hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a1953ed8b25ceb332b90b74dd4c85037513668d
42,654
py
Python
youtube_dl/options.py
wesson09/youtube-dl
9463b52a600662fe3b67c90f7fbf68ca709c5705
[ "Unlicense" ]
null
null
null
youtube_dl/options.py
wesson09/youtube-dl
9463b52a600662fe3b67c90f7fbf68ca709c5705
[ "Unlicense" ]
null
null
null
youtube_dl/options.py
wesson09/youtube-dl
9463b52a600662fe3b67c90f7fbf68ca709c5705
[ "Unlicense" ]
1
2021-09-23T11:03:21.000Z
2021-09-23T11:03:21.000Z
from __future__ import unicode_literals import os.path import optparse import re import sys from .downloader.external import list_external_downloaders from .compat import ( compat_expanduser, compat_get_terminal_size, compat_getenv, compat_kwargs, compat_shlex_split, ) from .utils import ( preferredencoding, write_string, ) from .version import __version__ def _hide_login_info(opts): PRIVATE_OPTS = set(['-p', '--password', '-u', '--username', '--video-password', '--ap-password', '--ap-username']) eqre = re.compile('^(?P<key>' + ('|'.join(re.escape(po) for po in PRIVATE_OPTS)) + ')=.+$') def _scrub_eq(o): m = eqre.match(o) if m: return m.group('key') + '=PRIVATE' else: return o opts = list(map(_scrub_eq, opts)) for idx, opt in enumerate(opts): if opt in PRIVATE_OPTS and idx + 1 < len(opts): opts[idx + 1] = 'PRIVATE' return opts def parseOpts(overrideArguments=None): def _readOptions(filename_bytes, default=[]): try: optionf = open(filename_bytes) except IOError: return default # silently skip if file is not present try: # FIXME: https://github.com/ytdl-org/youtube-dl/commit/dfe5fa49aed02cf36ba9f743b11b0903554b5e56 contents = optionf.read() if sys.version_info < (3,): contents = contents.decode(preferredencoding()) res = compat_shlex_split(contents, comments=True) finally: optionf.close() return res def _readUserConf(): xdg_config_home = compat_getenv('XDG_CONFIG_HOME') if xdg_config_home: userConfFile = os.path.join(xdg_config_home, 'youtube-dl', 'config') if not os.path.isfile(userConfFile): userConfFile = os.path.join(xdg_config_home, 'youtube-dl.conf') else: userConfFile = os.path.join(compat_expanduser('~'), '.config', 'youtube-dl', 'config') if not os.path.isfile(userConfFile): userConfFile = os.path.join(compat_expanduser('~'), '.config', 'youtube-dl.conf') userConf = _readOptions(userConfFile, None) if userConf is None: appdata_dir = compat_getenv('appdata') if appdata_dir: userConf = _readOptions( os.path.join(appdata_dir, 'youtube-dl', 'config'), default=None) if userConf is None: userConf = _readOptions( os.path.join(appdata_dir, 'youtube-dl', 'config.txt'), default=None) if userConf is None: userConf = _readOptions( os.path.join(compat_expanduser('~'), 'youtube-dl.conf'), default=None) if userConf is None: userConf = _readOptions( os.path.join(compat_expanduser('~'), 'youtube-dl.conf.txt'), default=None) if userConf is None: userConf = [] return userConf def _format_option_string(option): ''' ('-o', '--option') -> -o, --format METAVAR''' opts = [] if option._short_opts: opts.append(option._short_opts[0]) if option._long_opts: opts.append(option._long_opts[0]) if len(opts) > 1: opts.insert(1, ', ') if option.takes_value(): opts.append(' %s' % option.metavar) return ''.join(opts) def _comma_separated_values_options_callback(option, opt_str, value, parser): setattr(parser.values, option.dest, value.split(',')) # No need to wrap help messages if we're on a wide console columns = compat_get_terminal_size().columns max_width = columns if columns else 80 max_help_position = 80 fmt = optparse.IndentedHelpFormatter(width=max_width, max_help_position=max_help_position) fmt.format_option_strings = _format_option_string kw = { 'version': __version__, 'formatter': fmt, 'usage': '%prog [OPTIONS] URL [URL...]', 'conflict_handler': 'resolve', } parser = optparse.OptionParser(**compat_kwargs(kw)) general = optparse.OptionGroup(parser, 'General Options') general.add_option( '-h', '--help', action='help', help='Print this help text and exit') general.add_option( '--version', action='version', help='Print program version and exit') general.add_option( '-U', '--update', action='store_true', dest='update_self', help='Update this program to latest version. Make sure that you have sufficient permissions (run with sudo if needed)') general.add_option( '-i', '--ignore-errors', action='store_true', dest='ignoreerrors', default=False, help='Continue on download errors, for example to skip unavailable videos in a playlist') general.add_option( '--abort-on-error', action='store_false', dest='ignoreerrors', help='Abort downloading of further videos (in the playlist or the command line) if an error occurs') general.add_option( '--dump-user-agent', action='store_true', dest='dump_user_agent', default=False, help='Display the current browser identification') general.add_option( '--list-extractors', action='store_true', dest='list_extractors', default=False, help='List all supported extractors') general.add_option( '--extractor-descriptions', action='store_true', dest='list_extractor_descriptions', default=False, help='Output descriptions of all supported extractors') general.add_option( '--force-generic-extractor', action='store_true', dest='force_generic_extractor', default=False, help='Force extraction to use the generic extractor') general.add_option( '--default-search', dest='default_search', metavar='PREFIX', help='Use this prefix for unqualified URLs. For example "gvsearch2:" downloads two videos from google videos for youtube-dl "large apple". Use the value "auto" to let youtube-dl guess ("auto_warning" to emit a warning when guessing). "error" just throws an error. The default value "fixup_error" repairs broken URLs, but emits an error if this is not possible instead of searching.') general.add_option( '--ignore-config', action='store_true', help='Do not read configuration files. ' 'When given in the global configuration file /etc/youtube-dl.conf: ' 'Do not read the user configuration in ~/.config/youtube-dl/config ' '(%APPDATA%/youtube-dl/config.txt on Windows)') general.add_option( '--config-location', dest='config_location', metavar='PATH', help='Location of the configuration file; either the path to the config or its containing directory.') general.add_option( '--flat-playlist', action='store_const', dest='extract_flat', const='in_playlist', default=False, help='Do not extract the videos of a playlist, only list them.') general.add_option( '--mark-watched', action='store_true', dest='mark_watched', default=False, help='Mark videos watched (YouTube only)') general.add_option( '--no-mark-watched', action='store_false', dest='mark_watched', default=False, help='Do not mark videos watched (YouTube only)') general.add_option( '--no-color', '--no-colors', action='store_true', dest='no_color', default=False, help='Do not emit color codes in output') network = optparse.OptionGroup(parser, 'Network Options') network.add_option( '--proxy', dest='proxy', default=None, metavar='URL', help='Use the specified HTTP/HTTPS/SOCKS proxy. To enable ' 'SOCKS proxy, specify a proper scheme. For example ' 'socks5://127.0.0.1:1080/. Pass in an empty string (--proxy "") ' 'for direct connection') network.add_option( '--socket-timeout', dest='socket_timeout', type=float, default=None, metavar='SECONDS', help='Time to wait before giving up, in seconds') network.add_option( '--source-address', metavar='IP', dest='source_address', default=None, help='Client-side IP address to bind to', ) network.add_option( '-4', '--force-ipv4', action='store_const', const='0.0.0.0', dest='source_address', help='Make all connections via IPv4', ) network.add_option( '-6', '--force-ipv6', action='store_const', const='::', dest='source_address', help='Make all connections via IPv6', ) geo = optparse.OptionGroup(parser, 'Geo Restriction') geo.add_option( '--geo-verification-proxy', dest='geo_verification_proxy', default=None, metavar='URL', help='Use this proxy to verify the IP address for some geo-restricted sites. ' 'The default proxy specified by --proxy (or none, if the option is not present) is used for the actual downloading.') geo.add_option( '--cn-verification-proxy', dest='cn_verification_proxy', default=None, metavar='URL', help=optparse.SUPPRESS_HELP) geo.add_option( '--geo-bypass', action='store_true', dest='geo_bypass', default=True, help='Bypass geographic restriction via faking X-Forwarded-For HTTP header') geo.add_option( '--no-geo-bypass', action='store_false', dest='geo_bypass', default=True, help='Do not bypass geographic restriction via faking X-Forwarded-For HTTP header') geo.add_option( '--geo-bypass-country', metavar='CODE', dest='geo_bypass_country', default=None, help='Force bypass geographic restriction with explicitly provided two-letter ISO 3166-2 country code') geo.add_option( '--geo-bypass-ip-block', metavar='IP_BLOCK', dest='geo_bypass_ip_block', default=None, help='Force bypass geographic restriction with explicitly provided IP block in CIDR notation') selection = optparse.OptionGroup(parser, 'Video Selection') selection.add_option( '--playlist-start', dest='playliststart', metavar='NUMBER', default=1, type=int, help='Playlist video to start at (default is %default)') selection.add_option( '--playlist-end', dest='playlistend', metavar='NUMBER', default=None, type=int, help='Playlist video to end at (default is last)') selection.add_option( '--playlist-items', dest='playlist_items', metavar='ITEM_SPEC', default=None, help='Playlist video items to download. Specify indices of the videos in the playlist separated by commas like: "--playlist-items 1,2,5,8" if you want to download videos indexed 1, 2, 5, 8 in the playlist. You can specify range: "--playlist-items 1-3,7,10-13", it will download the videos at index 1, 2, 3, 7, 10, 11, 12 and 13.') selection.add_option( '--match-title', dest='matchtitle', metavar='REGEX', help='Download only matching titles (regex or caseless sub-string)') selection.add_option( '--reject-title', dest='rejecttitle', metavar='REGEX', help='Skip download for matching titles (regex or caseless sub-string)') selection.add_option( '--max-downloads', dest='max_downloads', metavar='NUMBER', type=int, default=None, help='Abort after downloading NUMBER files') selection.add_option( '--min-filesize', metavar='SIZE', dest='min_filesize', default=None, help='Do not download any videos smaller than SIZE (e.g. 50k or 44.6m)') selection.add_option( '--max-filesize', metavar='SIZE', dest='max_filesize', default=None, help='Do not download any videos larger than SIZE (e.g. 50k or 44.6m)') selection.add_option( '--date', metavar='DATE', dest='date', default=None, help='Download only videos uploaded in this date') selection.add_option( '--datebefore', metavar='DATE', dest='datebefore', default=None, help='Download only videos uploaded on or before this date (i.e. inclusive)') selection.add_option( '--dateafter', metavar='DATE', dest='dateafter', default=None, help='Download only videos uploaded on or after this date (i.e. inclusive)') selection.add_option( '--min-views', metavar='COUNT', dest='min_views', default=None, type=int, help='Do not download any videos with less than COUNT views') selection.add_option( '--max-views', metavar='COUNT', dest='max_views', default=None, type=int, help='Do not download any videos with more than COUNT views') selection.add_option( '--match-filter', metavar='FILTER', dest='match_filter', default=None, help=( 'Generic video filter. ' 'Specify any key (see the "OUTPUT TEMPLATE" for a list of available keys) to ' 'match if the key is present, ' '!key to check if the key is not present, ' 'key > NUMBER (like "comment_count > 12", also works with ' '>=, <, <=, !=, =) to compare against a number, ' 'key = \'LITERAL\' (like "uploader = \'Mike Smith\'", also works with !=) ' 'to match against a string literal ' 'and & to require multiple matches. ' 'Values which are not known are excluded unless you ' 'put a question mark (?) after the operator. ' 'For example, to only match videos that have been liked more than ' '100 times and disliked less than 50 times (or the dislike ' 'functionality is not available at the given service), but who ' 'also have a description, use --match-filter ' '"like_count > 100 & dislike_count <? 50 & description" .' )) selection.add_option( '--no-playlist', action='store_true', dest='noplaylist', default=False, help='Download only the video, if the URL refers to a video and a playlist.') selection.add_option( '--yes-playlist', action='store_false', dest='noplaylist', default=False, help='Download the playlist, if the URL refers to a video and a playlist.') selection.add_option( '--age-limit', metavar='YEARS', dest='age_limit', default=None, type=int, help='Download only videos suitable for the given age') selection.add_option( '--download-archive', metavar='FILE', dest='download_archive', help='Download only videos not listed in the archive file. Record the IDs of all downloaded videos in it.') selection.add_option( '--include-ads', dest='include_ads', action='store_true', help='Download advertisements as well (experimental)') authentication = optparse.OptionGroup(parser, 'Authentication Options') authentication.add_option( '-u', '--username', dest='username', metavar='USERNAME', help='Login with this account ID') authentication.add_option( '-p', '--password', dest='password', metavar='PASSWORD', help='Account password. If this option is left out, youtube-dl will ask interactively.') authentication.add_option( '-2', '--twofactor', dest='twofactor', metavar='TWOFACTOR', help='Two-factor authentication code') authentication.add_option( '-n', '--netrc', action='store_true', dest='usenetrc', default=False, help='Use .netrc authentication data') authentication.add_option( '--video-password', dest='videopassword', metavar='PASSWORD', help='Video password (vimeo, youku)') adobe_pass = optparse.OptionGroup(parser, 'Adobe Pass Options') adobe_pass.add_option( '--ap-mso', dest='ap_mso', metavar='MSO', help='Adobe Pass multiple-system operator (TV provider) identifier, use --ap-list-mso for a list of available MSOs') adobe_pass.add_option( '--ap-username', dest='ap_username', metavar='USERNAME', help='Multiple-system operator account login') adobe_pass.add_option( '--ap-password', dest='ap_password', metavar='PASSWORD', help='Multiple-system operator account password. If this option is left out, youtube-dl will ask interactively.') adobe_pass.add_option( '--ap-list-mso', action='store_true', dest='ap_list_mso', default=False, help='List all supported multiple-system operators') video_format = optparse.OptionGroup(parser, 'Video Format Options') video_format.add_option( '-f', '--format', action='store', dest='format', metavar='FORMAT', default=None, help='Video format code, see the "FORMAT SELECTION" for all the info') video_format.add_option( '--all-formats', action='store_const', dest='format', const='all', help='Download all available video formats') video_format.add_option( '--prefer-free-formats', action='store_true', dest='prefer_free_formats', default=False, help='Prefer free video formats unless a specific one is requested') video_format.add_option( '-F', '--list-formats', action='store_true', dest='listformats', help='List all available formats of requested videos') video_format.add_option( '--youtube-include-dash-manifest', action='store_true', dest='youtube_include_dash_manifest', default=True, help=optparse.SUPPRESS_HELP) video_format.add_option( '--youtube-skip-dash-manifest', action='store_false', dest='youtube_include_dash_manifest', help='Do not download the DASH manifests and related data on YouTube videos') video_format.add_option( '--merge-output-format', action='store', dest='merge_output_format', metavar='FORMAT', default=None, help=( 'If a merge is required (e.g. bestvideo+bestaudio), ' 'output to given container format. One of mkv, mp4, ogg, webm, flv. ' 'Ignored if no merge is required')) subtitles = optparse.OptionGroup(parser, 'Subtitle Options') subtitles.add_option( '--write-sub', '--write-srt', action='store_true', dest='writesubtitles', default=False, help='Write subtitle file') subtitles.add_option( '--write-auto-sub', '--write-automatic-sub', action='store_true', dest='writeautomaticsub', default=False, help='Write automatically generated subtitle file (YouTube only)') subtitles.add_option( '--all-subs', action='store_true', dest='allsubtitles', default=False, help='Download all the available subtitles of the video') subtitles.add_option( '--list-subs', action='store_true', dest='listsubtitles', default=False, help='List all available subtitles for the video') subtitles.add_option( '--sub-format', action='store', dest='subtitlesformat', metavar='FORMAT', default='best', help='Subtitle format, accepts formats preference, for example: "srt" or "ass/srt/best"') subtitles.add_option( '--sub-lang', '--sub-langs', '--srt-lang', action='callback', dest='subtitleslangs', metavar='LANGS', type='str', default=[], callback=_comma_separated_values_options_callback, help='Languages of the subtitles to download (optional) separated by commas, use --list-subs for available language tags') downloader = optparse.OptionGroup(parser, 'Download Options') downloader.add_option( '-r', '--limit-rate', '--rate-limit', dest='ratelimit', metavar='RATE', help='Maximum download rate in bytes per second (e.g. 50K or 4.2M)') downloader.add_option( '-R', '--retries', dest='retries', metavar='RETRIES', default=10, help='Number of retries (default is %default), or "infinite".') downloader.add_option( '--fragment-retries', dest='fragment_retries', metavar='RETRIES', default=10, help='Number of retries for a fragment (default is %default), or "infinite" (DASH, hlsnative and ISM)') downloader.add_option( '--skip-unavailable-fragments', action='store_true', dest='skip_unavailable_fragments', default=True, help='Skip unavailable fragments (DASH, hlsnative and ISM)') downloader.add_option( '--abort-on-unavailable-fragment', action='store_false', dest='skip_unavailable_fragments', help='Abort downloading when some fragment is not available') downloader.add_option( '--keep-fragments', action='store_true', dest='keep_fragments', default=False, help='Keep downloaded fragments on disk after downloading is finished; fragments are erased by default') downloader.add_option( '--buffer-size', dest='buffersize', metavar='SIZE', default='1024', help='Size of download buffer (e.g. 1024 or 16K) (default is %default)') downloader.add_option( '--no-resize-buffer', action='store_true', dest='noresizebuffer', default=False, help='Do not automatically adjust the buffer size. By default, the buffer size is automatically resized from an initial value of SIZE.') downloader.add_option( '--http-chunk-size', dest='http_chunk_size', metavar='SIZE', default=None, help='Size of a chunk for chunk-based HTTP downloading (e.g. 10485760 or 10M) (default is disabled). ' 'May be useful for bypassing bandwidth throttling imposed by a webserver (experimental)') downloader.add_option( '--test', action='store_true', dest='test', default=False, help=optparse.SUPPRESS_HELP) downloader.add_option( '--playlist-reverse', action='store_true', help='Download playlist videos in reverse order') downloader.add_option( '--playlist-random', action='store_true', help='Download playlist videos in random order') downloader.add_option( '--xattr-set-filesize', dest='xattr_set_filesize', action='store_true', help='Set file xattribute ytdl.filesize with expected file size') downloader.add_option( '--hls-prefer-native', dest='hls_prefer_native', action='store_true', default=None, help='Use the native HLS downloader instead