability Office (GAO) found that the dramatic increase in oil and natural gas development on federal lands over the past six years has stretched the staff of the BLM to a point that it has been unable to meet its environmental protection responsibilities."}, {"id": "2", "language": "en", "text": ""}, ] response = mock.Mock( status_code=200, headers={"Content-Type": "application/json", "operation-location": "https://fakeurl.com"} ) # action job failure with status=="failed", no partial results so we raise an exception in this case path_to_mock_json_response = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "./mock_test_responses/action_job_failure_language.json", ) ) with open(path_to_mock_json_response) as fd: mock_json_response = json.loads(fd.read()) response.text = lambda encoding=None: json.dumps(mock_json_response) response.content_type = "application/json" transport = mock.Mock(send=lambda request, **kwargs: response) endpoint = kwargs.pop("textanalytics_test_endpoint") key = kwargs.pop("textanalytics_test_api_key") client = TextAnalyticsClient(endpoint, AzureKeyCredential(key), transport=transport) # workaround to get mocked response to work with deserialized polymorphic response type def get_deserialized_for_mock(response, deserialized, headers): from azure.ai.textanalytics._generated.models import AnalyzeTextJobState, AnalyzeTextJobsInput from azure.ai.textanalytics._response_handlers import analyze_paged_result deserialized = AnalyzeTextJobState.deserialize(response.raw_response) return analyze_paged_result( ["1", "2"], [(_AnalyzeActionsType.EXTRACT_KEY_PHRASES, '0')], client._client.analyze_text_job_status, response, deserialized, headers, show_stats=True, ) with pytest.raises(HttpResponseError) as e: response = list(client.begin_analyze_actions( docs, actions=[ ExtractKeyPhrasesAction() ], show_stats=True, polling_interval=self._interval(), raw_response_hook=lambda resp: resp, cls=get_deserialized_for_mock ).result()) assert len(response) == len(docs) assert e.value.message == "(InternalServerError) 1 out of 1 job tasks failed. Failed job tasks : keyphrasescomposite." @TextAnalyticsPreparer() @TextAnalyticsClientPreparer(client_kwargs={"api_version": "v3.1"}) @recorded_by_proxy def test_analyze_works_with_v3_1(self, client): docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction() ], polling_interval=self._interval(), ).result() results = list(response) assert len(results) == len(docs) document_order = ["56", "0", "19", "1"] action_order = [ _AnalyzeActionsType.RECOGNIZE_ENTITIES, _AnalyzeActionsType.EXTRACT_KEY_PHRASES, _AnalyzeActionsType.RECOGNIZE_PII_ENTITIES, _AnalyzeActionsType.RECOGNIZE_LINKED_ENTITIES, _AnalyzeActionsType.ANALYZE_SENTIMENT, ] for doc_idx, document_results in enumerate(results): assert len(document_results) == 5 for action_idx, document_result in enumerate(document_results): assert document_result.id == document_order[doc_idx] assert not document_result.is_error assert self.document_result_to_action_type(document_result) == action_order[action_idx] @TextAnalyticsPreparer() @TextAnalyticsClientPreparer(client_kwargs={"api_version": "v3.0"}) def test_analyze_multiapi_validate_v3_0(self, **kwargs): client = kwargs.pop("client") docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] with pytest.raises(ValueError) as e: response = client.begin_analyze_actions( docs, actions=[ RecognizeEntitiesAction(), ExtractKeyPhrasesAction(), RecognizePiiEntitiesAction(), RecognizeLinkedEntitiesAction(), AnalyzeSentimentAction() ], polling_interval=self._interval(), ).result() assert str(e.value) == "'begin_analyze_actions' is only available for API version v3.1 and up." @TextAnalyticsPreparer() @TextAnalyticsCustomPreparer() def test_analyze_multiapi_validate_v3_1(self, **kwargs): textanalytics_custom_text_endpoint = kwargs.pop("textanalytics_custom_text_endpoint") textanalytics_custom_text_key = kwargs.pop("textanalytics_custom_text_key") textanalytics_single_category_classify_project_name = kwargs.pop("textanalytics_single_category_classify_project_name") textanalytics_single_category_classify_deployment_name = kwargs.pop("textanalytics_single_category_classify_deployment_name") textanalytics_multi_category_classify_project_name = kwargs.pop("textanalytics_multi_category_classify_project_name") textanalytics_multi_category_classify_deployment_name = kwargs.pop("textanalytics_multi_category_classify_deployment_name") textanalytics_custom_entities_project_name = kwargs.pop("textanalytics_custom_entities_project_name") textanalytics_custom_entities_deployment_name = kwargs.pop("textanalytics_custom_entities_deployment_name") client = TextAnalyticsClient(textanalytics_custom_text_endpoint, AzureKeyCredential(textanalytics_custom_text_key), api_version="v3.1") docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] version_supported = "2022-05-01" with pytest.raises(ValueError) as e: response = client.begin_analyze_actions( docs, actions=[ SingleCategoryClassifyAction( project_name=textanalytics_single_category_classify_project_name, deployment_name=textanalytics_single_category_classify_deployment_name ), MultiCategoryClassifyAction( project_name=textanalytics_multi_category_classify_project_name, deployment_name=textanalytics_multi_category_classify_deployment_name ), RecognizeCustomEntitiesAction( project_name=textanalytics_custom_entities_project_name, deployment_name=textanalytics_custom_entities_deployment_name ), AnalyzeHealthcareEntitiesAction() ], polling_interval=self._interval(), ).result() assert str(e.value) == f"'RecognizeCustomEntitiesAction' is only available for API version " \ f"{version_supported} and up.\n'SingleCategoryClassifyAction' is only available " \ f"for API version {version_supported} and up.\n'MultiCategoryClassifyAction' is " \ f"only available for API version {version_supported} and up.\n'AnalyzeHealthcareEntitiesAction' is " \ f"only available for API version {version_supported} and up.\n" @pytest.mark.skip("code changes needed before we can run test") @TextAnalyticsPreparer() @TextAnalyticsClientPreparer() @recorded_by_proxy def test_healthcare_action(self, client): docs = [ "Patient does not suffer from high blood pressure.", "Prescribed 100mg ibuprofen, taken twice daily.", "" ] response = list(client.begin_analyze_actions( docs, actions=[ AnalyzeHealthcareEntitiesAction( model_version="latest", fhir_version="4.0.1" ) ], show_stats=True, polling_interval=self._interval(), ).result()) for idx, result in enumerate(response): for res in result: if idx == 2: assert res.is_error assert res.error.code == "InvalidDocument" else: assert res.entities assert res.fhir_bundle assert res.statistics
45.306919
353
0.621492
4a1937b181ff3d49b6e216751f739d1be05163d7
2,598
py
Python
python/FFNN_MODEL_001/config--all_data.py
nathanieljevans/DEEP_DRUG_SH
52c3c8ef311aac47e0367f6d7203945af2f4575a
[ "MIT" ]
null
null
null
python/FFNN_MODEL_001/config--all_data.py
nathanieljevans/DEEP_DRUG_SH
52c3c8ef311aac47e0367f6d7203945af2f4575a
[ "MIT" ]
null
null
null
python/FFNN_MODEL_001/config--all_data.py
nathanieljevans/DEEP_DRUG_SH
52c3c8ef311aac47e0367f6d7203945af2f4575a
[ "MIT" ]
null
null
null
''' ''' params = { 'NAME' : 'ALL-DATA-3FC_010', # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- 'DATA_DIR' : '../../data_pytorch/tensors/', 'LABEL_PATH' : '../../data_pytorch/label_dict.pkl', 'SPLIT_LABEL_PATH' : '../../data_pytorch/split_label_dict.pkl', 'MODEL_OUT_DIR' : '../../models/', # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- 'RESPLIT_DATA' : False, 'TRAIN_PROP' : 0.7, 'TEST_PROP' : 0.15, 'VAL_PROP' : 0.15, 'N_BEATAML_PATIENTS_EXCLUSIVE_TO_TEST' : 30 , # remove patients for test # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- 'SAVE_MODEL_EVERY' : 5, # epochs 'PRINT_MID_EPOCH_INFO' : False, # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- ## `i` indicates the order of classification layers 'RESP_TYPES' : {x:i for i,x in enumerate(['RNAi_dependency', 'crispr_dependency', 'pooled_drugresp_prism', 'AUC_GDSC','CTRP_AUC', 'AUC_drug_CCLE', 'beatAML_AUC'])}, 'H1' : 5000, 'H2' : 5000, 'H3' : 50, # Layer 3 - Dataset Shared 'DH' : 200, # Dataset Specific Layer 'DO' : 0.5, # Dropout 'NCONVS' : 10, 'PRINT_EVERY' : 1, 'NGENES' : 523, #/ 523 'EPOCHS' : 100, 'LEARNING_WEIGHT' : 1e-1, 'WEIGHT_DECAY' : 0.01, 'LR_DECAY_PATIENCE' : 20, # batches (not epochs) 'PRETRAIN_EPOCHS' : 1, 'PRETRAIN_LR' : 1e-1, 'PRETRAIN_WD' : 0.1, 'PRETRAIN_DO' : 0.9, 'PRETRAIN_MSE_WEIGHT' : 50, # Weight applied to target MSE # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- 'REPRODUCIBLE' : False, 'SEED' : 1000, # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- 'train_params' : {'batch_size': 2**14, # 16384 'shuffle': True, 'num_workers': 12}, 'test_params' : {'batch_size': 2**14, 'shuffle': False, 'num_workers': 12} }
38.205882
82
0.339107
4a19390e5fe804d9793faf1f8a9f13d0ab155b85
2,767
py
Python
tnia/io/bioformats_helper.py
True-North-Intelligent-Algorithms/tnia-python
ab580716082e0ec655a27eb856dae629ebb1a3bf
[ "BSD-3-Clause" ]
3
2022-02-08T16:30:05.000Z
2022-02-18T22:28:50.000Z
tnia/io/bioformats_helper.py
True-North-Intelligent-Algorithms/tnia-python
ab580716082e0ec655a27eb856dae629ebb1a3bf
[ "BSD-3-Clause" ]
null
null
null
tnia/io/bioformats_helper.py
True-North-Intelligent-Algorithms/tnia-python
ab580716082e0ec655a27eb856dae629ebb1a3bf
[ "BSD-3-Clause" ]
null
null
null
""" Created on Wed Mar 17 09:22:33 2021 @author: bnorthan """ import javabridge import bioformats as bf import numpy as np def start_jvm(): javabridge.start_vm(class_path=bf.JARS) def kill_jvm(): javabridge.kill_vm() def load_volume(filename, c=0, series=0): """ load a volume (all x,y,z) from a bioformats 5D (x,y,z,c,s) series. s is series number Args: filename (string): name of bioformats supported file c (int, optional): channel number. Defaults to 0. series (int, optional): series number. Defaults to 0. Returns: [3D numpy Array]: xyz volume at channel c and series number s """ meta=bf.get_omexml_metadata(filename) o=bf.OMEXML(meta) size_x=o.image(2).Pixels.get_PhysicalSizeX() size_y=o.image(2).Pixels.get_PhysicalSizeY() size_z=o.image(2).Pixels.get_PhysicalSizeZ() nz=o.image(series).Pixels.SizeZ img=bf.load_image(filename, z=0,c=c,series=series,rescale=False) img=img[np.newaxis,...] for cz in range(1,nz): temp=bf.load_image(filename, z=cz, c=c, series=series, rescale=False) img=np.vstack((img, temp[np.newaxis,...])) return img, size_x, size_y, size_z def load_channel(filename, nz,c): img=bf.load_image(filename, z=0,c=c,rescale=False) img=img[np.newaxis,...] for cz in range(1,nz): print() print() print() print('read slice',cz) temp=bf.load_image(filename, z=cz, c=c, rescale=False) img=np.vstack((img, temp[np.newaxis,...])) return img def load_plane(filename,z,c): return bf.load_image(filename, z=z,c=c,rescale=False) def save_czyx(file_name, img, channel_names=None): """ save a 4d image (c,z,y,x) order Args: filename ([type]): [description] img ([type]): [description] """ if channel_names == None: channel_names = ['a','b','c','d'] nc = img.shape[0] nz = img.shape[1] ny = img.shape[2] nx = img.shape[3] for z in range(nz): for c in range(nc): bf.write_image(file_name,img[c,z,:,:],'uint16',c=c,z=z,t=0,size_t=1,size_c=nc, size_z=nz, channel_names=channel_names) def save_zcyx(file_name, img, channel_names=None): """ save a 4d image (c,z,y,x) order Args: filename ([type]): [description] img ([type]): [description] """ if channel_names == None: channel_names = ['a','b','c','d'] nz = img.shape[0] nc = img.shape[1] ny = img.shape[2] nx = img.shape[3] for z in range(nz): for c in range(nc): bf.write_image(file_name,img[z,c,:,:],'uint16',c=c,z=z,t=0,size_t=1,size_c=nc, size_z=nz, channel_names=channel_names)
27.127451
130
0.603903
4a193a07b0c86c9feb8cd375f9d12a8d3e930388
943
py
Python
src/grokcore/viewlet/tests/base/viewlet/viewlet_render_and_template.py
zopefoundation/grokcore.viewlet
058cb9ca89aef705c9194e7a79b9e18a43012dbc
[ "ZPL-2.1" ]
null
null
null
src/grokcore/viewlet/tests/base/viewlet/viewlet_render_and_template.py
zopefoundation/grokcore.viewlet
058cb9ca89aef705c9194e7a79b9e18a43012dbc
[ "ZPL-2.1" ]
2
2018-01-04T15:10:32.000Z
2021-01-18T12:53:29.000Z
src/grokcore/viewlet/tests/base/viewlet/viewlet_render_and_template.py
zopefoundation/grokcore.viewlet
058cb9ca89aef705c9194e7a79b9e18a43012dbc
[ "ZPL-2.1" ]
1
2018-01-12T06:53:28.000Z
2018-01-12T06:53:28.000Z
""" A viewlet is not allowed to define its own render method and have a template associated with it at the same time. # PY2 - remove '+IGNORE_EXCEPTION_DETAIL' when dropping Python 2 support: >>> grok.testing.grok(__name__) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... zope.configuration.config.ConfigurationExecutionError: \ martian.error.GrokError: Multiple possible ways to render viewlet \ <class \ 'grokcore.viewlet.tests.base.viewlet.viewlet_render_and_template.Viewlet'>. \ It has both a 'render' method as well as an associated template. """ import grokcore.viewlet as grok from zope.interface import Interface class ViewletManager(grok.ViewletManager): grok.name('foo') grok.context(Interface) class Viewlet(grok.Viewlet): grok.viewletmanager(ViewletManager) grok.context(Interface) def render(self): return u"Render method but also a template!"
29.46875
79
0.747614
4a193a7b4a515dd75002a56f0c2c53fe87c5ff2d
4,411
py
Python
Opportunity/test_vanilla.py
ardywibowo/vfds
f31e187c0108d2d675d878300f13dbabc2fa473a
[ "MIT" ]
null
null
null
Opportunity/test_vanilla.py
ardywibowo/vfds
f31e187c0108d2d675d878300f13dbabc2fa473a
[ "MIT" ]
null
null
null
Opportunity/test_vanilla.py
ardywibowo/vfds
f31e187c0108d2d675d878300f13dbabc2fa473a
[ "MIT" ]
null
null
null
import argparse import json import os import time import numpy as np import torch from torch.autograd import Variable from torch.utils.data import DataLoader from VanillaGRU import VanillaGRU from OpportunityDataset import OpportunityDataset from plotting import plot_single_trajectory import multiprocessing multiprocessing.set_start_method("spawn", True) # Arguments parser = argparse.ArgumentParser(description='Adaptive Concrete') # Settings parser.add_argument('--gpu', type=int, default=3, help='init learning rate') parser.add_argument('--weights', type=str, default="Test", help='weight name') parser.add_argument('--n_hidden', type=int, default=256, help='hidden units') parser.add_argument('--n_layers', type=int, default=2, help='GRU layers') parser.add_argument('--seg_len', type=int, default=100, help='Segment length') parser.add_argument('--interpolate', type=bool, default=False, help='linearly interpolate features') parser.add_argument('--remove_feat', type=bool, default=False, help='remove features according to paper') parser.add_argument('--plot', type=bool, default=False, help='Plot') args = parser.parse_args() def test(model, test_loader, label_type, epochs): inputs, labels = next(iter(test_loader)) [batch_size, seq_length, num_features] = inputs.size() cur_time = time.time() pre_time = time.time() use_gpu = torch.cuda.is_available() tested_batch = 0 errors = 0 num_samples = 0 index = 0 while True: for inputs, labels in test_loader: inputs = inputs.float() labels = labels.long() labels = labels.permute(1, 0) # seq_length x batch labels = labels.flatten() # seq_length * batch if inputs.shape[0] != batch_size: continue if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) outputs = model(inputs) outputs = torch.cat(outputs) # seq_length * batch x num_classes prediction = torch.argmax(outputs, dim=1) if args.plot: save_dir = os.path.join(args.weights, 'plots' + str(label_type), str(index) + '.png') plot_single_trajectory(prediction, labels, selection_weights, save_dir=save_dir) index += 1 labelled_predictions = prediction[labels != -1] labelled_labels = labels[labels != -1] errors += torch.sum(labelled_predictions != labelled_labels).cpu().detach().numpy() num_samples += labelled_labels.shape[0] tested_batch += 1 if tested_batch % 10 == 0: cur_time = time.time() print('Tested #: {}, errors: {}, time: {}'.format( \ tested_batch * batch_size, \ np.around([errors / num_samples], decimals=8), \ np.around([cur_time - pre_time], decimals=8) ) ) pre_time = cur_time if tested_batch > epochs: break print('Label Type: {}, Tested: errors: {}'.format(label_type, errors / num_samples)) def create_dir(path): if not os.path.exists(path): os.mkdir(path) if __name__ == "__main__": torch.cuda.set_device(args.gpu) test_data = OpportunityDataset('../OpportunityUCIDataset/', split="test", segment_length=args.seg_len, interpolate=args.interpolate, remove_features=args.remove_feat) num_classes = test_data.num_classes label_type = 6 n_c = num_classes[label_type] print("Testing Label Type: {}".format(label_type)) plot_dir = os.path.join(args.weights, 'plots' + str(label_type)) create_dir(plot_dir) test_data.select_label_type(label_type) test_loader = DataLoader(test_data, num_workers=1, shuffle=False, batch_size=1) inputs, labels = next(iter(test_loader)) [batch_size, seq_length, input_size] = inputs.size() model = VanillaGRU(input_size, args.n_hidden, n_c, args.n_layers) model.load_state_dict(torch.load(args.weights + "/best_model" + str(label_type) + ".pt", map_location="cuda:{}".format(args.gpu))) model = model.to(args.gpu) test(model, test_loader, label_type, 6000)
35.861789
106
0.639084
4a193a93a45e5b78844161331ad46a577e670047
5,791
py
Python
lib/galaxy/webapps/galaxy/services/sharable.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/webapps/galaxy/services/sharable.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
6
2021-11-11T20:57:49.000Z
2021-12-10T15:30:33.000Z
lib/galaxy/webapps/galaxy/services/sharable.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
import logging from typing import ( List, Optional, Set, Tuple, ) from sqlalchemy import false from galaxy import exceptions from galaxy.managers import base from galaxy.managers.sharable import ( SharableModelManager, SharableModelSerializer, ) from galaxy.model import User from galaxy.schema.fields import EncodedDatabaseIdField from galaxy.schema.schema import ( SetSlugPayload, ShareWithPayload, ShareWithStatus, SharingOptions, SharingStatus, ) log = logging.getLogger(__name__) class ShareableService: """ Provides the common logic used by the API to share *any* kind of resource with other users. The Manager class of the particular resource must implement the SharableModelManager and have a compatible SharableModelSerializer implementation. """ def __init__(self, manager: SharableModelManager, serializer: SharableModelSerializer) -> None: self.manager = manager self.serializer = serializer def set_slug(self, trans, id: EncodedDatabaseIdField, payload: SetSlugPayload): item = self._get_item_by_id(trans, id) self.manager.set_slug(item, payload.new_slug, trans.user) def sharing(self, trans, id: EncodedDatabaseIdField) -> SharingStatus: """Gets the current sharing status of the item with the given id.""" item = self._get_item_by_id(trans, id) return self._get_sharing_status(trans, item) def enable_link_access(self, trans, id: EncodedDatabaseIdField) -> SharingStatus: """Makes this item accessible by link. If this item contains other elements they will be publicly accessible too. """ item = self._get_item_by_id(trans, id) self.manager.make_members_public(trans, item) self.manager.make_importable(item) return self._get_sharing_status(trans, item) def disable_link_access(self, trans, id: EncodedDatabaseIdField) -> SharingStatus: item = self._get_item_by_id(trans, id) self.manager.make_non_importable(item) return self._get_sharing_status(trans, item) def publish(self, trans, id: EncodedDatabaseIdField) -> SharingStatus: """Makes this item publicly accessible. If this item contains other elements they will be publicly accessible too. """ item = self._get_item_by_id(trans, id) self.manager.make_members_public(trans, item) self.manager.publish(item) return self._get_sharing_status(trans, item) def unpublish(self, trans, id: EncodedDatabaseIdField) -> SharingStatus: item = self._get_item_by_id(trans, id) self.manager.unpublish(item) return self._get_sharing_status(trans, item) def share_with_users(self, trans, id: EncodedDatabaseIdField, payload: ShareWithPayload) -> ShareWithStatus: item = self._get_item_by_id(trans, id) users, errors = self._get_users(trans, payload.user_ids) extra = self._share_with_options(trans, item, users, errors, payload.share_option) base_status = self._get_sharing_status(trans, item) status = ShareWithStatus.parse_obj(base_status) status.extra = extra status.errors.extend(errors) return status def _share_with_options( self, trans, item, users: Set[User], errors: Set[str], share_option: Optional[SharingOptions] = None, ): extra = self.manager.get_sharing_extra_information(trans, item, users, errors, share_option) if not extra or extra.can_share: self.manager.update_current_sharing_with_users(item, users) extra = None return extra def _get_item_by_id(self, trans, id: EncodedDatabaseIdField): class_name = self.manager.model_class.__name__ item = base.get_object(trans, id, class_name, check_ownership=True, check_accessible=True, deleted=False) return item def _get_sharing_status(self, trans, item): status = self.serializer.serialize_to_view(item, user=trans.user, trans=trans, default_view="sharing") status["users_shared_with"] = [ {"id": self.manager.app.security.encode_id(a.user.id), "email": a.user.email} for a in item.users_shared_with ] return SharingStatus.parse_obj(status) def _get_users(self, trans, emails_or_ids: Optional[List] = None) -> Tuple[Set[User], Set[str]]: if emails_or_ids is None: raise exceptions.MessageException("Missing required user IDs or emails") send_to_users: Set[User] = set() send_to_err: Set[str] = set() for email_or_id in set(emails_or_ids): email_or_id = email_or_id.strip() if not email_or_id: continue send_to_user = None if "@" in email_or_id: email_address = email_or_id send_to_user = self.manager.user_manager.by_email( email_address, filters=[User.table.c.deleted == false()] ) else: try: decoded_user_id = trans.security.decode_id(email_or_id) send_to_user = self.manager.user_manager.by_id(decoded_user_id) if send_to_user.deleted: send_to_user = None except exceptions.MalformedId: send_to_user = None if not send_to_user: send_to_err.add(f"{email_or_id} is not a valid Galaxy user.") elif send_to_user == trans.user: send_to_err.add("You cannot share resources with yourself.") else: send_to_users.add(send_to_user) return send_to_users, send_to_err
38.606667
113
0.664652
4a193aabafd07573d83ffb497afa5a8a6e9302fc
99,019
py
Python
kubernetes/client/api/apiregistration_v1_api.py
carloscastrojumo/python
f461dd42d48650a4ae1b41d630875cad9fcb68ad
[ "Apache-2.0" ]
2
2021-03-09T12:42:05.000Z
2021-03-09T13:27:50.000Z
kubernetes/client/api/apiregistration_v1_api.py
carloscastrojumo/python
f461dd42d48650a4ae1b41d630875cad9fcb68ad
[ "Apache-2.0" ]
7
2021-04-13T03:04:42.000Z
2022-03-02T03:10:18.000Z
kubernetes/client/api/apiregistration_v1_api.py
carloscastrojumo/python
f461dd42d48650a4ae1b41d630875cad9fcb68ad
[ "Apache-2.0" ]
1
2019-07-05T07:54:10.000Z