of ffmpeg') downloader.add_option( '--hls-prefer-ffmpeg', dest='hls_prefer_native', action='store_false', default=None, help='Use ffmpeg instead of the native HLS downloader') downloader.add_option( '--hls-use-mpegts', dest='hls_use_mpegts', action='store_true', help='Use the mpegts container for HLS videos, allowing to play the ' 'video while downloading (some players may not be able to play it)') downloader.add_option( '--external-downloader', dest='external_downloader', metavar='COMMAND', help='Use the specified external downloader. ' 'Currently supports %s' % ','.join(list_external_downloaders())) downloader.add_option( '--external-downloader-args', dest='external_downloader_args', metavar='ARGS', help='Give these arguments to the external downloader') workarounds = optparse.OptionGroup(parser, 'Workarounds') workarounds.add_option( '--encoding', dest='encoding', metavar='ENCODING', help='Force the specified encoding (experimental)') workarounds.add_option( '--no-check-certificate', action='store_true', dest='no_check_certificate', default=False, help='Suppress HTTPS certificate validation') workarounds.add_option( '--prefer-insecure', '--prefer-unsecure', action='store_true', dest='prefer_insecure', help='Use an unencrypted connection to retrieve information about the video. (Currently supported only for YouTube)') workarounds.add_option( '--user-agent', metavar='UA', dest='user_agent', help='Specify a custom user agent') workarounds.add_option( '--referer', metavar='URL', dest='referer', default=None, help='Specify a custom referer, use if the video access is restricted to one domain', ) workarounds.add_option( '--add-header', metavar='FIELD:VALUE', dest='headers', action='append', help='Specify a custom HTTP header and its value, separated by a colon \':\'. You can use this option multiple times', ) workarounds.add_option( '--bidi-workaround', dest='bidi_workaround', action='store_true', help='Work around terminals that lack bidirectional text support. Requires bidiv or fribidi executable in PATH') workarounds.add_option( '--sleep-interval', '--min-sleep-interval', metavar='SECONDS', dest='sleep_interval', type=float, help=( 'Number of seconds to sleep before each download when used alone ' 'or a lower bound of a range for randomized sleep before each download ' '(minimum possible number of seconds to sleep) when used along with ' '--max-sleep-interval.')) workarounds.add_option( '--max-sleep-interval', metavar='SECONDS', dest='max_sleep_interval', type=float, help=( 'Upper bound of a range for randomized sleep before each download ' '(maximum possible number of seconds to sleep). Must only be used ' 'along with --min-sleep-interval.')) verbosity = optparse.OptionGroup(parser, 'Verbosity / Simulation Options') verbosity.add_option( '-q', '--quiet', action='store_true', dest='quiet', default=False, help='Activate quiet mode') verbosity.add_option( '--dumpregex', action='store_true', dest='dumpregex', default=False, help='Dump extractors regular expressions') verbosity.add_option( '--no-warnings', dest='no_warnings', action='store_true', default=False, help='Ignore warnings') verbosity.add_option( '-s', '--simulate', action='store_true', dest='simulate', default=False, help='Do not download the video and do not write anything to disk') verbosity.add_option( '--skip-download', action='store_true', dest='skip_download', default=False, help='Do not download the video') verbosity.add_option( '-g', '--get-url', action='store_true', dest='geturl', default=False, help='Simulate, quiet but print URL') verbosity.add_option( '-e', '--get-title', action='store_true', dest='gettitle', default=False, help='Simulate, quiet but print title') verbosity.add_option( '--get-id', action='store_true', dest='getid', default=False, help='Simulate, quiet but print id') verbosity.add_option( '--get-thumbnail', action='store_true', dest='getthumbnail', default=False, help='Simulate, quiet but print thumbnail URL') verbosity.add_option( '--get-description', action='store_true', dest='getdescription', default=False, help='Simulate, quiet but print video description') verbosity.add_option( '--get-duration', action='store_true', dest='getduration', default=False, help='Simulate, quiet but print video length') verbosity.add_option( '--get-filename', action='store_true', dest='getfilename', default=False, help='Simulate, quiet but print output filename') verbosity.add_option( '--get-format', action='store_true', dest='getformat', default=False, help='Simulate, quiet but print output format') verbosity.add_option( '-j', '--dump-json', action='store_true', dest='dumpjson', default=False, help='Simulate, quiet but print JSON information. See the "OUTPUT TEMPLATE" for a description of available keys.') verbosity.add_option( '-J', '--dump-single-json', action='store_true', dest='dump_single_json', default=False, help='Simulate, quiet but print JSON information for each command-line argument. If the URL refers to a playlist, dump the whole playlist information in a single line.') verbosity.add_option( '--print-json', action='store_true', dest='print_json', default=False, help='Be quiet and print the video information as JSON (video is still being downloaded).', ) verbosity.add_option( '--newline', action='store_true', dest='progress_with_newline', default=False, help='Output progress bar as new lines') verbosity.add_option( '--no-progress', action='store_true', dest='noprogress', default=False, help='Do not print progress bar') verbosity.add_option( '--console-title', action='store_true', dest='consoletitle', default=False, help='Display progress in console titlebar') verbosity.add_option( '-v', '--verbose', action='store_true', dest='verbose', default=False, help='Print various debugging information') verbosity.add_option( '--dump-pages', '--dump-intermediate-pages', action='store_true', dest='dump_intermediate_pages', default=False, help='Print downloaded pages encoded using base64 to debug problems (very verbose)') verbosity.add_option( '--write-pages', action='store_true', dest='write_pages', default=False, help='Write downloaded intermediary pages to files in the current directory to debug problems') verbosity.add_option( '--youtube-print-sig-code', action='store_true', dest='youtube_print_sig_code', default=False, help=optparse.SUPPRESS_HELP) verbosity.add_option( '--print-traffic', '--dump-headers', dest='debug_printtraffic', action='store_true', default=False, help='Display sent and read HTTP traffic') verbosity.add_option( '-C', '--call-home', dest='call_home', action='store_true', default=False, help='Contact the youtube-dl server for debugging') verbosity.add_option( '--no-call-home', dest='call_home', action='store_false', default=False, help='Do NOT contact the youtube-dl server for debugging') filesystem = optparse.OptionGroup(parser, 'Filesystem Options') filesystem.add_option( '-a', '--batch-file', dest='batchfile', metavar='FILE', help="File containing URLs to download ('-' for stdin), one URL per line. " "Lines starting with '#', ';' or ']' are considered as comments and ignored.") filesystem.add_option( '--id', default=False, action='store_true', dest='useid', help='Use only video ID in file name') filesystem.add_option( '-o', '--output', dest='outtmpl', metavar='TEMPLATE', help=('Output filename template, see the "OUTPUT TEMPLATE" for all the info')) filesystem.add_option( '--output-na-placeholder', dest='outtmpl_na_placeholder', metavar='PLACEHOLDER', default='NA', help=('Placeholder value for unavailable meta fields in output filename template (default is "%default")')) filesystem.add_option( '--autonumber-size', dest='autonumber_size', metavar='NUMBER', type=int, help=optparse.SUPPRESS_HELP) filesystem.add_option( '--autonumber-start', dest='autonumber_start', metavar='NUMBER', default=1, type=int, help='Specify the start value for %(autonumber)s (default is %default)') filesystem.add_option( '--restrict-filenames', action='store_true', dest='restrictfilenames', default=False, help='Restrict filenames to only ASCII characters, and avoid "&" and spaces in filenames') filesystem.add_option( '-A', '--auto-number', action='store_true', dest='autonumber', default=False, help=optparse.SUPPRESS_HELP) filesystem.add_option( '-t', '--title', action='store_true', dest='usetitle', default=False, help=optparse.SUPPRESS_HELP) filesystem.add_option( '-l', '--literal', default=False, action='store_true', dest='usetitle', help=optparse.SUPPRESS_HELP) filesystem.add_option( '-w', '--no-overwrites', action='store_true', dest='nooverwrites', default=False, help='Do not overwrite files') filesystem.add_option( '-c', '--continue', action='store_true', dest='continue_dl', default=True, help='Force resume of partially downloaded files. By default, youtube-dl will resume downloads if possible.') filesystem.add_option( '--no-continue', action='store_false', dest='continue_dl', help='Do not resume partially downloaded files (restart from beginning)') filesystem.add_option( '--no-part', action='store_true', dest='nopart', default=False, help='Do not use .part files - write directly into output file') filesystem.add_option( '--no-mtime', action='store_false', dest='updatetime', default=True, help='Do not use the Last-modified header to set the file modification time') filesystem.add_option( '--write-description', action='store_true', dest='writedescription', default=False, help='Write video description to a .description file') filesystem.add_option( '--write-info-json', action='store_true', dest='writeinfojson', default=False, help='Write video metadata to a .info.json file') filesystem.add_option( '--write-annotations', action='store_true', dest='writeannotations', default=False, help='Write video annotations to a .annotations.xml file') filesystem.add_option( '--load-info-json', '--load-info', dest='load_info_filename', metavar='FILE', help='JSON file containing the video information (created with the "--write-info-json" option)') filesystem.add_option( '--cookies', dest='cookiefile', metavar='FILE', help='File to read cookies from and dump cookie jar in') filesystem.add_option( '--cache-dir', dest='cachedir', default=None, metavar='DIR', help='Location in the filesystem where youtube-dl can store some downloaded information permanently. By default $XDG_CACHE_HOME/youtube-dl or ~/.cache/youtube-dl . At the moment, only YouTube player files (for videos with obfuscated signatures) are cached, but that may change.') filesystem.add_option( '--no-cache-dir', action='store_const', const=False, dest='cachedir', help='Disable filesystem caching') filesystem.add_option( '--rm-cache-dir', action='store_true', dest='rm_cachedir', help='Delete all filesystem cache files') thumbnail = optparse.OptionGroup(parser, 'Thumbnail Options') thumbnail.add_option( '--write-thumbnail', action='store_true', dest='writethumbnail', default=False, help='Write thumbnail image to disk') thumbnail.add_option( '--write-all-thumbnails', action='store_true', dest='write_all_thumbnails', default=False, help='Write all thumbnail image formats to disk') thumbnail.add_option( '--list-thumbnails', action='store_true', dest='list_thumbnails', default=False, help='Simulate and list all available thumbnail formats') postproc = optparse.OptionGroup(parser, 'Post-processing Options') postproc.add_option( '-x', '--extract-audio', action='store_true', dest='extractaudio', default=False, help='Convert video files to audio-only files (requires ffmpeg/avconv and ffprobe/avprobe)') postproc.add_option( '--audio-format', metavar='FORMAT', dest='audioformat', default='best', help='Specify audio format: "best", "aac", "flac", "mp3", "m4a", "opus", "vorbis", or "wav"; "%default" by default; No effect without -x') postproc.add_option( '--audio-quality', metavar='QUALITY', dest='audioquality', default='5', help='Specify ffmpeg/avconv audio quality, insert a value between 0 (better) and 9 (worse) for VBR or a specific bitrate like 128K (default %default)') postproc.add_option( '--recode-video', metavar='FORMAT', dest='recodevideo', default=None, help='Encode the video to another format if necessary (currently supported: mp4|flv|ogg|webm|mkv|avi)') postproc.add_option( '--postprocessor-args', dest='postprocessor_args', metavar='ARGS', help='Give these arguments to the postprocessor') postproc.add_option( '-k', '--keep-video', action='store_true', dest='keepvideo', default=False, help='Keep the video file on disk after the post-processing; the video is erased by default') postproc.add_option( '--no-post-overwrites', action='store_true', dest='nopostoverwrites', default=False, help='Do not overwrite post-processed files; the post-processed files are overwritten by default') postproc.add_option( '--embed-subs', action='store_true', dest='embedsubtitles', default=False, help='Embed subtitles in the video (only for mp4, webm and mkv videos)') postproc.add_option( '--embed-thumbnail', action='store_true', dest='embedthumbnail', default=False, help='Embed thumbnail in the audio as cover art') postproc.add_option( '--add-metadata', action='store_true', dest='addmetadata', default=False, help='Write metadata to the video file') postproc.add_option( '--metadata-from-title', metavar='FORMAT', dest='metafromtitle', help='Parse additional metadata like song title / artist from the video title. ' 'The format syntax is the same as --output. Regular expression with ' 'named capture groups may also be used. ' 'The parsed parameters replace existing values. ' 'Example: --metadata-from-title "%(artist)s - %(title)s" matches a title like ' '"Coldplay - Paradise". ' 'Example (regex): --metadata-from-title "(?P<artist>.+?) - (?P<title>.+)"') postproc.add_option( '--xattrs', action='store_true', dest='xattrs', default=False, help='Write metadata to the video file\'s xattrs (using dublin core and xdg standards)') postproc.add_option( '--fixup', metavar='POLICY', dest='fixup', default='detect_or_warn', help='Automatically correct known faults of the file. ' 'One of never (do nothing), warn (only emit a warning), ' 'detect_or_warn (the default; fix file if we can, warn otherwise)') postproc.add_option( '--prefer-avconv', action='store_false', dest='prefer_ffmpeg', help='Prefer avconv over ffmpeg for running the postprocessors') postproc.add_option( '--prefer-ffmpeg', action='store_true', dest='prefer_ffmpeg', help='Prefer ffmpeg over avconv for running the postprocessors (default)') postproc.add_option( '--ffmpeg-location', '--avconv-location', metavar='PATH', dest='ffmpeg_location', help='Location of the ffmpeg/avconv binary; either the path to the binary or its containing directory.') postproc.add_option( '--exec', metavar='CMD', dest='exec_cmd', help='Execute a command on the file after downloading and post-processing, similar to find\'s -exec syntax. Example: --exec \'adb push {} /sdcard/Music/ && rm {}\'') postproc.add_option( '--convert-subs', '--convert-subtitles', metavar='FORMAT', dest='convertsubtitles', default=None, help='Convert the subtitles to other format (currently supported: srt|ass|vtt|lrc)') parser.add_option_group(general) parser.add_option_group(network) parser.add_option_group(geo) parser.add_option_group(selection) parser.add_option_group(downloader) parser.add_option_group(filesystem) parser.add_option_group(thumbnail) parser.add_option_group(verbosity) parser.add_option_group(workarounds) parser.add_option_group(video_format) parser.add_option_group(subtitles) parser.add_option_group(authentication) parser.add_option_group(adobe_pass) parser.add_option_group(postproc) if overrideArguments is not None: opts, args = parser.parse_args(overrideArguments) if opts.verbose: write_string('[debug] Override config: ' + repr(overrideArguments) + '\n') else: def compat_conf(conf): if sys.version_info < (3,): return [a.decode(preferredencoding(), 'replace') for a in conf] return conf command_line_conf = compat_conf(sys.argv[1:]) opts, args = parser.parse_args(command_line_conf) system_conf = user_conf = custom_conf = [] if '--config-location' in command_line_conf: location = compat_expanduser(opts.config_location) if os.path.isdir(location): location = os.path.join(location, 'youtube-dl.conf') if not os.path.exists(location): parser.error('config-location %s does not exist.' % location) custom_conf = _readOptions(location) elif '--ignore-config' in command_line_conf: pass else: system_conf = _readOptions('/etc/youtube-dl.conf') if '--ignore-config' not in system_conf: user_conf = _readUserConf() argv = system_conf + user_conf + custom_conf + command_line_conf opts, args = parser.parse_args(argv) if opts.verbose: for conf_label, conf in ( ('System config', system_conf), ('User config', user_conf), ('Custom config', custom_conf), ('Command-line args', command_line_conf)): write_string('[debug] %s: %s\n' % (conf_label, repr(_hide_login_info(conf)))) return parser, opts, args
46.112432
391
0.640385
4a1954cf1a35f006af77d64f46502cd5537b880d
8,506
py
Python
utilities/file_scripts.py
imgVOID/autograding-api
7c2f5491607d5d76880827c73565f9f5be5a33ad
[ "Apache-2.0" ]
5
2021-11-08T18:55:09.000Z
2022-02-27T19:14:35.000Z
utilities/file_scripts.py
imgVOID/autograde-py
7c2f5491607d5d76880827c73565f9f5be5a33ad
[ "Apache-2.0" ]
null
null
null
utilities/file_scripts.py
imgVOID/autograde-py
7c2f5491607d5d76880827c73565f9f5be5a33ad
[ "Apache-2.0" ]
2
2021-12-23T05:11:31.000Z
2021-12-26T13:42:21.000Z
""" `file_scripts` module stores tasks I/O utilities. """ import aiofiles from aiofiles.os import remove, mkdir from os.path import abspath, join, normpath, isfile from json import loads, dumps from typing import List, Iterable class FileUtils: """ `FileUtils` class stores utilities for saving user input files and file paths. """ @classmethod async def _get_filepath( cls: 'FileUtils', title: str, topic_id: int = None, task_id: int = None ) -> str or None: """ `FileUtils._get_filepath` private class method returns the path to a file by path name. It takes three parameters (excluding cls): 1. `title` has four variants: task_info, task_input, task_output, task_code. 2. `topic_id` means an id of the topic and the directory name. 3. `task_id means` an id of the task in a topic and a part of the file name. """ topic_path = None if topic_id is not None: topic_index = await cls.open_file('topic_index') topic_path = topic_index[topic_id].get("path") filesystem = { "task_info": normpath(abspath( join('materials', f'{topic_path}', 'description', f'task_{task_id}.json') )), "task_input": normpath(abspath( join('materials', f'{topic_path}', 'input', f'task_{task_id}.txt') )), "task_output": normpath(abspath( join('materials', f'{topic_path}', 'output', f'task_{task_id}.txt') )), "task_code": normpath(abspath( join('materials', f'{topic_path}', 'code', f'task_{task_id}.txt') )), "topic_index": normpath(abspath( join('materials', f'topics.json') )) } try: return filesystem[title] except KeyError as e: raise ValueError(f'No such get_filepath() mode like "{title}"') from e @staticmethod async def _write_user_answer_temp(code: bytes) -> str: """ `FileUtils._write_user_answer_temp` private static method returns the user input's temp file name. It takes one parameter: code, type: bytes. """ async with aiofiles.tempfile.NamedTemporaryFile( 'wb', delete=False, dir='./temp/' ) as f: await f.write(code) return f.name.split('temp')[1] @classmethod async def open_file( cls: 'FileUtils', title: str, topic_id: int = None, task_id: int = None ) -> dict or str: """ `FileUtils.open_file` public class method accesses topic index, task description or task code. It returns the content of the file read. It takes three parameters (excluding cls): 1. `title` has 3 variants - topic_index, task_info, task_code. 2. `topic_id` means an id of the topic and the directory name. 3. `task_id` means an id of the task in a topic and a part of the file name. """ path = await cls._get_filepath(title, topic_id, task_id) try: async with aiofiles.open(path, encoding='utf-8', mode='r') as f: content = await f.read() content = content.encode('utf-8') if '.json' in f.name: return loads(content) elif '.txt' in f.name: return content else: raise ValueError('Wrong file extension.') except FileNotFoundError as e: raise FileNotFoundError( f'File not found: title={title}, topic_id={topic_id}, task_id={task_id}' ) from e @classmethod async def open_file_values( cls: 'FileUtils', title: str, topic_id: int = None, task_id: int = None ) -> List[bytes]: """ `FileUtils.open_file_values` public class method accesses task input and task output values. It returns the content of the file read, separated by a newline. It takes three parameters (excluding cls): 1. `title` has 2 variants - task_input, task_output. 2. `topic_id` means an id of the topic and the directory name. 3. `task_id` means an id of the task in a topic and a part of the file name. """ path = await cls._get_filepath(title, topic_id, task_id) async with aiofiles.open(path, encoding='utf-8', mode='r') as f: if f.name.endswith('.txt'): content = await f.read() return content.encode('utf-8').split(b'\n') else: raise ValueError('Wrong file extension.') @classmethod async def save_file( cls: 'FileUtils', title: str, content: bytes or dict, topic_id: int = None, task_id: int = None ) -> None: """ `FileUtils.save_file` public class method writes topic index, task description or task code to file. It takes four parameters (excluding cls): 1. `title` has 3 variants - topic_index, task_info, task_code. 2. `content` is the text that will be written to a file. 3. `topic_id` means an id of the topic and the directory name. 4. `task_id` means an id of the task in a topic and a part of the file name. """ path = await cls._get_filepath(title, topic_id, task_id) async with aiofiles.open(path, encoding='utf-8', mode='w') as f: if f.name.endswith('.json'): content = dumps(content, ensure_ascii=False) elif f.name.endswith('.txt'): content = content.decode('utf-8') else: raise ValueError('Wrong file extension.') await f.write(content) @classmethod async def save_file_values( cls: 'FileUtils', title: str, content: Iterable[str], topic_id: int = None, task_id: int = None ) -> None: """ `FileUtils.save_file_values` public class method writes task input and task output values to file. It takes four parameters: 1. `title` has 2 variants - task_input, task_output. 2. `content` is the text that will be written to a file. 3. `topic_id` means an id of the topic and the directory name. 4. `task_id` means an id of the task in a topic and a part of the file name. """ path = await cls._get_filepath(title, topic_id, task_id) async with aiofiles.open(path, mode='w', encoding='utf-8') as f: if not f.name.endswith('.txt'): raise ValueError('Wrong file extension.') else: for value in content: await f.writelines(f'{value}\n') @classmethod async def remove_file( cls: 'FileUtils', title: str, topic_id: int, task_id: int ) -> None: """ `FileUtils.remove_file` public class method removes any file related to a task. It takes three parameters: 1. `title` has 5 variants - topic_index, task_info, task_code, task_input, task_output. 3. `topic_id` means an id of the topic and the directory name. 4. `task_id` means an id of the task in a topic and a part of the file name. """ path = await cls._get_filepath(title, topic_id, task_id) try: await remove(path) except OSError as e: raise FileNotFoundError(f'File path can not be removed: {path}') from e @classmethod async def get_user_answer_temp( cls: 'FileUtils', code: bytes, ) -> str: """ `FileUtils.save_user_input` public class method saves user input on a disk. It returns the name of a file uploaded by the user, and a random number. It takes one parameter (excluding cls): code, type: bytes. """ try: return await cls._write_user_answer_temp(code) except FileNotFoundError: try: await mkdir("./temp") except Exception as e: raise FileNotFoundError("Something went wrong until the input saving") from e else: return await cls._write_user_answer_temp(code) @staticmethod async def remove_user_answer_file(temp_name: str) -> None: user_input_path = f"./temp/{temp_name}" await remove(user_input_path) if isfile(user_input_path) else None
40.894231
95
0.588878
4a19550275795b3874380f3f348d8cad1699e08c
12,239
py
Python
rwe/analysis.py
som-shahlab/ehr-rwe
9653a6abc837dee7759ed245939716b7d50525cc
[ "Apache-2.0" ]
25
2020-02-12T00:07:03.000Z
2021-12-01T22:50:24.000Z
rwe/analysis.py
som-shahlab/ehr-rwe
9653a6abc837dee7759ed245939716b7d50525cc
[ "Apache-2.0" ]
1
2021-01-28T22:49:23.000Z
2021-01-28T22:49:23.000Z
rwe/analysis.py
som-shahlab/ehr-rwe
9653a6abc837dee7759ed245939716b7d50525cc
[ "Apache-2.0" ]
3
2021-03-09T02:47:19.000Z
2021-05-21T14:51:02.000Z
from collections import Counter, defaultdict import torch import numpy as np import scipy.sparse as sparse from scipy.sparse import issparse from pandas import DataFrame, Series #from metal.utils import arraylike_to_numpy def arraylike_to_numpy(array_like): """Convert a 1d array-like (e.g,. list, tensor, etc.) to an np.ndarray""" orig_type = type(array_like) # Convert to np.ndarray if isinstance(array_like, np.ndarray): pass elif isinstance(array_like, list): array_like = np.array(array_like) elif issparse(array_like): array_like = array_like.toarray() elif isinstance(array_like, torch.Tensor): array_like = array_like.numpy() elif not isinstance(array_like, np.ndarray): array_like = np.array(array_like) else: msg = f"Input of type {orig_type} could not be converted to 1d " "np.ndarray" raise ValueError(msg) # Correct shape if (array_like.ndim > 1) and (1 in array_like.shape): array_like = array_like.flatten() if array_like.ndim != 1: raise ValueError("Input could not be converted to 1d np.array") # Convert to ints if any(array_like % 1): raise ValueError("Input contains at least one non-integer value.") array_like = array_like.astype(np.dtype(int)) return array_like ############################################################ # Label Matrix Diagnostics ############################################################ def _covered_data_points(L): """Returns an indicator vector where ith element = 1 if x_i is labeled by at least one LF.""" return np.ravel(np.where(L.sum(axis=1) != 0, 1, 0)) def _overlapped_data_points(L): """Returns an indicator vector where ith element = 1 if x_i is labeled by more than one LF.""" return np.where(np.ravel((L != 0).sum(axis=1)) > 1, 1, 0) def _conflicted_data_points(L): """Returns an indicator vector where ith element = 1 if x_i is labeled by at least two LFs that give it disagreeing labels.""" m = sparse.diags(np.ravel(L.max(axis=1).todense())) return np.ravel(np.max(m @ (L != 0) != L, axis=1).astype(int).todense()) def label_coverage(L): """Returns the **fraction of data points with > 0 (non-zero) labels** Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith item """ return _covered_data_points(L).sum() / L.shape[0] def label_overlap(L): """Returns the **fraction of data points with > 1 (non-zero) labels** Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith item """ return _overlapped_data_points(L).sum() / L.shape[0] def label_conflict(L): """Returns the **fraction of data points with conflicting (disagreeing) lablels.** Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith item """ return _conflicted_data_points(L).sum() / L.shape[0] def lf_polarities(L): """Return the polarities of each LF based on evidence in a label matrix. Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate """ polarities = [sorted(list(set(L[:, i].data))) for i in range(L.shape[1])] return [p[0] if len(p) == 1 else p for p in polarities] def lf_coverages(L): """Return the **fraction of data points that each LF labels.** Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate """ return np.ravel((L != 0).sum(axis=0)) / L.shape[0] def lf_overlaps(L, normalize_by_coverage=False): """Return the **fraction of items each LF labels that are also labeled by at least one other LF.** Note that the maximum possible overlap fraction for an LF is the LF's coverage, unless `normalize_by_coverage=True`, in which case it is 1. Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate normalize_by_coverage: Normalize by coverage of the LF, so that it returns the percent of LF labels that have overlaps. """ overlaps = (L != 0).T @ _overlapped_data_points(L) / L.shape[0] if normalize_by_coverage: overlaps /= lf_coverages(L) return np.nan_to_num(overlaps) def lf_conflicts(L, normalize_by_overlaps=False): """Return the **fraction of items each LF labels that are also given a different (non-abstain) label by at least one other LF.** Note that the maximum possible conflict fraction for an LF is the LF's overlaps fraction, unless `normalize_by_overlaps=True`, in which case it is 1. Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate normalize_by_overlaps: Normalize by overlaps of the LF, so that it returns the percent of LF overlaps that have conflicts. """ conflicts = (L != 0).T @ _conflicted_data_points(L) / L.shape[0] if normalize_by_overlaps: conflicts /= lf_overlaps(L) return np.nan_to_num(conflicts) def lf_empirical_accuracies(L, Y): """Return the **empirical accuracy** against a set of labels Y (e.g. dev set) for each LF. Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate Y: an [n] or [n, 1] np.ndarray of gold labels """ # Assume labeled set is small, work with dense matrices Y = arraylike_to_numpy(Y) L = L.toarray() X = np.where(L == 0, 0, np.where(L == np.vstack([Y] * L.shape[1]).T, 1, -1)) return 0.5 * (X.sum(axis=0) / (L != 0).sum(axis=0) + 1) def lf_summary(L, Y=None, lf_names=None, est_accs=None): """Returns a pandas DataFrame with the various per-LF statistics. Args: L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the jth LF to the ith candidate Y: an [n] or [n, 1] np.ndarray of gold labels. If provided, the empirical accuracy for each LF will be calculated """ n, m = L.shape if lf_names is not None: col_names = ["j"] d = {"j": list(range(m))} else: lf_names = list(range(m)) col_names = [] d = {} # Default LF stats col_names.extend(["Polarity", "Coverage", "Overlaps", "Conflicts"]) d["Polarity"] = Series(data=lf_polarities(L), index=lf_names) d["Coverage"] = Series(data=lf_coverages(L), index=lf_names) d["Overlaps"] = Series(data=lf_overlaps(L), index=lf_names) d["Conflicts"] = Series(data=lf_conflicts(L), index=lf_names) if Y is not None: col_names.extend(["Correct", "Incorrect", "Emp. Acc."]) confusions = [ confusion_matrix(Y, L[:, i], pretty_print=False) for i in range(m) ] corrects = [np.diagonal(conf).sum() for conf in confusions] incorrects = [ conf.sum() - correct for conf, correct in zip(confusions, corrects) ] accs = lf_empirical_accuracies(L, Y) d["Correct"] = Series(data=corrects, index=lf_names) d["Incorrect"] = Series(data=incorrects, index=lf_names) d["Emp. Acc."] = Series(data=accs, index=lf_names) if est_accs is not None: col_names.append("Learned Acc.") d["Learned Acc."] = Series(est_accs, index=lf_names) return DataFrame(data=d, index=lf_names)[col_names] def single_lf_summary(Y_p, Y=None): """Calculates coverage, overlap, conflicts, and accuracy for a single LF Args: Y_p: a np.array or torch.Tensor of predicted labels Y: a np.array or torch.Tensor of true labels (if known) """ L = sparse.csr_matrix(arraylike_to_numpy(Y_p).reshape(-1, 1)) return lf_summary(L, Y) def error_buckets(gold, pred, X=None): """Group items by error buckets Args: gold: an array-like of gold labels (ints) pred: an array-like of predictions (ints) X: an iterable of items Returns: buckets: A dict of items where buckets[i,j] is a list of items with predicted label i and true label j. If X is None, return indices instead. For a binary problem with (1=positive, 2=negative): buckets[1,1] = true positives buckets[1,2] = false positives buckets[2,1] = false negatives buckets[2,2] = true negatives """ buckets = defaultdict(list) gold = arraylike_to_numpy(gold) pred = arraylike_to_numpy(pred) for i, (y, l) in enumerate(zip(pred, gold)): buckets[y, l].append(X[i] if X is not None else i) return buckets def confusion_matrix( gold, pred, null_pred=False, null_gold=False, normalize=False, pretty_print=True ): """A shortcut method for building a confusion matrix all at once. Args: gold: an array-like of gold labels (ints) pred: an array-like of predictions (ints) null_pred: If True, include the row corresponding to null predictions null_gold: If True, include the col corresponding to null gold labels normalize: if True, divide counts by the total number of items pretty_print: if True, pretty-print the matrix before returning """ conf = ConfusionMatrix(null_pred=null_pred, null_gold=null_gold) gold = arraylike_to_numpy(gold) pred = arraylike_to_numpy(pred) conf.add(gold, pred) mat = conf.compile() if normalize: mat = mat / len(gold) if pretty_print: conf.display(normalize=normalize) return mat class ConfusionMatrix(object): """ An iteratively built abstention-aware confusion matrix with pretty printing Assumed axes are true label on top, predictions on the side. """ def __init__(self, null_pred=False, null_gold=False): """ Args: null_pred: If True, include the row corresponding to null predictions null_gold: If True, include the col corresponding to null gold labels """ self.counter = Counter() self.mat = None self.null_pred = null_pred self.null_gold = null_gold def __repr__(self): if self.mat is None: self.compile() return str(self.mat) def add(self, gold, pred): """ Args: gold: a np.ndarray of gold labels (ints) pred: a np.ndarray of predictions (ints) """ self.counter.update(zip(gold, pred)) def compile(self, trim=True): k = max([max(tup) for tup in self.counter.keys()]) + 1 # include 0 mat = np.zeros((k, k), dtype=int) for (y, l), v in self.counter.items(): mat[l, y] = v if trim and not self.null_pred: mat = mat[1:, :] if trim and not self.null_gold: mat = mat[:, 1:] self.mat = mat return mat def display(self, normalize=False, indent=0, spacing=2, decimals=3, mark_diag=True): mat = self.compile(trim=False) m, n = mat.shape tab = " " * spacing margin = " " * indent # Print headers s = margin + " " * (5 + spacing) for j in range(n): if j == 0 and not self.null_gold: continue s += f" y={j} " + tab print(s) # Print data for i in range(m): # Skip null predictions row if necessary if i == 0 and not self.null_pred: continue s = margin + f" l={i} " + tab for j in range(n): # Skip null gold if necessary if j == 0 and not self.null_gold: continue else: if i == j and mark_diag and normalize: s = s[:-1] + "*" if normalize: s += f"{mat[i,j]/sum(mat[i,1:]):>5.3f}" + tab else: s += f"{mat[i,j]:^5d}" + tab print(s)
33.809392
88
0.605523
4a195515e9992755854332385ee261a5282a1fe9
7,085
py
Python
pgopttune/workload/sampled_workload.py
ssl-oyamata/postgres_opttune
d31088c575097ec6d88f2aa22d4acc47593d3566
[ "Apache-2.0" ]
28
2020-02-01T11:29:38.000Z
2022-03-11T15:02:27.000Z
pgopttune/workload/sampled_workload.py
ssl-oyamata/postgres_opttune
d31088c575097ec6d88f2aa22d4acc47593d3566
[ "Apache-2.0" ]
null
null
null
pgopttune/workload/sampled_workload.py
ssl-oyamata/postgres_opttune
d31088c575097ec6d88f2aa22d4acc47593d3566
[ "Apache-2.0" ]
2
2020-02-03T10:59:41.000Z
2021-12-17T03:11:08.000Z
import os from logging import getLogger import datetime import pickle import multiprocessing from psycopg2.extras import DictCursor from pgopttune.workload.workload import Workload from pgopttune.utils.pg_connect import get_pg_connection from pgopttune.config.postgres_server_config import PostgresServerConfig from pgopttune.config.workload_sampling_config import WorkloadSamplingConfig from pgopttune.workload.sampled_transaction import SampledTransaction logger = getLogger(__name__) class SampledWorkload(Workload): def __init__(self, postgres_server_config: PostgresServerConfig, workload_sampling_config: WorkloadSamplingConfig, start_unix_time, end_unix_time, my_transactions: list = None): super().__init__(postgres_server_config) self.workload_sampling_config = workload_sampling_config self.start_unix_time = start_unix_time self.end_unix_time = end_unix_time if my_transactions is None: self.my_transactions = [] self.extract_workload() else: self.my_transactions = my_transactions def extract_workload(self): extract_workload_sql = ''' SELECT -- log_time, -- query_stat_time = log_time - duration - start_unix_time (log_time::timestamp(3) with time zone - substring(message from '(?<=duration: ).*ms')::interval - to_timestamp(%s)) AS query_stat_time, -- database_name, session_id, -- substring(message from '(?<=duration: ).*(?= ms)') AS duration, substring(message from '(?<=statement: ).*') AS statement FROM csv_log WHERE log_time > to_timestamp(%s) AND log_time <= to_timestamp(%s) AND database_name = %s AND message LIKE '%%duration%%' ORDER BY session_id, session_line_num; -- log_time; ''' with get_pg_connection(dsn=self.workload_sampling_config.dsn) as conn: with conn.cursor(cursor_factory=DictCursor) as cur: cur.execute(extract_workload_sql, (self.start_unix_time, self.start_unix_time, self.end_unix_time, self.postgres_server_config.database)) workload_rows = cur.fetchall() # logger.debug("workload_rows : {}".format(workload_rows)) self._create_transactions(workload_rows) def _create_transactions(self, workload_rows): query_stat_time = [] session_id = '' statement = [] for index, row in enumerate(workload_rows): if session_id == row[1] or index == 0: # same session statement query_stat_time.append(row[0]) session_id = row[1] statement.append(row[2]) else: my_transaction = SampledTransaction(session_id, query_stat_time, statement) self.my_transactions.append(my_transaction) query_stat_time = [row[0]] session_id = row[1] statement = [row[2]] def save_sampled_workload(self): save_file_name = datetime.datetime.fromtimestamp(self.start_unix_time).strftime("%Y-%m-%d_%H%M%S.%f") + \ "-" \ + datetime.datetime.fromtimestamp(self.end_unix_time).strftime("%Y-%m-%d_%H%M%S.%f") + ".pkl" save_file_path = os.path.join("workload_data", save_file_name) with open(save_file_path, 'wb') as f: pickle.dump(self, f) return save_file_path def run(self): session_num = len(self.my_transactions) # number of session logger.debug("Number of session : {} ".format(session_num)) with multiprocessing.Pool(session_num) as p: args = range(session_num) elapsed_times = p.map(self._run_transaction, args) logger.debug("Transactions elapsed times : {} ".format(elapsed_times)) elapsed_time = sum(elapsed_times) # single process execute # # for index, my_transaction in enumerate(self.my_transactions): # logger.debug("Transaction's statement : {}".format(my_transaction.statement)) # transaction_elapsed_time = my_transaction.run(self._postgres_server_config) # logger.debug("elapsed time : {0:.4f} s".format(transaction_elapsed_time)) # elapsed_time += transaction_elapsed_time # logger.debug("Transactions elapsed time(sum) : {0:.4f} s".format(elapsed_time)) logger.debug("Transactions elapsed time(sum) : {0:.4f} s".format(elapsed_time)) return elapsed_time @classmethod def load_sampled_workload(cls, load_file_path, postgres_server_config: PostgresServerConfig = None): with open(load_file_path, 'rb') as f: workload = pickle.load(f) if postgres_server_config is not None: workload.postgres_server_config = postgres_server_config return workload def data_load(self): # TODO: logger.warning("At the moment, in the sampled workload, The data reload function is not implemented.") def warm_up(self): # TODO: logger.warning("At the moment, in the sampled workload, The warm up function is not implemented.") def _run_transaction(self, transaction_index=0): # logger.debug("Transaction's statement : {}".format(self.my_transactions[transaction_index].statement)) transaction_elapsed_time = self.my_transactions[transaction_index].run(self.postgres_server_config) # logger.debug("elapsed time : {0:.4f} s".format(transaction_elapsed_time)) return transaction_elapsed_time if __name__ == "__main__": from pgopttune.config.postgres_server_config import PostgresServerConfig from logging import basicConfig, DEBUG basicConfig(level=DEBUG) conf_path = './conf/postgres_opttune.conf' postgres_server_config_test = PostgresServerConfig(conf_path) # PostgreSQL Server config workload_sampling_config_test = WorkloadSamplingConfig(conf_path) sampled_workload = SampledWorkload(start_unix_time=1593093506.9530554, end_unix_time=1593093567.088895, workload_sampling_config=workload_sampling_config_test, postgres_server_config=postgres_server_config_test) save_file = sampled_workload.save_sampled_workload() logger.debug("run transactions ") workload_elapsed_time = sampled_workload.run() logger.debug(workload_elapsed_time) load_workload = SampledWorkload.load_sampled_workload(save_file, postgres_server_config=postgres_server_config_test) logger.debug("run transactions using saved file") load_workload_elapsed_time = load_workload.run() logger.debug(load_workload_elapsed_time) logger.debug("finised...") logger.debug(workload_elapsed_time) logger.debug(load_workload_elapsed_time) # my_workload.extract_workload()