2019-07-05T07:54:10.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.17 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from kubernetes.client.api_client import ApiClient from kubernetes.client.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class ApiregistrationV1Api(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_api_service(self, body, **kwargs): # noqa: E501 """create_api_service # noqa: E501 create an APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_api_service(body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.create_api_service_with_http_info(body, **kwargs) # noqa: E501 def create_api_service_with_http_info(self, body, **kwargs): # noqa: E501 """create_api_service # noqa: E501 create an APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_api_service_with_http_info(body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'body', 'pretty', 'dry_run', 'field_manager' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method create_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in local_var_params or # noqa: E501 local_var_params['body'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `body` when calling `create_api_service`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_manager' in local_var_params and local_var_params['field_manager'] is not None: # noqa: E501 query_params.append(('fieldManager', local_var_params['field_manager'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def delete_api_service(self, name, **kwargs): # noqa: E501 """delete_api_service # noqa: E501 delete an APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_api_service(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. Acceptable values are: 'Orphan' - orphan the dependents; 'Background' - allow the garbage collector to delete the dependents in the background; 'Foreground' - a cascading policy that deletes all dependents in the foreground. :param V1DeleteOptions body: :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.delete_api_service_with_http_info(name, **kwargs) # noqa: E501 def delete_api_service_with_http_info(self, name, **kwargs): # noqa: E501 """delete_api_service # noqa: E501 delete an APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_api_service_with_http_info(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. Acceptable values are: 'Orphan' - orphan the dependents; 'Background' - allow the garbage collector to delete the dependents in the background; 'Foreground' - a cascading policy that deletes all dependents in the foreground. :param V1DeleteOptions body: :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1Status, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'pretty', 'dry_run', 'grace_period_seconds', 'orphan_dependents', 'propagation_policy', 'body' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method delete_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `delete_api_service`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'grace_period_seconds' in local_var_params and local_var_params['grace_period_seconds'] is not None: # noqa: E501 query_params.append(('gracePeriodSeconds', local_var_params['grace_period_seconds'])) # noqa: E501 if 'orphan_dependents' in local_var_params and local_var_params['orphan_dependents'] is not None: # noqa: E501 query_params.append(('orphanDependents', local_var_params['orphan_dependents'])) # noqa: E501 if 'propagation_policy' in local_var_params and local_var_params['propagation_policy'] is not None: # noqa: E501 query_params.append(('propagationPolicy', local_var_params['propagation_policy'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1Status', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def delete_collection_api_service(self, **kwargs): # noqa: E501 """delete_collection_api_service # noqa: E501 delete collection of APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_api_service(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. Acceptable values are: 'Orphan' - orphan the dependents; 'Background' - allow the garbage collector to delete the dependents in the background; 'Foreground' - a cascading policy that deletes all dependents in the foreground. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param V1DeleteOptions body: :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.delete_collection_api_service_with_http_info(**kwargs) # noqa: E501 def delete_collection_api_service_with_http_info(self, **kwargs): # noqa: E501 """delete_collection_api_service # noqa: E501 delete collection of APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_api_service_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. Acceptable values are: 'Orphan' - orphan the dependents; 'Background' - allow the garbage collector to delete the dependents in the background; 'Foreground' - a cascading policy that deletes all dependents in the foreground. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param V1DeleteOptions body: :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1Status, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'pretty', '_continue', 'dry_run', 'field_selector', 'grace_period_seconds', 'label_selector', 'limit', 'orphan_dependents', 'propagation_policy', 'resource_version', 'timeout_seconds', 'body' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method delete_collection_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if '_continue' in local_var_params and local_var_params['_continue'] is not None: # noqa: E501 query_params.append(('continue', local_var_params['_continue'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_selector' in local_var_params and local_var_params['field_selector'] is not None: # noqa: E501 query_params.append(('fieldSelector', local_var_params['field_selector'])) # noqa: E501 if 'grace_period_seconds' in local_var_params and local_var_params['grace_period_seconds'] is not None: # noqa: E501 query_params.append(('gracePeriodSeconds', local_var_params['grace_period_seconds'])) # noqa: E501 if 'label_selector' in local_var_params and local_var_params['label_selector'] is not None: # noqa: E501 query_params.append(('labelSelector', local_var_params['label_selector'])) # noqa: E501 if 'limit' in local_var_params and local_var_params['limit'] is not None: # noqa: E501 query_params.append(('limit', local_var_params['limit'])) # noqa: E501 if 'orphan_dependents' in local_var_params and local_var_params['orphan_dependents'] is not None: # noqa: E501 query_params.append(('orphanDependents', local_var_params['orphan_dependents'])) # noqa: E501 if 'propagation_policy' in local_var_params and local_var_params['propagation_policy'] is not None: # noqa: E501 query_params.append(('propagationPolicy', local_var_params['propagation_policy'])) # noqa: E501 if 'resource_version' in local_var_params and local_var_params['resource_version'] is not None: # noqa: E501 query_params.append(('resourceVersion', local_var_params['resource_version'])) # noqa: E501 if 'timeout_seconds' in local_var_params and local_var_params['timeout_seconds'] is not None: # noqa: E501 query_params.append(('timeoutSeconds', local_var_params['timeout_seconds'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1Status', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_api_resources(self, **kwargs): # noqa: E501 """get_api_resources # noqa: E501 get available resources # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_resources(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIResourceList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_api_resources_with_http_info(**kwargs) # noqa: E501 def get_api_resources_with_http_info(self, **kwargs): # noqa: E501 """get_api_resources # noqa: E501 get available resources # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_resources_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIResourceList, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_api_resources" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIResourceList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def list_api_service(self, **kwargs): # noqa: E501 """list_api_service # noqa: E501 list or watch objects of kind APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_api_service(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str pretty: If 'true', then the output is pretty printed. :param bool allow_watch_bookmarks: allowWatchBookmarks requests watch events with type \"BOOKMARK\". Servers that do not implement bookmarks may ignore this flag and bookmarks are sent at the server's discretion. Clients should not assume bookmarks are returned at any specific interval, nor may they assume the server will send any BOOKMARK event during a session. If this is not a watch, this field is ignored. If the feature gate WatchBookmarks is not enabled in apiserver, this field is ignored. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIServiceList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.list_api_service_with_http_info(**kwargs) # noqa: E501 def list_api_service_with_http_info(self, **kwargs): # noqa: E501 """list_api_service # noqa: E501 list or watch objects of kind APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_api_service_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str pretty: If 'true', then the output is pretty printed. :param bool allow_watch_bookmarks: allowWatchBookmarks requests watch events with type \"BOOKMARK\". Servers that do not implement bookmarks may ignore this flag and bookmarks are sent at the server's discretion. Clients should not assume bookmarks are returned at any specific interval, nor may they assume the server will send any BOOKMARK event during a session. If this is not a watch, this field is ignored. If the feature gate WatchBookmarks is not enabled in apiserver, this field is ignored. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIServiceList, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'pretty', 'allow_watch_bookmarks', '_continue', 'field_selector', 'label_selector', 'limit', 'resource_version', 'timeout_seconds', 'watch' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method list_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'allow_watch_bookmarks' in local_var_params and local_var_params['allow_watch_bookmarks'] is not None: # noqa: E501 query_params.append(('allowWatchBookmarks', local_var_params['allow_watch_bookmarks'])) # noqa: E501 if '_continue' in local_var_params and local_var_params['_continue'] is not None: # noqa: E501 query_params.append(('continue', local_var_params['_continue'])) # noqa: E501 if 'field_selector' in local_var_params and local_var_params['field_selector'] is not None: # noqa: E501 query_params.append(('fieldSelector', local_var_params['field_selector'])) # noqa: E501 if 'label_selector' in local_var_params and local_var_params['label_selector'] is not None: # noqa: E501 query_params.append(('labelSelector', local_var_params['label_selector'])) # noqa: E501 if 'limit' in local_var_params and local_var_params['limit'] is not None: # noqa: E501 query_params.append(('limit', local_var_params['limit'])) # noqa: E501 if 'resource_version' in local_var_params and local_var_params['resource_version'] is not None: # noqa: E501 query_params.append(('resourceVersion', local_var_params['resource_version'])) # noqa: E501 if 'timeout_seconds' in local_var_params and local_var_params['timeout_seconds'] is not None: # noqa: E501 query_params.append(('timeoutSeconds', local_var_params['timeout_seconds'])) # noqa: E501 if 'watch' in local_var_params and local_var_params['watch'] is not None: # noqa: E501 query_params.append(('watch', local_var_params['watch'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf', 'application/json;stream=watch', 'application/vnd.kubernetes.protobuf;stream=watch']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIServiceList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def patch_api_service(self, name, body, **kwargs): # noqa: E501 """patch_api_service # noqa: E501 partially update the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_api_service(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.patch_api_service_with_http_info(name, body, **kwargs) # noqa: E501 def patch_api_service_with_http_info(self, name, body, **kwargs): # noqa: E501 """patch_api_service # noqa: E501 partially update the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_api_service_with_http_info(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'body', 'pretty', 'dry_run', 'field_manager', 'force' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method patch_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `patch_api_service`") # noqa: E501 # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in local_var_params or # noqa: E501 local_var_params['body'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `body` when calling `patch_api_service`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_manager' in local_var_params and local_var_params['field_manager'] is not None: # noqa: E501 query_params.append(('fieldManager', local_var_params['field_manager'])) # noqa: E501 if 'force' in local_var_params and local_var_params['force'] is not None: # noqa: E501 query_params.append(('force', local_var_params['force'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json-patch+json', 'application/merge-patch+json', 'application/strategic-merge-patch+json', 'application/apply-patch+yaml']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def patch_api_service_status(self, name, body, **kwargs): # noqa: E501 """patch_api_service_status # noqa: E501 partially update status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_api_service_status(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.patch_api_service_status_with_http_info(name, body, **kwargs) # noqa: E501 def patch_api_service_status_with_http_info(self, name, body, **kwargs): # noqa: E501 """patch_api_service_status # noqa: E501 partially update status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_api_service_status_with_http_info(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'body', 'pretty', 'dry_run', 'field_manager', 'force' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method patch_api_service_status" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `patch_api_service_status`") # noqa: E501 # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in local_var_params or # noqa: E501 local_var_params['body'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `body` when calling `patch_api_service_status`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_manager' in local_var_params and local_var_params['field_manager'] is not None: # noqa: E501 query_params.append(('fieldManager', local_var_params['field_manager'])) # noqa: E501 if 'force' in local_var_params and local_var_params['force'] is not None: # noqa: E501 query_params.append(('force', local_var_params['force'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json-patch+json', 'application/merge-patch+json', 'application/strategic-merge-patch+json', 'application/apply-patch+yaml']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}/status', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def read_api_service(self, name, **kwargs): # noqa: E501 """read_api_service # noqa: E501 read the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_api_service(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. Deprecated. Planned for removal in 1.18. :param bool export: Should this value be exported. Export strips fields that a user can not specify. Deprecated. Planned for removal in 1.18. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.read_api_service_with_http_info(name, **kwargs) # noqa: E501 def read_api_service_with_http_info(self, name, **kwargs): # noqa: E501 """read_api_service # noqa: E501 read the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_api_service_with_http_info(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. Deprecated. Planned for removal in 1.18. :param bool export: Should this value be exported. Export strips fields that a user can not specify. Deprecated. Planned for removal in 1.18. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'pretty', 'exact', 'export' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method read_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `read_api_service`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'exact' in local_var_params and local_var_params['exact'] is not None: # noqa: E501 query_params.append(('exact', local_var_params['exact'])) # noqa: E501 if 'export' in local_var_params and local_var_params['export'] is not None: # noqa: E501 query_params.append(('export', local_var_params['export'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def read_api_service_status(self, name, **kwargs): # noqa: E501 """read_api_service_status # noqa: E501 read status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_api_service_status(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.read_api_service_status_with_http_info(name, **kwargs) # noqa: E501 def read_api_service_status_with_http_info(self, name, **kwargs): # noqa: E501 """read_api_service_status # noqa: E501 read status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_api_service_status_with_http_info(name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param str pretty: If 'true', then the output is pretty printed. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'pretty' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method read_api_service_status" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `read_api_service_status`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}/status', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def replace_api_service(self, name, body, **kwargs): # noqa: E501 """replace_api_service # noqa: E501 replace the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.replace_api_service(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.replace_api_service_with_http_info(name, body, **kwargs) # noqa: E501 def replace_api_service_with_http_info(self, name, body, **kwargs): # noqa: E501 """replace_api_service # noqa: E501 replace the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.replace_api_service_with_http_info(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'body', 'pretty', 'dry_run', 'field_manager' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method replace_api_service" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `replace_api_service`") # noqa: E501 # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in local_var_params or # noqa: E501 local_var_params['body'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `body` when calling `replace_api_service`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_manager' in local_var_params and local_var_params['field_manager'] is not None: # noqa: E501 query_params.append(('fieldManager', local_var_params['field_manager'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def replace_api_service_status(self, name, body, **kwargs): # noqa: E501 """replace_api_service_status # noqa: E501 replace status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.replace_api_service_status(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIService If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.replace_api_service_status_with_http_info(name, body, **kwargs) # noqa: E501 def replace_api_service_status_with_http_info(self, name, body, **kwargs): # noqa: E501 """replace_api_service_status # noqa: E501 replace status of the specified APIService # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.replace_api_service_status_with_http_info(name, body, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str name: name of the APIService (required) :param V1APIService body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIService, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'name', 'body', 'pretty', 'dry_run', 'field_manager' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method replace_api_service_status" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `replace_api_service_status`") # noqa: E501 # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in local_var_params or # noqa: E501 local_var_params['body'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `body` when calling `replace_api_service_status`") # noqa: E501 collection_formats = {} path_params = {} if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'dry_run' in local_var_params and local_var_params['dry_run'] is not None: # noqa: E501 query_params.append(('dryRun', local_var_params['dry_run'])) # noqa: E501 if 'field_manager' in local_var_params and local_var_params['field_manager'] is not None: # noqa: E501 query_params.append(('fieldManager', local_var_params['field_manager'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in local_var_params: body_params = local_var_params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/apiregistration.k8s.io/v1/apiservices/{name}/status', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIService', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
63.924467
1,390
0.655359
4a193ab0f704f8539fc31af7c4d001a339f3c151
7,045
py
Python
jyotisha/rest_api/api_v1.py
hareeshbabu82ns/jyotisha
45ac19e999174cb64c239c1e4ccfb33bc5424137
[ "MIT" ]
null
null
null
jyotisha/rest_api/api_v1.py
hareeshbabu82ns/jyotisha
45ac19e999174cb64c239c1e4ccfb33bc5424137
[ "MIT" ]
null
null
null
jyotisha/rest_api/api_v1.py
hareeshbabu82ns/jyotisha
45ac19e999174cb64c239c1e4ccfb33bc5424137
[ "MIT" ]
null
null
null