46.611842
120
0.666902
4a19552a40e985fb28da65c7c236f1b33261f67f
1,366
py
Python
tests/test_api_public.py
snowdensb/braindump
815ae0afebcf867f02143f3ab9cf88b1d4dacdec
[ "MIT" ]
631
2015-01-20T17:32:54.000Z
2022-01-27T04:34:59.000Z
tests/test_api_public.py
iknownothing/braindump
9640dd03f99851dbd34dd6cac98a747a4a591b01
[ "MIT" ]
241
2015-01-20T16:37:53.000Z
2017-01-10T00:28:04.000Z
tests/test_api_public.py
iknownothing/braindump
9640dd03f99851dbd34dd6cac98a747a4a591b01
[ "MIT" ]
92
2015-11-27T18:33:18.000Z
2022-02-19T18:55:44.000Z
import json from flask import url_for from api_base import ApiBaseTestCase class PublicApiTestCase(ApiBaseTestCase): def test_public_stats_empty(self): res = self.client.get('/api/v1/public/stats') json_res = json.loads(res.data.decode('utf-8')) self.assertEqual(0, json_res['users']) self.assertEqual(0, json_res['notes']) def test_public_stats_with_user(self): self.add_user() self.add_other_user() res = self.client.get('/api/v1/public/stats') json_res = json.loads(res.data.decode('utf-8')) self.assertEqual(2, json_res['users']) def test_public_states_with_notes(self): u = self.add_user() nb = self.add_notebook(u) note = self.add_note(nb, u) res = self.client.get('/api/v1/public/stats') json_res = json.loads(res.data.decode('utf-8')) self.assertEqual(1, json_res['users']) self.assertEqual(1, json_res['notes']) u1n2 = self.add_note(nb, u) u1n3 = self.add_note(nb, u) u2 = self.add_other_user() nb2 = self.add_notebook(u2) note = self.add_note(nb2, u2) res = self.client.get('/api/v1/public/stats') json_res = json.loads(res.data.decode('utf-8')) self.assertEqual(2, json_res['users']) self.assertEqual(4, json_res['notes'])
25.773585
55
0.622255
4a19552d840e37d59b1286e2c48303d68479298c
4,226
py
Python
07_train/privacy/tensorflow_privacy/privacy/membership_inference_attack/keras_evaluation_example.py
dpai/workshop
d4936da77dac759ba2bac95a9584fde8e86c6b2b
[ "Apache-2.0" ]
2,327
2020-03-01T09:47:34.000Z
2021-11-25T12:38:42.000Z
07_train/privacy/tensorflow_privacy/privacy/membership_inference_attack/keras_evaluation_example.py
trideau/Data-Science-with-AWS-Workshop
7dbe7989fa99e88544da8bf262beec907c536093
[ "Apache-2.0" ]
209
2020-03-01T17:14:12.000Z
2021-11-08T20:35:42.000Z
07_train/privacy/tensorflow_privacy/privacy/membership_inference_attack/keras_evaluation_example.py
trideau/Data-Science-with-AWS-Workshop
7dbe7989fa99e88544da8bf262beec907c536093
[ "Apache-2.0" ]
686
2020-03-03T17:24:51.000Z
2021-11-25T23:39:12.000Z
# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """An example for using keras_evaluation.""" from absl import app from absl import flags import numpy as np import tensorflow.compat.v1 as tf from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import MembershipInferenceCallback from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import run_attack_on_keras_model FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 100, 'Number of epochs') flags.DEFINE_string('model_dir', None, 'Model directory.') flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot ' 'different classifiers with the same slicing_spec and metric ' 'in the same figure.') def small_cnn(): """Setup a small CNN for image classification.""" model = tf.keras.models.Sequential() model.add(tf.keras.layers.Input(shape=(32, 32, 3))) for _ in range(3): model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D()) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(10)) return model def load_cifar10(): """Loads CIFAR10 data.""" (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x_train = np.array(x_train, dtype=np.float32) / 255 x_test = np.array(x_test, dtype=np.float32) / 255 y_train = np.array(y_train, dtype=np.int32).squeeze() y_test = np.array(y_test, dtype=np.int32).squeeze() return x_train, y_train, x_test, y_test def main(unused_argv): # Load training and test data. x_train, y_train, x_test, y_test = load_cifar10() # Get model, optimizer and specify loss. model = small_cnn() optimizer = tf.keras.optimizers.SGD(lr=FLAGS.learning_rate, momentum=0.9) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) # Get callback for membership inference attack. mia_callback = MembershipInferenceCallback( (x_train, y_train), (x_test, y_test), slicing_spec=SlicingSpec(entire_dataset=True, by_class=True), attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS], tensorboard_dir=FLAGS.model_dir, tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers) # Train model with Keras model.fit( x_train, y_train, epochs=FLAGS.epochs, validation_data=(x_test, y_test), batch_size=FLAGS.batch_size, callbacks=[mia_callback], verbose=2) print('End of training attack:') attack_results = run_attack_on_keras_model( model, (x_train, y_train), (x_test, y_test), slicing_spec=SlicingSpec(entire_dataset=True, by_class=True), attack_types=[ AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS ]) att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics( attack_results) print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in zip(att_types, att_slices, att_metrics, att_values)])) if __name__ == '__main__': app.run(main)
37.39823
111
0.738287
4a1955aa74dac2fcaea39c399d527ab177084934
1,126
py
Python
lagom/envs/spaces/base.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/envs/spaces/base.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/envs/spaces/base.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
import numpy as np class Space(object): """ Base class for observation and action space e.g. applied to Env. """ def __init__(self, shape=None, dtype=None): if shape is None: self.shape = None else: self.shape = tuple(shape) if dtype is None: self.dtype = None else: self.dtype = np.dtype(dtype) # create a dtype object def sample(self): """ Uniformly sample an element from this space. """ raise NotImplementedError @property def flat_dim(self): """ Return a flattened dimension """ raise NotImplementedError def flatten(self, x): """ Return the flattened x. """ raise NotImplementedError def unflatten(self, x): """ Return the unflattened x according to defined shape """ raise NotImplementedError def contains(self, x): """ Return True if x is contained in this space. """ raise NotImplementedError
23.458333
68
0.530195
4a1955f613008c299430b3b79294f9c780e6d4b7
354
py
Python
multiprocessing_test.py
TheSriram/SwiftParallelizer
85d70b537852a4b7b940ba19ff9e6c6db3daebaf
[ "Apache-2.0" ]
1
2015-05-21T14:32:37.000Z
2015-05-21T14:32:37.000Z
multiprocessing_test.py
TheSriram/SwiftParallelizer
85d70b537852a4b7b940ba19ff9e6c6db3daebaf
[ "Apache-2.0" ]
null
null
null
multiprocessing_test.py
TheSriram/SwiftParallelizer
85d70b537852a4b7b940ba19ff9e6c6db3daebaf
[ "Apache-2.0" ]
null
null
null
import multiprocessing import multiprocessing_import_worker # def worker(num): # """thread worker function""" # print 'Worker:' # return if __name__ == '__main__': jobs = [] for i in range(3): p = multiprocessing.Process(target=multiprocessing_import_worker.worker,args=('sriram_1',)) jobs.append(p) p.start()
27.230769
99
0.655367
4a19565ca4f6bb2c6b621e92b991e28df0dab1c9
5,542
py
Python
datumaro/datumaro/plugins/datumaro_format/extractor.py
javoweb/cvat
684544d2a06c192e7155f655897e6360b4a3be37
[ "MIT" ]
2
2020-07-24T18:12:18.000Z
2020-08-12T09:14:07.000Z
datumaro/datumaro/plugins/datumaro_format/extractor.py
javoweb/cvat
684544d2a06c192e7155f655897e6360b4a3be37
[ "MIT" ]
24
2020-11-13T18:43:15.000Z
2022-03-12T00:21:52.000Z
datumaro/datumaro/plugins/datumaro_format/extractor.py
javoweb/cvat
684544d2a06c192e7155f655897e6360b4a3be37
[ "MIT" ]
5
2020-07-01T18:02:48.000Z
2021-01-22T02:21:48.000Z
# Copyright (C) 2019 Intel Corporation # # SPDX-License-Identifier: MIT import json import os.path as osp from datumaro.components.extractor import (SourceExtractor, DatasetItem, AnnotationType, Label, RleMask, Points, Polygon, PolyLine, Bbox, Caption, LabelCategories, MaskCategories, PointsCategories ) from datumaro.util.image import Image from .format import DatumaroPath class DatumaroExtractor(SourceExtractor): def __init__(self, path): assert osp.isfile(path), path rootpath = '' if path.endswith(osp.join(DatumaroPath.ANNOTATIONS_DIR, osp.basename(path))): rootpath = path.rsplit(DatumaroPath.ANNOTATIONS_DIR, maxsplit=1)[0] images_dir = '' if rootpath and osp.isdir(osp.join(rootpath, DatumaroPath.IMAGES_DIR)): images_dir = osp.join(rootpath, DatumaroPath.IMAGES_DIR) self._images_dir = images_dir super().__init__(subset=osp.splitext(osp.basename(path))[0]) with open(path, 'r') as f: parsed_anns = json.load(f) self._categories = self._load_categories(parsed_anns) self._items = self._load_items(parsed_anns) def categories(self): return self._categories def __iter__(self): for item in self._items: yield item def __len__(self): return len(self._items) @staticmethod def _load_categories(parsed): categories = {} parsed_label_cat = parsed['categories'].get(AnnotationType.label.name) if parsed_label_cat: label_categories = LabelCategories() for item in parsed_label_cat['labels']: label_categories.add(item['name'], parent=item['parent']) categories[AnnotationType.label] = label_categories parsed_mask_cat = parsed['categories'].get(AnnotationType.mask.name) if parsed_mask_cat: colormap = {} for item in parsed_mask_cat['colormap']: colormap[int(item['label_id'])] = \ (item['r'], item['g'], item['b']) mask_categories = MaskCategories(colormap=colormap) categories[AnnotationType.mask] = mask_categories parsed_points_cat = parsed['categories'].get(AnnotationType.points.name) if parsed_points_cat: point_categories = PointsCategories() for item in parsed_points_cat['items']: point_categories.add(int(item['label_id']), item['labels'], adjacent=item['adjacent']) categories[AnnotationType.points] = point_categories return categories def _load_items(self, parsed): items = [] for item_desc in parsed['items']: item_id = item_desc['id'] image = None image_info = item_desc.get('image', {}) if image_info: image_path = osp.join(self._images_dir, image_info.get('path', '')) # relative or absolute fits image = Image(path=image_path, size=image_info.get('size')) annotations = self._load_annotations(item_desc) item = DatasetItem(id=item_id, subset=self._subset, annotations=annotations, image=image) items.append(item) return items def _load_annotations(self, item): parsed = item['annotations'] loaded = [] for ann in parsed: ann_id = ann.get('id') ann_type = AnnotationType[ann['type']] attributes = ann.get('attributes') group = ann.get('group') if ann_type == AnnotationType.label: label_id = ann.get('label_id') loaded.append(Label(label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.mask: label_id = ann.get('label_id') rle = ann['rle'] rle['counts'] = rle['counts'].encode('ascii') loaded.append(RleMask(rle=rle, label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.polyline: label_id = ann.get('label_id') points = ann.get('points') loaded.append(PolyLine(points, label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.polygon: label_id = ann.get('label_id') points = ann.get('points') loaded.append(Polygon(points, label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.bbox: label_id = ann.get('label_id') x, y, w, h = ann.get('bbox') loaded.append(Bbox(x, y, w, h, label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.points: label_id = ann.get('label_id') points = ann.get('points') loaded.append(Points(points, label=label_id, id=ann_id, attributes=attributes, group=group)) elif ann_type == AnnotationType.caption: caption = ann.get('caption') loaded.append(Caption(caption, id=ann_id, attributes=attributes, group=group)) else: raise NotImplementedError() return loaded
35.754839
85
0.589318
4a1956b1e8d7b899f7e57c0c32063ff20e6a9840
808
py
Python
src/explorer.py
floraxue/active-rl
db90c24dd70c3bbaa704e354f63ffaa6c2d7d851
[ "MIT" ]
null
null
null
src/explorer.py
floraxue/active-rl
db90c24dd70c3bbaa704e354f63ffaa6c2d7d851
[ "MIT" ]
null
null
null
src/explorer.py
floraxue/active-rl
db90c24dd70c3bbaa704e354f63ffaa6c2d7d851
[ "MIT" ]
null
null
null
class Explorer: """ Epsilon-greedy with linearyly decayed epsilon Args: start_epsilon: max value of epsilon end_epsilon: min value of epsilon decay_steps: how many steps it takes for epsilon to decay """ def __init__(self, start_eps, end_eps, decay_steps=100000): assert 0 <= start_eps <= 1, 'invalid start_eps' assert 0 <= end_eps <= 1, 'invalid end_eps' assert decay_steps >= 0 self.start_eps = start_eps self.end_eps = end_eps self.decay_steps = decay_steps self.eps = start_eps def value(self, t): if t >= self.decay_steps: return self.end_eps else: eps_diff = self.end_eps - self.start_eps return self.start_eps + eps_diff * (t / self.decay_steps)
28.857143
69
0.617574
4a19571fefb194c476560375bc58f92935b6e59f
9,349
py
Python
Help/gen-sphinx/make_rest.py
constellation-app/miscellaneous
2c80e3472d076afb3bf7a944088b3fa93437b238
[ "Apache-2.0" ]
1
2019-12-16T02:50:11.000Z
2019-12-16T02:50:11.000Z
Help/gen-sphinx/make_rest.py
constellation-app/miscellaneous
2c80e3472d076afb3bf7a944088b3fa93437b238
[ "Apache-2.0" ]
null
null
null
Help/gen-sphinx/make_rest.py
constellation-app/miscellaneous
2c80e3472d076afb3bf7a944088b3fa93437b238
[ "Apache-2.0" ]
1
2019-12-18T09:55:33.000Z
2019-12-18T09:55:33.000Z
import argparse from pathlib import Path import xml.etree.ElementTree as ET import shutil import datetime import pprint from parsehelp import parse_html # Convert NetBeans HelpSet files to ReStructuredText suitable for Sphinx. # # Find all the package-info.java files that contain '@HelpSetRegistration'. # Get the name of the helpset xml and parse that to get the map and toc values. # Merge the tocs into a single toc. # Add the helpId as a comment to each file. ITEMS = '__items__' INDEX_RST = '''.. Constellation documentation master file, created by {} on {}. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. {} {} .. toctree:: :maxdepth: 2 :caption: Contents: {} Indices and tables ================== * :ref:`genindex` * :ref:`search` ''' def helpsets(dir): """Yield NetBeans HelpSet marker files.""" for pinfo in dir.rglob('package-info.java'): with pinfo.open() as f: for line in f.readlines(): if line.startswith('@HelpSetRegistration'): q1 = line.index('"') q2 = line.index('"', q1+1) name = line[q1+1:q2] hs = pinfo.with_name(name) yield hs def parse_helpset(hs): """Parse a -hs.xml helpset file.""" hs_xml = ET.parse(str(hs)) root = hs_xml.getroot() # print(root) refs = {} for child in root: if child.tag=='maps': mapref = child.find('mapref') location = mapref.attrib['location'] # print(location) refs['location'] = location elif child.tag=='view': type = child.find('type').text data = child.find('data').text refs[type] = data return refs def parse_map(hs, m): """Parse a -map.html helpset mapping file.""" m = hs.with_name(m) m_xml = ET.parse(str(m)) root = m_xml.getroot() maps = {} for child in root: assert child.tag=='mapID' target = child.attrib['target'] url = child.attrib['url'] maps[target] = hs.with_name(url) return maps def parse_toc(hs, toc): """Parse a -toc.xml helpset table-of-contents file. Slightly trickier, because there are levels of <tocitem> tags. Each level has a 'text' attrib, but only the leaves have a 'target' attrib'. Just do it recursively. """ # Leaf items are collected in a list. # def toc_level(tocs, root): for item in root.findall('tocitem'): text = item.attrib['text'] if 'target' in item.attrib: # This is a leaf referencing a help target. # tocs[ITEMS].append((text, item.attrib['target'])) else: if text not in tocs: tocs[text] = {ITEMS:[]} toc_level(tocs[text], item) # If there are no leaves at this level, remove the empty list. # if not tocs[text][ITEMS]: del tocs[text][ITEMS] tocs = {} toc = hs.with_name(toc) toc_xml = ET.parse(str(toc)) root = toc_xml.getroot() toc_level(tocs, root) return tocs def merge_tocs(toc_list): """Merge a list of tocs into a single toc. Each level of toc is a dict with two optional keys: * name - the name of the level, contains a dict of the next level * '__items__' - a list of (name,target) tuples. Recursive, obviously. """ def merge_level(merged, level): for k,v in level.items(): if k==ITEMS: if ITEMS not in merged: merged[ITEMS] = [] merged[ITEMS].extend(v) else: if k not in merged: merged[k] = {} merge_level(merged[k], v) toc1 = {} for toc in toc_list: merge_level(toc1, toc) return toc1 def generate_pages(outdir, merged_tocs, merged_maps): """Generate documentation in a proper directory hierarchy. This means an index.rst file at eacg level. """ def simple_name(name): return ''.join(c if '0'<=c<='9' or 'a'<=c<='z' else '_' for c in name.lower()) def ensure_dir(dir, category): d = dir / category if not d.is_dir(): d.mkdir() def tree(category, toc, levels): level = '/'.join(levels) ensure_dir(outdir, level) if '__items__' in toc: for doc in toc['__items__']: help_id = doc[1] in_html = merged_maps[help_id] out_rst = outdir / level / Path(in_html).with_suffix('.rst').name yield level, category, in_html, out_rst, help_id for sub_category in toc: cat = simple_name(sub_category) if sub_category!='__items__': sublevel = levels[:] sublevel.append(cat) # Yield the index of the next level down. # index files don't have matching HTML files or NetBeans helpIds. # sl = '/'.join(sublevel) yield level, category, None, outdir / sl / 'index.rst', None # Recursively yield the next level down. # yield from tree(sub_category, toc[sub_category], sublevel) yield from tree('CONSTELLATION', merged_tocs, []) if __name__=='__main__': def dir_req(s): """Require this parameter to be a directory, and convert it to a Path instance.""" p = Path(s) if not p.is_dir(): raise argparse.ArgumentTypeError('Must be a directory') return p parser = argparse.ArgumentParser(description='Process existing HTML to ReST.') parser.add_argument('--indir', type=dir_req, required=True, help='Directory containing NetBeans help') parser.add_argument('--outdir', type=dir_req, required=True, help='Output directory tree') args = parser.parse_args() print(args.indir, args.outdir) merged_maps = {} toc_list = [] for hs in helpsets(args.indir): # print(hs) refs = parse_helpset(hs) # print(refs) maps = parse_map(hs, refs['location']) # print(maps) for target, url in maps.items(): if target in merged_maps: raise ValueError(f'Target {target} already found') merged_maps[target] = url toc = parse_toc(hs, refs['javax.help.TOCView']) # pprint.pprint(toc) toc_list.append(toc) # break # pprint.pprint(toc_list) merged_tocs = merge_tocs(toc_list) # pprint.pprint(merged_tocs) print() # print(merged_tocs.keys()) print() # print(merged_maps) print() # We need an index.rst in each directory. # Keep track of the levels so we can generate them at the end. # levels = {} # # We also need a mapping of helpId to help page. # # NetBeans code runs on helpIds and we don't want to change that, # # so the help service needs to accept a helpId and map it to the correct page. # # # help_map = {} for level, category, in_html, out_rst, help_id in generate_pages(args.outdir, merged_tocs, merged_maps): lc = level,category if lc not in levels: levels[lc] = [] levels[lc].append(out_rst) if in_html: # This is a help .rst file (not a category / index.rst file). # print(in_html) rest, resources = parse_html(in_html) with open(out_rst, 'w', encoding='utf8') as f: f.write(rest) # Include the helpId in a comment directive that can be # detected at documentation build time to create the help_map.txt file. # f.write(f'\n.. help-id: {help_id}\n') for res_source, res_target in resources: s = in_html.parent / res_source t = out_rst.parent / res_target # print(f'Copying resource {s} to {t} ...') shutil.copy(s, t) # help_map[help_id] = out_rst # Create an index.rst at each level. # Each index.rst must have a reference to the index files below it. # now = datetime.datetime.now().isoformat(' ')[:19] for (level, category), rst_files in levels.items(): pages = [] for page in rst_files: p = Path(page) if p.name=='index.rst': entry = f'{p.parent.name}/index' else: entry = p.stem pages.append(f' {entry}') mup = '=' * len(category) contents = INDEX_RST.format(__file__, now, category, mup, '\n'.join(pages)) with open(args.outdir / level / 'index.rst', 'w') as f: f.write(contents) # # Save the mapping from helpId to page, so NetBeans help knows where to find stuff. # # # # pprint.pprint(help_map) # with open(args.outdir / 'help_map.txt', 'w') as f: # for help_id, rst in help_map.items(): # rst = rst.with_suffix('') # relative_rst = str(rst.relative_to(args.outdir)).replace('\\', '/') # print(f'{help_id},{relative_rst}', file=f)
29.773885
108
0.565087
4a1957bb1adde82551f589c10b3525032638db04
400
py
Python
tests/test_cli.py
myeggs/ward
52fdf1a2768e5de26081e2990f6f3dc44cb9558c
[ "MIT" ]
null
null
null
tests/test_cli.py
myeggs/ward
52fdf1a2768e5de26081e2990f6f3dc44cb9558c
[ "MIT" ]
null
null
null
tests/test_cli.py
myeggs/ward
52fdf1a2768e5de26081e2990f6f3dc44cb9558c
[ "MIT" ]
null
null
null
from click.testing import CliRunner from ward import each, test from ward._run import run @test("Cannot use bar progress style with {output_style} output style") def _(output_style=each("dots-global", "dots-module")): runner = CliRunner() result = runner.invoke( run, ["test", "--progress-style", "bar", "--test-output-style", output_style] ) assert result.exit_code == 2
26.666667
85
0.6875
4a1958d0420fd39f767a987c4e6e8a49a7c0bf37
6,748
py
Python
selecting_OOD_detector/utils/hyperparameter_search.py
the-mama-ai/selecting_OOD_detector
1708dd2e46826c6c7a641e5a2259c7003fd24584
[ "MIT" ]
null
null
null
selecting_OOD_detector/utils/hyperparameter_search.py
the-mama-ai/selecting_OOD_detector
1708dd2e46826c6c7a641e5a2259c7003fd24584
[ "MIT" ]
null
null
null
selecting_OOD_detector/utils/hyperparameter_search.py
the-mama-ai/selecting_OOD_detector
1708dd2e46826c6c7a641e5a2259c7003fd24584
[ "MIT" ]
1
2022-03-07T15:39:30.000Z
2022-03-07T15:39:30.000Z
""" A module with helper functions for running a hyperparameter search. Code adapted from https://github.com/Pacmed/ehr_ood_detection/blob/master/src/experiments/hyperparameter_search.py """ from typing import Optional import os from sklearn.model_selection import ParameterSampler import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score from selecting_OOD_detector.utils.general import check_and_convert_dfs_to_numpy, save_dictionary_as_json from selecting_OOD_detector.models.novelty_estimator import NoveltyEstimator def sample_hyperparameters( model_name: str, hyperparameter_grid: dict, hyperparameters_names: dict, n_evals: int = 20, ): """ Sample the hyperparameters for different runs of the same model. The distributions parameters are sampled from are defined the provided hyperparamter grid. Parameters ---------- model_name: str Name of the model. hyperparameter_grid: dict Dictionary of all possible values to be tested. hyperparameters_names: dict Dictionary containing model names and names of hyperparamaters that they use. n_evals: int Number of evaluations to run for the model. Returns ------- sampled_params: list List of dictionaries containing hyperparameters and their sampled values. """ sampled_params = list( ParameterSampler( param_distributions={ hyperparam: hyperparameter_grid[hyperparam] for hyperparam in hyperparameters_names[model_name] if hyperparam in hyperparameter_grid }, n_iter=n_evals, ) ) return sampled_params def evaluate_set_of_parameters(model: NoveltyEstimator, X_train: pd.DataFrame, X_val: pd.DataFrame, train_params: dict, y_train: Optional[pd.DataFrame] = None, y_val: Optional[pd.DataFrame] = None): """ Runs a single round of training and evaluation for a set of paramaters. Parameters ---------- model: NoveltyEstimator Model to be trained and evaluated. X_train: pd.DataFrame Training data. X_val: pd.DataFrame Validation data to calculate scores on. train_params: dict Parameters to be added to ``train`` function of the model. y_train: Optional(pd.DataFrame): Labels corresponding to the training data. Only used for discriminator models. y_val: Optional(pd.DataFrame) Labels corresponding to the validation data. Only used for discriminator models. Returns ------- score: float Score corresponding to the performance of the model. Either AUC-ROC score of predicting the correct labels for discriminators or likelihood of data for density estimators. """ X_train, X_val, y_train, y_val = check_and_convert_dfs_to_numpy([X_train, X_val, y_train, y_val]) model.train(X_train, y_train=y_train, **train_params) # For density estimators, evaluate according to the highest likelihood on data (same as the lowest novelty score) if model.model_type == "density_estimator": preds = -model.get_novelty_score(X_val) score = float(preds.mean()) # For discriminators, evaluate according to the lowest prediction error using AUC-ROC score elif model.model_type == "discriminator": preds = model.predict_proba(X_val) if np.isnan(preds).all(): score = 0 else: preds = preds[:, 1] score = roc_auc_score( y_true=y_val[~np.isnan(preds)], y_score=preds[~np.isnan(preds)], ) print(f"\tscore: {score}") else: raise NotImplementedError("Only density estimators and discriminators are implemented at the moment.") return score def evaluate_hyperparameters(model_name: str, model_class: NoveltyEstimator, X_train: pd.DataFrame, X_val: pd.DataFrame, hyperparameter_grid: dict, hyperparameters_names: dict, train_params: dict, y_train: pd.DataFrame = None, y_val: pd.DataFrame = None, num_evals: int = 20, save_intermediate_scores: bool = True, save_dir: Optional[str] = None, ): scores, sorted_scores = {}, {} sampled_params = sample_hyperparameters(model_name, hyperparameter_grid=hyperparameter_grid, hyperparameters_names=hyperparameters_names, n_evals=num_evals) for run, param_set in enumerate(sampled_params): print(f"\t{run + 1}/{len(sampled_params)}", end=" ") param_set.update(input_size=X_train.shape[1]) model = model_class(**param_set) # Run a single evaluation on the set of parameters try: score = evaluate_set_of_parameters(model=model, train_params=train_params, X_train=X_train, X_val=X_val, y_train=y_train, y_val=y_val) # In case of nans due bad training parameter except (ValueError, RuntimeError) as e: print(f"\tskipped the current run due to an error: {str(e)}", end=" ") score = -np.inf if np.isnan(score): score = -np.inf # Save results of the single run print(f"\tscore = {round(score, 2)}") scores[run] = {"score": score, "hyperparameters": param_set} # Sort the scores such that the best performing paramameters are displayed first sorted_scores = dict( list(sorted(scores.items(), key=lambda run: run[1]["score"], reverse=True)) ) # Save results for each run in case of an unexpected interruption if save_intermediate_scores: _save_hyperparameter_scores(scores=sorted_scores, model_name=model_name, save_dir=save_dir) return sorted_scores def _save_hyperparameter_scores(scores, model_name, save_dir=None): """ Saves scores and parameters for a model to a json file. """ if save_dir is None: save_dir = "../data/hyperparameters/scores/" save_dictionary_as_json(dictn=scores, save_name=f"scores_{model_name}", save_dir=save_dir)
37.488889
118
0.61559
4a195937448ee8d6507421cbb34f613baf3f0533
2,685
py
Python
deploy/demo-cli/blox-create-deployment.py
kylbarnes/blox
53e3b472581568fd8baccd9c5097800cf433bd77
[ "Apache-2.0" ]
null
null
null
deploy/demo-cli/blox-create-deployment.py
kylbarnes/blox
53e3b472581568fd8baccd9c5097800cf433bd77
[ "Apache-2.0" ]
null
null
null
deploy/demo-cli/blox-create-deployment.py
kylbarnes/blox
53e3b472581568fd8baccd9c5097800cf433bd77
[ "Apache-2.0" ]
1
2018-08-04T19:10:28.000Z
2018-08-04T19:10:28.000Z
#!/usr/bin/env python import json, os, sys import common def main(argv): # Command Line Arguments args = [{'arg':'--apigateway', 'dest':'apigateway', 'default':None, 'type':'boolean', 'help':'Call API Gateway endpoint'}] if '--apigateway' in argv: args.extend([{'arg':'--stack', 'dest':'stack', 'default':None, 'help':'CloudFormation stack name'}]) else: args.extend([{'arg':'--host', 'dest':'host', 'default':'localhost:2000', 'help':'Blox Scheduler <Host>:<Port>'}]) args.extend([{'arg':'--environment', 'dest':'environment', 'default':None, 'help':'Blox environment name'}]) args.extend([{'arg':'--deployment-token', 'dest':'token', 'default':None, 'help':'Blox deployment token'}]) # Parse Command Line Arguments params = common.parse_cli_args('Create Blox Deployment', args) if params.apigateway: run_apigateway(params) else: run_local(params) # Call Blox Scheduler API Gateway Endpoint def run_apigateway(params): command = ["cloudformation", "describe-stack-resource", "--stack-name", params.stack, "--logical-resource-id", "RestApi"] restApi = common.run_shell_command(params.region, command) command = ["cloudformation", "describe-stack-resource", "--stack-name", params.stack, "--logical-resource-id", "ApiResource"] restResource = common.run_shell_command(params.region, command) uri = '/v1/environments/%s/deployments' % params.environment queryParams = {'deploymentToken': params.token} uri += common.get_query_string(queryParams) command = ["apigateway", "test-invoke-method", "--rest-api-id", restApi['StackResourceDetail']['PhysicalResourceId'], "--resource-id", restResource['StackResourceDetail']['PhysicalResourceId'], "--http-method", "POST", "--headers", "{}", "--path-with-query-string", uri, "--body", ""] response = common.run_shell_command(params.region, command) print "HTTP Response Code: %d" % response['status'] try: obj = json.loads(response['body']) print json.dumps(obj, indent=2) except Exception as e: print "Error: Could not parse response - %s" % e print json.dumps(response, indent=2) sys.exit(1) # Call Blox Scheduler Local Endpoint def run_local(params): api = common.Object() api.method = 'POST' api.headers = {} api.host = params.host api.uri = '/v1/environments/%s/deployments' % params.environment api.queryParams = {'deploymentToken': params.token} api.data = None response = common.call_api(api) print "HTTP Response Code: %d" % response.status try: obj = json.loads(response.body) print json.dumps(obj, indent=2) except Exception as e: print "Error: Could not parse response - %s" % e print response.body sys.exit(1) if __name__ == "__main__": main(sys.argv[1:])
37.291667
285
0.699814
4a19596c10259847db51928cfabaf22ad7565089
3,985
py
Python
sitefab/Logger.py
ebursztein/SiteFab
3f8662fe5c91c7f631932cf333e6eae5e146077c
[ "Apache-2.0" ]
10
2017-01-02T02:48:27.000Z
2019-09-18T22:44:29.000Z
sitefab/Logger.py
ebursztein/SiteFab
3f8662fe5c91c7f631932cf333e6eae5e146077c
[ "Apache-2.0" ]
173
2016-12-29T05:24:31.000Z
2017-12-29T10:53:35.000Z
sitefab/Logger.py
ebursztein/SiteFab
3f8662fe5c91c7f631932cf333e6eae5e146077c
[ "Apache-2.0" ]
8
2017-04-11T14:34:03.000Z
2019-06-17T09:29:17.000Z
""" Handle SiteFab log output """ import time from collections import defaultdict from collections import Counter from jinja2 import Environment, FileSystemLoader from . import utils from . import files class Logger(): """ SiteFab logging system Note: while the logging system render log in html using jinja2 it use a completly separated on to avoid interferring with user configuration. Templates are located in the config directory under internal_template/ """ def __init__(self, config, site): self.config = config self.site = site # reference to the main object self.logs = {} self.jinja2 = Environment(loader=FileSystemLoader( str(self.config.template_dir))) files.clean_dir(self.config.output_dir) # statistics # def write_stats(self): "Output statistics about the execution" # post per category cat_stats = Counter() cats = self.site.posts_by_category.get_as_dict() for tag, data in cats.items(): cat_stats[tag] = data.meta.num_posts # post per tag tag_stats = Counter() tags = self.site.posts_by_tag.get_as_dict() for tag, data in tags.items(): tag_stats[tag] = data.meta.num_posts template = self.jinja2.get_template(self.config.stats_template) rv = template.render(cats=cat_stats.most_common(), tags=tag_stats.most_common()) files.write_file(self.config.output_dir, "stats.html", rv) def create_log(self, category, name, filename): """ Create a new log Usually used to store a plugin output or a phase information """ log = utils.dict_to_objdict() log.meta = utils.dict_to_objdict() log.events = [] log.meta.name = name log.meta.category = category log.meta.filename = filename log.meta.start_time = time.time() log.meta.num_events = 0 log.meta.ok = 0 log.meta.skipped = 0 log.meta.errors = 0 log_id = "%s:%s" % (category, name) self.logs[log_id] = log return log_id def record_event(self, log_id, target, severity, details): """ Record a event to a given log """ if log_id not in self.logs: return False # recording event event = utils.dict_to_objdict() event.time = time.time() event.target = target event.severity = severity event.details = details self.logs[log_id].meta.num_events += 1 # severity if severity == self.site.OK: self.logs[log_id].meta.ok += 1 event.severity = "OK" elif severity == self.site.SKIPPED: event.severity = "SKIPPED" self.logs[log_id].meta.skipped += 1 elif severity == self.site.ERROR: event.severity = "ERROR" self.logs[log_id].meta.errors += 1 self.logs[log_id].events.append(event) return True def write_log(self, log_id): """ Write log """ if log_id not in self.logs: return False lg = self.logs[log_id] lg.meta.exec_time = round(time.time() - lg.meta.start_time, 2) template = self.jinja2.get_template(str(self.config.log_template)) rv = template.render(events=lg.events, meta=lg.meta) files.write_file(self.config.output_dir, lg.meta.filename, rv) return True def write_log_index(self): " Generate the index.html file that list all generated logs" # allows to output by group logs = defaultdict(list) for l in self.logs.values(): logs[l.meta.category].append(l) template = self.jinja2.get_template(self.config.log_index_template) rv = template.render(logs=logs) files.write_file(self.config.output_dir, "index.html", rv)
32.663934
75
0.607026
4a1959bab287142e9d5a3f7509aafe39dfc32073
1,067
py
Python
functions/sample/python/reviews.py
Bedil09/agfzb-CloudAppDevelopment_Capstone
b1ceddac60c9d5551ce3d87e7371f15cc8be2d52
[ "Apache-2.0" ]
null
null
null
functions/sample/python/reviews.py
Bedil09/agfzb-CloudAppDevelopment_Capstone
b1ceddac60c9d5551ce3d87e7371f15cc8be2d52
[ "Apache-2.0" ]
null
null
null
functions/sample/python/reviews.py
Bedil09/agfzb-CloudAppDevelopment_Capstone
b1ceddac60c9d5551ce3d87e7371f15cc8be2d52
[ "Apache-2.0" ]
null
null
null
from cloudant.client import Cloudant from cloudant.error import CloudantException import requests def main(dict): secret = { "COUCH_URL": "https://f12b5d67-d718-4b5a-ab21-b00755ea589e-bluemix.cloudantnosqldb.appdomain.cloud", "COUCH_USERNAME": "f12b5d67-d718-4b5a-ab21-b00755ea589e-bluemix", "IAM_API_KEY": "hhLIBg18IlcYe-ir_xf6aXAt3prqG4zNRjY_GDLAJwAH", } client = Cloudant.iam( account_name=secret["COUCH_USERNAME"], api_key=secret["IAM_API_KEY"], connect=True, ) my_database = client["reviews"] try: selector = {'id': {'$eq': int(dict["id"])}} rows = my_database.get_query_result( selector, fields=['id', 'name', 'dealership', 'review', 'purchase', 'purchase_date', 'car_make', 'car_model', 'car_year'], raw_result=True) result = { 'body': {'data': rows} } return result except: return { 'statusCode': 404, 'message': 'Something went wrong', }
26.675
108
0.591378
4a195aa426ff4bbf1c3dd86f9fda929c22553ea2
9,686
py
Python
src/orion/core/io/convert.py
mgermain/orion
b0932da99cac5c3db9bbf662588c581cb6ca1849
[ "BSD-3-Clause" ]
null
null
null
src/orion/core/io/convert.py
mgermain/orion
b0932da99cac5c3db9bbf662588c581cb6ca1849
[ "BSD-3-Clause" ]
null
null
null
src/orion/core/io/convert.py
mgermain/orion
b0932da99cac5c3db9bbf662588c581cb6ca1849