import logging import swisseph as swe import flask_restx from flask import Blueprint from flask_restx import Resource from flask_restx import reqparse import jyotisha.panchangam.spatio_temporal.annual import jyotisha.panchangam.spatio_temporal.daily from jyotisha.panchangam import scripts from jyotisha.panchangam.spatio_temporal import City from jyotisha.panchangam.temporal import festival logging.basicConfig( level=logging.DEBUG, format="%(levelname)s: %(asctime)s {%(filename)s:%(lineno)d}: %(message)s " ) URL_PREFIX = '/v1' api_blueprint = Blueprint( 'panchanga', __name__, template_folder='templates' ) api = flask_restx.Api(app=api_blueprint, version='1.0', title='jyotisha panchanga API', description='For detailed intro and to report issues: see <a href="https://github.com/sanskrit-coders/jyotisha">here</a>. ' 'A list of REST and non-REST API routes avalilable on this server: <a href="../sitemap">sitemap</a>.', default_label=api_blueprint.name, prefix=URL_PREFIX, doc='/docs') def get_body_id(body_name): body_id = -1 if body_name == "sun": body_id = swe.SUN elif body_name == "moon": body_id = swe.MOON elif body_name == "jupiter": body_id = swe.JUPITER elif body_name == "venus": body_id = swe.VENUS elif body_name == "mercury": body_id = swe.MERCURY elif body_name == "mars": body_id = swe.MARS elif body_name == "saturn": body_id = swe.SATURN return body_id # noinspection PyUnresolvedReferences @api.route('/calendars/coordinates/<string:latitude>/<string:longitude>/years/<string:year>') # TODO: How to set default values for latitude and logitude here?? # Questions at: https://github.com/noirbizarre/flask-restplus/issues/381 and stackoverflow linked therein. class DailyCalendarHandler(Resource): get_parser = reqparse.RequestParser() get_parser.add_argument('timezone', type=str, default='Asia/Calcutta', help='Example: Asia/Calcutta', location='args', required=True) get_parser.add_argument('encoding', type=str, default='devanagari', help='Example: iast, devanagari, kannada, tamil', location='args', required=True) @api.expect(get_parser) def get(self, latitude, longitude, year): args = self.get_parser.parse_args() city = City("", latitude, longitude, args['timezone']) panchangam = jyotisha.panchangam.spatio_temporal.annual.get_panchangam(city=city, year=int(year), script=args['encoding']) return panchangam.to_json_map() # noinspection PyUnresolvedReferences @api.route('/kaalas/coordinates/<string:latitude>/<string:longitude>/years/<string:year>/months/<int:month>/days/<int:day>/') class KaalaHandler(Resource): get_parser = reqparse.RequestParser() get_parser.add_argument('timezone', type=str, default='Asia/Calcutta', help='Example: Asia/Calcutta', location='args', required=True) get_parser.add_argument('encoding', type=str, default='devanagari', help='Example: iast, devanagari, kannada, tamil', location='args', required=True) get_parser.add_argument('format', type=str, default='hh:mm:ss*', help='Example: hh:mm:ss*, hh:mm', location='args', required=True) @api.expect(get_parser) def get(self, latitude, longitude, year, month, day): args = self.get_parser.parse_args() city = City("", latitude, longitude, args['timezone']) panchangam = jyotisha.panchangam.spatio_temporal.daily.DailyPanchanga(city=city, year=int(year), month=int(month), day=int(day)) return panchangam.get_kaalas_local_time(format=args['format']) # noinspection PyUnresolvedReferences @api.route('/events/<string:id>') class EventFinder(Resource): def get(self, id): festival.fill_festival_id_to_json() festival_data = festival.festival_id_to_json.get(id) return festival_data # noinspection PyUnresolvedReferences @api.route('/times/utc_offsets/<string:offset>/years/<int:year>/months/<int:month>/days/<int:day>/hours/<int:hour>/minutes/<int:minute>/seconds/<int:second>/bodies/<string:body>/nakshatra') class NakshatraFinder(Resource): def get(self, body, offset, year, month, day, hour, minute, second): from jyotisha import zodiac (utc_year, utc_month, utc_day, utc_hour, utc_minute, utc_second) = swe.utc_time_zone(year, month, day, hour, minute, second, float(offset)) julday = swe.utc_to_jd(year=utc_year, month=utc_month, day=utc_day, hour=utc_hour, minutes=utc_minute, seconds=utc_second, flag=swe.GREG_CAL)[0] lahiri_nakshatra_division = zodiac.NakshatraDivision(julday=julday) body_id = get_body_id(body_name=body) if body == "moon": from jyotisha.panchangam import temporal logging.debug(temporal.get_nakshatram(julday)) nakshatra = lahiri_nakshatra_division.get_nakshatra(body_id=body_id) logging.info(nakshatra) return str(nakshatra) # return "haha" # noinspection PyUnresolvedReferences @api.route('/times/utc_offsets/<string:offset>/years/<int:year>/months/<int:month>/days/<int:day>/hours/<int:hour>/minutes/<int:minute>/seconds/<int:second>/raashi') class RaashiFinder(Resource): def get(self, offset, year, month, day, hour, minute, second): (utc_year, utc_month, utc_day, utc_hour, utc_minute, utc_second) = swe.utc_time_zone(year, month, day, hour, minute, second, float(offset)) julday = swe.utc_to_jd(year=utc_year, month=utc_month, day=utc_day, hour=utc_hour, minutes=utc_minute, seconds=utc_second, flag=swe.GREG_CAL)[0] from jyotisha.panchangam import temporal raashi = temporal.get_solar_rashi(jd=julday) logging.info(raashi) return str(raashi) # return "haha" # noinspection PyUnresolvedReferences @api.route('/times/utc_offsets/<string:offset>/years/<int:year>/months/<int:month>/days/<int:day>/hours/<int:hour>/minutes/<int:minute>/seconds/<int:second>/bodies/<string:body>/raashi_transition_100_days') class RaashiTransitionFinder(Resource): def get(self, offset, year, month, day, hour, minute, second, body): from jyotisha import zodiac (utc_year, utc_month, utc_day, utc_hour, utc_minute, utc_second) = swe.utc_time_zone(year=year, month=month, day=day, hour=hour, minutes=minute, seconds=second, offset=float(offset)) julday = swe.utc_to_jd(year=utc_year, month=utc_month, day=utc_day, hour=utc_hour, minutes=utc_minute, seconds=utc_second, flag=swe.GREG_CAL)[0] body_id = get_body_id(body_name=body) from jyotisha.panchangam import temporal transits = temporal.get_planet_next_transit(jd_start=julday, jd_end = julday + 100, planet=body_id) # logging.debug(transits) transits_utc = [(swe.jdut1_to_utc(ut=transit[0], flag=swe.GREG_CAL), transit[1], transit[2]) for transit in transits] transits_local = [(swe.utc_time_zone(year=transit[0][0], month=transit[0][1], day=transit[0][2], hour=transit[0][3], minutes=transit[0][4], seconds=int(transit[0][5]), offset=-float(offset)), transit[1], transit[2]) for transit in transits_utc] return str(transits_local)
49.265734
248
0.731157
4a193c00afb966eda364213120de20a033401122
4,399
py
Python
vulnwhisp/frameworks/qualys_vuln.py
tylerwebb30/VulnWhisperer
4ea384c9ccc3253f38c9ad7da7dd24d072652fa3
[ "Apache-2.0" ]
null
null
null
vulnwhisp/frameworks/qualys_vuln.py
tylerwebb30/VulnWhisperer
4ea384c9ccc3253f38c9ad7da7dd24d072652fa3
[ "Apache-2.0" ]
null
null
null
vulnwhisp/frameworks/qualys_vuln.py
tylerwebb30/VulnWhisperer
4ea384c9ccc3253f38c9ad7da7dd24d072652fa3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'Nathan Young' import xml.etree.ElementTree as ET import pandas as pd import qualysapi import requests import sys import logging import os import dateutil.parser as dp class qualysWhisperAPI(object): SCANS = 'api/2.0/fo/scan' def __init__(self, config=None): self.logger = logging.getLogger('qualysWhisperAPI') self.config = config try: self.qgc = qualysapi.connect(config, 'qualys_vuln') # Fail early if we can't make a request or auth is incorrect self.qgc.request('about.php') self.logger.info('Connected to Qualys at {}'.format(self.qgc.server)) except Exception as e: self.logger.error('Could not connect to Qualys: {}'.format(str(e))) # FIXME: exit(1) does not exist: either it's exit() or sys.exit(CODE) exit(1) def scan_xml_parser(self, xml): all_records = [] root = ET.XML(xml) for child in root.find('.//SCAN_LIST'): all_records.append({ 'name': child.find('TITLE').text, 'id': child.find('REF').text, 'date': child.find('LAUNCH_DATETIME').text, 'type': child.find('TYPE').text, 'duration': child.find('DURATION').text, 'status': child.find('.//STATE').text, }) return pd.DataFrame(all_records) def get_all_scans(self): parameters = { 'action': 'list', 'echo_request': 0, 'show_op': 0, 'launched_after_datetime': '0001-01-01' } scans_xml = self.qgc.request(self.SCANS, parameters) return self.scan_xml_parser(scans_xml) def get_scan_details(self, scan_id=None): parameters = { 'action': 'fetch', 'echo_request': 0, 'output_format': 'json_extended', 'mode': 'extended', 'scan_ref': scan_id } scan_json = self.qgc.request(self.SCANS, parameters) # First two columns are metadata we already have # Last column corresponds to "target_distribution_across_scanner_appliances" element # which doesn't follow the schema and breaks the pandas data manipulation return pd.read_json(scan_json).iloc[2:-1] class qualysUtils: def __init__(self): self.logger = logging.getLogger('qualysUtils') def iso_to_epoch(self, dt): out = dp.parse(dt).strftime('%s') self.logger.info('Converted {} to {}'.format(dt, out)) return out class qualysVulnScan: def __init__( self, config=None, file_in=None, file_stream=False, delimiter=',', quotechar='"', ): self.logger = logging.getLogger('qualysVulnScan') self.file_in = file_in self.file_stream = file_stream self.report = None self.utils = qualysUtils() if config: try: self.qw = qualysWhisperAPI(config=config) except Exception as e: self.logger.error('Could not load config! Please check settings. Error: {}'.format(str(e))) if file_stream: self.open_file = file_in.splitlines() elif file_in: self.open_file = open(file_in, 'rb') self.downloaded_file = None def process_data(self, scan_id=None): """Downloads a file from Qualys and normalizes it""" self.logger.info('Downloading scan ID: {}'.format(scan_id)) scan_report = self.qw.get_scan_details(scan_id=scan_id) if not scan_report.empty: keep_columns = ['category', 'cve_id', 'cvss3_base', 'cvss3_temporal', 'cvss_base', 'cvss_temporal', 'dns', 'exploitability', 'fqdn', 'impact', 'ip', 'ip_status', 'netbios', 'os', 'pci_vuln', 'port', 'protocol', 'qid', 'results', 'severity', 'solution', 'ssl', 'threat', 'title', 'type', 'vendor_reference'] scan_report = scan_report.filter(keep_columns) scan_report['severity'] = scan_report['severity'].astype(int).astype(str) scan_report['qid'] = scan_report['qid'].astype(int).astype(str) else: self.logger.warn('Scan ID {} has no vulnerabilities, skipping.'.format(scan_id)) return scan_report return scan_report
35.764228
318
0.590589
4a193c60e2fa4d99e56edb7abe0ef10d95aab3b5
1,780
py
Python
dlcv/utils.py
j2zhao/deeplens-cv
39f78a72e08997e36754914e7a3875858d5e784c
[ "MIT" ]
null
null
null
dlcv/utils.py
j2zhao/deeplens-cv
39f78a72e08997e36754914e7a3875858d5e784c
[ "MIT" ]
null
null
null
dlcv/utils.py
j2zhao/deeplens-cv
39f78a72e08997e36754914e7a3875858d5e784c
[ "MIT" ]
1
2022-01-08T21:09:07.000Z
2022-01-08T21:09:07.000Z
"""This file is part of DeepLens which is released under MIT License and is copyrighted by the University of Chicago. This project is developed by the database group (chidata). utils.py defines some utilities that can be used for debugging and manipulating image streams. """ import cv2 import numpy as np #plays video stream through the system player def play(vstream): for frame in vstream: cv2.imshow('Player',frame['data']) if cv2.waitKey(3) & 0xFF == ord('q'): break #shows a single frame def show(frame): cv2.imshow('Debug',frame) cv2.waitKey(0) #overlays a bounding box with labels over a frame def overlay(frame, bbs): ff = np.copy(frame) for label, bb in bbs: cv2.rectangle(ff, (bb[0],bb[2]), (bb[1],bb[3]),(0,255,0), 2) cv2.putText(ff, label, (bb[0],bb[2]), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), lineType=cv2.LINE_AA) return ff #crop and replace primitives def bb_crop(frame, box): ff = np.copy(frame) return ff[box.y0:box.y1,box.x0:box.x1] def bb_replace(frame1, box, frame2): ff = np.copy(frame1) ff[box.y0:box.y1,box.x0:box.x1] = frame2 return ff #matches frames against each other def image_match(im1, im2, hess_thresh=150, dist_threshold=1000, accept=0.75): brisk = cv2.BRISK_create(thresh=hess_thresh) (kps1, descs1) = brisk.detectAndCompute(im1, None) (kps2, descs2) = brisk.detectAndCompute(im2, None) match_cnt = 0 for i,k in enumerate(kps1): best_match = None for j,k in enumerate(kps2): distance = np.linalg.norm(descs2[j]-descs1[i]) if distance < dist_threshold: if best_match == None: best_match = (j, distance) else: best_match = (j,min(best_match[1], distance)) match_cnt += (best_match != None) if len(kps1) == 0: return False return (match_cnt/len(kps1) >= accept)
25.070423
106
0.701685
4a193e62a69ccb2d2accc3f3a38ef19e2f65d421
2,220
py
Python
parseAndPopulate/loadJsonFiles.py
stanislav-chlebec/backend
95b8861c51a4a72de5b50587208b771b9e79d25d
[ "Apache-2.0" ]
null
null
null
parseAndPopulate/loadJsonFiles.py
stanislav-chlebec/backend
95b8861c51a4a72de5b50587208b771b9e79d25d
[ "Apache-2.0" ]
null
null
null
parseAndPopulate/loadJsonFiles.py
stanislav-chlebec/backend
95b8861c51a4a72de5b50587208b771b9e79d25d
[ "Apache-2.0" ]
null
null
null
# Copyright The IETF Trust 2019, All Rights Reserved # Copyright 2018 Cisco and its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This class will load all the json files from the yangcatalog private. These files are then used for module compilation status and results """ __author__ = "Miroslav Kovac" __copyright__ = "Copyright 2018 Cisco and its affiliates, Copyright The IETF Trust 2019, All Rights Reserved" __license__ = "Apache License, Version 2.0" __email__ = "miroslav.kovac@pantheon.tech" import json from utility import log class LoadFiles: def __init__(self, private_dir, log_directory): LOGGER = log.get_logger(__name__, log_directory + '/parseAndPopulate.log') LOGGER.debug('Loading compilation statuses and results') self.names = [] with open(private_dir + '/json_links', 'r') as f: for line in f: self.names.append(line.replace('.json', '').replace('\n', '')) self.status = {} self.headers = {} for name in self.names: with open('{}/{}.json'.format(private_dir, name), 'r') as f: self.status[name] = json.load(f) if name == 'IETFYANGRFC': with open('{}/{}.html'.format(private_dir, name)) as f: html = f.read() else: with open('{}/{}YANGPageCompilation.html'.format(private_dir, name)) as f: html = f.read() ths = html.split('<TH>') results = [] for th in ths: res = th.split('</TH>')[0] if 'Compilation Result' in res: results.append(res) self.headers[name] = results
37
109
0.63018
4a193e8b28c7e96ca42c833840d9867edb711920
3,489
py
Python
tests/data_collection/test_reddit_comment_parse.py
brandondong/twss
075cc5d716de42381bbe907c932c2d50d8d294d4
[ "MIT" ]
null
null
null
tests/data_collection/test_reddit_comment_parse.py
brandondong/twss
075cc5d716de42381bbe907c932c2d50d8d294d4
[ "MIT" ]
null
null
null
tests/data_collection/test_reddit_comment_parse.py
brandondong/twss
075cc5d716de42381bbe907c932c2d50d8d294d4
[ "MIT" ]
null
null
null
import unittest import reddit_comment_parse as rcp class TestRedditCommentParse(unittest.TestCase): def test_simple_matches(self): self.assertEqual(rcp.match_twss("That's what she said"), "") self.assertEqual(rcp.match_twss("( ͡° ͜ʖ ͡°)"), "") def test_simple_nonmatches(self): self.assertEqual(rcp.match_twss("Hello world!"), None) self.assertEqual(rcp.match_twss("python 3"), None) def test_simple_match_variations(self): self.assertEqual(rcp.match_twss("That's what she said!"), "") self.assertEqual(rcp.match_twss("THAT'S WHAT SHE SAID"), "") self.assertEqual(rcp.match_twss("thats what she said."), "") self.assertEqual(rcp.match_twss("thats_what_she_said"), "") self.assertEqual(rcp.match_twss(" ( ͡° ͜ʖ ͡°)"), "") self.assertEqual(rcp.match_twss("( ͡° ͜ʖ ͡°) "), "") self.assertEqual(rcp.match_twss("( ͡° ͜ʖ ͡°)\n"), "") def test_simple_false_positives(self): self.assertEqual(rcp.match_twss("That's what she said about Python."), None) self.assertEqual(rcp.match_twss("( ͡° ͜ʖ ͡°) Hello"), None) def test_quote_matches(self): self.assertEqual(rcp.match_twss(">That's huge!\n\nThat's what she said"), "That's huge!") self.assertEqual(rcp.match_twss("> It's hard\n\n( ͡° ͜ʖ ͡°)"), "It's hard") self.assertEqual(rcp.match_twss(">I'm exhausted \n\n( ͡° ͜ʖ ͡°)"), "I'm exhausted") def test_rejects_multi_quotes(self): self.assertEqual(rcp.match_twss(">That's huge!\n\n>Another quote.\n\nThat's what she said"), None) def test_extracts_bold(self): self.assertEqual(rcp.match_twss(">__It's hard__ to sleep\n\nThat's what she said"), "It's hard") # A real comment: https://www.reddit.com/r/programming/comments/9sc0qj/deepcreampy_decensoring_hentai_with_deep_neural/e8npbse. test_comment = ">Image Inpainting for **Irregular Holes** Using Partial Convolutions\n\n( ͡° ͜ʖ ͡°)" self.assertEqual(rcp.match_twss(test_comment), "Irregular Holes") def test_match_strips_formatting(self): self.assertEqual(rcp.match_twss(">_It's_ hard\n\nThat's what she said"), "It's hard") self.assertEqual(rcp.match_twss(">It's *hard*\n\nThat's what she said"), "It's hard") def test_strip_italics(self): self.assertEqual(rcp.strip_formatting("_Hello_"), "Hello") self.assertEqual(rcp.strip_formatting("*Hello*"), "Hello") self.assertEqual(rcp.strip_formatting("Hello *World!*"), "Hello World!") self.assertEqual(rcp.strip_formatting("Hello _World!_"), "Hello World!") def test_strip_bold(self): self.assertEqual(rcp.strip_formatting("__Hello__"), "Hello") self.assertEqual(rcp.strip_formatting("**Hello**"), "Hello") self.assertEqual(rcp.strip_formatting("Hello **World!**"), "Hello World!") self.assertEqual(rcp.strip_formatting("Hello __World!__"), "Hello World!") def test_strip_superscript(self): self.assertEqual(rcp.strip_formatting("Hello^World!"), "Hello World!") def test_strip_strikethrough(self): self.assertEqual(rcp.strip_formatting("This is ~~not~~ a joke"), "This is a joke") self.assertEqual(rcp.strip_formatting("I should finish ~~quickly~~."), "I should finish.") self.assertEqual(rcp.strip_formatting("~~what's~~ updog"), "updog") self.assertEqual(rcp.strip_formatting("fire~~truck~~"), "fire") self.assertEqual(rcp.strip_formatting("~~fire~~truck"), "truck") def test_strip_escapes(self): self.assertEqual(rcp.strip_formatting("3 \* 4"), "3 * 4") self.assertEqual(rcp.strip_formatting(r"3\\4"), r"3\4") self.assertEqual(rcp.strip_formatting("3\^4"), "3^4")
49.842857
129
0.712238
4a1941327f3ec8a59a212a742e3a4abdca8c47ad
2,234
py
Python
test/test_procstat.py
silverfernsys/supervisoragent
dda727d161866e190ce36de22a23381e65534ff8
[ "BSD-4-Clause" ]
null
null
null
test/test_procstat.py
silverfernsys/supervisoragent
dda727d161866e190ce36de22a23381e65534ff8
[ "BSD-4-Clause" ]
null
null
null
test/test_procstat.py
silverfernsys/supervisoragent
dda727d161866e190ce36de22a23381e65534ff8
[ "BSD-4-Clause" ]
null
null
null
import mock import os import subprocess import unittest from supervisoragent.procstat import CPUStats, MemoryStats class ProcStatTest(unittest.TestCase): def setUp(self): self.cpu = CPUStats(1) self.mem = MemoryStats(1) self.resources = os.path.join(os.path.abspath( os.path.dirname(__file__)), 'resources') def tearDown(self): self.cpu = None self.mem = None @mock.patch.object(subprocess, 'Popen') def test_cpu(self, mock_popen): proc_id_stat = open(os.path.join( self.resources, 'proc_id_stat.txt')).read() proc_stat = open(os.path.join(self.resources, 'proc_stat.txt')).read() mock_popen.return_value.returncode.side_effect = [0, 0, 0, 0] side_effects = [(proc_id_stat, "Error1"), (proc_stat, "Error2"), (proc_id_stat, "Error3"), (proc_stat, "Error4"), (proc_id_stat, "Error5"), (proc_stat, "Error6")] mock_popen.return_value.communicate.side_effect = side_effects (user_util, sys_util) = self.cpu.cpu_percent() self.cpu.cpu_percent_change() (user_util_change, sys_util_change) = self.cpu.cpu_percent_change() self.assertEqual(user_util_change, 0, "Percent change is zero.") self.assertEqual(sys_util_change, 0, "Percent change is zero.") @mock.patch.object(subprocess, 'Popen') def test_mem(self, mock_popen): proc_id_smaps = open(os.path.join( self.resources, 'proc_id_smaps.txt')).read() proc_meminfo = open(os.path.join( self.resources, 'proc_meminfo.txt')).read() mock_popen.return_value.returncode.side_effect = [0, 0, 0, 0] side_effects = [(proc_id_smaps, "Error1"), (proc_meminfo, "Error2"), (proc_id_smaps, "Error3"), (proc_meminfo, "Error4")] mock_popen.return_value.communicate.side_effect = side_effects (memory_used, memory_total, free_mem, cached, cached_swap, total_swap, free_swap) = self.mem.__stat__() mem_percent = 100 * float(memory_used) / float(memory_total) memory_percent = self.mem.memory_percent() self.assertEqual(mem_percent, memory_percent)
42.961538
78
0.646822
4a1941df424222cdcfbdb99210c202a44e7555da
3,044
py
Python
wandb/sweeps/base.py
nbardy/client
dfd6345d6a39f20252ac2107652e0f530fc67c98
[ "MIT" ]
1
2021-05-29T10:45:46.000Z
2021-05-29T10:45:46.000Z
wandb/sweeps/base.py
jiaqianjing/client
41fa2443b9fa28682cbf4ddde85e04df6f9cd9a8
[ "MIT" ]
null
null
null
wandb/sweeps/base.py
jiaqianjing/client
41fa2443b9fa28682cbf4ddde85e04df6f9cd9a8
[ "MIT" ]
null
null
null
""" Base classes to be inherited from for Search and EarlyTerminate algorithms """ import math from wandb.sweeps.util import is_nan_or_nan_string class Search(): def _metric_from_run(self, sweep_config, run, default=None): metric = None metric_name = sweep_config['metric']['name'] maximize = False if 'goal' in sweep_config['metric']: if sweep_config['metric']['goal'] == 'maximize': maximize = True # Use summary to find metric if metric_name in run.summaryMetrics: metric = run.summaryMetrics[metric_name] # Exclude None or NaN summary metrics. if metric is None or is_nan_or_nan_string(metric): metric = None if maximize and metric is not None: metric = -metric # Use history to find metric (if available) metric_history = [] run_history = getattr(run, 'history', []) for line in run_history: m = line.get(metric_name) if m is None: continue if is_nan_or_nan_string(m): continue metric_history.append(m) if maximize: metric_history = [-m for m in metric_history] # find minimum from summary or history if metric_history: if metric: metric_history.append(metric) metric = min(metric_history) # use default if specified if metric is None: if default is None: raise ValueError( "Couldn't find summary metric {}".format(metric_name)) metric = default return metric def next_run(self, sweep): """Called each time an agent requests new work. Arguments: sweep: <defined above> Returns: None if all work complete for this sweep. A dictionary of configuration parameters for the next run. """ raise NotImplementedError class EarlyTerminate(): def _load_metric_name_and_goal(self, sweep_config): if not 'metric' in sweep_config: raise ValueError("Key 'metric' required for early termination") self.metric_name = sweep_config['metric']['name'] self.maximize = False if 'goal' in sweep_config['metric']: if sweep_config['metric']['goal'] == 'maximize': self.maximize = True def _load_run_metric_history(self, run): metric_history = [] for line in run.history: if self.metric_name in line: m = line[self.metric_name] metric_history.append(m) # Filter out bad values metric_history = [ x for x in metric_history if x is not None and not is_nan_or_nan_string(x) ] if self.maximize: metric_history = [-m for m in metric_history] return metric_history def stop_runs(self, sweep_config, runs): return [], {}
31.061224
83
0.5818
4a1942021180584cf9ec1790234708320bbb23f5
2,679
py
Python
blog/views.py
dushyant1singh1/blog-applicaion
b058a89c23897918f38f4dd22650af3d65c0e3ec
[ "MIT" ]
3
2020-01-11T13:43:04.000Z
2021-06-05T14:42:51.000Z
blog/views.py
dushyant1singh1/blog-applicaion
b058a89c23897918f38f4dd22650af3d65c0e3ec
[ "MIT" ]
null
null
null
blog/views.py
dushyant1singh1/blog-applicaion
b058a89c23897918f38f4dd22650af3d65c0e3ec
[ "MIT" ]
2
2020-01-11T13:39:33.000Z
2020-10-10T12:50:32.000Z
from django.shortcuts import render,get_object_or_404 from .models import Post from django.core.paginator import Paginator,PageNotAnInteger from django.views.generic import ListView from .forms import EmailPostForm from django.core.mail import send_mail # Create your views here. # def post_list(request): # # posts=Post.objects.filter(status="published") # object_list=Post.published.all() # paginator=Paginator(object_list,3)#3 post in each page # page=request.GET.get('page') # try: # posts=paginator.page(page) # except PageNotAnInteger: # #if page is not an integer deliver the first page # posts=paginator.page(1) # except EmptyPage: # #if pge is out of range deliver last page of results # posts=paginator.page(paginator.num_pages) # return render(request # ,'blog/post/list.html' # ,{'posts':posts,'page':page}) def post_detail(request,year,month,day,post): post=get_object_or_404(Post,slug=post,status='published' ,publish__year=year ,publish__month=month ,publish__day=day) return render(request ,'blog/post/detail.html' ,{'post':post}) class PostListView(ListView): queryset=Post.published.all() context_object_name='posts' paginate_by=2 template_name='blog/post/list.html' def post_share(request,post_id): post=get_object_or_404(Post,id=post_id,status='published')#its a shortcut to retreive the post by id # I used same view for both displaying the initial form and processing the submitted data. we diffrentiate whether the form was submitted or not based #on the request method we assume that if we get a GET request, an empty form has to be displayed and if we get a POST request, the # form is submitted and needs to be processed. sent=False if request.method=='POST':#form was submitted form=EmailPostForm(request.POST) if form.is_valid():#form validation is passed cd=form.cleaned_data post_url=request.build_absolute_uri(post.get_absolute_url()) subject='{}({}) recommends your reading "{}"'.format(cd['name'],cd['email'],post.title) message='Read "{}" at {}\n\n{}\'s comments: {}'.format(post.title,post_url,cd['name'],cd['comments']) send_mail(subject,message,'admin@myblog.com',[cd['to']]) sent=True else: form=EmailPostForm() return render(request,'blog/post/share.html',{'post':post,'form':form,'sent':sent})
45.40678
154
0.645017
4a1943fa2b2ef01cd5fc3b7c46878a5890f7d618
8,102
py
Python
tests/pytorch_tests/model_tests/feature_models/relu_bound_test.py
lapid92/model_optimization
3fc6db67cde912a1e22399bd43bc345ba035b8b6
[ "Apache-2.0" ]
null
null
null
tests/pytorch_tests/model_tests/feature_models/relu_bound_test.py
lapid92/model_optimization
3fc6db67cde912a1e22399bd43bc345ba035b8b6
[ "Apache-2.0" ]
null
null
null
tests/pytorch_tests/model_tests/feature_models/relu_bound_test.py
lapid92/model_optimization
3fc6db67cde912a1e22399bd43bc345ba035b8b6
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Sony Semiconductors Israel, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import torch from model_compression_toolkit import QuantizationConfig, QuantizationErrorMethod from model_compression_toolkit.hardware_models.default_hwm import get_default_hardware_model from tests.pytorch_tests.fw_hw_model_pytorch import get_pytorch_test_fw_hw_model_dict from tests.pytorch_tests.model_tests.base_pytorch_test import BasePytorchTest from torch.nn import Conv2d, ReLU, ReLU6, Hardtanh from torch.nn.functional import relu, relu6, hardtanh import model_compression_toolkit as mct import numpy as np from model_compression_toolkit.pytorch.utils import set_model """ This test checks the BatchNorm folding feature, plus adding a residual connection. """ class ReLUBoundToPOTNet(torch.nn.Module): def __init__(self): super(ReLUBoundToPOTNet, self).__init__() self.conv1 = Conv2d(3, 3, kernel_size=1, stride=1) self.relu1 = ReLU6() self.conv2 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv3 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv4 = Conv2d(3, 3, kernel_size=1, stride=1) self.relu2 = ReLU() def forward(self, inp): x = self.conv1(inp) x = self.relu1(x) x = self.conv2(x) x = self.conv3(x) x = relu6(x) x = self.conv4(x) x = self.relu2(x) x = relu(x) return x class HardtanhBoundToPOTNet(torch.nn.Module): def __init__(self): super(HardtanhBoundToPOTNet, self).__init__() self.conv1 = Conv2d(3, 3, kernel_size=1, stride=1) self.hardtanh1 = Hardtanh(min_val=0.0, max_val=6.0) self.conv2 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv3 = Conv2d(3, 3, kernel_size=1, stride=1) self.hardtanh2 = Hardtanh(min_val=-2.0, max_val=6.0) self.conv4 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv5 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv6 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv7 = Conv2d(3, 3, kernel_size=1, stride=1) self.hardtanh3 = Hardtanh(min_val=0.0, max_val=4.0) self.conv8 = Conv2d(3, 3, kernel_size=1, stride=1) self.conv9 = Conv2d(3, 3, kernel_size=1, stride=1) def forward(self, inp): x = self.conv1(inp) x = self.hardtanh1(x) x = self.conv2(x) x = self.conv3(x) x = self.hardtanh2(x) x = self.conv4(x) x = self.conv5(x) x = hardtanh(x, min_val=0.0, max_val=6.0) x = self.conv6(x) x = self.conv7(x) x = self.hardtanh3(x) x = self.conv8(x) x = self.conv9(x) x = relu(x) return x class ReLUBoundToPOTNetTest(BasePytorchTest): """ This test checks the ReLU Bound To POT feature. """ def __init__(self, unit_test, float_reconstruction_error=1e-6): super().__init__(unit_test, float_reconstruction_error) def create_inputs_shape(self): return [[self.val_batch_size, 3, 32, 32]] def get_fw_hw_model(self): return get_pytorch_test_fw_hw_model_dict(hardware_model=get_default_hardware_model(), test_name='8bit_relu_bound', fhwm_name='relu_bound_pytorch_test') def get_quantization_configs(self): quant_config = QuantizationConfig(QuantizationErrorMethod.MSE, QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True) return {"8bit_relu_bound": quant_config} def create_feature_network(self, input_shape): return ReLUBoundToPOTNet() def compare(self, quantized_models, float_model, input_x=None, quantization_info=None): set_model(float_model) for model_name, quantized_model in quantized_models.items(): set_model(quantized_model) alpha_1 = (quantized_model.conv1.weight / float_model.conv1.weight).detach().cpu().numpy().mean() beta_1 = (quantized_model.conv2.weight / float_model.conv2.weight).detach().cpu().numpy().mean() alpha_2 = (quantized_model.conv3.weight / float_model.conv3.weight).detach().cpu().numpy().mean() beta_2 = (quantized_model.conv4.weight / float_model.conv4.weight).detach().cpu().numpy().mean() self.unit_test.assertTrue(np.allclose(alpha_1 * beta_1, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_1 * 6 / 8, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(8 / 6 * beta_1, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_2 * beta_2, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_2 * 6 / 8, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(8 / 6 * beta_2, 1, atol=1e-1)) class HardtanhBoundToPOTNetTest(BasePytorchTest): """ This test checks the Hardtanh Bound To POT feature. """ def __init__(self, unit_test, float_reconstruction_error=1e-6): super().__init__(unit_test, float_reconstruction_error) def create_inputs_shape(self): return [[self.val_batch_size, 3, 32, 32]] def get_fw_hw_model(self): return get_pytorch_test_fw_hw_model_dict(hardware_model=get_default_hardware_model(), test_name='8bit_relu_bound', fhwm_name='relu_bound_pytorch_test') def get_quantization_configs(self): quant_config = QuantizationConfig(QuantizationErrorMethod.MSE, QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True) return {"8bit_relu_bound": quant_config} def create_feature_network(self, input_shape): return HardtanhBoundToPOTNet() def compare(self, quantized_models, float_model, input_x=None, quantization_info=None): set_model(float_model) for model_name, quantized_model in quantized_models.items(): set_model(quantized_model) alpha_1 = (quantized_model.conv1.weight / float_model.conv1.weight).detach().cpu().numpy().mean() beta_1 = (quantized_model.conv2.weight / float_model.conv2.weight).detach().cpu().numpy().mean() alpha_2 = (quantized_model.conv5.weight / float_model.conv5.weight).detach().cpu().numpy().mean() beta_2 = (quantized_model.conv6.weight / float_model.conv6.weight).detach().cpu().numpy().mean() self.unit_test.assertTrue(np.allclose(alpha_1 * beta_1, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_1 * 6 / 8, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(8 / 6 * beta_1, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_2 * beta_2, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(alpha_2 * 6 / 8, 1, atol=1e-1)) self.unit_test.assertTrue(np.allclose(8 / 6 * beta_2, 1, atol=1e-1)) self.unit_test.assertTrue(quantized_model.hardtanh2.max_val == float_model.hardtanh2.max_val) self.unit_test.assertTrue(quantized_model.hardtanh2.min_val == float_model.hardtanh2.min_val) self.unit_test.assertTrue(quantized_model.hardtanh3.max_val == float_model.hardtanh3.max_val) self.unit_test.assertTrue(quantized_model.hardtanh3.min_val == float_model.hardtanh3.min_val)
46.297143
109
0.651321
4a1944404b1a267b8fb67b9746e6721b695862cb
7,434
py
Python
manim/animation/composition.py
dianechae/manim
269e5c22cb02de108579eccee2b82583eb71e3dc
[ "MIT" ]
1
2021-10-17T15:43:51.000Z
2021-10-17T15:43:51.000Z
manim/animation/composition.py
dianechae/manim
269e5c22cb02de108579eccee2b82583eb71e3dc
[ "MIT" ]
null
null
null
manim/animation/composition.py
dianechae/manim
269e5c22cb02de108579eccee2b82583eb71e3dc
[ "MIT" ]
null
null
null
"""Tools for displaying multiple animations at once.""" from __future__ import annotations from typing import TYPE_CHECKING, Callable, Optional, Sequence, Union import numpy as np from .._config import config from ..animation.animation import Animation, prepare_animation from ..mobject.mobject import Group, Mobject from ..mobject.opengl_mobject import OpenGLGroup from ..scene.scene import Scene from ..utils.iterables import remove_list_redundancies from ..utils.rate_functions import linear if TYPE_CHECKING: from ..mobject.types.opengl_vectorized_mobject import OpenGLVGroup from ..mobject.types.vectorized_mobject import VGroup __all__ = ["AnimationGroup", "Succession", "LaggedStart", "LaggedStartMap"] DEFAULT_LAGGED_START_LAG_RATIO: float = 0.05 class AnimationGroup(Animation): def __init__( self, *animations: Animation, group: Group | VGroup | OpenGLGroup | OpenGLVGroup = None, run_time: float | None = None, rate_func: Callable[[float], float] = linear, lag_ratio: float = 0, **kwargs ) -> None: self.animations = [prepare_animation(anim) for anim in animations] self.group = group if self.group is None: mobjects = remove_list_redundancies( [anim.mobject for anim in self.animations if not anim.is_introducer()], ) if config["renderer"] == "opengl": self.group = OpenGLGroup(*mobjects) else: self.group = Group(*mobjects) super().__init__(self.group, rate_func=rate_func, lag_ratio=lag_ratio, **kwargs) self.run_time: float = self.init_run_time(run_time) def get_all_mobjects(self) -> Sequence[Mobject]: return list(self.group) def begin(self) -> None: if self.suspend_mobject_updating: self.group.suspend_updating() for anim in self.animations: anim.begin() def _setup_scene(self, scene) -> None: for anim in self.animations: anim._setup_scene(scene) def finish(self) -> None: for anim in self.animations: anim.finish() if self.suspend_mobject_updating: self.group.resume_updating() def clean_up_from_scene(self, scene: Scene) -> None: self._on_finish(scene) for anim in self.animations: if self.remover: anim.remover = self.remover anim.clean_up_from_scene(scene) def update_mobjects(self, dt: float) -> None: for anim in self.animations: anim.update_mobjects(dt) def init_run_time(self, run_time) -> float: self.build_animations_with_timings() if self.anims_with_timings: self.max_end_time = np.max([awt[2] for awt in self.anims_with_timings]) else: self.max_end_time = 0 return self.max_end_time if run_time is None else run_time def build_animations_with_timings(self) -> None: """ Creates a list of triplets of the form (anim, start_time, end_time) """ self.anims_with_timings = [] curr_time: float = 0 for anim in self.animations: start_time: float = curr_time end_time: float = start_time + anim.get_run_time() self.anims_with_timings.append((anim, start_time, end_time)) # Start time of next animation is based on the lag_ratio curr_time = (1 - self.lag_ratio) * start_time + self.lag_ratio * end_time def interpolate(self, alpha: float) -> None: # Note, if the run_time of AnimationGroup has been # set to something other than its default, these # times might not correspond to actual times, # e.g. of the surrounding scene. Instead they'd # be a rescaled version. But that's okay! time = alpha * self.max_end_time for anim, start_time, end_time in self.anims_with_timings: anim_time = end_time - start_time if anim_time == 0: sub_alpha = 0 else: sub_alpha = np.clip((time - start_time) / anim_time, 0, 1) anim.interpolate(sub_alpha) class Succession(AnimationGroup): def __init__(self, *animations: Animation, lag_ratio: float = 1, **kwargs) -> None: super().__init__(*animations, lag_ratio=lag_ratio, **kwargs) def begin(self) -> None: assert len(self.animations) > 0 self.update_active_animation(0) def finish(self) -> None: while self.active_animation is not None: self.next_animation() def update_mobjects(self, dt: float) -> None: if self.active_animation: self.active_animation.update_mobjects(dt) def _setup_scene(self, scene) -> None: if scene is None: return if self.is_introducer(): for anim in self.animations: if not anim.is_introducer() and anim.mobject is not None: scene.add(anim.mobject) self.scene = scene def update_active_animation(self, index: int) -> None: self.active_index = index if index >= len(self.animations): self.active_animation: Animation | None = None self.active_start_time: float | None = None self.active_end_time: float | None = None else: self.active_animation = self.animations[index] self.active_animation._setup_scene(self.scene) self.active_animation.begin() self.active_start_time = self.anims_with_timings[index][1] self.active_end_time = self.anims_with_timings[index][2] def next_animation(self) -> None: if self.active_animation is not None: self.active_animation.finish() self.update_active_animation(self.active_index + 1) def interpolate(self, alpha: float) -> None: current_time = alpha * self.run_time while self.active_end_time is not None and current_time >= self.active_end_time: self.next_animation() if self.active_animation is not None and self.active_start_time is not None: elapsed = current_time - self.active_start_time active_run_time = self.active_animation.get_run_time() subalpha = elapsed / active_run_time if active_run_time != 0.0 else 1.0 self.active_animation.interpolate(subalpha) class LaggedStart(AnimationGroup): def __init__( self, *animations: Animation, lag_ratio: float = DEFAULT_LAGGED_START_LAG_RATIO, **kwargs ): super().__init__(*animations, lag_ratio=lag_ratio, **kwargs) class LaggedStartMap(LaggedStart): def __init__( self, AnimationClass: Callable[..., Animation], mobject: Mobject, arg_creator: Callable[[Mobject], str] = None, run_time: float = 2, **kwargs ) -> None: args_list = [] for submob in mobject: if arg_creator: args_list.append(arg_creator(submob)) else: args_list.append((submob,)) anim_kwargs = dict(kwargs) if "lag_ratio" in anim_kwargs: anim_kwargs.pop("lag_ratio") animations = [AnimationClass(*args, **anim_kwargs) for args in args_list] super().__init__(*animations, run_time=run_time, **kwargs)
36.441176
88
0.635055
4a1944add4d7dce784b76d80cb59fef1ea8a740c
2,476
py
Python
azure-mgmt-datafactory/azure/mgmt/datafactory/models/azure_my_sql_linked_service.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure-mgmt-datafactory/azure/mgmt/datafactory/models/azure_my_sql_linked_service.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
2
2016-09-30T21:40:24.000Z
2017-11-10T18:16:18.000Z
azure-mgmt-datafactory/azure/mgmt/datafactory/models/azure_my_sql_linked_service.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .linked_service import LinkedService class AzureMySqlLinkedService(LinkedService): """Azure MySQL database linked service. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param connect_via: The integration runtime reference. :type connect_via: ~azure.mgmt.datafactory.models.IntegrationRuntimeReference :param description: Linked service description. :type description: str :param type: Constant filled by server. :type type: str :param connection_string: The connection string. :type connection_string: ~azure.mgmt.datafactory.models.SecureString :param encrypted_credential: The encrypted credential used for authentication. Credentials are encrypted using the integration runtime credential manager. Type: string (or Expression with resultType string). :type encrypted_credential: object """ _validation = { 'type': {'required': True}, 'connection_string': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'connect_via': {'key': 'connectVia', 'type': 'IntegrationRuntimeReference'}, 'description': {'key': 'description', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'connection_string': {'key': 'typeProperties.connectionString', 'type': 'SecureString'}, 'encrypted_credential': {'key': 'typeProperties.encryptedCredential', 'type': 'object'}, } def __init__(self, connection_string, additional_properties=None, connect_via=None, description=None, encrypted_credential=None): super(AzureMySqlLinkedService, self).__init__(additional_properties=additional_properties, connect_via=connect_via, description=description) self.connection_string = connection_string self.encrypted_credential = encrypted_credential self.type = 'AzureMySql'
45.018182
148
0.67811
4a19467cecf4f9c0c61b49f0dafb13d7994bed58
203
py
Python
jifx/make_geo_ids.py
zaza81/clavin
7a1f0c9745736869b5040c66785f080acc755a9c
[ "Apache-2.0" ]
null
null
null
jifx/make_geo_ids.py
zaza81/clavin
7a1f0c9745736869b5040c66785f080acc755a9c
[ "Apache-2.0" ]
null
null
null
jifx/make_geo_ids.py
zaza81/clavin
7a1f0c9745736869b5040c66785f080acc755a9c
[ "Apache-2.0" ]
null
null
null
import sys f = open("GeocodedTweets.tsv") f.readline() print "id\tUnknown1\tUnknown2\tUserName\tTweet\tGeocoded\tLat\tLong\tDateTime" i = 0 for line in f: i += 1 print str(i) + "\t" + line,
14.5
78
0.665025
4a1946b9c6b713b1c62d68e921241dadd64a22e2
838
py
Python
docker/nginx/start.py
nabladev/ohmyform
b9180596905c0e423ba4fef0789b810ded56c771
[ "MIT" ]
2,092
2017-04-24T10:37:44.000Z
2022-03-30T13:44:39.000Z
docker/nginx/start.py
nabladev/ohmyform
b9180596905c0e423ba4fef0789b810ded56c771
[ "MIT" ]
146
2017-04-23T17:55:31.000Z
2019-10-09T14:00:12.000Z
docker/nginx/start.py
nabladev/ohmyform
b9180596905c0e423ba4fef0789b810ded56c771
[ "MIT" ]
503
2017-04-23T12:21:43.000Z
2022-03-30T15:07:43.000Z
#!/usr/bin/python import os import subprocess #Set default port if not os.environ["PORT"]: os.environ["PORT"] = "5000" #Set default sockets port if not os.environ["SOCKET_PORT"]: os.environ["SOCKET_PORT"] = "20523" # Actual startup script if not os.path.exists("/certs/dhparam.pem") and os.environ["TLS_FLAVOR"] != "notls": os.system("openssl dhparam -out /certs/dhparam.pem 2048") if os.environ["TLS_FLAVOR"] == "letsencrypt": subprocess.Popen(["/letsencrypt.py"]) elif os.environ["TLS_FLAVOR"] == "cert": if not os.path.exists("/certs/cert.pem"): os.system("openssl req -newkey rsa:2048 -x509 -keyout /certs/key.pem -out /certs/cert.pem -days 365 -nodes -subj '/C=NA/ST=None/L=None/O=None/CN=" + os.environ["BASE_URL"] + "'") subprocess.call(["/config.py"]) os.execv("/usr/sbin/nginx", ["nginx", "-g", "daemon off;"])
33.52
180
0.681384
4a19488b7518e11550f4c9050ea8bb16561262f8
379
py
Python
src/time_functions.py
joseph-mccarthy/night-sky-pi
045b54c8ae8d551e951cd35bc40a94d3a4171975
[ "MIT" ]
null
null
null
src/time_functions.py
joseph-mccarthy/night-sky-pi
045b54c8ae8d551e951cd35bc40a94d3a4171975
[ "MIT" ]
null
null
null
src/time_functions.py
joseph-mccarthy/night-sky-pi
045b54c8ae8d551e951cd35bc40a94d3a4171975
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta def _get_now() -> datetime: return datetime.now() def get_today() -> datetime: return _get_now() def get_tomorrow() -> datetime: return _get_now() + timedelta(1) def get_yesterday() -> datetime: return _get_now() - timedelta(1) def get_dates() -> tuple(): return (get_yesterday(), get_today(), get_tomorrow())
18.95
57
0.6781
4a1948b00b976be11cf32a3ed896cfdd0620f4c0
4,652
py
Python
tests/distributed/test_workspaces/test_remote_workspaces.py
manognyaa/jina
14cbb0dd1d5d7493f12cf4b8fb4066626f17c2e1
[ "Apache-2.0" ]
null
null
null
tests/distributed/test_workspaces/test_remote_workspaces.py
manognyaa/jina
14cbb0dd1d5d7493f12cf4b8fb4066626f17c2e1
[ "Apache-2.0" ]
null
null
null
tests/distributed/test_workspaces/test_remote_workspaces.py
manognyaa/jina
14cbb0dd1d5d7493f12cf4b8fb4066626f17c2e1
[ "Apache-2.0" ]
null
null
null
import os import time import numpy as np import pytest from jina import Flow, Client, Document, __default_host__ from ..helpers import create_workspace, wait_for_workspace, delete_workspace cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.join(cur_dir, 'docker-compose.yml') """ Run below commands for local tests docker build --build-arg PIP_TAG=daemon -f Dockerfiles/debianx.Dockerfile -t jinaai/jina:test-daemon . docker run --add-host host.docker.internal:host-gateway \ --name jinad -v /var/run/docker.sock:/var/run/docker.sock -v /tmp/jinad:/tmp/jinad \ -p 8000:8000 -d jinaai/jina:test-daemon """ CLOUD_HOST = 'localhost:8000' # consider it as the staged version NUM_DOCS = 100 @pytest.mark.parametrize('parallels', [1]) def test_upload_simple(parallels, mocker): response_mock = mocker.Mock() f = ( Flow() .add() .add( uses='mwu_encoder.yml', host=CLOUD_HOST, parallel=parallels, upload_files=['mwu_encoder.py'], ) .add() ) with f: f.index( inputs=(Document(blob=np.random.random([1, 100])) for _ in range(NUM_DOCS)), on_done=response_mock, ) response_mock.assert_called() @pytest.mark.parametrize('parallels', [2]) def test_upload_multiple_workspaces(parallels, mocker): response_mock = mocker.Mock() encoder_workspace = 'tf_encoder_ws' indexer_workspace = 'tdb_indexer_ws' def _path(dir, filename): return os.path.join(cur_dir, dir, filename) f = ( Flow() .add( name='tf_encoder', uses=_path(encoder_workspace, 'tf.yml'), host=CLOUD_HOST, parallel=parallels, py_modules=[_path(encoder_workspace, 'tf_encoder.py')], upload_files=[ _path(encoder_workspace, '.jinad'), _path(encoder_workspace, 'requirements.txt'), ], ) .add( name='tdb_indexer', uses=_path(indexer_workspace, 'tdb.yml'), host=CLOUD_HOST, parallel=parallels, py_modules=[_path(indexer_workspace, 'tdb_indexer.py')], upload_files=[ _path(indexer_workspace, '.jinad'), _path(indexer_workspace, 'requirements.txt'), ], ) ) with f: f.index( inputs=(Document(blob=np.random.random([1, 100])) for _ in range(NUM_DOCS)), on_done=response_mock, ) response_mock.assert_called() def test_custom_project(): HOST = __default_host__ workspace_id = create_workspace( dirpath=os.path.join(cur_dir, 'flow_app_ws'), host=HOST ) assert wait_for_workspace(workspace_id, host=HOST) # we need to wait for the flow to start in the custom project time.sleep(5) def gen_docs(): import string d = iter(string.ascii_lowercase) while True: try: yield Document(tags={'first': next(d), 'second': next(d)}) except StopIteration: return Client(host=HOST, port_expose=42860, show_progress=True).post( on='/index', inputs=gen_docs ) res = Client(host=HOST, port_expose=42860, show_progress=True).post( on='/search', inputs=Document(tags={'key': 'first', 'value': 's'}), return_results=True, ) assert res[0].data.docs[0].matches[0].tags.fields['first'].string_value == 's' assert res[0].data.docs[0].matches[0].tags.fields['second'].string_value == 't' delete_workspace(workspace_id, host=HOST) @pytest.fixture() def docker_compose(request): os.system(f'docker network prune -f ') os.system( f'docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans' ) time.sleep(5) yield os.system( f'docker-compose -f {request.param} --project-directory . down --remove-orphans' ) os.system(f'docker network prune -f ') @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_upload_simple_non_standard_rootworkspace(docker_compose, mocker): response_mock = mocker.Mock() f = ( Flow() .add() .add( uses='mwu_encoder.yml', host='localhost:9000', upload_files=['mwu_encoder.py'], ) .add() ) with f: f.index( inputs=(Document(blob=np.random.random([1, 100])) for _ in range(NUM_DOCS)), on_done=response_mock, ) response_mock.assert_called()
29.820513
102
0.610275
4a1948bc3a2fa9e966660a404195ba7975bb34d2
9,056
py
Python
bokeh/core/properties.py
RunOrVeith/bokeh
a29eda007c886ec0cb21628038204f08cfe6b4c1
[ "BSD-3-Clause" ]
null
null
null
bokeh/core/properties.py
RunOrVeith/bokeh
a29eda007c886ec0cb21628038204f08cfe6b4c1
[ "BSD-3-Clause" ]
4
2021-03-18T22:30:03.000Z
2022-02-12T06:12:28.000Z
bokeh/core/properties.py
RunOrVeith/bokeh
a29eda007c886ec0cb21628038204f08cfe6b4c1