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Parse and generate user script's configuration ============================================== Defines and instantiates a converter for configuration file types. Given a file path infer which configuration file parser/emitter it corresponds to. Define `Converter` classes with a common interface for many popular configuration file types. Currently supported: - YAML - JSON - See below, for configuration agnostic parsing A `GenericConverter` is provided that tries and parses configuration files, regardless of their type, according to predefined Oríon's markers. """ import importlib import os from abc import ABC, abstractmethod from collections import deque from orion.core.utils import Factory, nesteddict def infer_converter_from_file_type(config_path, regex=None, default_keyword=""): """Use filetype extension to infer and build the correct configuration file converter. """ _, ext_type = os.path.splitext(os.path.abspath(config_path)) for klass in Converter.types.values(): if ext_type in klass.file_extensions: return klass() if regex is None: return GenericConverter(expression_prefix=default_keyword) return GenericConverter(regex, expression_prefix=default_keyword) class BaseConverter(ABC): """Base class for configuration parsers/generators. Attributes ---------- file_extensions : list of strings Strings starting with '.' which identify usually a file type as a common convention. For instance, ``['.yml', '.yaml']`` for YAML files. """ file_extensions = [] # pylint:disable=no-self-use def get_state_dict(self): """Give state dict that can be used to reconstruct the converter""" return {} def set_state_dict(self, state): """Reset the converter based on previous state""" pass @abstractmethod def parse(self, filepath): """Read dictionary out of the configuration file. Parameters ---------- filepath : str Full path to the original user script's configuration. """ pass @abstractmethod def generate(self, filepath, data): """Create a configuration file at `filepath` using dictionary `data`.""" pass class YAMLConverter(BaseConverter): """Converter for YAML files.""" file_extensions = [".yml", ".yaml"] def __init__(self): """Try to dynamically import yaml module.""" self.yaml = importlib.import_module("yaml") def parse(self, filepath): """Read dictionary out of the configuration file. Parameters ---------- file : str Full path to the original user script's configuration. """ with open(filepath) as f: return self.yaml.safe_load(stream=f) def generate(self, filepath, data): """Create a configuration file at `filepath` using dictionary `data`.""" with open(filepath, "w") as f: self.yaml.dump(data, stream=f) class JSONConverter(BaseConverter): """Converter for JSON files.""" file_extensions = [".json"] def __init__(self): """Try to dynamically import json module.""" self.json = importlib.import_module("json") def parse(self, filepath): """Read dictionary out of the configuration file. Parameters ---------- file : str Full path to the original user script's configuration. """ with open(filepath) as f: return self.json.load(f) def generate(self, filepath, data): """Create a configuration file at `filepath` using dictionary `data`.""" with open(filepath, "w") as f: self.json.dump(data, f) class GenericConverter(BaseConverter): """Generic converter for any configuration file type. For each parameter dimension declared here, one must necessarily provide a ``name`` keyword inside the `Dimension` building expression. Implementation details: As this class is supposed to provide with a generic text parser, semantics are going to be tied to their consequent usage. A template document is going to be created on `parse` and filled with values on `read`. This template document consists the state of this `Converter` object. Dimension should be defined for instance as: ``meaningful_name~uniform(0, 4)`` """ def __init__( self, regex=r"([\/]?[\w|\/|-]+)~([\+]?.*\)|\-|\>[A-Za-z_]\w*)", expression_prefix="", ): """Initialize with the regex expression which will be searched for to define a `Dimension`. """ self.re_module = importlib.import_module("re") self.regex = self.re_module.compile(regex) self.expression_prefix = expression_prefix self.template = None self.has_leading = dict() self.conflict_msg = "Namespace conflict in configuration file '{}', under '{}'" def get_state_dict(self): """Give state dict that can be used to reconstruct the converter""" return dict( regex=self.regex.pattern, expression_prefix=self.expression_prefix, template=self.template, has_leading=self.has_leading, ) def set_state_dict(self, state): """Reset the converter based on previous state""" self.regex = self.re_module.compile(state["regex"]) self.expression_prefix = state["expression_prefix"] self.template = state["template"] self.has_leading = state["has_leading"] def _raise_conflict(self, path, namespace): raise ValueError(self.conflict_msg.format(path, namespace)) def parse(self, filepath): r"""Read dictionary out of the configuration file. Create a template for Python 3 string format and save it as this object's state, by substituing '{\1}' wherever the pattern was matched. By default, the first matched group (\1) corresponds with a dimension's namespace. .. note:: Namespace in substitution templates does not contain the first '/'. Parameters ---------- filepath : str Full path to the original user script's configuration. """ with open(filepath) as f: self.template = f.read() # Search for Oríon semantic pattern pairs = self.regex.findall(self.template) ret = dict(pairs) # Every namespace given should be unique, # raise conflict if there are duplicates if len(pairs) != len(ret): namespaces = list(zip(*pairs))[0] for name in namespaces: if namespaces.count(name) != 1: self._raise_conflict(filepath, name) # Create template using each namespace as format key, # exactly as provided by the user subst = self.re_module.sub(r"{", r"{{", self.template) subst = self.re_module.sub(r"}", r"}}", subst) substituted, num_subs = self.regex.subn(r"{\1!s}", subst) assert len(ret) == num_subs, ( "This means an error in the regex. Report bug. Details::\n" "original: {}\n, regex:{}".format(self.template, self.regex) ) self.template = substituted # Wrap it in style of what the rest of `Converter`s return ret_nested = nesteddict() for namespace, expression in ret.items(): keys = namespace.split("/") if not keys[0]: # It means that user wrote a namespace starting from '/' keys = keys[1:] # Safe because of the regex pattern self.has_leading[namespace[1:]] = "/" stuff = ret_nested for i, key in enumerate(keys[:-1]): stuff = stuff[key] if isinstance(stuff, str): # If `stuff` is not a dictionary while traversing the # namespace path, then this amounts to a conflict which was # not sufficiently get caught self._raise_conflict(filepath, "/".join(keys[: i + 1])) # If final value is already filled, # then this must be also due to a conflict if stuff[keys[-1]]: self._raise_conflict(filepath, namespace) # Keep compatibility with `SpaceBuilder._build_from_config` stuff[keys[-1]] = self.expression_prefix + expression return ret_nested def generate(self, filepath, data): """Create a configuration file at `filepath` using dictionary `data`.""" unnested_data = dict() stack = deque() stack.append(([], data)) while True: try: namespace, stuff = stack.pop() except IndexError: break if isinstance(stuff, dict): for k, v in stuff.items(): stack.append((["/".join(namespace + [str(k)])], v)) else: name = namespace[0] unnested_data[self.has_leading.get(name, "") + name] = stuff print(self.template) print(unnested_data) document = self.template.format(**unnested_data) with open(filepath, "w") as f: f.write(document) # pylint: disable=too-few-public-methods,abstract-method class Converter(BaseConverter, metaclass=Factory): """Class used to inject dependency on a configuration file parser/generator. .. seealso:: :class:`orion.core.utils.Factory` metaclass and `BaseConverter` interface. """ pass
33.4
91
0.615528
4a195b5541adba6ed58510d9f7fe8762fec8b4bb
309
py
Python
Contest/ABC147/c/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC147/c/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC147/c/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 from itertools import* I = input n = int(I()) c = 0;z = [] for i in range(n): for j in range(int(I())): z += [[i] + list(map(int, I().split()))] for j in product([0,1], repeat=n): if all(j[i] == 0 or j[x-1] - y == 0 for i, x, y in z): c = max(c, sum(j)) print(c)
25.75
58
0.501618
4a195d0635407548f65616247cf7b37ee23616c2
569
py
Python
tests/unet_test.py
rutugandhi/Neuron-Finder
76d771bb37b7c73f884dc4a018fa19090ec904d6
[ "MIT" ]
null
null
null
tests/unet_test.py
rutugandhi/Neuron-Finder
76d771bb37b7c73f884dc4a018fa19090ec904d6
[ "MIT" ]
null
null
null
tests/unet_test.py
rutugandhi/Neuron-Finder
76d771bb37b7c73f884dc4a018fa19090ec904d6
[ "MIT" ]
null
null
null
from src.unet import unet unet = UNet() def dice_coef_test(): #Creating testing arrays y_true = np.array([[1,2,3],[1,2,3],[1,2,3]]) y_pred = np.array([[3,2,1],[3,2,1],[3,2,1]]) dc = unet.dice_coef(y_true,y_pred) #Correct Answer is 2*3/(9+9)=6/18=1/3 assert dc == (1/3) def dice_coef_loss_test(): #Creating testing arrays y_true = np.array([[1,2,3],[1,2,3],[1,2,3]]) y_pred = np.array([[3,2,1],[3,2,1],[3,2,1]]) dcl = dice_coef_loss(y_true,y_pred) #Correct Answer is -(2*3/(9+9))=-(6/18)=-(1/3) assert dcl == -(1/3)
24.73913
50
0.567663
4a195d5c7091777c85414c923de0a701c67790b5
447
py
Python
basic_accounting/basic_accounting/doctype/payment_entry_for_supplier/payment_entry_for_supplier.py
EPIsumeet/Accounting-App
82836ee9e5dc21a0292b8590d8ae2c60b9b77b3f
[ "MIT" ]
null
null
null
basic_accounting/basic_accounting/doctype/payment_entry_for_supplier/payment_entry_for_supplier.py
EPIsumeet/Accounting-App
82836ee9e5dc21a0292b8590d8ae2c60b9b77b3f
[ "MIT" ]
null
null
null
basic_accounting/basic_accounting/doctype/payment_entry_for_supplier/payment_entry_for_supplier.py
EPIsumeet/Accounting-App
82836ee9e5dc21a0292b8590d8ae2c60b9b77b3f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, Sherlock Holmes and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class PaymentEntryForSupplier(Document): def before_submit(self): supplier_exists = frappe.db.exists( "Payment Entry for Supplier", { "party_name": self.party_name } ) if supplier_exists: pass
22.35
54
0.740492
4a195da4e4e59bef0f4858c98b8b3b635a85fd57
89
py
Python
home_user/dj_iot/iotdata/apps.py
IoTree/IoTree42
b7bb31f39add4e719a04e63cdd336983f8017137
[ "MIT" ]
4
2020-06-04T08:43:54.000Z
2021-11-15T17:29:23.000Z
home_user/dj_iot/iotdata/apps.py
IoTree/IoTree42
b7bb31f39add4e719a04e63cdd336983f8017137
[ "MIT" ]
3
2020-05-02T10:53:03.000Z
2021-05-20T13:17:08.000Z
home_user/dj_iot/iotdata/apps.py
IoTree/IoTree42
b7bb31f39add4e719a04e63cdd336983f8017137
[ "MIT" ]
3
2020-10-27T13:06:51.000Z
2022-01-08T14:56:36.000Z
from django.apps import AppConfig class IotdataConfig(AppConfig): name = 'iotdata'
14.833333
33
0.752809
4a195e54e1a7363e21be9b30bc9a2a09d710e8b5
530
py
Python
lab/refactoring/extract_method3.py
LukazDane/SPD-2.31-Testing-and-Architecture
63905bf4efde55e5c32d7cfe3ac46abdb2173485
[ "MIT" ]
null
null
null
lab/refactoring/extract_method3.py
LukazDane/SPD-2.31-Testing-and-Architecture
63905bf4efde55e5c32d7cfe3ac46abdb2173485
[ "MIT" ]
null
null
null
lab/refactoring/extract_method3.py
LukazDane/SPD-2.31-Testing-and-Architecture
63905bf4efde55e5c32d7cfe3ac46abdb2173485
[ "MIT" ]
null
null
null
# Written by Kamran Bigdely # Example for Compose Methods: Extract Method. import math xc1 = 4 yc1 = 4.25 xc2 = 53 yc2 = -5.35 # Calculate the distance between the two circle distance = math.sqrt((xc1-xc2)**2 + (yc1 - yc2)**2) print('distance', distance) # *** somewhere else in your program *** xa = -36 ya = 97 xb = .34 yb = .91 # calcualte the length of vector AB vector which is a vector between A and B points. length = length(xa, ya, xb, yb) # length = math.sqrt((xa-xb)*(xa-xb) + (ya-yb)*(ya-yb)) print('length', length)
24.090909
84
0.669811
4a195fcd115507e36da660549c55c283ba94fb42
6,593
py
Python
ansys/dpf/core/operators/geo/normals.py
TheGoldfish01/pydpf-core
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
[ "MIT" ]
11
2021-01-31T15:50:02.000Z
2021-10-01T23:15:38.000Z
ansys/dpf/core/operators/geo/normals.py
TheGoldfish01/pydpf-core
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
[ "MIT" ]
46
2021-01-14T05:00:50.000Z
2021-10-06T18:30:37.000Z
ansys/dpf/core/operators/geo/normals.py
TheGoldfish01/pydpf-core
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
[ "MIT" ]
3
2021-06-30T07:18:30.000Z
2021-09-15T08:43:11.000Z
""" normals ======= """ from ansys.dpf.core.dpf_operator import Operator from ansys.dpf.core.inputs import Input, _Inputs from ansys.dpf.core.outputs import Output, _Outputs, _modify_output_spec_with_one_type from ansys.dpf.core.operators.specification import PinSpecification, Specification """Operators from meshOperatorsCore plugin, from "geo" category """ class normals(Operator): """compute the normals at the given nodes or element scoping based on the given mesh (first version, the element normal is only handled on the shell elements) available inputs: - mesh (MeshedRegion) (optional) - mesh_scoping (Scoping) (optional) - field (Field) (optional) available outputs: - field (Field) Examples -------- >>> from ansys.dpf import core as dpf >>> # Instantiate operator >>> op = dpf.operators.geo.normals() >>> # Make input connections >>> my_mesh = dpf.MeshedRegion() >>> op.inputs.mesh.connect(my_mesh) >>> my_mesh_scoping = dpf.Scoping() >>> op.inputs.mesh_scoping.connect(my_mesh_scoping) >>> my_field = dpf.Field() >>> op.inputs.field.connect(my_field) >>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.geo.normals(mesh=my_mesh,mesh_scoping=my_mesh_scoping,field=my_field) >>> # Get output data >>> result_field = op.outputs.field()""" def __init__(self, mesh=None, mesh_scoping=None, field=None, config=None, server=None): super().__init__(name="normals_provider", config = config, server = server) self._inputs = InputsNormals(self) self._outputs = OutputsNormals(self) if mesh !=None: self.inputs.mesh.connect(mesh) if mesh_scoping !=None: self.inputs.mesh_scoping.connect(mesh_scoping) if field !=None: self.inputs.field.connect(field) @staticmethod def _spec(): spec = Specification(description="""compute the normals at the given nodes or element scoping based on the given mesh (first version, the element normal is only handled on the shell elements)""", map_input_pin_spec={ 0 : PinSpecification(name = "mesh", type_names=["abstract_meshed_region"], optional=True, document=""""""), 1 : PinSpecification(name = "mesh_scoping", type_names=["scoping"], optional=True, document=""""""), 3 : PinSpecification(name = "field", type_names=["field"], optional=True, document="""""")}, map_output_pin_spec={ 0 : PinSpecification(name = "field", type_names=["field"], optional=False, document="""""")}) return spec @staticmethod def default_config(): return Operator.default_config(name = "normals_provider") @property def inputs(self): """Enables to connect inputs to the operator Returns -------- inputs : InputsNormals """ return super().inputs @property def outputs(self): """Enables to get outputs of the operator by evaluationg it Returns -------- outputs : OutputsNormals """ return super().outputs #internal name: normals_provider #scripting name: normals class InputsNormals(_Inputs): """Intermediate class used to connect user inputs to normals operator Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> my_mesh = dpf.MeshedRegion() >>> op.inputs.mesh.connect(my_mesh) >>> my_mesh_scoping = dpf.Scoping() >>> op.inputs.mesh_scoping.connect(my_mesh_scoping) >>> my_field = dpf.Field() >>> op.inputs.field.connect(my_field) """ def __init__(self, op: Operator): super().__init__(normals._spec().inputs, op) self._mesh = Input(normals._spec().input_pin(0), 0, op, -1) self._inputs.append(self._mesh) self._mesh_scoping = Input(normals._spec().input_pin(1), 1, op, -1) self._inputs.append(self._mesh_scoping) self._field = Input(normals._spec().input_pin(3), 3, op, -1) self._inputs.append(self._field) @property def mesh(self): """Allows to connect mesh input to the operator Parameters ---------- my_mesh : MeshedRegion, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> op.inputs.mesh.connect(my_mesh) >>> #or >>> op.inputs.mesh(my_mesh) """ return self._mesh @property def mesh_scoping(self): """Allows to connect mesh_scoping input to the operator Parameters ---------- my_mesh_scoping : Scoping, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> op.inputs.mesh_scoping.connect(my_mesh_scoping) >>> #or >>> op.inputs.mesh_scoping(my_mesh_scoping) """ return self._mesh_scoping @property def field(self): """Allows to connect field input to the operator Parameters ---------- my_field : Field, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> op.inputs.field.connect(my_field) >>> #or >>> op.inputs.field(my_field) """ return self._field class OutputsNormals(_Outputs): """Intermediate class used to get outputs from normals operator Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> # Connect inputs : op.inputs. ... >>> result_field = op.outputs.field() """ def __init__(self, op: Operator): super().__init__(normals._spec().outputs, op) self._field = Output(normals._spec().output_pin(0), 0, op) self._outputs.append(self._field) @property def field(self): """Allows to get field output of the operator Returns ---------- my_field : Field, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.geo.normals() >>> # Connect inputs : op.inputs. ... >>> result_field = op.outputs.field() """ return self._field
30.953052
203
0.586683
4a195ff50a6f5136265516dbb640e9a2f5a483fd
10,019
py
Python
Collections-a-installer/community-general-2.4.0/plugins/modules/cloud/xenserver/xenserver_guest_powerstate.py
d-amien-b/simple-getwordpress
da90d515a0aa837b633d50db4d91d22b031c04a2
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
Collections-a-installer/community-general-2.4.0/plugins/modules/cloud/xenserver/xenserver_guest_powerstate.py
d-amien-b/simple-getwordpress
da90d515a0aa837b633d50db4d91d22b031c04a2
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
Collections-a-installer/community-general-2.4.0/plugins/modules/cloud/xenserver/xenserver_guest_powerstate.py
d-amien-b/simple-getwordpress
da90d515a0aa837b633d50db4d91d22b031c04a2
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright: (c) 2018, Bojan Vitnik <bvitnik@mainstream.rs> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: xenserver_guest_powerstate short_description: Manages power states of virtual machines running on Citrix Hypervisor/XenServer host or pool description: > This module can be used to power on, power off, restart or suspend virtual machine and gracefully reboot or shutdown guest OS of virtual machine. author: - Bojan Vitnik (@bvitnik) <bvitnik@mainstream.rs> notes: - Minimal supported version of XenServer is 5.6. - Module was tested with XenServer 6.5, 7.1, 7.2, 7.6, Citrix Hypervisor 8.0, XCP-ng 7.6 and 8.0. - 'To acquire XenAPI Python library, just run C(pip install XenAPI) on your Ansible Control Node. The library can also be found inside Citrix Hypervisor/XenServer SDK (downloadable from Citrix website). Copy the XenAPI.py file from the SDK to your Python site-packages on your Ansible Control Node to use it. Latest version of the library can also be acquired from GitHub: U(https://raw.githubusercontent.com/xapi-project/xen-api/master/scripts/examples/python/XenAPI/XenAPI.py)' - 'If no scheme is specified in C(hostname), module defaults to C(http://) because C(https://) is problematic in most setups. Make sure you are accessing XenServer host in trusted environment or use C(https://) scheme explicitly.' - 'To use C(https://) scheme for C(hostname) you have to either import host certificate to your OS certificate store or use C(validate_certs: no) which requires XenAPI library from XenServer 7.2 SDK or newer and Python 2.7.9 or newer.' requirements: - python >= 2.6 - XenAPI options: state: description: - Specify the state VM should be in. - If C(state) is set to value other than C(present), then VM is transitioned into required state and facts are returned. - If C(state) is set to C(present), then VM is just checked for existence and facts are returned. type: str default: present choices: [ powered-on, powered-off, restarted, shutdown-guest, reboot-guest, suspended, present ] name: description: - Name of the VM to manage. - VMs running on XenServer do not necessarily have unique names. The module will fail if multiple VMs with same name are found. - In case of multiple VMs with same name, use C(uuid) to uniquely specify VM to manage. - This parameter is case sensitive. type: str aliases: [ name_label ] uuid: description: - UUID of the VM to manage if known. This is XenServer's unique identifier. - It is required if name is not unique. type: str wait_for_ip_address: description: - Wait until XenServer detects an IP address for the VM. - This requires XenServer Tools to be preinstalled on the VM to work properly. type: bool default: no state_change_timeout: description: - 'By default, module will wait indefinitely for VM to change state or acquire an IP address if C(wait_for_ip_address: yes).' - If this parameter is set to positive value, the module will instead wait specified number of seconds for the state change. - In case of timeout, module will generate an error message. type: int default: 0 extends_documentation_fragment: - community.general.xenserver.documentation ''' EXAMPLES = r''' - name: Power on VM community.general.xenserver_guest_powerstate: hostname: "{{ xenserver_hostname }}" username: "{{ xenserver_username }}" password: "{{ xenserver_password }}" name: testvm_11 state: powered-on delegate_to: localhost register: facts ''' RETURN = r''' instance: description: Metadata about the VM returned: always type: dict sample: { "cdrom": { "type": "none" }, "customization_agent": "native", "disks": [ { "name": "windows-template-testing-0", "name_desc": "", "os_device": "xvda", "size": 42949672960, "sr": "Local storage", "sr_uuid": "0af1245e-bdb0-ba33-1446-57a962ec4075", "vbd_userdevice": "0" }, { "name": "windows-template-testing-1", "name_desc": "", "os_device": "xvdb", "size": 42949672960, "sr": "Local storage", "sr_uuid": "0af1245e-bdb0-ba33-1446-57a962ec4075", "vbd_userdevice": "1" } ], "domid": "56", "folder": "", "hardware": { "memory_mb": 8192, "num_cpu_cores_per_socket": 2, "num_cpus": 4 }, "home_server": "", "is_template": false, "name": "windows-template-testing", "name_desc": "", "networks": [ { "gateway": "192.168.0.254", "gateway6": "fc00::fffe", "ip": "192.168.0.200", "ip6": [ "fe80:0000:0000:0000:e9cb:625a:32c5:c291", "fc00:0000:0000:0000:0000:0000:0000:0001" ], "mac": "ba:91:3a:48:20:76", "mtu": "1500", "name": "Pool-wide network associated with eth1", "netmask": "255.255.255.128", "prefix": "25", "prefix6": "64", "vif_device": "0" } ], "other_config": { "base_template_name": "Windows Server 2016 (64-bit)", "import_task": "OpaqueRef:e43eb71c-45d6-5351-09ff-96e4fb7d0fa5", "install-methods": "cdrom", "instant": "true", "mac_seed": "f83e8d8a-cfdc-b105-b054-ef5cb416b77e" }, "platform": { "acpi": "1", "apic": "true", "cores-per-socket": "2", "device_id": "0002", "hpet": "true", "nx": "true", "pae": "true", "timeoffset": "-25200", "vga": "std", "videoram": "8", "viridian": "true", "viridian_reference_tsc": "true", "viridian_time_ref_count": "true" }, "state": "poweredon", "uuid": "e3c0b2d5-5f05-424e-479c-d3df8b3e7cda", "xenstore_data": { "vm-data": "" } } ''' import re HAS_XENAPI = False try: import XenAPI HAS_XENAPI = True except ImportError: pass from ansible.module_utils.basic import AnsibleModule from ansible_collections.community.general.plugins.module_utils.xenserver import (xenserver_common_argument_spec, XAPI, XenServerObject, get_object_ref, gather_vm_params, gather_vm_facts, set_vm_power_state, wait_for_vm_ip_address) class XenServerVM(XenServerObject): """Class for managing XenServer VM. Attributes: vm_ref (str): XAPI reference to VM. vm_params (dict): A dictionary with VM parameters as returned by gather_vm_params() function. """ def __init__(self, module): """Inits XenServerVM using module parameters. Args: module: Reference to Ansible module object. """ super(XenServerVM, self).