[ "BSD-3-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide property types for Bokeh models Properties are objects that can be assigned as class attributes on Bokeh models, to provide automatic serialization, validation, and documentation. This documentation is broken down into the following sections: .. contents:: :local: Overview -------- There are many property types defined in the module, for example ``Int`` to represent integral values, ``Seq`` to represent sequences (e.g. lists or tuples, etc.). Properties can also be combined: ``Seq(Float)`` represents a sequence of floating point values. For example, the following defines a model that has integer, string, and list[float] properties: .. code-block:: python class SomeModel(Model): foo = Int bar = String(default="something") baz = List(Float, help="docs for baz prop") As seen, properties can be declared as just the property type, e.g. ``foo = Int``, in which case the properties are automatically instantiated on new Model objects. Or the property can be instantiated on the class, and configured with default values and help strings. The properties of this class can be initialized by specifying keyword arguments to the initializer: .. code-block:: python m = SomeModel(foo=10, bar="a str", baz=[1,2,3,4]) But also by setting the attributes on an instance: .. code-block:: python m.foo = 20 Attempts to set a property to a value of the wrong type will result in a ``ValueError`` exception: .. code-block:: python >>> m.foo = 2.3 Traceback (most recent call last): << traceback omitted >> ValueError: expected a value of type Integral, got 2.3 of type float Models with properties know how to serialize themselves, to be understood by BokehJS. Additionally, any help strings provided on properties can be easily and automatically extracted with the Sphinx extensions in the :ref:`bokeh.sphinxext` module. Basic Properties ---------------- .. autoclass:: Angle .. autoclass:: Any .. autoclass:: AnyRef .. autoclass:: Auto .. autoclass:: Bool .. autoclass:: Byte .. autoclass:: Color .. autoclass:: Complex .. autoclass:: DashPattern .. autoclass:: Date .. autoclass:: Datetime .. autoclass:: Either .. autoclass:: Enum .. autoclass:: Float .. autoclass:: FontSize .. autoclass:: Image .. autoclass:: Instance .. autoclass:: Int .. autoclass:: Interval .. autoclass:: JSON .. autoclass:: MarkerType .. autoclass:: MinMaxBounds .. autoclass:: Percent .. autoclass:: RGB .. autoclass:: Regex .. autoclass:: Size .. autoclass:: String .. autoclass:: TimeDelta Container Properties -------------------- .. autoclass:: Array .. autoclass:: ColumnData .. autoclass:: Dict .. autoclass:: List .. autoclass:: RelativeDelta .. autoclass:: Seq .. autoclass:: Tuple DataSpec Properties ------------------- .. autoclass:: AngleSpec .. autoclass:: ColorSpec .. autoclass:: DataDistanceSpec .. autoclass:: DataSpec .. autoclass:: DistanceSpec .. autoclass:: FontSizeSpec .. autoclass:: MarkerSpec .. autoclass:: NumberSpec .. autoclass:: ScreenDistanceSpec .. autoclass:: StringSpec .. autoclass:: UnitsSpec Helpers ~~~~~~~ .. autofunction:: expr .. autofunction:: field .. autofunction:: value Special Properties ------------------ .. autoclass:: Include .. autoclass:: Override Validation Control ------------------ By default, Bokeh properties perform type validation on values. This helps to ensure the consistency of any data exchanged between Python and JavaScript, as well as provide detailed and immediate feedback to users if they attempt to set values of the wrong type. However, these type checks incur some overhead. In some cases it may be desirable to turn off validation in specific places, or even entirely, in order to boost performance. The following API is available to control when type validation occurs. .. autoclass:: validate .. autofunction:: without_property_validation ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports # Bokeh imports #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'Angle', 'AngleSpec', 'Any', 'AnyRef', 'Array', 'Auto', 'Bool', 'Byte', 'Color', 'ColorSpec', 'ColumnData', 'Complex', 'DashPattern', 'DataDistanceSpec', 'DataSpec', 'Date', 'Datetime', 'Dict', 'DistanceSpec', 'Either', 'Enum', 'Float', 'FontSize', 'FontSizeSpec', 'Image', 'Include', 'Instance', 'Int', 'Interval', 'JSON', 'List', 'MarkerSpec', 'MarkerType', 'MinMaxBounds', 'NumberSpec', 'Override', 'Percent', 'RGB', 'Regex', 'RelativeDelta', 'ScreenDistanceSpec', 'Seq', 'Size', 'String', 'StringSpec', 'TimeDelta', 'Tuple', 'UnitsSpec', 'expr', 'field', 'validate', 'value', 'without_property_validation' ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- from .property.any import Any; Any from .property.any import AnyRef; AnyRef from .property.auto import Auto; Auto from .property.color import Color; Color from .property.color import RGB; RGB from .property.container import Array; Array from .property.container import ColumnData; ColumnData from .property.container import Dict; Dict from .property.container import List; List from .property.container import Seq; Seq from .property.container import Tuple; Tuple from .property.container import RelativeDelta; RelativeDelta from .property.dataspec import AngleSpec; AngleSpec from .property.dataspec import ColorSpec; ColorSpec from .property.dataspec import DataSpec; DataSpec from .property.dataspec import DataDistanceSpec; DataDistanceSpec from .property.dataspec import DistanceSpec; DistanceSpec from .property.dataspec import expr; expr from .property.dataspec import field; field from .property.dataspec import FontSizeSpec; FontSizeSpec from .property.dataspec import MarkerSpec; MarkerSpec from .property.dataspec import NumberSpec; NumberSpec from .property.dataspec import ScreenDistanceSpec; ScreenDistanceSpec from .property.dataspec import StringSpec; StringSpec from .property.dataspec import UnitsSpec; UnitsSpec from .property.dataspec import value; value from .property.datetime import Date; Date from .property.datetime import Datetime; Datetime from .property.datetime import TimeDelta; TimeDelta from .property.either import Either; Either from .property.enum import Enum; Enum from .property.include import Include ; Include from .property.instance import Instance; Instance from .property.json import JSON; JSON from .property.numeric import Angle; Angle from .property.numeric import Byte; Byte from .property.numeric import Interval; Interval from .property.numeric import Percent; Percent from .property.numeric import Size; Size from .property.override import Override ; Override from .property.primitive import Bool; Bool from .property.primitive import Complex; Complex from .property.primitive import Int; Int from .property.primitive import Float; Float from .property.primitive import String; String from .property.regex import Regex; Regex from .property.visual import DashPattern; DashPattern from .property.visual import FontSize; FontSize from .property.visual import Image; Image from .property.visual import MinMaxBounds; MinMaxBounds from .property.visual import MarkerType; MarkerType from .property.validation import validate; validate from .property.validation import without_property_validation; without_property_validation #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
28.3
89
0.629638
4a1948d3d05295f67598c31ac17557038e4c764d
38,762
py
Python
built_in_tasks/onedim_lfp_tasks.py
DerekYJC/bmi_python
7b9cf3f294a33688db24b0863c1035e9cc6999ea
[ "Apache-2.0" ]
null
null
null
built_in_tasks/onedim_lfp_tasks.py
DerekYJC/bmi_python
7b9cf3f294a33688db24b0863c1035e9cc6999ea
[ "Apache-2.0" ]
null
null
null
built_in_tasks/onedim_lfp_tasks.py
DerekYJC/bmi_python
7b9cf3f294a33688db24b0863c1035e9cc6999ea
[ "Apache-2.0" ]
null
null
null
''' Base tasks for generic point-to-point reaching ''' from __future__ import division import numpy as np from collections import OrderedDict import time from riglib import reward from riglib.experiment import traits, Sequence from riglib.stereo_opengl.window import Window, FPScontrol, WindowDispl2D from riglib.stereo_opengl.primitives import Cylinder, Plane, Sphere, Cube from riglib.stereo_opengl.models import FlatMesh, Group from riglib.stereo_opengl.textures import Texture, TexModel from riglib.stereo_opengl.render import stereo, Renderer from riglib.stereo_opengl.utils import cloudy_tex from .plantlist import plantlist from riglib.stereo_opengl import ik import math import traceback from riglib.bmi import bmi #from built_in_tasks.bmimultitasks import BMILoop from riglib.bmi.bmi import BMILoop from built_in_tasks.manualcontrolmultitasks import ManualControlMulti, VirtualCircularTarget from riglib.bmi import onedim_lfp_decoder ####### CONSTANTS sec_per_min = 60.0 RED = (1,0,0,.5) GREEN = (0,1,0,0.5) mm_per_cm = 1./10 class SquareTarget(object): def __init__(self, target_radius=2, target_color=(1, 0, 0, .5), starting_pos=np.zeros(3)): self.target_rad = target_radius self.target_color = target_color self.position = starting_pos self.int_position = starting_pos self._pickle_init() def _pickle_init(self): self.cube = Cube(side_len=self.target_rad, color=self.target_color) self.graphics_models = [self.cube] self.cube.translate(*self.position) def move_to_position(self, new_pos): self.int_position = new_pos self.drive_to_new_pos() def drive_to_new_pos(self): raise NotImplementedError class VirtualSquareTarget(SquareTarget): def drive_to_new_pos(self): self.position = self.int_position self.cube.translate(*self.position, reset=True) def hide(self): self.cube.detach() def show(self): self.cube.attach() def cue_trial_start(self): self.cube.color = self.target_color self.show() def cue_trial_end_success(self): self.cube.color = GREEN def cue_trial_end_failure(self): self.cube.color = RED self.hide() # self.sphere.color = GREEN def idle(self): self.cube.color = self.target_color self.hide() class LFP_Mod(BMILoop, Sequence, Window): background = (0,0,0,1) plant_visible = traits.Bool(True, desc='Specifies whether entire plant is displayed or just endpoint') lfp_cursor_rad = traits.Float(.5, desc="length of LFP cursor") lfp_cursor_color = (.5,0,.5,.75) lfp_plant_type_options = list(plantlist.keys()) lfp_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=list(plantlist.keys())) window_size = traits.Tuple((1920*2, 1080), desc='window size') lfp_frac_lims = traits.Tuple((0., 0.35), desc='fraction limits') xlfp_frac_lims = traits.Tuple((-.7, 1.7), desc = 'x dir fraction limits') lfp_control_band = traits.Tuple((25, 40), desc='beta power band limits') lfp_totalpw_band = traits.Tuple((1, 100), desc='total power band limits') xlfp_control_band = traits.Tuple((0, 5), desc = 'x direction band limits') n_steps = traits.Int(2, desc='moving average for decoder') is_bmi_seed = True powercap = traits.Float(1, desc="Timeout for total power above this") zboundaries=(-12,12) status = dict( wait = dict(start_trial="lfp_target", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="reward", powercap_penalty="powercap_penalty"), powercap_penalty = dict(powercap_penalty_end="lfp_target"), reward = dict(reward_end="wait") ) static_states = [] # states in which the decoder is not run trial_end_states = ['reward'] lfp_cursor_on = ['lfp_target', 'lfp_hold'] #initial state state = "wait" #create settable traits reward_time = traits.Float(.5, desc="Length of juice reward") lfp_target_rad = traits.Float(3.6, desc="Length of targets in cm") lfp_hold_time = traits.Float(.2, desc="Length of hold required at lfp targets") lfp_hold_var = traits.Float(.05, desc="Length of hold variance required at lfp targets") hold_penalty_time = traits.Float(1, desc="Length of penalty time for target hold error") powercap_penalty_time = traits.Float(1, desc="Length of penalty time for timeout error") # max_attempts = traits.Int(10, desc='The number of attempts at a target before\ # skipping to the next one') session_length = traits.Float(0, desc="Time until task automatically stops. Length of 0 means no auto stop.") #plant_hide_rate = traits.Float(0.0, desc='If the plant is visible, specifies a percentage of trials where it will be hidden') lfp_target_color = (123/256.,22/256.,201/256.,.5) mc_target_color = (1,0,0,.5) target_index = -1 # Helper variable to keep track of which target to display within a trial #tries = 0 # Helper variable to keep track of the number of failed attempts at a given trial. cursor_visible = False # Determines when to hide the cursor. no_data_count = 0 # Counter for number of missing data frames in a row sequence_generators = ['lfp_mod_4targ'] def __init__(self, *args, **kwargs): super(LFP_Mod, self).__init__(*args, **kwargs) self.cursor_visible = True print('INIT FRAC LIMS: ', self.lfp_frac_lims) dec_params = dict(lfp_frac_lims = self.lfp_frac_lims, xlfp_frac_lims = self.xlfp_frac_lims, powercap = self.powercap, zboundaries = self.zboundaries, lfp_control_band = self.lfp_control_band, lfp_totalpw_band = self.lfp_totalpw_band, xlfp_control_band = self.xlfp_control_band, n_steps = self.n_steps) self.decoder.filt.init_from_task(**dec_params) self.decoder.init_from_task(**dec_params) self.lfp_plant = plantlist[self.lfp_plant_type] if self.lfp_plant_type == 'inv_cursor_onedimLFP': print('MAKE SURE INVERSE GENERATOR IS ON') self.plant_vis_prev = True self.current_assist_level = 0 self.learn_flag = False if hasattr(self.lfp_plant, 'graphics_models'): for model in self.lfp_plant.graphics_models: self.add_model(model) # Instantiate the targets ''' height and width on kinarm machine are 2.4. Here we make it 2.4/8*12 = 3.6 ''' lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target] # Initialize target location variable self.target_location_lfp = np.array([-100, -100, -100]) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.lfp_plant.hdf_attrs: self.add_dtype(*attr) def init(self): self.plant = DummyPlant() self.add_dtype('lfp_target', 'f8', (3,)) self.add_dtype('target_index', 'i', (1,)) self.add_dtype('powercap_flag', 'i',(1,)) for target in self.targets: for model in target.graphics_models: self.add_model(model) super(LFP_Mod, self).init() def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' self.task_data['loop_time'] = self.iter_time() self.task_data['lfp_target'] = self.target_location_lfp.copy() self.task_data['target_index'] = self.target_index #self.task_data['internal_decoder_state'] = self.decoder.filt.current_lfp_pos self.task_data['powercap_flag'] = self.decoder.filt.current_powercap_flag self.move_plant() ## Save plant status to HDF file, ###ADD BACK lfp_plant_data = self.lfp_plant.get_data_to_save() for key in lfp_plant_data: self.task_data[key] = lfp_plant_data[key] super(LFP_Mod, self)._cycle() def move_plant(self): feature_data = self.get_features() # Save the "neural features" (e.g. spike counts vector) to HDF file for key, val in feature_data.items(): self.task_data[key] = val Bu = None assist_weight = 0 target_state = np.zeros([self.decoder.n_states, self.decoder.n_subbins]) ## Run the decoder if self.state not in self.static_states: neural_features = feature_data[self.extractor.feature_type] self.call_decoder(neural_features, target_state, Bu=Bu, assist_level=assist_weight, feature_type=self.extractor.feature_type) ## Drive the plant to the decoded state, if permitted by the constraints of the plant self.lfp_plant.drive(self.decoder) self.task_data['decoder_state'] = decoder_state = self.decoder.get_state(shape=(-1,1)) return decoder_state def run(self): ''' See experiment.Experiment.run for documentation. ''' # Fire up the plant. For virtual/simulation plants, this does little/nothing. self.lfp_plant.start() try: super(LFP_Mod, self).run() finally: self.lfp_plant.stop() ##### HELPER AND UPDATE FUNCTIONS #### def update_cursor_visibility(self): ''' Update cursor visible flag to hide cursor if there has been no good data for more than 3 frames in a row''' prev = self.cursor_visible if self.no_data_count < 3: self.cursor_visible = True if prev != self.cursor_visible: self.show_object(self.cursor, show=True) else: self.cursor_visible = False if prev != self.cursor_visible: self.show_object(self.cursor, show=False) def update_report_stats(self): ''' see experiment.Experiment.update_report_stats for docs ''' super(LFP_Mod, self).update_report_stats() self.reportstats['Trial #'] = self.calc_trial_num() self.reportstats['Reward/min'] = np.round(self.calc_events_per_min('reward', 120), decimals=2) #### TEST FUNCTIONS #### def _test_powercap_penalty(self, ts): if self.decoder.filt.current_powercap_flag: #Turn off power cap flag: self.decoder.filt.current_powercap_flag = 0 return True else: return False def _test_enter_lfp_target(self, ts): ''' return true if the distance between center of cursor and target is smaller than the cursor radius in the x and z axis only ''' cursor_pos = self.lfp_plant.get_endpoint_pos() dx = np.linalg.norm(cursor_pos[0] - self.target_location_lfp[0]) dz = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) in_targ = False if dx<= (self.lfp_target_rad/2.) and dz<= (self.lfp_target_rad/2.): in_targ = True return in_targ # #return d <= (self.lfp_target_rad - self.lfp_cursor_rad) # #If center of cursor enters target at all: # return d <= (self.lfp_target_rad/2.) # #New version: # cursor_pos = self.lfp_plant.get_endpoint_pos() # d = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) # d <= (self.lfp_target_rad - self.lfp_cursor_rad) def _test_leave_early(self, ts): ''' return true if cursor moves outside the exit radius ''' cursor_pos = self.lfp_plant.get_endpoint_pos() dx = np.linalg.norm(cursor_pos[0] - self.target_location_lfp[0]) dz = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) out_of_targ = False if dx > (self.lfp_target_rad/2.) or dz > (self.lfp_target_rad/2.): out_of_targ = True #rad = self.lfp_target_rad - self.lfp_cursor_rad #return d > rad return out_of_targ def _test_lfp_hold_complete(self, ts): return ts>=self.lfp_hold_time_plus_var # def _test_lfp_timeout(self, ts): # return ts>self.timeout_time def _test_powercap_penalty_end(self, ts): if ts>self.powercap_penalty_time: self.lfp_plant.turn_on() return ts>self.powercap_penalty_time def _test_reward_end(self, ts): return ts>self.reward_time def _test_stop(self, ts): if self.session_length > 0 and (self.get_time() - self.task_start_time) > self.session_length: self.end_task() return self.stop #### STATE FUNCTIONS #### def _parse_next_trial(self): self.targs = self.next_trial def _start_wait(self): super(LFP_Mod, self)._start_wait() self.tries = 0 self.target_index = -1 #hide targets for target in self.targets: target.hide() #get target locations for this trial self._parse_next_trial() self.chain_length = 1 self.lfp_hold_time_plus_var = self.lfp_hold_time + np.random.uniform(low=-1,high=1)*self.lfp_hold_var def _start_lfp_target(self): self.target_index += 1 self.target_index = 0 #only 1 target: target = self.targets[0] self.target_location_lfp = self.targs #Just one target. target.move_to_position(self.target_location_lfp) target.cue_trial_start() def _start_lfp_hold(self): #make next target visible unless this is the final target in the trial idx = (self.target_index + 1) if idx < self.chain_length: target = self.targets[idx % 2] target.move_to_position(self.targs[idx]) def _end_lfp_hold(self): # change current target color to green self.targets[self.target_index % 2].cue_trial_end_success() def _start_timeout_penalty(self): #hide targets for target in self.targets: target.hide() self.tries += 1 self.target_index = -1 def _start_reward(self): #super(LFP_Mod, self)._start_reward() self.targets[self.target_index % 2].show() def _start_powercap_penalty(self): for target in self.targets: target.hide() self.lfp_plant.turn_off() @staticmethod def lfp_mod_4targ(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8): '''Mimics beta modulation task from Kinarm Rig: In Kinarm rig, the following linear transformations happen: 1. LFP cursor is calculated 2. mapped from fraction limits [0, .35] to [-1, 1] (unit_coordinates) 3. udp sent to kinarm machine and multiplied by 8 4. translated upward in the Y direction by + 2.5 This means, our targets which are at -8, [-0.75, 2.5, 5.75, 9.0] must be translated down by 2.5 to: -8, [-3.25, 0. , 3.25, 6.5] then divided by 8: -1, [-0.40625, 0. , 0.40625, 0.8125 ] in unit_coordinates The radius is 1.2, which is 0.15 in unit_coordinates Now, we map this to a new system: - new_zero: (y1+y2) / 2 - new_scale: (y2 - y1) / 2 (([-0.40625, 0. , 0.40625, 0.8125 ]) * new_scale ) + new_zero new_zero = 0 new_scale = 12 12 * [-0.40625, 0. , 0.40625, 0.8125 ] = array([-4.875, 0. , 4.875, 9.75 ]) ''' new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) pairs = np.vstack([x, y, z]).T return pairs class LFP_Mod_plus_MC_hold(LFP_Mod): mc_cursor_radius = traits.Float(.5, desc="Radius of cursor") mc_target_radius = traits.Float(3, desc="Radius of MC target") mc_cursor_color = (.5,0,.5,1) mc_plant_type_options = plantlist.keys() mc_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) origin_hold_time = traits.Float(.2, desc="Hold time in center") exclude_parent_traits = ['goal_cache_block'] #redefine this to NOT include marker_num, marker_count marker_num = traits.Int(14,desc='Index') marker_count = traits.Int(16,desc='Num of markers') joystick_method = traits.Float(1,desc="1: Normal velocity, 0: Position control") joystick_speed = traits.Float(20, desc="Radius of cursor") move_while_in_center = traits.Float(1, desc="1 = update plant while in lfp_target, lfp_hold, 0 = don't update in these states") scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) wait_flag = 1 # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. limit2d = 1 status = dict( wait = dict(start_trial="origin", stop=None), origin = dict(enter_origin="origin_hold", stop=None), origin_hold = dict(origin_hold_complete="lfp_target",leave_origin="hold_penalty", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", leave_origin="hold_penalty", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="reward", leave_origin="hold_penalty", powercap_penalty="powercap_penalty",stop=None), powercap_penalty = dict(powercap_penalty_end="origin"), hold_penalty = dict(hold_penalty_end="origin",stop=None), reward = dict(reward_end="wait") ) static_states = ['origin'] # states in which the decoder is not run trial_end_states = ['reward'] lfp_cursor_on = ['lfp_target', 'lfp_hold', 'reward'] sequence_generators = ['lfp_mod_4targ_plus_mc_orig'] def __init__(self, *args, **kwargs): super(LFP_Mod_plus_MC_hold, self).__init__(*args, **kwargs) if self.move_while_in_center>0: self.no_plant_update_states = [] else: self.no_plant_update_states = ['lfp_target', 'lfp_hold'] mc_origin = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target, mc_origin] self.mc_plant = plantlist[self.mc_plant_type] if hasattr(self.mc_plant, 'graphics_models'): for model in self.mc_plant.graphics_models: self.add_model(model) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.mc_plant.hdf_attrs: self.add_dtype(*attr) self.target_location_mc = np.array([-100, -100, -100]) self.manual_control_type = None self.current_pt=np.zeros([3]) #keep track of current pt self.last_pt=np.zeros([3]) def init(self): self.add_dtype('mc_targ', 'f8', (3,)) ###ADD BACK super(LFP_Mod_plus_MC_hold, self).init() def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' self.task_data['mc_targ'] = self.target_location_mc.copy() mc_plant_data = self.mc_plant.get_data_to_save() for key in mc_plant_data: self.task_data[key] = mc_plant_data[key] super(LFP_Mod_plus_MC_hold, self)._cycle() def _parse_next_trial(self): t = self.next_trial self.lfp_targ = t['lfp'] self.mc_targ_orig = t['origin'] def _start_origin(self): if self.wait_flag: self.origin_hold_time_store = self.origin_hold_time self.origin_hold_time = 3 self.wait_flag = 0 else: self.origin_hold_time = self.origin_hold_time_store #only 1 target: target = self.targets[1] #Origin self.target_location_mc = self.mc_targ_orig #Origin target.move_to_position(self.target_location_mc) target.cue_trial_start() #Turn off lfp things self.lfp_plant.turn_off() self.targets[0].hide() def _start_lfp_target(self): #only 1 target: target = self.targets[0] #LFP target self.target_location_lfp = self.lfp_targ #LFP target target.move_to_position(self.target_location_lfp) target.cue_trial_start() self.lfp_plant.turn_on() def _start_lfp_hold(self): #make next target visible unless this is the final target in the trial pass def _start_hold_penalty(self): #hide targets for target in self.targets: target.hide() self.tries += 1 self.target_index = -1 #Turn off lfp things self.lfp_plant.turn_off() self.targets[0].hide() def _end_origin(self): self.targets[1].cue_trial_end_success() def _test_enter_origin(self, ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d <= (self.mc_target_radius - self.mc_cursor_radius) # def _test_origin_timeout(self, ts): # return ts>self.timeout_time def _test_leave_origin(self, ts): if self.manual_control_type == 'joystick': if hasattr(self,'touch'): if self.touch <0.5: self.last_touch_zero_event = time.time() return True cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d > (self.mc_target_radius - self.mc_cursor_radius) def _test_origin_hold_complete(self,ts): return ts>=self.origin_hold_time # def _test_enter_lfp_target(self, ts): # ''' # return true if the distance between center of cursor and target is smaller than the cursor radius # ''' # cursor_pos = self.lfp_plant.get_endpoint_pos() # cursor_pos = [cursor_pos[0], cursor_pos[2]] # targ_loc = np.array([self.target_location_lfp[0], self.target_location_lfp[2]]) # d = np.linalg.norm(cursor_pos - targ_loc) # return d <= (self.lfp_target_rad - self.lfp_cursor_rad) # def _test_leave_early(self, ts): # ''' # return true if cursor moves outside the exit radius # ''' # cursor_pos = self.lfp_plant.get_endpoint_pos() # d = np.linalg.norm(cursor_pos - self.target_location_lfp) # rad = self.lfp_target_rad - self.lfp_cursor_rad # return d > rad def _test_hold_penalty_end(self, ts): return ts>self.hold_penalty_time def _end_lfp_hold(self): # change current target color to green self.targets[0].cue_trial_end_success() def move_plant(self): if self.state in self.lfp_cursor_on: feature_data = self.get_features() # Save the "neural features" (e.g. spike counts vector) to HDF file for key, val in feature_data.items(): self.task_data[key] = val Bu = None assist_weight = 0 target_state = np.zeros([self.decoder.n_states, self.decoder.n_subbins]) ## Run the decoder neural_features = feature_data[self.extractor.feature_type] self.call_decoder(neural_features, target_state, Bu=Bu, assist_level=assist_weight, feature_type=self.extractor.feature_type) ## Drive the plant to the decoded state, if permitted by the constraints of the plant self.lfp_plant.drive(self.decoder) self.task_data['decoder_state'] = decoder_state = self.decoder.get_state(shape=(-1,1)) #return decoder_state #Sets the plant configuration based on motiontracker data. For manual control, uses #motiontracker data. If no motiontracker data available, returns None''' #get data from motion tracker- take average of all data points since last poll if self.state in self.no_plant_update_states: pt = np.array([0, 0, 0]) print('no update') else: if self.manual_control_type == 'motiondata': pt = self.motiondata.get() if len(pt) > 0: pt = pt[:, self.marker_num, :] conds = pt[:, 3] inds = np.nonzero((conds>=0) & (conds!=4))[0] if len(inds) > 0: pt = pt[inds,:3] #scale actual movement to desired amount of screen movement pt = pt.mean(0) * self.scale_factor #Set y coordinate to 0 for 2D tasks if self.limit2d: #pt[1] = 0 pt[2] = pt[1].copy() pt[1] = 0 pt[1] = pt[1]*2 # Return cursor location self.no_data_count = 0 pt = pt * mm_per_cm #self.convert_to_cm(pt) else: #if no usable data self.no_data_count += 1 pt = None else: #if no new data self.no_data_count +=1 pt = None elif self.manual_control_type == 'joystick': pt = self.joystick.get() #if touch sensor on: try: self.touch = pt[-1][0][2] except: pass if len(pt) > 0: pt = pt[-1][0] pt[0]=1-pt[0]; #Switch L / R axes calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' if self.joystick_method==0: #pt = pt[-1][0] #pt[0]=1-pt[0]; #Switch L / R axes #calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' # calib = [ 0.487, 0. ] pos = np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) pos[0] = pos[0]*36 pos[2] = pos[2]*24 self.current_pt = pos elif self.joystick_method==1: vel=np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) epsilon = 2*(10**-2) #Define epsilon to stabilize cursor movement if sum((vel)**2) > epsilon: self.current_pt=self.last_pt+self.joystick_speed*vel*(1/60) #60 Hz update rate, dt = 1/60 else: self.current_pt = self.last_pt if self.current_pt[0] < -25: self.current_pt[0] = -25 if self.current_pt[0] > 25: self.current_pt[0] = 25 if self.current_pt[-1] < -14: self.current_pt[-1] = -14 if self.current_pt[-1] > 14: self.current_pt[-1] = 14 pt = self.current_pt #self.plant.set_endpoint_pos(self.current_pt) self.last_pt = self.current_pt.copy() elif self.manual_control_type == None: pt = None try: pt0 = self.motiondata.get() self.manual_control_type='motiondata' except: print('not motiondata') try: pt0 = self.joystick.get() self.manual_control_type = 'joystick' except: print('not joystick data') # Set the plant's endpoint to the position determined by the motiontracker, unless there is no data available if self.manual_control_type is not None: if pt is not None and len(pt)>0: self.mc_plant.set_endpoint_pos(pt) @staticmethod def lfp_mod_4targ_plus_mc_orig(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8): ''' See lfp_mod_4targ for lfp target explanation ''' new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) lfp = np.vstack([x, y, z]).T origin = np.zeros(( lfp.shape )) it = iter([dict(lfp=lfp[i,:], origin=origin[i,:]) for i in range(lfp.shape[0])]) return it class LFP_Mod_plus_MC_reach(LFP_Mod_plus_MC_hold): mc_cursor_radius = traits.Float(.5, desc="Radius of cursor") mc_target_radius = traits.Float(3, desc="Radius of MC target") mc_cursor_color = (.5,0,.5,1) mc_plant_type_options = plantlist.keys() mc_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) origin_hold_time = traits.Float(.2, desc="Hold time in center") mc_periph_holdtime = traits.Float(.2, desc="Hold time in center") mc_timeout_time = traits.Float(10, desc="Time allowed to go between targets") exclude_parent_traits = ['goal_cache_block'] #redefine this to NOT include marker_num, marker_count marker_num = traits.Int(14,desc='Index') marker_count = traits.Int(16,desc='Num of markers') scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) wait_flag = 1 # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. limit2d = 1 # state_file = open("/home/helene/preeya/tot_pw.txt","w") state_cnt = 0 status = dict( wait = dict(start_trial="origin", stop=None), origin = dict(enter_origin="origin_hold", stop=None), origin_hold = dict(origin_hold_complete="lfp_target",leave_origin="hold_penalty", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", leave_origin="hold_penalty", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="mc_target", leave_origin="hold_penalty",powercap_penalty="powercap_penalty"), mc_target = dict(enter_mc_target='mc_hold',mc_timeout="timeout_penalty", stop=None), mc_hold = dict(leave_periph_early='hold_penalty',mc_hold_complete="reward"), powercap_penalty = dict(powercap_penalty_end="origin"), timeout_penalty = dict(timeout_penalty_end="wait"), hold_penalty = dict(hold_penalty_end="origin"), reward = dict(reward_end="wait"), ) static_states = ['origin'] # states in which the decoder is not run trial_end_states = ['reward', 'timeout_penalty'] lfp_cursor_on = ['lfp_target', 'lfp_hold', 'reward'] sequence_generators = ['lfp_mod_plus_MC_reach', 'lfp_mod_plus_MC_reach_INV'] def __init__(self, *args, **kwargs): # import pickle # decoder = pickle.load(open('/storage/decoders/cart20141216_03_cart_new2015_2.pkl')) # self.decoder = decoder super(LFP_Mod_plus_MC_reach, self).__init__(*args, **kwargs) mc_origin = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) mc_periph = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target, mc_origin, mc_periph] # #Should be unnecessary: # for target in self.targets: # for model in target.graphics_models: # self.add_model(model) # self.lfp_plant = plantlist[self.lfp_plant_type] # if hasattr(self.lfp_plant, 'graphics_models'): # for model in self.lfp_plant.graphics_models: # self.add_model(model) # self.mc_plant = plantlist[self.mc_plant_type] # if hasattr(self.mc_plant, 'graphics_models'): # for model in self.mc_plant.graphics_models: # self.add_model(model) def _parse_next_trial(self): t = self.next_trial self.lfp_targ = t['lfp'] self.mc_targ_orig = t['origin'] self.mc_targ_periph = t['periph'] def _start_mc_target(self): #Turn off LFP things self.lfp_plant.turn_off() self.targets[0].hide() self.targets[1].hide() target = self.targets[2] #MC target self.target_location_mc = self.mc_targ_periph target.move_to_position(self.target_location_mc) target.cue_trial_start() def _test_enter_mc_target(self,ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d <= (self.mc_target_radius - self.mc_cursor_radius) def _test_mc_timeout(self, ts): return ts>self.mc_timeout_time def _test_leave_periph_early(self, ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) rad = self.mc_target_radius - self.mc_cursor_radius return d > rad def _test_mc_hold_complete(self, ts): return ts>self.mc_periph_holdtime def _timeout_penalty_end(self, ts): print('timeout', ts) #return ts > 1. return True def _end_mc_hold(self): self.targets[2].cue_trial_end_success() # def _cycle(self): # if self.state_cnt < 3600*3: # self.state_cnt +=1 # s = "%s\n" % self.state # self.state_file.write(str(s)) # if self.state_cnt == 3600*3: # self.state_file.close() # super(LFP_Mod_plus_MC_reach, self)._cycle() def _start_reward(self): super(LFP_Mod_plus_MC_reach, self)._start_reward() lfp_targ = self.targets[0] mc_orig = self.targets[1] lfp_targ.hide() mc_orig.hide() @staticmethod def lfp_mod_plus_MC_reach(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8, target_distance=6, n_mc_targets=4, mc_target_angle_offset=0,**kwargs): new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) lfp = np.vstack([x, y, z]).T origin = np.zeros(( lfp.shape )) theta = [] for i in range(nblocks*4): temp = np.arange(0, 2*np.pi, 2*np.pi/float(n_mc_targets)) np.random.shuffle(temp) theta = theta + [temp] theta = np.hstack(theta) theta = theta + (mc_target_angle_offset*(np.pi/180.)) x = target_distance*np.cos(theta) y = np.zeros(len(theta)) z = target_distance*np.sin(theta) periph = np.vstack([x, y, z]).T it = iter([dict(lfp=lfp[i,:], origin=origin[i,:], periph=periph[i,:]) for i in range(lfp.shape[0])]) if ('return_arrays' in kwargs.keys()) and kwargs['return_arrays']==True: return lfp, origin, periph else: return it @staticmethod def lfp_mod_plus_MC_reach_INV(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8, target_distance=6, n_mc_targets=4, mc_target_angle_offset=0): kw = dict(return_arrays=True) lfp, origin, periph = LFP_Mod_plus_MC_reach.lfp_mod_plus_MC_reach(nblocks=nblocks, boundaries=boundaries, xaxis=xaxis, target_distance=target_distance, n_mc_targets=n_mc_targets, mc_target_angle_offset=mc_target_angle_offset,**kw) #Invert LFP: lfp[:,2] = -1.0*lfp[:,2] it = iter([dict(lfp=lfp[i,:], origin=origin[i,:], periph=periph[i,:]) for i in range(lfp.shape[0])]) return it class DummyPlant(object): def __init__(self,*args,**kwargs): self.desc = 'dummy_plant object' def get_intrinsic_coordinates(self): return None
39.035247
161
0.599453
4a19494c9c70cf552815402d2169960d24fd1849
2,898
py
Python
examples/slds.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
examples/slds.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
examples/slds.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import argparse import torch import funsor import funsor.torch.distributions as dist import funsor.ops as ops def main(args): # Declare parameters. trans_probs = funsor.Tensor(torch.tensor([[0.9, 0.1], [0.1, 0.9]], requires_grad=True)) trans_noise = funsor.Tensor(torch.tensor([ 0.1, # low noise component 1.0, # high noisy component ], requires_grad=True)) emit_noise = funsor.Tensor(torch.tensor(0.5, requires_grad=True)) params = [trans_probs.data, trans_noise.data, emit_noise.data] # A Gaussian HMM model. @funsor.interpreter.interpretation(funsor.terms.moment_matching) def model(data): log_prob = funsor.Number(0.) # s is the discrete latent state, # x is the continuous latent state, # y is the observed state. s_curr = funsor.Tensor(torch.tensor(0), dtype=2) x_curr = funsor.Tensor(torch.tensor(0.)) for t, y in enumerate(data): s_prev = s_curr x_prev = x_curr # A delayed sample statement. s_curr = funsor.Variable('s_{}'.format(t), funsor.bint(2)) log_prob += dist.Categorical(trans_probs[s_prev], value=s_curr) # A delayed sample statement. x_curr = funsor.Variable('x_{}'.format(t), funsor.reals()) log_prob += dist.Normal(x_prev, trans_noise[s_curr], value=x_curr) # Marginalize out previous delayed sample statements. if t > 0: log_prob = log_prob.reduce(ops.logaddexp, {s_prev.name, x_prev.name}) # An observe statement. log_prob += dist.Normal(x_curr, emit_noise, value=y) log_prob = log_prob.reduce(ops.logaddexp) return log_prob # Train model parameters. torch.manual_seed(0) data = torch.randn(args.time_steps) optim = torch.optim.Adam(params, lr=args.learning_rate) for step in range(args.train_steps): optim.zero_grad() log_prob = model(data) assert not log_prob.inputs, 'free variables remain' loss = -log_prob.data loss.backward() optim.step() if args.verbose and step % 10 == 0: print('step {} loss = {}'.format(step, loss.item())) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Switching linear dynamical system") parser.add_argument("-t", "--time-steps", default=10, type=int) parser.add_argument("-n", "--train-steps", default=101, type=int) parser.add_argument("-lr", "--learning-rate", default=0.01, type=float) parser.add_argument("--filter", action='store_true') parser.add_argument("-v", "--verbose", action="store_true") args = parser.parse_args() main(args)
35.341463
85
0.622498
4a194a01fe52f861512ad6d10538ce1c97ba3d9d
424
py
Python
apps/service/migrations/0008_auto_20210904_1623.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
4
2020-12-25T16:17:53.000Z
2022-01-19T15:06:19.000Z
apps/service/migrations/0008_auto_20210904_1623.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
294
2020-07-17T15:45:21.000Z
2022-03-27T10:24:01.000Z
apps/service/migrations/0008_auto_20210904_1623.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
3
2020-12-30T17:14:24.000Z
2021-12-19T09:14:22.000Z
# Generated by Django 3.1.12 on 2021-09-04 12:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('service', '0007_auto_20210904_1621'), ] operations = [ migrations.AlterField( model_name='notify', name='crontab', field=models.CharField(max_length=100, null=True, verbose_name='Crontab'), ), ]
22.315789
86
0.615566
4a194a5ca9aa84d6f5f8383a14ea92b60dfa4f56
1,133
py
Python
tests/integration/test_logger.py
deepio-oc/agent-Python-RobotFramework
da468a307910a0d2e3d0f6c11317f7cc2577e1d2
[ "Apache-2.0" ]
42
2016-09-15T10:08:57.000Z
2022-03-23T10:00:46.000Z
tests/integration/test_logger.py
MAIF/agent-Python-RobotFramework
37db7c5cf06928683171465adb0d28fa8bfec18b
[ "Apache-2.0" ]
100
2016-12-05T10:12:30.000Z
2022-03-15T16:25:15.000Z
tests/integration/test_logger.py
MAIF/agent-Python-RobotFramework
37db7c5cf06928683171465adb0d28fa8bfec18b
[ "Apache-2.0" ]
42
2016-12-05T11:08:02.000Z
2021-12-07T09:36:13.000Z
""" Copyright (c) 2021 http://reportportal.io . Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License """ from tests.helpers import utils from six.moves import mock from tests import REPORT_PORTAL_SERVICE @mock.patch(REPORT_PORTAL_SERVICE) def test_launch_log(mock_client_init): result = utils.run_robot_tests(['examples/launch_log.robot']) assert result == 0 # the test successfully passed mock_client = mock_client_init.return_value calls = utils.get_launch_log_calls(mock_client) assert len(calls) == 3 messages = set(map(lambda x: x[1]['message'], calls)) assert messages == {'Hello, world!', 'Goodbye, world!', 'Enjoy my pug!'}
34.333333
76
0.759047
4a194aaaa85b49132e0cbc07c9714b958e2cba2d
2,155
py
Python
accounts/forms.py
MrMohammadY/bmi
cabfdfb9d580f6e4cdea9b0629d4dfcf7090ba22
[ "MIT" ]
2
2021-12-16T10:56:45.000Z
2022-01-27T17:21:47.000Z
accounts/forms.py
MrMohammadY/bmi
cabfdfb9d580f6e4cdea9b0629d4dfcf7090ba22
[ "MIT" ]
null
null
null
accounts/forms.py
MrMohammadY/bmi
cabfdfb9d580f6e4cdea9b0629d4dfcf7090ba22
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth import get_user_model, authenticate from django.contrib.auth.password_validation import validate_password from django.core.exceptions import ValidationError from django.db.models import Q User = get_user_model() class RegistrationForm(forms.ModelForm): password = forms.CharField( widget=forms.PasswordInput(attrs={'class': 'form-control'}) ) confirm_password = forms.CharField( widget=forms.PasswordInput(attrs={'class': 'form-control'}) ) class Meta: model = User fields = ('username', 'email', 'password', 'confirm_password') widgets = { 'username': forms.TextInput(attrs={'class': 'form-control'}), 'email': forms.TextInput(attrs={'class': 'form-control', 'placeholder': 'google@gmail.com'}), } help_texts = { 'username': None, } def clean_confirm_password(self): validate_password(self.cleaned_data['password']) if self.cleaned_data['password'] != self.cleaned_data['confirm_password']: raise ValidationError('passwords not equal!') return self.cleaned_data['confirm_password'] class LoginForm(forms.Form): username = forms.CharField( min_length=3, widget=forms.TextInput( attrs={ 'placeholder': 'Enter Username or Email', 'class': 'form-control'} ) ) password = forms.CharField( max_length=30, min_length=4, widget=forms.PasswordInput( attrs={ 'placeholder': 'Password', 'class': 'form-control'} ) ) def clean(self): cleaned_data = super().clean() username = cleaned_data['username'] password = cleaned_data['password'] user = User.objects.filter(Q(username=username) | Q(email=username)).first() if user and user.check_password(password): cleaned_data['user'] = authenticate(username=username, password=password) return cleaned_data raise ValidationError('username or password invalid!')
30.785714
105
0.62413
4a194dc983c3cddc3e3e3bb82e51b0c6c48fbf9f
30,489
py
Python
dual_task/emr_run.py
thaihungle/DMNC
3ce17a9277bbeeb8125b588e86cc8aace67a0924
[ "MIT" ]
11
2018-04-26T10:56:03.000Z
2021-03-20T08:46:25.000Z
dual_task/emr_run.py
thaihungle/DMNC
3ce17a9277bbeeb8125b588e86cc8aace67a0924
[ "MIT" ]
1
2018-07-21T19:29:57.000Z
2018-08-03T06:14:52.000Z
dual_task/emr_run.py
thaihungle/DMNC
3ce17a9277bbeeb8125b588e86cc8aace67a0924
[ "MIT" ]
5
2019-02-20T23:51:38.000Z
2019-12-05T05:41:55.000Z
import warnings warnings.filterwarnings('ignore') import tensorflow as tf import numpy as np import pickle import getopt import time import sys import os import nltk from sklearn.metrics import roc_auc_score, f1_score sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../') import beam_search from dual_dnc import Dual_DNC from cached_dnc.cached_dual_dnc import CachedDual_DNC from dnc import DNC from cached_dnc.cached_controller import CachedLSTMController from recurrent_controller import StatelessRecurrentController #input_dim assume seq_len x out_dim def convert_oh2raw(vec_data, decoder_point): data=np.argmax(vec_data, axis=-1) inp=[] for ci,c in enumerate(data): if ci<decoder_point: inp.append(c) return inp def roc_auc(target_batch, prob_batch): all_auc_macro=[] all_auc_micro = [] for b in range(target_batch.shape[0]): target = np.zeros(prob_batch.shape[-1]) for t in target_batch[b]: if t>1: target[t]=1 all_auc_macro.append(roc_auc_score(target, prob_batch[b], average='macro')) all_auc_micro.append(roc_auc_score(target, prob_batch[b], average='micro')) return np.mean(all_auc_macro),np.mean(all_auc_micro) def fscore(target_batch, predict_batch, nlabel): all_auc_macro=[] all_auc_micro = [] for b in range(target_batch.shape[0]): target = np.zeros(nlabel) predict = np.zeros(nlabel) for t in target_batch[b]: if t>1: target[t]=1 for t in predict_batch[b]: if t>1: predict[t]=1 all_auc_macro.append(f1_score(target, predict, average='macro')) all_auc_micro.append(f1_score(target, predict, average='micro')) return np.mean(all_auc_macro),np.mean(all_auc_micro) def set_score_pre(target_batch, predict_batch): s = [] s2 = [] for b in range(target_batch.shape[0]): trim_target = [] trim_predict = [] for t in target_batch[b]: if t > 1: trim_target.append(t) for t in predict_batch[b]: if t > 1: trim_predict.append(t) if np.random.rand()>1: print('{} vs {}'.format(trim_target, trim_predict)) acc = len(set(trim_target).intersection(set(trim_predict)))/len(set(trim_target)) acc2=0 if len(set(trim_predict))>0: acc2 = len(set(trim_target).intersection(set(trim_predict))) / len(trim_predict) s.append(acc) s2.append(acc2) return np.mean(s2), np.mean(s)#prec, recall def set_score_pre_jac(target_batch, predict_batch): s = [] s2 = [] s3 = [] for b in range(target_batch.shape[0]): trim_target = [] trim_predict = [] for t in target_batch[b]: if t > 1: trim_target.append(t) for t in predict_batch[b]: if t > 1: trim_predict.append(t) if np.random.rand()>0.95: print('{} vs {}'.format(trim_target, trim_predict)) acc = len(set(trim_target).intersection(set(trim_predict)))/len(set(trim_target)) acc2=0 if len(set(trim_predict))>0: acc2 = len(set(trim_target).intersection(set(trim_predict))) / len(trim_predict) acc3=len(set(trim_target).intersection(set(trim_predict)))/len(set(trim_target).union(set(trim_predict))) s.append(acc) s2.append(acc2) s3.append(acc3) return np.mean(s2), np.mean(s), np.mean(s3)#prec, recall, jaccard def llprint(message): sys.stdout.write(message) sys.stdout.flush() def load(path): return pickle.load(open(path, 'rb')) def onehot(index, size): # print('-----') # print(index) vec = np.zeros(size, dtype=np.float32) vec[int(index)] = 1.0 return vec def prepare_mimic_sample_dual(dig_list, proc_list, word_space_size_input1, word_space_size_input2, word_space_size_output, index=-1, is_raw=False, multi=False): if index<0: index = int(np.random.choice(len(dig_list),1)) input_seq = dig_list[index] # print(input_seq) i1=[] i2=[] isi1=True for c in input_seq: if c==0: isi1=False else: if isi1: i1.append(c) else: i2.append(c) o = proc_list[index] # print(i1) # print(i2) # print(o) if i2 is []: i2=[0] # raise False maxl=max(len(i1),len(i2)) seq_len = maxl+1+len(o) decoder_point = maxl + 1 input_vec1 = np.zeros(seq_len,dtype=np.int32) input_vec2 = np.zeros(seq_len,dtype=np.int32) output_vec = np.zeros(seq_len,dtype=np.int32) for iii, token in enumerate(i1): input_vec1[maxl - len(i1) + iii] = token input_vec1[maxl] = 1 for iii, token in enumerate(i2): input_vec2[maxl - len(i2) + iii] = token input_vec2[maxl] = 1 for iii, token in enumerate(o): output_vec[decoder_point + iii] = token if is_raw: return input_vec1, input_vec2, output_vec,seq_len, decoder_point, maxl-len(i1), maxl-len(i2), o input_vec1 = np.array([onehot(code, word_space_size_input1) for code in input_vec1]) input_vec2 = np.array([onehot(code, word_space_size_input2) for code in input_vec2]) output_vec = np.array([onehot(code, word_space_size_output) for code in output_vec]) if multi: # print(output_vec.shape) output_vec2 = np.zeros((decoder_point+1,word_space_size_output)) for c in range(decoder_point): output_vec2[c,:]=output_vec[c,:] for c in range(decoder_point, seq_len): output_vec2[decoder_point,:]+=output_vec[c,:] output_vec=output_vec2 # print(output_vec.shape) seq_len=decoder_point+1 input_vec1 = input_vec1[:seq_len,:] input_vec2 = input_vec2[:seq_len, :] return np.reshape(input_vec1, (1, -1, word_space_size_input1)), \ np.reshape(input_vec2, (1, -1, word_space_size_input2)), \ np.reshape(output_vec, (1, -1, word_space_size_output)),\ seq_len, decoder_point, maxl-len(i1), maxl-len(i2), o def prepare_mimic_sample_dual_persist(patient_list, word_space_size_input1, word_space_size_input2, word_space_size_output, index=-1, multi=False): if index<0: index = int(np.random.choice(len(patient_list),1)) # print('\n{}'.format(index)) patient=patient_list[index] adms=[] for adm in patient: if len(adm)>2: input_seq = adm[0] input_seq2 = adm[1] output_seq = adm[2] else: input_seq = adm[0] input_seq2 = adm[0][::-1] output_seq = adm[1] adms.append(prepare_mimic_sample_dual([input_seq+[0]+input_seq2], [output_seq], word_space_size_input1, word_space_size_input2, word_space_size_output, 0,multi=multi)) return adms def mimic_task_persit_real_dual(args): dirname = os.path.dirname(os.path.abspath(__file__))+'/data/save/' print(dirname) ckpts_dir = os.path.join(dirname , 'checkpoints_{}_dual_in_single_out_persit'.format(args.task)) llprint("Loading Data ... ") patient_records = pickle.load(open('./data/real_data/mimic/{}/patient_records_small.pkl'.format(args.task), 'rb')) str2tok_diag, str2tok_drug, str2tok_proc\ = pickle.load(open('./data/real_data/mimic/{}/list_dict_str2token_no_adm.pkl'.format(args.task), 'rb')) tok2str_diag, tok2str_proc, tok2str_drug\ = pickle.load(open('./data/real_data/mimic/{}/list_dict_token2str_no_adm.pkl'.format(args.task), 'rb')) # tok2str_diag2 = pickle.load(open('./data/real_data/mimic/{}/dig_token2str_no_adm.pkl'.format(args.task), 'rb')) # tok2str_drug2 = pickle.load(open('./data/real_data/mimic/{}/drug_token2str_no_adm.pkl'.format(args.task), 'rb')) # tok2str_proc2 = pickle.load(open('./data/real_data/mimic/{}/pro_token2str_no_adm.pkl'.format(args.task), 'rb')) llprint("Done!