__init__(module) self.vm_ref = get_object_ref(self.module, self.module.params['name'], self.module.params['uuid'], obj_type="VM", fail=True, msg_prefix="VM search: ") self.gather_params() def gather_params(self): """Gathers all VM parameters available in XAPI database.""" self.vm_params = gather_vm_params(self.module, self.vm_ref) def gather_facts(self): """Gathers and returns VM facts.""" return gather_vm_facts(self.module, self.vm_params) def set_power_state(self, power_state): """Controls VM power state.""" state_changed, current_state = set_vm_power_state(self.module, self.vm_ref, power_state, self.module.params['state_change_timeout']) # If state has changed, update vm_params. if state_changed: self.vm_params['power_state'] = current_state.capitalize() return state_changed def wait_for_ip_address(self): """Waits for VM to acquire an IP address.""" self.vm_params['guest_metrics'] = wait_for_vm_ip_address(self.module, self.vm_ref, self.module.params['state_change_timeout']) def main(): argument_spec = xenserver_common_argument_spec() argument_spec.update( state=dict(type='str', default='present', choices=['powered-on', 'powered-off', 'restarted', 'shutdown-guest', 'reboot-guest', 'suspended', 'present']), name=dict(type='str', aliases=['name_label']), uuid=dict(type='str'), wait_for_ip_address=dict(type='bool', default=False), state_change_timeout=dict(type='int', default=0), ) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True, required_one_of=[ ['name', 'uuid'], ], ) result = {'failed': False, 'changed': False} # Module will exit with an error message if no VM is found. vm = XenServerVM(module) # Set VM power state. if module.params['state'] != "present": result['changed'] = vm.set_power_state(module.params['state']) if module.params['wait_for_ip_address']: vm.wait_for_ip_address() result['instance'] = vm.gather_facts() if result['failed']: module.fail_json(**result) else: module.exit_json(**result) if __name__ == '__main__': main()
36.97048
157
0.60525
4a19605f5c10d236cd1cc64147732c13e115a98a
11,400
py
Python
test/functional/tests/cache_ops/test_cleaning_policy_operation.py
andreatomassetti/open-cas-linux
6a6a0267d76dca86de8695a959991ecefdc0ddf8
[ "BSD-3-Clause" ]
1
2022-01-23T23:50:23.000Z
2022-01-23T23:50:23.000Z
test/functional/tests/cache_ops/test_cleaning_policy_operation.py
andreatomassetti/open-cas-linux
6a6a0267d76dca86de8695a959991ecefdc0ddf8
[ "BSD-3-Clause" ]
1
2022-03-21T22:05:26.000Z
2022-03-21T22:05:26.000Z
test/functional/tests/cache_ops/test_cleaning_policy_operation.py
andreatomassetti/open-cas-linux
6a6a0267d76dca86de8695a959991ecefdc0ddf8
[ "BSD-3-Clause" ]
null
null
null
# # Copyright(c) 2019-2021 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause # import time import pytest from datetime import timedelta from api.cas import casadm from api.cas.cache_config import ( CacheMode, CleaningPolicy, FlushParametersAcp, FlushParametersAlru, Time, ) from storage_devices.disk import DiskType, DiskTypeSet, DiskTypeLowerThan from core.test_run import TestRun from test_utils.size import Size, Unit from test_utils.os_utils import Udev, sync from test_tools.fio.fio import Fio from test_tools.fio.fio_param import ReadWrite, IoEngine cores_count = 4 io_size = Size(10000, Unit.Blocks4096) # time_to_wait in seconds # For 4 cores and io_size = 10000 Blocks4096, 30 seconds of waiting should be enough # for CAS cleaner to flush enough data for test purposes. time_to_wait = 30 # Name of CAS cleaner to search for in running processes: cas_cleaner_process_name = "cas_cl_" @pytest.mark.parametrize("cleaning_policy", CleaningPolicy) @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.optane, DiskType.nand])) @pytest.mark.require_disk("core", DiskTypeLowerThan("cache")) def test_cleaning_policies_in_write_back(cleaning_policy): """ title: Test for cleaning policy operation in Write-Back cache mode. description: | Check if ALRU, NOP and ACP cleaning policies preserve their parameters when changed and if they flush dirty data properly in Write-Back cache mode. pass_criteria: - Flush parameters preserve their values when changed. - Dirty data is flushed or not according to the policy used. """ with TestRun.step("Partition cache and core devices"): cache_dev, core_dev = storage_prepare() Udev.disable() with TestRun.step( f"Start cache in Write-Back mode with {cleaning_policy} cleaning policy" ): cache = casadm.start_cache(cache_dev.partitions[0], CacheMode.WB, force=True) set_cleaning_policy_and_params(cache, cleaning_policy) with TestRun.step("Check for running CAS cleaner"): if TestRun.executor.run(f"pgrep {cas_cleaner_process_name}").exit_code != 0: TestRun.fail("CAS cleaner process is not running!") with TestRun.step(f"Add {cores_count} cores to the cache"): core = [] for i in range(cores_count): core.append(cache.add_core(core_dev.partitions[i])) with TestRun.step("Run 'fio'"): fio = fio_prepare() for i in range(cores_count): fio.add_job().target(core[i].path) fio.run() time.sleep(3) core_writes_before_wait_for_cleaning = ( cache.get_statistics().block_stats.core.writes ) with TestRun.step(f"Wait {time_to_wait} seconds"): time.sleep(time_to_wait) with TestRun.step("Check write statistics for core device"): core_writes_after_wait_for_cleaning = ( cache.get_statistics().block_stats.core.writes ) check_cleaning_policy_operation( cleaning_policy, core_writes_before_wait_for_cleaning, core_writes_after_wait_for_cleaning, ) with TestRun.step("Stop all caches"): casadm.stop_all_caches() Udev.enable() @pytest.mark.parametrize("cleaning_policy", CleaningPolicy) @pytest.mark.require_disk("cache", DiskTypeSet([DiskType.optane, DiskType.nand])) @pytest.mark.require_disk("core", DiskTypeLowerThan("cache")) def test_cleaning_policies_in_write_through(cleaning_policy): """ title: Test for cleaning policy operation in Write-Through cache mode. description: | Check if ALRU, NOP and ACP cleaning policies preserve their parameters when changed and if they flush dirty data properly in Write-Through cache mode. pass_criteria: - Flush parameters preserve their values when changed. - Dirty data is flushed or not according to the policy used. """ with TestRun.step("Partition cache and core devices"): cache_dev, core_dev = storage_prepare() Udev.disable() with TestRun.step( f"Start cache in Write-Through mode with {cleaning_policy} cleaning policy" ): cache = casadm.start_cache(cache_dev.partitions[0], CacheMode.WT, force=True) set_cleaning_policy_and_params(cache, cleaning_policy) with TestRun.step("Check for running CAS cleaner"): if TestRun.executor.run(f"pgrep {cas_cleaner_process_name}").exit_code != 0: TestRun.fail("CAS cleaner process is not running!") with TestRun.step(f"Add {cores_count} cores to the cache"): core = [] for i in range(cores_count): core.append(cache.add_core(core_dev.partitions[i])) with TestRun.step("Change cache mode to Write-Back"): cache.set_cache_mode(CacheMode.WB) with TestRun.step("Run 'fio'"): fio = fio_prepare() for i in range(cores_count): fio.add_job().target(core[i].path) fio.run() time.sleep(3) with TestRun.step("Change cache mode back to Write-Through"): cache.set_cache_mode(CacheMode.WT, flush=False) core_writes_before_wait_for_cleaning = ( cache.get_statistics().block_stats.core.writes ) with TestRun.step(f"Wait {time_to_wait} seconds"): time.sleep(time_to_wait) with TestRun.step("Check write statistics for core device"): core_writes_after_wait_for_cleaning = ( cache.get_statistics().block_stats.core.writes ) check_cleaning_policy_operation( cleaning_policy, core_writes_before_wait_for_cleaning, core_writes_after_wait_for_cleaning, ) with TestRun.step("Stop all caches"): casadm.stop_all_caches() Udev.enable() def storage_prepare(): cache_dev = TestRun.disks["cache"] cache_dev.create_partitions([Size(1, Unit.GibiByte)]) core_dev = TestRun.disks["core"] parts = [Size(2, Unit.GibiByte)] * cores_count core_dev.create_partitions(parts) return cache_dev, core_dev def set_cleaning_policy_and_params(cache, cleaning_policy): if cleaning_policy != CleaningPolicy.DEFAULT: cache.set_cleaning_policy(cleaning_policy) current_cleaning_policy = cache.get_cleaning_policy() if current_cleaning_policy != cleaning_policy: TestRun.LOGGER.error( f"Cleaning policy is {current_cleaning_policy}, " f"should be {cleaning_policy}" ) if cleaning_policy == CleaningPolicy.alru: alru_params = FlushParametersAlru() alru_params.wake_up_time = Time(seconds=10) alru_params.staleness_time = Time(seconds=2) alru_params.flush_max_buffers = 100 alru_params.activity_threshold = Time(milliseconds=1000) cache.set_params_alru(alru_params) current_alru_params = cache.get_flush_parameters_alru() if current_alru_params != alru_params: failed_params = "" if current_alru_params.wake_up_time != alru_params.wake_up_time: failed_params += ( f"Wake Up time is {current_alru_params.wake_up_time}, " f"should be {alru_params.wake_up_time}\n" ) if current_alru_params.staleness_time != alru_params.staleness_time: failed_params += ( f"Staleness Time is {current_alru_params.staleness_time}, " f"should be {alru_params.staleness_time}\n" ) if current_alru_params.flush_max_buffers != alru_params.flush_max_buffers: failed_params += ( f"Flush Max Buffers is {current_alru_params.flush_max_buffers}, " f"should be {alru_params.flush_max_buffers}\n" ) if current_alru_params.activity_threshold != alru_params.activity_threshold: failed_params += ( f"Activity Threshold is {current_alru_params.activity_threshold}, " f"should be {alru_params.activity_threshold}\n" ) TestRun.LOGGER.error(f"ALRU parameters did not switch properly:\n{failed_params}") if cleaning_policy == CleaningPolicy.acp: acp_params = FlushParametersAcp() acp_params.wake_up_time = Time(milliseconds=100) acp_params.flush_max_buffers = 64 cache.set_params_acp(acp_params) current_acp_params = cache.get_flush_parameters_acp() if current_acp_params != acp_params: failed_params = "" if current_acp_params.wake_up_time != acp_params.wake_up_time: failed_params += ( f"Wake Up time is {current_acp_params.wake_up_time}, " f"should be {acp_params.wake_up_time}\n" ) if current_acp_params.flush_max_buffers != acp_params.flush_max_buffers: failed_params += ( f"Flush Max Buffers is {current_acp_params.flush_max_buffers}, " f"should be {acp_params.flush_max_buffers}\n" ) TestRun.LOGGER.error(f"ACP parameters did not switch properly:\n{failed_params}") def fio_prepare(): fio = ( Fio() .create_command() .io_engine(IoEngine.libaio) .block_size(Size(4, Unit.KibiByte)) .size(io_size) .read_write(ReadWrite.randwrite) .direct(1) ) return fio def check_cleaning_policy_operation( cleaning_policy, core_writes_before_wait_for_cleaning, core_writes_after_wait_for_cleaning, ): if cleaning_policy == CleaningPolicy.alru: if core_writes_before_wait_for_cleaning.value != 0: TestRun.LOGGER.error( "CAS cleaner started to clean dirty data right after IO! " "According to ALRU parameters set in this test cleaner should " "wait 10 seconds after IO before cleaning dirty data." ) if core_writes_after_wait_for_cleaning <= core_writes_before_wait_for_cleaning: TestRun.LOGGER.error( "ALRU cleaning policy is not working properly! " "Core writes should increase in time while cleaning dirty data." ) if cleaning_policy == CleaningPolicy.nop: if ( core_writes_after_wait_for_cleaning.value != 0 or core_writes_before_wait_for_cleaning.value != 0 ): TestRun.LOGGER.error( "NOP cleaning policy is not working properly! " "There should be no core writes as there is no cleaning of dirty data." ) if cleaning_policy == CleaningPolicy.acp: if core_writes_before_wait_for_cleaning.value == 0: TestRun.LOGGER.error( "CAS cleaner did not start cleaning dirty data right after IO! " "According to ACP policy cleaner should start " "cleaning dirty data right after IO." ) if core_writes_after_wait_for_cleaning <= core_writes_before_wait_for_cleaning: TestRun.LOGGER.error( "ACP cleaning policy is not working properly! " "Core writes should increase in time while cleaning dirty data." )
39.041096
94
0.659474
4a196297c26f6c2ebe3d37c7910eb8267a6546e0
1,099
py
Python
0x0B-python-input_output/12-student.py
FatChicken277/holbertonschool-higher_level_programming
520d6310a5e2a874f8c5f5185d0fb769b6412e7c
[ "CNRI-Python" ]
null
null
null
0x0B-python-input_output/12-student.py
FatChicken277/holbertonschool-higher_level_programming
520d6310a5e2a874f8c5f5185d0fb769b6412e7c
[ "CNRI-Python" ]
null
null
null
0x0B-python-input_output/12-student.py
FatChicken277/holbertonschool-higher_level_programming
520d6310a5e2a874f8c5f5185d0fb769b6412e7c
[ "CNRI-Python" ]
null
null
null
#!/usr/bin/python3 """This module contains a class that class Student that defines a student. (based on 11-student.py) """ class Student(): """Class Student that defines a student. (based on 11-student.py) """ def __init__(self, first_name, last_name, age): """Instantiation with first_name, last_name and age. Arguments: first_name {str} -- student first name. last_name {str} -- student last name. age {int} -- student age. """ self.first_name = first_name self.last_name = last_name self.age = age def to_json(self, attrs=None): """Returns the dictionary description with simple data structure (list, dictionary, string, integer and boolean) for JSON serialization of an object. Returns: dict -- dictionary. """ dic = {} if attrs is None: return self.__dict__ for attr in attrs: if hasattr(self, attr): dic[attr] = getattr(self, attr) return dic
28.179487
69
0.571429
4a196317702587c0a13e783e2e1935468649156c
451
py
Python
settings/fixed_params.py
wesley1001/trading-momentum-transformer
7d6251b32b82cb0f6bf7abb5504a989417469b7b
[ "MIT" ]
27
2022-01-24T01:52:13.000Z
2022-03-30T04:18:29.000Z
settings/fixed_params.py
wesley1001/trading-momentum-transformer
7d6251b32b82cb0f6bf7abb5504a989417469b7b
[ "MIT" ]
1
2022-03-23T11:27:46.000Z
2022-03-28T04:37:54.000Z
settings/fixed_params.py
kieranjwood/trading-momentum-transformer
d7df00bba31f5728e1c8bc735da0208892487142
[ "MIT" ]
21
2022-02-15T09:27:20.000Z
2022-03-30T07:38:09.000Z
MODLE_PARAMS = { "architecture": "TFT", "total_time_steps": 252, "early_stopping_patience": 25, "multiprocessing_workers": 32, "num_epochs": 300, "early_stopping_patience": 25, "fill_blank_dates": False, "split_tickers_individually": True, "random_search_iterations": 50 , "evaluate_diversified_val_sharpe": True, "train_valid_ratio": 0.90, "time_features": False, "force_output_sharpe_length": 0, }
30.066667
44
0.689579
4a1963dba1f2e88add572333dbc706db9555deb5
2,614
py
Python
twitterscraper/main.py
samanthaklee/twitterscraper
c6ec256de26bd24410e30daa56a998958a450c78
[ "MIT" ]
1
2019-08-12T18:34:58.000Z
2019-08-12T18:34:58.000Z
twitterscraper/main.py
samanthaklee/twitterscraper
c6ec256de26bd24410e30daa56a998958a450c78
[ "MIT" ]
null
null
null
twitterscraper/main.py
samanthaklee/twitterscraper
c6ec256de26bd24410e30daa56a998958a450c78
[ "MIT" ]
1
2019-10-08T02:38:09.000Z
2019-10-08T02:38:09.000Z
""" This is a command line application that allows you to scrape twitter! """ import collections import json from argparse import ArgumentParser from datetime import datetime from os.path import isfile from json import dump import logging from twitterscraper import query_tweets from twitterscraper.query import query_all_tweets class JSONEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj, '__json__'): return obj.__json__() elif isinstance(obj, collections.Iterable): return list(obj) elif isinstance(obj, datetime): return obj.isoformat() elif hasattr(obj, '__getitem__') and hasattr(obj, 'keys'): return dict(obj) elif hasattr(obj, '__dict__'): return {member: getattr(obj, member) for member in dir(obj) if not member.startswith('_') and not hasattr(getattr(obj, member), '__call__')} return json.JSONEncoder.default(self, obj) def main(): logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) try: parser = ArgumentParser( description=__doc__ ) parser.add_argument("query", type=str, help="Advanced twitter query") parser.add_argument("-o", "--output", type=str, default="tweets.json", help="Path to a JSON file to store the gathered " "tweets to.") parser.add_argument("-l", "--limit", type=int, default=None, help="Number of minimum tweets to gather.") parser.add_argument("-a", "--all", action='store_true', help="Set this flag if you want to get all tweets " "in the history of twitter. This may take a " "while but also activates parallel tweet " "gathering. The number of tweets however, " "will be capped at around 100000 per 10 " "days.") args = parser.parse_args() if isfile(args.output): logging.error("Output file already exists! Aborting.") exit(-1) if args.all: tweets = query_all_tweets(args.query) else: tweets = query_tweets(args.query, args.limit) with open(args.output, "w") as output: dump(tweets, output, cls=JSONEncoder) except KeyboardInterrupt: logging.info("Program interrupted by user. Quitting...")