\n") all_index = list(range(len(patient_records))) train_index = all_index[:int(len(patient_records) * 2 / 3)] valid_index = all_index[int(len(patient_records) * 2 / 3):int(len(patient_records) * 5 / 6)] test_index = all_index[int(len(patient_records) * 5/6):int(len(patient_records) * 1)] patient_list_train = [patient_records[i] for i in train_index] patient_list_valid = [patient_records[i] for i in valid_index] patient_list_test = [patient_records[i] for i in test_index] print('num_patient {}'.format(len(patient_records))) print('num train {}'.format(len(patient_list_train))) print('num valid {}'.format(len(patient_list_valid))) print('num test {}'.format(len(patient_list_test))) print('dim in {} {}'.format(len(str2tok_diag), len(str2tok_drug))) print('dim out {}'.format(len(str2tok_proc))) batch_size = 1 input_size1 = len(str2tok_diag) input_size2 = len(str2tok_drug) output_size = len(str2tok_proc) sequence_max_length = 100 words_count = args.mem_size word_size = args.word_size read_heads = args.read_heads learning_rate = 1e-4 momentum = 0.9 from_checkpoint = None iterations = args.iters start_step = 0 graph = tf.Graph() with graph.as_default(): with tf.Session(graph=graph) as session: llprint("Building Computational Graph ... ") if args.type=='no_cache': ncomputer = Dual_DNC( StatelessRecurrentController, input_size1, input_size2, output_size, words_count, word_size, read_heads, batch_size, use_mem=args.use_mem, hidden_controller_dim=args.hidden_dim, decoder_mode=False, write_protect=True, dual_emb=args.dual_emb, emb_size=args.emb_size, share_mem=args.share_mem, use_teacher=args.use_teacher, persist_mode=args.persist, attend_dim=args.attend ) else: ncomputer = CachedDual_DNC( CachedLSTMController, input_size1, input_size2, output_size, words_count, word_size, read_heads, batch_size, hidden_controller_dim=args.hidden_dim, use_mem=args.use_mem, decoder_mode=False, write_protect=True, dual_emb=args.dual_emb, emb_size=args.emb_size, share_mem=args.share_mem, use_teacher=args.use_teacher, persist_mode=args.persist, ) multi=True if multi: output, prob, loss, apply_gradients = ncomputer.build_loss_function_multi_label() else: output, prob, loss, apply_gradients = ncomputer.build_loss_function() llprint("Done!\n") llprint("Initializing Variables ... ") session.run(tf.global_variables_initializer()) llprint("Done!\n") if args.from_checkpoint is not '': if args.from_checkpoint=='default': from_checkpoint = ncomputer.print_config() else: from_checkpoint = args.from_checkpoint llprint("Restoring Checkpoint %s ... " % from_checkpoint) ncomputer.restore(session, ckpts_dir, from_checkpoint) llprint("Done!\n") last_100_losses = [] start = 0 if start_step == 0 else start_step + 1 end = start_step + iterations + 1 if args.mode == 'test': end = start patient_list_valid = patient_list_test start_time_100 = time.time() avg_100_time = 0. avg_counter = 0 if args.mode=='train': log_dir = './data/summary/log_mimic_{}_dual_in_single_out_persit/'.format(args.task) if not os.path.isdir(log_dir): os.mkdir(log_dir) log_dir='./data/summary/log_mimic_{}_dual_in_single_out_persit/{}/'.format(args.task, ncomputer.print_config()) if not os.path.isdir(log_dir): os.mkdir(log_dir) train_writer = tf.summary.FileWriter(log_dir, session.graph) min_tloss=0 for i in range(start, end + 1): try: llprint("\rIteration %d/%d" % (i, end)) # ncomputer.clear_current_mem(session) adms = \ prepare_mimic_sample_dual_persist(patient_list_train, input_size1, input_size2, output_size, multi=multi) summerize = (i % args.eval_step == 0) if args.mode == 'train': ncomputer.clear_current_mem(session) for adm in adms: input_vec1, input_vec2, output_vec, seq_len, decoder_point, e1, e2, rout \ =adm if len(rout) == 1 and rout[0] == 0: continue loss_value, _= session.run([ loss, apply_gradients ], feed_dict={ ncomputer.input_data1: input_vec1, ncomputer.input_data2: input_vec2, ncomputer.target_output: output_vec, ncomputer.sequence_length: seq_len, ncomputer.encode1_point: e1, ncomputer.encode2_point: e2, ncomputer.decoder_point: decoder_point, ncomputer.clear_mem: False, ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(seq_len) }) last_100_losses.append(loss_value) tpre=0 if summerize: llprint("\n\t episode %d -->Avg. Cross-Entropy: %.7f\n" % (i, np.mean(last_100_losses))) summary = tf.Summary() summary.value.add(tag='batch_train_loss', simple_value=np.mean(last_100_losses)) trscores=[] for ii in range(10): ncomputer.clear_current_mem(session) adms = \ prepare_mimic_sample_dual_persist(patient_list_train, input_size1, input_size2, output_size,multi=multi) # ncomputer.clear_current_mem(session) for adm in adms: input_vec1, input_vec2, output_vec, seq_len, decoder_point, e1, e2, rout \ = adm if len(rout)==1 and rout[0]==0: continue out = session.run([prob], feed_dict={ ncomputer.input_data1: input_vec1, ncomputer.input_data2: input_vec2, ncomputer.target_output: output_vec, ncomputer.sequence_length: seq_len, ncomputer.encode1_point: e1, ncomputer.encode2_point: e2, ncomputer.decoder_point: decoder_point, ncomputer.clear_mem: False, ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(seq_len, prob_true_max=0) }) out = np.reshape(np.asarray(out),[-1, seq_len, output_size]) out_list=[] # print('{} vs {}'.format(seq_len,out.shape[1])) if multi: out=np.argsort(out, axis=-1) for io in range(len(rout)): out_list.append(out[0][decoder_point][-io-1]) else: out = np.argmax(out, axis=-1) for io in range(decoder_point, out.shape[1]): if out[0][io]<=1: break out_list.append(out[0][io]) pre,rec, jac=set_score_pre_jac(np.asarray([rout]),np.asarray([out_list])) trscores.append(jac) tescores = [] tescores2_1 = [] tescores2_2 = [] tescores2_3 = [] tescores2_5 = [] tescores2 = [] tescores3 = [] tescores4 = [] tescores5 = [] tescores6 = [] print('-----') big_out_list=[] losses=[] single_best_loss=1000 best_mem_view=None best_data=None for ii in range(len(patient_list_valid)): ncomputer.clear_current_mem(session) adms = \ prepare_mimic_sample_dual_persist(patient_list_valid, input_size1, input_size2, output_size, ii,multi=multi) # ncomputer.clear_current_mem(session) for adm in adms: input_vec1, input_vec2, output_vec, seq_len, decoder_point, e1, e2, rout \ = adm if len(rout)==1 and rout[0]==0: continue out, loss_v, mem_view = session.run([prob, loss, ncomputer.packed_memory_view], feed_dict={ ncomputer.input_data1: input_vec1, ncomputer.input_data2: input_vec2, ncomputer.target_output: output_vec, ncomputer.sequence_length: seq_len, ncomputer.encode1_point: e1, ncomputer.encode2_point: e2, ncomputer.decoder_point: decoder_point, ncomputer.clear_mem: False, ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(seq_len, prob_true_max=0) }) # print(np.argmax(target_output, axis=-1)) # print(out) # print(np.max(out, axis=-1)) # print(weights) losses.append(loss_v) out = np.reshape(np.asarray(out), [-1, seq_len, output_size]) pout=out pind = np.argsort(out, axis=-1) out_list = [] unorder_predict1=[] if multi: io=1 while len(out_list)<len(rout): if pind[0][decoder_point][-io]>1: out_list.append(pind[0][decoder_point][-io]) unorder_predict1.append(pind[0][decoder_point][-io]) io+=1 unorder_predict1=unorder_predict1[::-1] else: if args.use_beam_search==0: for io in range(decoder_point, seq_len): c = 1 while 1: label = pind[0][io][-c] if label not in out_list: out_list.append(label) break c += 1 else: out_list = beam_search.leap_beam_search(pout[0][decoder_point:seq_len], beam_size=args.use_beam_search, is_set=True, is_fix_length=True) prob_pre=[] for ci,c in enumerate(out_list): prob_pre.append(pout[0][decoder_point+ci][c]) unorder_predict1 = [x for _, x in sorted(zip(prob_pre, out_list))] if args.mode=='test': avg_loss_v=loss_v/len(rout) if avg_loss_v<single_best_loss: single_best_loss=avg_loss_v best_mem_view=mem_view best_data=[input_vec1, input_vec2, unorder_predict1[::-1], rout, decoder_point] big_out_list.append(out_list) # tescores.append(bleu_score(np.asarray([rout]), np.asarray([out_list]))) pre, rec, jac = set_score_pre_jac(np.asarray([rout]), np.asarray([out_list])) # print(pout.shape) auc,auc2=roc_auc(np.asarray([rout]),pout[:,decoder_point]) f1, f2 = fscore(np.asarray([rout]), np.asarray([out_list]), output_size) tescores.append(jac) tescores2.append(pre) tescores3.append(auc) tescores4.append(auc2) tescores5.append(f1) tescores6.append(f2) # at 1 # if args.mode=='test': # pre1=0 # for pr in unorder_predict1[-2:]: # pre, rec = set_score_pre(np.asarray([rout]), np.asarray([[pr]])) # pre1=max(pre1,pre) # if pre1==1: # break # pre=pre1 # else: pre, rec = set_score_pre(np.asarray([rout]), np.asarray([unorder_predict1[-1:]])) tescores2_1.append(pre) # at 2 pre, rec = set_score_pre(np.asarray([rout]), np.asarray([unorder_predict1[-2:]])) tescores2_2.append(pre) # at 3 pre, rec = set_score_pre(np.asarray([rout]), np.asarray([unorder_predict1[-3:]])) tescores2_3.append(pre) # at 5 pre, rec = set_score_pre(np.asarray([rout]), np.asarray([unorder_predict1[-5:]])) tescores2_5.append(pre) tloss=np.mean(losses) tpre=np.mean(tescores2) print('tr score {} vs te store {}'.format(np.mean(trscores),np.mean(tescores))) print('test prec {} auc {} auc2 {} f1 {} f2 {}'. format(np.mean(tescores2), np.mean(tescores3), np.mean(tescores4), np.mean(tescores5), np.mean(tescores6))) print('test at 1 {}'.format(np.mean(tescores2_1))) print('test at 2 {}'.format(np.mean(tescores2_2))) print('test at 3 {}'.format(np.mean(tescores2_3))) print('test at 5 {}'.format(np.mean(tescores2_5))) print('test loss {}'.format(tloss)) if args.mode=='test': print(best_mem_view['write_gates1']) print('---') print(best_mem_view['write_gates2']) print('xxxx') in1=convert_oh2raw(best_data[0][0], best_data[-1]-1) in2=convert_oh2raw(best_data[1][0], best_data[-1]-1) print(in1) print(in2) print(best_data[2]) print(best_data[3]) print('--translate---') in12 = [] in22 = [] out12 = [] out22 = [] # for c in in1: # if c>1: # in12.append(tok2str_diag2[int(tok2str_diag[c])]) # for c in in2: # if c>1: # in22.append(tok2str_proc2[int(tok2str_proc[c])]) # for c in best_data[2]: # if c > 1: # out12.append(tok2str_drug2[int(tok2str_drug[c])]) # for c in best_data[3]: # if c > 1: # out22.append(tok2str_drug2[int(tok2str_drug[c])]) # print(in12) # print(in22) # print(out12) # print(sorted(out22)) if args.mode=='train': summary.value.add(tag='train_jac', simple_value=np.mean(trscores)) summary.value.add(tag='test_jac', simple_value=np.mean(tescores)) summary.value.add(tag='test_loss', simple_value=tloss) summary.value.add(tag='test_recall', simple_value=np.mean(tescores3)) summary.value.add(tag='test_precision', simple_value=np.mean(tescores2)) train_writer.add_summary(summary, i) train_writer.flush() end_time_100 = time.time() elapsed_time = (end_time_100 - start_time_100) / 60 avg_counter += 1 avg_100_time += (1. / avg_counter) * (elapsed_time - avg_100_time) estimated_time = (avg_100_time * ((end - i) / 100.)) / 60. print ("\tAvg. 100 iterations time: %.2f minutes" % (avg_100_time)) print ("\tApprox. time to completion: %.2f hours" % (estimated_time)) start_time_100 = time.time() last_100_losses = [] if min_tloss<tpre: min_tloss=tpre if args.mode == 'train': llprint("\nSaving Checkpoint ... ") ncomputer.save(session, ckpts_dir, ncomputer.print_config()) llprint("Done!\n") except KeyboardInterrupt: sys.exit(0) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--mode', default="train") parser.add_argument('--use_mem', default=False, type=str2bool) parser.add_argument('--share_mem', default=True, type=str2bool) parser.add_argument('--use_teacher', default=False, type=str2bool) parser.add_argument('--persist', default=True, type=str2bool) parser.add_argument('--word_size', default=64, type=int) parser.add_argument('--mem_size', default=16, type=int) parser.add_argument('--read_heads', default=1, type=int) parser.add_argument('--emb_size', default=64, type=int) parser.add_argument('--dual_emb', default=True, type=str2bool) parser.add_argument('--attend', default=0, type=int) parser.add_argument('--hidden_dim', default=64, type=int) parser.add_argument('--iters', default=42000, type=int) parser.add_argument('--eval_step', default=3000, type=int) parser.add_argument('--type', default="no_cache") parser.add_argument('--task', default="trim_diag_proc_drug_no_adm") parser.add_argument('--from_checkpoint', default="") parser.add_argument('--use_beam_search', default=0, type=int) args = parser.parse_args() print(args) mimic_task_persit_real_dual(args)
44.574561
135
0.484076
4a194dec8f39b0df9605a7674a3878e246edd0a0
4,519
py
Python
huaweicloud-sdk-functiongraph/huaweicloudsdkfunctiongraph/v2/model/create_function_version_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-functiongraph/huaweicloudsdkfunctiongraph/v2/model/create_function_version_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-functiongraph/huaweicloudsdkfunctiongraph/v2/model/create_function_version_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CreateFunctionVersionRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'digest': 'str', 'version': 'str', 'description': 'str' } attribute_map = { 'digest': 'digest', 'version': 'version', 'description': 'description' } def __init__(self, digest=None, version=None, description=None): """CreateFunctionVersionRequestBody - a model defined in huaweicloud sdk""" self._digest = None self._version = None self._description = None self.discriminator = None if digest is not None: self.digest = digest if version is not None: self.version = version if description is not None: self.description = description @property def digest(self): """Gets the digest of this CreateFunctionVersionRequestBody. md5键值 :return: The digest of this CreateFunctionVersionRequestBody. :rtype: str """ return self._digest @digest.setter def digest(self, digest): """Sets the digest of this CreateFunctionVersionRequestBody. md5键值 :param digest: The digest of this CreateFunctionVersionRequestBody. :type: str """ self._digest = digest @property def version(self): """Gets the version of this CreateFunctionVersionRequestBody. 发布版本名称 :return: The version of this CreateFunctionVersionRequestBody. :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this CreateFunctionVersionRequestBody. 发布版本名称 :param version: The version of this CreateFunctionVersionRequestBody. :type: str """ self._version = version @property def description(self): """Gets the description of this CreateFunctionVersionRequestBody. 发布版本描述 :return: The description of this CreateFunctionVersionRequestBody. :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this CreateFunctionVersionRequestBody. 发布版本描述 :param description: The description of this CreateFunctionVersionRequestBody. :type: str """ self._description = description def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateFunctionVersionRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.739645
85
0.575791
4a194f90691328ac383b2597f95e95f2477e67ff
409
py
Python
python_random_is_all_about/test_platform/e2e/file_1.py
bflaven/BlogArticlesExamples
5df2dfc26170ffbbade78ba136bf3172391e3b2a
[ "MIT" ]
5
2018-05-03T08:16:02.000Z
2021-09-04T03:44:24.000Z
python_random_is_all_about/test_platform/e2e/file_1.py
bflaven/BlogArticlesExamples
5df2dfc26170ffbbade78ba136bf3172391e3b2a
[ "MIT" ]
1
2022-01-28T19:27:19.000Z
2022-01-28T19:27:19.000Z
python_random_is_all_about/test_platform/e2e/file_1.py
bflaven/BlogArticlesExamples
5df2dfc26170ffbbade78ba136bf3172391e3b2a
[ "MIT" ]
2
2020-09-10T13:33:27.000Z
2022-02-09T11:07:38.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # """ cd /Users/brunoflaven/Documents/02_copy/_random_is_all_about python file_1.py """ import random file='file_1.py' # print('\n') # print('You are in: ', file) # print('\n') def get_random_choice(input_array): return random.choice(input_array) print('\n') print(file) print(get_random_choice(["apple", "pear", "peach", "banana", "mango"])) print('\n')
15.148148
71
0.662592
4a194f9b131f86dffb8c8a14af16cd8f80cf9523
2,787
py
Python
make_jyutping_corpus_freqs.py
gkovacs/fcitx-rime-config
b7845ff210de889e7b3418a48ce150d6edacd74d
[ "MIT" ]
6
2018-08-25T07:49:06.000Z
2021-01-12T20:29:41.000Z
make_jyutping_corpus_freqs.py
gkovacs/fcitx-rime-config
b7845ff210de889e7b3418a48ce150d6edacd74d
[ "MIT" ]
null
null
null
make_jyutping_corpus_freqs.py
gkovacs/fcitx-rime-config
b7845ff210de889e7b3418a48ce150d6edacd74d
[ "MIT" ]
1
2021-01-24T03:44:51.000Z
2021-01-24T03:44:51.000Z
import sys from collections import Counter import json from memoize import memoize import pinyin import jyutping import pycantonese corpus = pycantonese.hkcancor() #from hanziconv import HanziConv from opencc import OpenCC s2hk = OpenCC('s2hk').convert from mkdict import pinyin_to_zhuyin_real as pinyin_to_zhuyin from mkdict import get_all_yue, get_merged_entries def get_contents_in_dictionary(dictfile): lines = open(dictfile).readlines() output = [] is_started = False for line in lines: x = line.strip() if x == '...': is_started = True continue if not is_started: continue output.append(line) return output def get_word_and_pinyin_in_dictionary(dictfile): output = [] for line in get_contents_in_dictionary(dictfile): if '\t' not in line: continue output.append(line.split('\t')[:2]) return output def list_dictionaries(): dictionaries = ''' - terra_pinyin - terra_pinyin.extra_hanzi - luna_pinyin.sgmain - luna_pinyin.sgplus - luna_pinyin.sgplus2 - luna_pinyin.chat - luna_pinyin.net - luna_pinyin.user - luna_pinyin.website - luna_pinyin.poetry - luna_pinyin.computer - luna_pinyin.place - luna_pinyin.shopping ''' dictionaries = dictionaries.split('-') dictionaries = [x.strip() for x in dictionaries] dictionaries = [x for x in dictionaries if x != ''] return dictionaries def get_word_list(): output = [] output_set = set() dictionaries = list_dictionaries() dictionaries.append('leimaau_jyutping') for dictionary_name in dictionaries: dictfile = dictionary_name + '.dict.yaml' for item in get_word_and_pinyin_in_dictionary(dictfile): word = item[0] if word not in output_set: output_set.add(word) output.append(word) for item in get_merged_entries(): word = item['trad'] if word not in output_set: output_set.add(word) output.append(word) word = item['simp'] if word not in output_set: output_set.add(word) output.append(word) return output def get_word_to_jyutping_corpus_freq(word): #trad = HanziConv.toTraditional(word) trad = s2hk(word) search_results = corpus.search(character=trad) output = Counter() for x in search_results: char = x[0] jyut = x[2] if char != trad: continue output[jyut] += 1 return output def main(): output = {} seen = set() word_list = get_word_list() for idx,word in enumerate(word_list): if word in seen: continue if idx % 100 == 0: print(word, idx, '/', len(word_list)) seen.add(word) corpus_freq = get_word_to_jyutping_corpus_freq(word) if len(corpus_freq.keys()) > 0: output[word] = corpus_freq json.dump(output, open('jyutping_corpus_freq.json', 'wt')) main()
25.108108
60
0.694295
4a1950519c01a40cfd18e649cd91e79234138faf
26,029
py
Python
resolutionwr.py
colinquirk/PsychopyResolutionWR
ef028887b3e3b85c1fa8872aa273b869b5f63593
[ "MIT" ]
4
2020-03-21T00:27:33.000Z
2021-12-29T20:30:39.000Z
resolutionwr.py
colinquirk/PsychopyResolutionWR
ef028887b3e3b85c1fa8872aa273b869b5f63593
[ "MIT" ]
null
null
null
resolutionwr.py
colinquirk/PsychopyResolutionWR
ef028887b3e3b85c1fa8872aa273b869b5f63593
[ "MIT" ]
1
2021-12-07T19:26:09.000Z
2021-12-07T19:26:09.000Z
"""An estimation whole report experiment. Author - Colin Quirk (cquirk@uchicago.edu) Repo: https://github.com/colinquirk/PsychopyResolutionWR This is a working memory paradigm adapted from Adam, Vogel, Awh (2017) with minor differences. This code can either be used directly or it can be inherited and extended. If this file is run directly the defaults at the top of the page will be used. To make simple changes, you can adjust any of these files. For more in depth changes you will need to overwrite the methods yourself. Note: this code relies on my templateexperiments module. You can get it from https://github.com/colinquirk/templateexperiments and either put it in the same folder as this code or give the path to psychopy in the preferences. Classes: ResolutionWR -- The class that runs the experiment. See 'print ResolutionWR.__doc__' for simple class docs or help(ResolutionWR) for everything. """ import copy import errno import json import math import os import random import sys import numpy as np import psychopy import template as template # Things you probably want to change set_sizes = [1, 2, 4, 6] trials_per_set_size = 5 # per block number_of_blocks = 2 iti_time = 1 sample_time = 2 delay_time = 1 monitor_distance = 90 experiment_name = 'ResolutionWR' data_directory = os.path.join( os.path.expanduser('~'), 'Desktop', experiment_name, 'Data') instruct_text = [ ('Welcome to the experiment. Press space to begin.'), ('In this experiment you will be remembering colors.\n\n' 'Each trial will start with a blank screen.\n' 'Then, a number of circles with different colors will appear.\n' 'Remember as many colors as you can.\n\n' 'After a short delay, color wheels will appear.\n\n' 'Match the color wheel to the color that appeared in that position.\n' 'Click the mouse button until the wheel disappears.\n' 'If you are not sure, just take your best guess.\n\n' 'You will get breaks in between blocks.\n\n' 'Press space to start.'), ] # Things you probably don't need to change, but can if you want to colorwheel_path = 'colors.json' distance_from_fixation = 6 # visual degrees stim_size = 1.5 # visual degrees min_color_dist = 25 # should be > 360 / max(set_sizes) data_fields = [ 'Subject', 'Session', 'Block', 'Trial', 'LocationNumber', 'ClickNumber', 'Timestamp', 'SetSize', 'LocationX', 'LocationY', 'ColorIndex', 'TrueColor', 'RespColor', 'Error', 'RT', ] gender_options = [ 'Male', 'Female', 'Other/Choose Not To Respond', ] hispanic_options = [ 'Yes, Hispanic or Latino/a', 'No, not Hispanic or Latino/a', 'Choose Not To Respond', ] race_options = [ 'American Indian or Alaskan Native', 'Asian', 'Pacific Islander', 'Black or African American', 'White / Caucasian', 'More Than One Race', 'Choose Not To Respond', ] # Add additional questions here questionaire_dict = { 'Session': 1, 'Age': 0, 'Gender': gender_options, 'Hispanic:': hispanic_options, 'Race': race_options, } # This is the logic that runs the experiment # Change anything below this comment at your own risk psychopy.logging.console.setLevel(psychopy.logging.CRITICAL) # Avoid error output class ResolutionWR(template.BaseExperiment): """ The class that runs the whole report estimation experiment. Parameters: colorwheel_path -- A string or Path describing the location of a json file containing a 360 length array of length 3 rgb arrays. data_directory -- Where the data should be saved. delay_time -- The number of seconds between the stimuli display and test. distance_from_fixation -- A number describing how far from fixation stimuli will appear in visual degrees. instruct_text -- The text to be displayed to the participant at the beginning of the experiment. iti_time -- The number of seconds in between a response and the next trial. min_color_dist -- The minimum number of degrees in color space between display items. number_of_blocks -- The number of blocks in the experiment. questionaire_dict -- Questions to be included in the dialog. sample_time -- The number of seconds the stimuli are on the screen for. set_sizes -- A list of all the set sizes. An equal number of trials will be shown for each set size. stim_size -- The size of the stimuli in visual degrees. trials_per_set_size -- The number of trials per set size per block. Methods: calculate_locations -- Calculates locations for the upcoming trial with random jitter. calculate_error -- Calculates error in a response compared to the true color value. chdir -- Changes the directory to where the data will be saved. display_blank -- Displays a blank screen. display_break -- Displays a screen during the break between blocks. display_stimuli -- Displays the stimuli. draw_color_wheels -- Draws color wheels at stimuli locations with random rotation. generate_color_indexes -- Generates colors for a trial given the minimum distance. get_response -- Manages getting responses for all color wheels. make_block -- Creates a list of trials to be run. make_trial -- Creates a single trial dictionary. run -- Runs the entire experiment including optional hooks. run_trial -- Runs a single trial. send_data -- Updates the experiment data with the information from the last trial. """ def __init__(self, set_sizes=set_sizes, trials_per_set_size=trials_per_set_size, number_of_blocks=number_of_blocks, distance_from_fixation=distance_from_fixation, min_color_dist=min_color_dist, colorwheel_path=colorwheel_path, stim_size=stim_size, iti_time=iti_time, sample_time=sample_time, delay_time=delay_time, data_directory=data_directory, questionaire_dict=questionaire_dict, instruct_text=instruct_text, **kwargs): self.set_sizes = set_sizes self.trials_per_set_size = trials_per_set_size self.number_of_blocks = number_of_blocks self.distance_from_fixation = distance_from_fixation self.stim_size = stim_size self.questionaire_dict = questionaire_dict self.data_directory = data_directory self.instruct_text = instruct_text self.min_color_dist = min_color_dist self.iti_time = iti_time self.sample_time = sample_time self.delay_time = delay_time self.color_wheel = self._load_color_wheel(colorwheel_path) self.mouse = None super().__init__(**kwargs) def save_experiment_info(self, filename=None): """Writes the info from the dialog box to a json file. This method overwrites the base method in order to include the session number in the filename. Parameters: filename -- a string defining the filename with no extension """ ext = '.json' if filename is None: filename = (self.experiment_name + '_' + self.experiment_info['Subject Number'].zfill(3) + '_' + str(self.experiment_info['Session']).zfill(3) + '_info') elif filename[-5:] == ext: filename = filename[:-5] if os.path.isfile(filename + ext): if self.overwrite_ok is None: self.overwrite_ok = self._confirm_overwrite() if not self.overwrite_ok: # If the file exists make a new filename i = 1 new_filename = filename + '(' + str(i) + ')' while os.path.isfile(new_filename + ext): i += 1 new_filename = filename + '(' + str(i) + ')' filename = new_filename filename = filename + ext with open(filename, 'w') as info_file: info_file.write(json.dumps(self.experiment_info)) def open_csv_data_file(self, data_filename=None): """Opens the csv file and writes the header. This method overwrites the base method in order to include the session number in the filename. Parameters: data_filename -- name of the csv file with no extension (defaults to experimentname_subjectnumber). """ if data_filename is None: data_filename = (self.experiment_name + '_' + self.experiment_info['Subject Number'].zfill(3) + '_' + str(self.experiment_info['Session']).zfill(3)) elif data_filename[-4:] == '.csv': data_filename = data_filename[:-4] if os.path.isfile(data_filename + '.csv'): if self.overwrite_ok is None: self.overwrite_ok = self._confirm_overwrite() if not self.overwrite_ok: # If the file exists and we can't overwrite make a new filename i = 1 new_filename = data_filename + '(' + str(i) + ')' while os.path.isfile(new_filename + '.csv'): i += 1 new_filename = data_filename + '(' + str(i) + ')' data_filename = new_filename self.experiment_data_filename = data_filename + '.csv' # Write the header with open(self.experiment_data_filename, 'w+') as data_file: for field in self.data_fields: data_file.write('"') data_file.write(field) data_file.write('"') if field != self.data_fields[-1]: data_file.write(',') data_file.write('\n') def chdir(self): """Changes the directory to where the data will be saved.""" try: os.makedirs(self.data_directory) except OSError as e: if e.errno != errno.EEXIST: raise os.chdir(self.data_directory) def _load_color_wheel(self, path): """ Loads the json color wheel file. Parameters: path -- Str or Path of the json file. """ with open(path) as f: color_wheel = json.load(f) color_wheel = [template.convert_color_value(i) for i in color_wheel] return np.array(color_wheel) def calculate_locations(self, set_size): """ Calculates locations for the upcoming trial with random jitter. Parameters: set_size -- The number of locations to return. """ angle_dist = 360 / set_size rotation = random.randint(0, angle_dist - 1) angles = [int(i * angle_dist + rotation + random.randint(-5, 5)) for i in range(set_size)] locations = [(self.distance_from_fixation * math.cos(math.radians(i)), self.distance_from_fixation * math.sin(math.radians(i))) for i in angles] return locations def _check_dist(self, attempt, colors): """ Checks if a color attempt statistfies the distance condition. Parameters: attempt -- The color index to be checked. colors -- The list of color indexes to be checked against. """ for c in colors: raw_dist = abs(c - attempt) dist = min(raw_dist, 360 - raw_dist) if dist < self.min_color_dist: return False return True def generate_color_indexes(self, set_size): """ Generates colors for a trial given the minimum distance. Parameters: set_size -- The number of colors to generate. """ colors = [] while len(colors) < set_size: attempt = random.randint(0, 359) if self._check_dist(attempt, colors): colors.append(attempt) return colors def make_trial(self, set_size): """ Creates a single trial dictionary. Parameters: set_size -- The number of items to be displayed. """ color_indexes = self.generate_color_indexes(set_size) color_values = [self.color_wheel[i] for i in color_indexes] wheel_rotations = [random.randint(0, 359) for _ in range(set_size)] locations = self.calculate_locations(set_size) trial = { 'set_size': set_size, 'color_indexes': color_indexes, 'color_values': color_values, 'wheel_rotations': wheel_rotations, 'locations': locations } return trial def make_block(self): """Makes a block of trials. Returns a shuffled list of trials created by self.make_trial. """ trial_list = [] for set_size in self.set_sizes: for _ in range(self.trials_per_set_size): trial = self.make_trial(set_size) trial_list.append(trial) random.shuffle(trial_list) return trial_list def display_blank(self, wait_time): """ Displays a blank screen. Parameters: wait_time -- The number of seconds to display the blank for. """ self.experiment_window.flip() psychopy.core.wait(wait_time) def display_stimuli(self, coordinates, colors): """ Displays the stimuli. Parameters: coordinates -- A list of (x, y) tuples in visual degrees. colors -- A list of -1 to 1 rgb color lists """ for pos, color in zip(coordinates, colors): psychopy.visual.Circle( self.experiment_window, radius=self.stim_size, pos=pos, fillColor=color, units='deg', lineColor=None).draw() self.experiment_window.flip() psychopy.core.wait(self.sample_time) def draw_color_wheels(self, coordinates, wheel_rotations): """ Draws color wheels at stimuli locations with random rotation. Parameters: coordinates -- A list of (x, y) tuples wheel_rotations -- A list of 0:359 ints describing how much each wheel should be rotated. """ mask = np.zeros([100, 1]) mask[-30:] = 1 for pos, rot in zip(coordinates, wheel_rotations): rotated_wheel = np.roll(self.color_wheel, rot, axis=0) tex = np.repeat(rotated_wheel[np.newaxis, :, :], 360, 0) psychopy.visual.RadialStim( self.experiment_window, tex=tex, mask=mask, pos=pos, angularRes=256, angularCycles=1, interpolate=False, size=self.stim_size * 2).draw() def _calc_mouse_color(self, mouse_pos): """ Calculates the color of the pixel the mouse is hovering over. Parameters: mouse_pos -- A position returned by mouse.getPos() """ frame = np.array(self.experiment_window._getFrame()) # Uses psychopy internal function x_correction = self.experiment_window.size[0] / 2 y_correction = self.experiment_window.size[1] / 2 x = int(psychopy.tools.monitorunittools.deg2pix(mouse_pos[0], self.experiment_monitor) + x_correction) y = (self.experiment_window.size[1] - int(psychopy.tools.monitorunittools.deg2pix(mouse_pos[1], self.experiment_monitor) + y_correction)) try: color = frame[y, x, :] except IndexError: color = None return color def _calc_mouse_position(self, coordinates, mouse_pos): """ Determines which position is closest to the mouse in order to display the hover preview. Parameters: coordinates -- A list of (x, y) tuples mouse_pos -- A position returned by mouse.getPos() """ dists = [np.linalg.norm(np.array(i) - np.array(mouse_pos) / 2) for i in coordinates] closest_dist = min(dists) if closest_dist < 4: return coordinates[np.argmin(dists)] else: return None def _response_loop(self, coordinates, wheel_rotations): """ Handles the hover updating and response clicks Slightly slow due to how psychopy handles clicks, so a full click and hold is needed. Parameters: coordinates -- A list of (x, y) tuples wheel_rotations -- A list of 0:359 ints describing how much each wheel should be rotated. """ temp_coordinates = copy.copy(coordinates) temp_rotations = copy.copy(wheel_rotations) resp_colors = [0] * len(coordinates) rts = [0] * len(coordinates) click_order = [0] * len(coordinates) click = 1 self.mouse.clickReset() self.draw_color_wheels(temp_coordinates, temp_rotations) self.experiment_window.flip() while True: if psychopy.event.getKeys(keyList=['q']): self.quit_experiment() (lclick, _, _), (rt, _, _) = self.mouse.getPressed(getTime=True) mouse_pos = self.mouse.getPos() px_color = self._calc_mouse_color(mouse_pos) if px_color is not None and not np.array_equal(px_color, np.array([128, 128, 128])): preview_pos = self._calc_mouse_position(temp_coordinates, mouse_pos) if preview_pos: if lclick: resp_colors[coordinates.index(preview_pos)] = px_color rts[coordinates.index(preview_pos)] = rt click_order[coordinates.index(preview_pos)] = click click += 1 del temp_rotations[temp_coordinates.index(preview_pos)] temp_coordinates.remove(preview_pos) if not temp_coordinates: return resp_colors, rts, click_order else: psychopy.visual.Circle( self.experiment_window, radius=self.stim_size / 2, pos=preview_pos, fillColor=template.convert_color_value(px_color), units='deg', lineColor=None).draw() self.draw_color_wheels(temp_coordinates, temp_rotations) self.experiment_window.flip() def get_response(self, coordinates, wheel_rotations): """ Manages getting responses for all color wheels. Parameters: coordinates -- A list of (x, y) tuples wheel_rotations -- A list of 0:359 ints describing how much each wheel should be rotated. """ if not self.mouse: self.mouse = psychopy.event.Mouse(visible=False, win=self.experiment_window) self.mouse.setVisible(1) psychopy.event.clearEvents() resp_colors, rts, click_order = self._response_loop(coordinates, wheel_rotations) self.mouse.setVisible(0) return resp_colors, rts, click_order def calculate_error(self, color_index, resp_color): """ Calculates error in a response compared to the true color value. Parameters: color_index -- The index of the true color values (0:359). resp_color -- The rgb color that was selected. """ row_index = np.where((self.color_wheel == resp_color).all(axis=1))[0] if row_index.shape[0] < 1: return None # if empty, return None raw_error = row_index[0] - color_index if raw_error >= -180 and raw_error <= 180: error = raw_error elif raw_error < -180: error = 360 + raw_error else: error = raw_error - 360 return error def send_data(self, data): """Updates the experiment data with the information from the last trial. This function is seperated from run_trial to allow additional information to be added afterwards. Parameters: data -- A dict where keys exist in data_fields and values are to be saved. """ self.update_experiment_data(data) def run_trial(self, trial, block_num, trial_num): """ Runs a single trial. Parameters: trial -- A dictionary returned by make_trial(). block_num -- The block number to be saved in the output csv. trial_num -- The trial number to be saved in the output csv. """ self.display_blank(self.iti_time) self.display_stimuli(trial['locations'], trial['color_values']) self.display_blank(self.delay_time) resp_colors, rts, click_order = self.get_response(trial['locations'], trial['wheel_rotations']) data = [] timestamp = psychopy.core.getAbsTime() for i, (color, rt, click) in enumerate(zip(resp_colors, rts, click_order)): data.append({ 'Subject': self.experiment_info['Subject Number'], 'Session': self.experiment_info['Session'], 'Block': block_num, 'Trial': trial_num, 'LocationNumber': i + 1, 'ClickNumber': click, 'Timestamp': timestamp, 'SetSize': trial['set_size'], 'LocationX': trial['locations'][i][0], 'LocationY': trial['locations'][i][1], 'ColorIndex': trial['color_indexes'][i], 'TrueColor': trial['color_values'][i], 'RespColor': template.convert_color_value(color), 'Error': self.calculate_error(trial['color_indexes'][i], template.convert_color_value(color)), 'RT': rt, }) return data def display_break(self): """Displays a break screen in between blocks.""" break_text = 'Please take a short break. Press space to continue.' self.display_text_screen(text=break_text, bg_color=[204, 255, 204]) def run(self, setup_hook=None, before_first_trial_hook=None, pre_block_hook=None, pre_trial_hook=None, post_trial_hook=None, post_block_hook=None, end_experiment_hook=None): """Runs the entire experiment. This function takes a number of hooks that allow you to alter behavior of the experiment without having to completely rewrite the run function. While large changes will still require you to create a subclass, small changes like adding a practice block or performance feedback screen can be implimented using these hooks. All hooks take in the experiment object as the first argument. See below for other parameters sent to hooks. Parameters: setup_hook -- takes self, executed once the window is open. before_first_trial_hook -- takes self, executed after instructions are displayed. pre_block_hook -- takes self, block list, and block num Executed immediately before block start. Can optionally return an altered block list. pre_trial_hook -- takes self, trial dict, block num, and trial num Executed immediately before trial start. Can optionally return an altered trial dict. post_trial_hook -- takes self and the trial data, executed immediately after trial end. Can optionally return altered trial data to be stored. post_block_hook -- takes self, executed at end of block before break screen (including last block). end_experiment_hook -- takes self, executed immediately before end experiment screen. """ self.chdir() ok = self.get_experiment_info_from_dialog(self.questionaire_dict) if not ok: print('Experiment has been terminated.') sys.exit(1) self.save_experiment_info() self.open_csv_data_file() self.open_window(screen=0) self.display_text_screen('Loading...', wait_for_input=False) if setup_hook is not None: setup_hook(self) for instruction in self.instruct_text: self.display_text_screen(text=instruction) if before_first_trial_hook is not None: before_first_trial_hook(self) for block_num in range(self.number_of_blocks): block = self.make_block() if pre_block_hook is not None: tmp = pre_block_hook(self, block, block_num) if tmp is not None: block = tmp for trial_num, trial in enumerate(block): if pre_trial_hook is not None: tmp = pre_trial_hook(self, trial, block_num, trial_num) if tmp is not None: trial = tmp data = self.run_trial(trial, block_num, trial_num) if post_trial_hook is not None: tmp = post_trial_hook(self, data) if tmp is not None: data = tmp self.send_data(data) self.save_data_to_csv() if post_block_hook is not None: post_block_hook(self) if block_num + 1 != self.number_of_blocks: self.display_break() if end_experiment_hook is not None: end_experiment_hook(self) self.display_text_screen( 'The experiment is now over, please get your experimenter.', bg_color=[0, 0, 255], text_color=[255, 255, 255]) self.quit_experiment() # If you call this script directly, the task will run with your defaults if __name__ == '__main__': exp = ResolutionWR( # BaseExperiment parameters experiment_name=experiment_name, data_fields=data_fields, monitor_distance=monitor_distance, # Custom parameters go here ) exp.run()
35.705075
112
0.618195
4a1950c06395988bec3e4292af4b31453c8589df
6,450
py
Python
ATT_train_and_test_comments.py
tanyakhandelwal21/DefectDetectionModels
b8404a5a1f6876fc402ce37812c084c0c9aca883
[ "MIT" ]
null
null
null
ATT_train_and_test_comments.py
tanyakhandelwal21/DefectDetectionModels
b8404a5a1f6876fc402ce37812c084c0c9aca883
[ "MIT" ]
null
null
null
ATT_train_and_test_comments.py
tanyakhandelwal21/DefectDetectionModels
b8404a5a1f6876fc402ce37812c084c0c9aca883
[ "MIT" ]
null
null
null
#import statements from ATT model from collections import defaultdict import re from bs4 import BeautifulSoup import sys import os from bs4 import BeautifulSoup import sys import os os.environ['KERAS_BACKEND']='tensorflow' from tensorflow.keras.preprocessing.text import Tokenizer, text_to_word_sequence from tensorflow.keras import utils from tensorflow.keras.utils import to_categorical from tensorflow.keras.layers import Embedding from tensorflow.keras.layers import Dense, Input, Flatten from tensorflow.keras.layers import Conv1D, MaxPooling1D, Embedding, Concatenate, Dropout, LSTM, GRU, Bidirectional, TimeDistributed from tensorflow.keras.models import Model from tensorflow.keras.layers import Attention from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer, InputSpec from tensorflow.keras import initializers #import from OGmodel import pickle import pandas as pd import numpy as np import tensorflow_datasets as tfds import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.utils import Sequence from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt MAX_SENT_LENGTH = 100 MAX_NB_WORDS = 20000 EMBEDDING_DIM = 100 VALIDATION_SPLIT = 0.2 with open('data/y_train.pickle', 'rb') as handle: Y_train = pickle.load(handle) with open('data/y_test.pickle', 'rb') as handle: Y_test = pickle.load(handle) with open('data/y_valid.pickle', 'rb') as handle: Y_valid = pickle.load(handle) with open('data/x_train.pickle', 'rb') as handle: X_train = pickle.load(handle) with open('data/x_test.pickle', 'rb') as handle: X_test = pickle.load(handle) with open('data/x_valid.pickle', 'rb') as handle: X_valid = pickle.load(handle) with open('data/vocab_set.pickle', 'rb') as handle: vocabulary_set = pickle.load(handle) X_train = X_train[:50000] Y_train = Y_train[:50000] X_test = X_test[:25000] Y_test = Y_test[:25000] X_valid = X_valid[:25000] Y_valid = Y_valid[:25000] # Encode training, valid and test instances encoder = tfds.features.text.TokenTextEncoder(vocabulary_set) # Model Definition class AttLayer(Layer): def __init__(self, attention_dim): self.init = initializers.get('normal') self.supports_masking = True self.attention_dim = attention_dim super(AttLayer, self).__init__() def build(self, input_shape): assert len(input_shape) == 3 self.W = K.variable(self.init((input_shape[-1], self.attention_dim)), name='W') self.b = K.variable(self.init((self.attention_dim, )), name='b') self.u = K.variable(self.init((self.attention_dim, 1)), name='u') self.tw = [self.W, self.b, self.u] super(AttLayer, self).build(input_shape) def compute_mask(self, inputs, mask=None): return None def call(self, x, mask=None): # size of x :[batch_size, sel_len, attention_dim] # size of u :[batch_size, attention_dim] # uit = tanh(xW+b) uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b)) ait = K.dot(uit, self.u) ait = K.squeeze(ait, -1) ait = K.exp(ait) if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano ait *= K.cast(mask, K.floatx()) ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx()) ait = K.expand_dims(ait) weighted_input = x * ait output = K.sum(weighted_input, axis=1) return output def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[-1]) inputs = Input(shape=(None,), dtype='int32') embedding = Embedding(encoder.vocab_size, 128)(inputs) l_lstm = Bidirectional(LSTM(64, return_sequences=True))(embedding) att = Attention()([embedding,l_lstm]) l_lstm2 = Bidirectional(LSTM(64))(embedding) preds = Dense(1, activation='sigmoid')(l_lstm2) model = Model(inputs, preds) #model = tf.keras.Sequential([ # tf.keras.layers.Embedding(encoder.vocab_size, 64), # tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)), # tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), # tf.keras.layers.Dense(64, activation='relu'), # tf.keras.layers.Dropout(0.5), # tf.keras.layers.Dense(1, activation='sigmoid') #]) model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(1e-4), metrics=['acc']) model.summary() batch_size = 16 # Building generators class CustomGenerator(Sequence): def __init__(self, text, labels, batch_size, num_steps=None): self.text, self.labels = text, labels self.batch_size = batch_size self.len = np.ceil(len(self.text) / float(self.batch_size)).astype(np.int64) if num_steps: self.len = min(num_steps, self.len) def __len__(self): return self.len def __getitem__(self, idx): batch_x = self.text[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = self.labels[idx * self.batch_size:(idx + 1) * self.batch_size] return batch_x, batch_y train_gen = CustomGenerator(X_train, Y_train, batch_size) valid_gen = CustomGenerator(X_valid, Y_valid, batch_size) test_gen = CustomGenerator(X_test, Y_test, batch_size) # Training the model checkpointer = ModelCheckpoint('data/models/model-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1, save_best_only=True, mode='min') callback_list = [checkpointer] #, , reduce_lr his1 = model.fit_generator( generator=train_gen, epochs=1, validation_data=valid_gen) predIdxs = model.predict_generator(test_gen, verbose=1) fpr, tpr, _ = roc_curve(Y_test, predIdxs) roc_auc = auc(fpr, tpr) plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.savefig('auc_model.png')
32.41206
132
0.67876
4a1951e9e58a63103c1b73625a0b80322c35681f
1,533
py
Python
Course_3/Week_03/edit_distance.py
KnightZhang625/Stanford_Algorithm
7dacbbfa50e7b0e8380cf500df24af60cb9f42df
[ "Apache-2.0" ]
null
null
null
Course_3/Week_03/edit_distance.py
KnightZhang625/Stanford_Algorithm
7dacbbfa50e7b0e8380cf500df24af60cb9f42df
[ "Apache-2.0" ]
1
2020-07-16T08:03:22.000Z
2020-07-16T08:09:34.000Z
Course_3/Week_03/edit_distance.py
KnightZhang625/Stanford_Algorithm
7dacbbfa50e7b0e8380cf500df24af60cb9f42df
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 def calculateDistance(str_a, str_b): length_a = len(str_a) length_b = len(str_b) distance = [[0 for _ in range(length_b+1)] for _ in range(length_a+1)] batchtrace = [[None for _ in range(length_b+1)] for _ in range(length_a+1)] for i in range(length_a+1): for j in range(length_b+1): if i == 0: distance[i][j] = j elif j == 0: distance[i][j] = i else: if str_a[i-1] == str_b[j-1]: distance[i][j] = distance[i-1][j-1] batchtrace[i][j] = ((i-1, j-1), 'no action') else: insert_dist = distance[i][j-1] delete_dist = distance[i-1][j] replace_dist = distance[i-1][j-1] dist_cands = [insert_dist, delete_dist, replace_dist] choose_dist = min(dist_cands) select = dist_cands.index(choose_dist) distance[i][j] = choose_dist + 1 if select == 0: batchtrace[i][j] = ((i, j-1), 'insert {}'.format(str_b[j-1])) elif select == 1: batchtrace[i][j] = ((i-1, j), 'delete {}'.format(str_a[i-1])) else: batchtrace[i][j] = ((i-1, j-1), 'replace {}{}'.format(str_a[i-1], str_b[j-1])) p_prev = batchtrace[-1][-1] path = [] while p_prev is not None: path.append(p_prev[1]) i, j = p_prev[0][0], p_prev[0][1] p_prev = batchtrace[i][j] return distance[-1][-1], list(reversed(path)) if __name__ == '__main__': dist, batchtrace = calculateDistance('ABC', 'ACD') print(dist) print(batchtrace)
32.617021
90
0.553164
4a1953a12321b2958a023c841a29429ee9e156af
547
py
Python
env/lib/python3.8/site-packages/plotly/validators/scatter/marker/colorbar/_tick0.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/scatter/marker/colorbar/_tick0.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/scatter/marker/colorbar/_tick0.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class Tick0Validator(_plotly_utils.basevalidators.AnyValidator): def __init__( self, plotly_name="tick0", parent_name="scatter.marker.colorbar", **kwargs ): super(Tick0Validator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), implied_edits=kwargs.pop("implied_edits", {"tickmode": "linear"}), role=kwargs.pop("role", "style"), **kwargs )
34.1875
82
0.636197