36.816901
80
0.573068
4a1964e55729b62cb6465cd65b0e97710644b5f2
386
py
Python
venv/Scripts/pip3.7-script.py
Galeedondon/-shopee
c4b1205a4ce1cd387ff6f2f2071115b13e4cc8b5
[ "Unlicense" ]
null
null
null
venv/Scripts/pip3.7-script.py
Galeedondon/-shopee
c4b1205a4ce1cd387ff6f2f2071115b13e4cc8b5
[ "Unlicense" ]
null
null
null
venv/Scripts/pip3.7-script.py
Galeedondon/-shopee
c4b1205a4ce1cd387ff6f2f2071115b13e4cc8b5
[ "Unlicense" ]
null
null
null
#!Z:\DEMO\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
29.692308
70
0.650259
4a19650ff2e1d7ca307eb09de0bb87a6b0a77dcd
4,057
py
Python
tests/kafkatest/services/log_compaction_tester.py
BoYiZhang/kafka-2.4.0-src
752b76f7f48ca4c5ea20770fd990293b1b28fce4
[ "Apache-2.0" ]
126
2018-08-31T21:47:30.000Z
2022-03-11T10:01:31.000Z
tests/kafkatest/services/log_compaction_tester.py
BoYiZhang/kafka-2.4.0-src
752b76f7f48ca4c5ea20770fd990293b1b28fce4
[ "Apache-2.0" ]
75
2019-03-07T20:24:18.000Z
2022-03-31T02:14:37.000Z
tests/kafkatest/services/log_compaction_tester.py
BoYiZhang/kafka-2.4.0-src
752b76f7f48ca4c5ea20770fd990293b1b28fce4
[ "Apache-2.0" ]
46
2018-09-13T07:27:19.000Z
2022-03-23T17:49:13.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ducktape.services.background_thread import BackgroundThreadService from kafkatest.directory_layout.kafka_path import KafkaPathResolverMixin, CORE_LIBS_JAR_NAME, CORE_DEPENDANT_TEST_LIBS_JAR_NAME from kafkatest.services.security.security_config import SecurityConfig from kafkatest.version import DEV_BRANCH class LogCompactionTester(KafkaPathResolverMixin, BackgroundThreadService): OUTPUT_DIR = "/mnt/logcompaction_tester" LOG_PATH = os.path.join(OUTPUT_DIR, "logcompaction_tester_stdout.log") VERIFICATION_STRING = "Data verification is completed" logs = { "tool_logs": { "path": LOG_PATH, "collect_default": True} } def __init__(self, context, kafka, security_protocol="PLAINTEXT", stop_timeout_sec=30): super(LogCompactionTester, self).__init__(context, 1) self.kafka = kafka self.security_protocol = security_protocol self.security_config = SecurityConfig(self.context, security_protocol) self.stop_timeout_sec = stop_timeout_sec self.log_compaction_completed = False def _worker(self, idx, node): node.account.ssh("mkdir -p %s" % LogCompactionTester.OUTPUT_DIR) cmd = self.start_cmd(node) self.logger.info("LogCompactionTester %d command: %s" % (idx, cmd)) self.security_config.setup_node(node) for line in node.account.ssh_capture(cmd): self.logger.debug("Checking line:{}".format(line)) if line.startswith(LogCompactionTester.VERIFICATION_STRING): self.log_compaction_completed = True def start_cmd(self, node): core_libs_jar = self.path.jar(CORE_LIBS_JAR_NAME, DEV_BRANCH) core_dependant_test_libs_jar = self.path.jar(CORE_DEPENDANT_TEST_LIBS_JAR_NAME, DEV_BRANCH) cmd = "for file in %s; do CLASSPATH=$CLASSPATH:$file; done;" % core_libs_jar cmd += " for file in %s; do CLASSPATH=$CLASSPATH:$file; done;" % core_dependant_test_libs_jar cmd += " export CLASSPATH;" cmd += self.path.script("kafka-run-class.sh", node) cmd += " %s" % self.java_class_name() cmd += " --bootstrap-server %s --messages 1000000 --sleep 20 --duplicates 10 --percent-deletes 10" % (self.kafka.bootstrap_servers(self.security_protocol)) cmd += " 2>> %s | tee -a %s &" % (self.logs["tool_logs"]["path"], self.logs["tool_logs"]["path"]) return cmd def stop_node(self, node): node.account.kill_java_processes(self.java_class_name(), clean_shutdown=True, allow_fail=True) stopped = self.wait_node(node, timeout_sec=self.stop_timeout_sec) assert stopped, "Node %s: did not stop within the specified timeout of %s seconds" % \ (str(node.account), str(self.stop_timeout_sec)) def clean_node(self, node): node.account.kill_java_processes(self.java_class_name(), clean_shutdown=False, allow_fail=True) node.account.ssh("rm -rf %s" % LogCompactionTester.OUTPUT_DIR, allow_fail=False) def java_class_name(self): return "kafka.tools.LogCompactionTester" @property def is_done(self): return self.log_compaction_completed
45.58427
163
0.700271
4a1965df56509f833a3dff843ef255f091a80ece
254
py
Python
conversion.py
cagis2019/conversion_tofix
d27f5df148bec658b872bf767b1aeed798c1720c
[ "Unlicense" ]
2
2019-08-05T21:06:58.000Z
2020-08-03T17:52:23.000Z
conversion.py
cagis2019/conversion_tofix
d27f5df148bec658b872bf767b1aeed798c1720c
[ "Unlicense" ]
7
2017-08-01T20:41:42.000Z
2020-08-03T19:01:34.000Z
conversion.py
cagis2019/conversion_tofix
d27f5df148bec658b872bf767b1aeed798c1720c
[ "Unlicense" ]
92
2017-08-01T18:17:35.000Z
2021-08-02T21:54:00.000Z
"""Conversion tools for Python""" def dollars2cents(dollars): """Convert dollars to cents""" cents = dollars * 100 return cents def gallons2liters(gallons): """Convert gallons to liters""" liters = gallons * 3.785 return liters
21.166667
35
0.665354
4a19660efe911a853cb00269ec81552d0f6b5935
749
py
Python
example_python_client.py
Fifczak/FeedbacksAPI
b35863e3b6cca6c07077571301bcd6d15c7c2c83
[ "MIT" ]
null
null
null
example_python_client.py
Fifczak/FeedbacksAPI
b35863e3b6cca6c07077571301bcd6d15c7c2c83
[ "MIT" ]
null
null
null
example_python_client.py
Fifczak/FeedbacksAPI
b35863e3b6cca6c07077571301bcd6d15c7c2c83
[ "MIT" ]
null
null
null
from requests.auth import HTTPBasicAuth from datetime import datetime import requests import json url_get = "http://192.168.10.232:444/api/feedbacks" url_put = "http://192.168.10.232:444/api/feedbacks/put" headers = {"apikey": "7B5zIqmRGXmrJTFmKa99vcit"} def get_feedbacks(): req = requests.get(url_get, headers=headers)# , files=files) , headers=headers print(req.text) def send_feedback(remark_id, feedback_text): feedback_data = {'im_remark_id' : remark_id, 'feedback' : feedback_text} feedback_data = json.dumps(feedback_data) r = requests.post(url_put, headers=headers, json = feedback_data) print(r.text) #get_feedbacks() #send_feedbacks('12123123', 'One more Test feedback {}'.format(datetime.now()))
34.045455
82
0.728972
4a1966f170e3d8ebd5ed66e0f5730c71c075e448
21,075
py
Python
failed-trials/handwrite.py
hiroki-kyoto/alice
273e7f3d647c685db65d224baacd21e9f0e361f9
[ "MIT" ]
null
null
null
failed-trials/handwrite.py
hiroki-kyoto/alice
273e7f3d647c685db65d224baacd21e9f0e361f9
[ "MIT" ]
null
null
null
failed-trials/handwrite.py
hiroki-kyoto/alice
273e7f3d647c685db65d224baacd21e9f0e361f9
[ "MIT" ]
null
null
null
# handwrite.py import numpy as np import tensorflow as tf from PIL import Image # canvas setting: canvas height and width, and pen radius h, w = 256, 256 r = w // 16 color_bound = 0.5 sim_c = 0.5 # the speed of light in simulation: the maximum of speed enabled sim_d = 1.0/w # the minimum of simulation in space sim_t = sim_d / sim_c num_moves = 128 def depth2color(depth): if depth < color_bound: return depth / color_bound else: return 1.0 def dot(bmp, x, y, p): x_int = int(x * w) y_int = int(y * h) p_int = int(p * r) if p > 0: for i in range(y_int - p_int, y_int + p_int + 1): for j in range(x_int - p_int, x_int + p_int + 1): if 0 <= i < h and 0 <= j < w: if (i - y_int) * (i - y_int) + (j - x_int) * (j - x_int) <= p_int * p_int: bmp[i, j] = np.minimum(1.0, bmp[i, j] + depth2color(p)) # draw black lines on white sheet def update_sheet(bmp_, pos_, vel_, mov_): # start_ includes initial position, pressure. # moves includes: acceleration over position and pressure. # the velocity and position over sheet surface and along the direction # erected to the sheet. x, y, p = pos_[0], pos_[1], pos_[2] v_x, v_y, v_p = vel_[0], vel_[1], vel_[2] a_x, a_y, a_p = mov_[0], mov_[1], mov_[2] last_x = x last_y = y for t in np.arange(0, 1, sim_t): x_t = x + v_x * t + 0.5 * a_x * t * t y_t = y + v_y * t + 0.5 * a_y * t * t p_t = p + v_p * t + 0.5 * a_p * t * t if x_t != last_x or y_t == last_y: dot(bmp_, x_t, y_t, p_t) last_x = x_t last_y = y_t x = x + v_x + 0.5 * a_x y = y + v_y + 0.5 * a_y p = p + v_p + 0.5 * a_p v_x = v_x + a_x v_y = v_y + a_y v_p = v_p + a_p if p > 1 or p < 0: v_p = 0 p = np.minimum(np.maximum(p, 0), 1) if x > 1 or x < 0: v_x = 0 x = np.minimum(np.maximum(x, 0), 1) if y > 1 or y < 0: v_y = 0 y = np.minimum(np.maximum(y, 0), 1) pos_[0] = x pos_[1] = y pos_[2] = p vel_[0] = v_x vel_[1] = v_y vel_[2] = v_p def act_fn(): return tf.nn.leaky_relu def ini_fn(): return tf.initializers.truncated_normal(0.0, 0.1) def dense_block(input_, dims, norm): if norm: out_ = tf.layers.batch_normalization(input_) else: out_ = input_ for i in range(len(dims)-1): out_ = tf.layers.dense( out_, dims[i], act_fn(), True, kernel_initializer=ini_fn()) out_ = tf.layers.dense( out_, dims[-1], None, True, kernel_initializer=ini_fn()) return out_ def conv_block(input_, filters, strides, norm): if norm: out_ = tf.layers.batch_normalization(input_) else: out_ = input_ for i in range(len(filters)-1): out_ = tf.layers.conv2d( out_, filters[i], 3, strides[i], 'same', activation=act_fn(), kernel_initializer=ini_fn()) out_ = tf.layers.conv2d( out_, filters[-1], 3, strides[-1], 'same', kernel_initializer=ini_fn()) return out_ def deconv_block(input_, filters, strides, norm): if norm: out_ = tf.layers.batch_normalization(input_) else: out_ = input_ for i in range(len(filters)-1): out_ = tf.layers.conv2d( out_, filters[i], 3, strides[i], 'same', activation=act_fn(), kernel_initializer=ini_fn()) out_ = tf.layers.conv2d_transpose( out_, filters[-1], 3, strides[-1], 'same', kernel_initializer=ini_fn()) return out_ def action_encoder(t_action): with tf.variable_scope( name_or_scope='action/encoder', reuse=tf.AUTO_REUSE): t_out = dense_block(t_action, [8, 16], False) t_out = dense_block(t_out, [8, 16], True) return t_out def states_encoder(t_states): with tf.variable_scope( name_or_scope='states/encoder', reuse=tf.AUTO_REUSE): # reshape into one-dimension vector in such form: # (v_x, v_y, v_p, x, y, p), a 6-item group. t_out = tf.reshape(t_states, shape=[1, 1, 1, 6]) t_out = dense_block(t_out, [8, 16], False) t_out = dense_block(t_out, [8, 16], True) return t_out def observ_encoder(t_observ): with tf.variable_scope( name_or_scope='observ/encoder', reuse=tf.AUTO_REUSE): t_out = conv_block(t_observ, [8, 16], [2, 2], False) t_out = conv_block(t_out, [8, 16], [1, 2], True) t_out = conv_block(t_out, [8, 4, 1], [1, 1, 1], True) shape_ = t_out.shape.as_list() t_out = tf.reshape(t_out, shape=[1, 1, 1, shape_[1] * shape_[2]]) return t_out def merge_features(t_feat_action, t_feat_states, t_feat_observ): with tf.variable_scope( name_or_scope='merge', reuse=tf.AUTO_REUSE): t_out = tf.concat( [t_feat_action, t_feat_states, t_feat_observ], axis=-1) t_out = dense_block(t_out, [8, 16], True) t_out = dense_block(t_out, [8, 16], True) return t_out def states_decoder(t_feat_merged): with tf.variable_scope( name_or_scope='states/decoder', reuse=tf.AUTO_REUSE): t_out = dense_block(t_feat_merged, [8, 16], True) t_out = dense_block(t_out, [8, 6], False) # reshape into 2-dimension array in such form: # [[v_x, v_y, v_p], [x, y, p]], a 2x3 array. t_out = tf.reshape(t_out, shape=[1, 1, 2, 3]) return t_out def observ_decoder(t_feat_merged): with tf.variable_scope( name_or_scope='observ/decoder', reuse=tf.AUTO_REUSE): t_out = tf.reshape(t_feat_merged, shape=[1, 4, 4, 1]) t_out = deconv_block(t_out, [4, 1], [1, 2], True) t_out = deconv_block(t_out, [4, 1], [1, 2], True) t_out = deconv_block(t_out, [4, 1], [1, 2], True) t_out = deconv_block(t_out, [4, 1], [1, 2], True) return t_out def visualize_bmp(bmp): Image.fromarray(np.uint8((1 - bmp) * 255)).show() def save_bmp(bmp, itr, dir_): Image.fromarray(np.uint8((1 - bmp) * 255)).save('%s/%d.jpg' % (dir_, itr)) def merge_bmp(bmp_ori, bmp_left, bmp_right): seg_width = 3 seg_band = np.zeros([bmp_ori.shape[0], seg_width, 3]) seg_band[:, :, 0] = 0.0 seg_band[:, :, 1] = 1.0 seg_band[:, :, 2] = 1.0 bmp_ori = np.stack([bmp_ori, bmp_ori, bmp_ori], axis=-1) bmp_left = np.stack([bmp_left, bmp_left, bmp_left], axis=-1) bmp_right = np.stack([bmp_right, bmp_right, bmp_right], axis=-1) return np.concatenate((bmp_ori, seg_band, bmp_left, seg_band, bmp_right), axis=1) def expand_dims(tensor, axises): for i in range(len(axises)): tensor = np.expand_dims(tensor, axis=axises[i]) return tensor def cut(bmp): return np.maximum(np.minimum(bmp, 1), 0) class Simulator: def __init__(self): self.t_action = tf.placeholder(dtype=tf.float32, shape=[1, 1, 1, 3]) self.t_states = tf.placeholder(dtype=tf.float32, shape=[1, 1, 2, 3]) self.t_observ = tf.placeholder(dtype=tf.float32, shape=[1, h, w, 1]) self.t_next_states = tf.placeholder(dtype=tf.float32, shape=[1, 1, 2, 3]) self.t_next_observ = tf.placeholder(dtype=tf.float32, shape=[1, h, w, 1]) # build the encoder model t_feat_action = action_encoder(self.t_action) t_feat_states = states_encoder(self.t_states) t_feat_observ = observ_encoder(self.t_observ) print(t_feat_action.shape) print(t_feat_states.shape) print(t_feat_observ.shape) t_feat_merged = merge_features(t_feat_action, t_feat_states, t_feat_observ) print(t_feat_merged.shape) # build the decoder model self.t_pred_states = states_decoder(t_feat_merged) self.t_pred_observ = observ_decoder(t_feat_merged) print(self.t_pred_states.shape) print(self.t_pred_observ.shape) self.t_loss_states = tf.reduce_mean( tf.abs(self.t_pred_states - self.t_next_states)) self.t_loss_observ = tf.reduce_mean( tf.abs(self.t_pred_observ - self.t_next_observ)) alpha = 1.0 self.t_loss_global = self.t_loss_states * alpha + self.t_loss_observ * (1 - alpha) self.t_opt = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(self.t_loss_global) self.sess = tf.Session() def train(self, model_path, dump_path): saver = tf.train.Saver() if tf.train.checkpoint_exists(model_path): saver.restore(self.sess, model_path) else: self.sess.run(tf.global_variables_initializer()) train_step = 100000 reset_prob = 0.01 bmp = np.zeros([h, w], dtype=np.float32) bmp_last = np.zeros([h, w], dtype=np.float32) pos = np.random.rand(3) vel = np.random.rand(3) states = np.stack([vel, pos], axis=0) states_last = np.copy(states) loss_s_av = 0 loss_o_av = 0 for i in range(train_step): if np.random.rand() < reset_prob: bmp[:, :] = 0 pos = np.random.rand(3) vel = np.random.rand(3) states[0, :] = vel states[1, :] = pos bmp_last[:, :] = bmp[:, :] states_last[:, :] = states[:, :] action_ = np.random.rand(3) - 0.5 action_[:2] = 0.05 * action_[:2] action_[2] = 0.5 * action_[2] update_sheet(bmp, pos, vel, action_) states[0, :] = vel states[1, :] = pos pred, _, loss_s, loss_o = self.sess.run( [self.t_pred_observ, self.t_opt, self.t_loss_states, self.t_loss_observ], feed_dict={ self.t_action: expand_dims(action_, axises=[0, 0, 0]), self.t_states: expand_dims(states_last, axises=[0, 0]), self.t_next_states: expand_dims(states, axises=[0, 0]), self.t_observ: expand_dims(bmp_last, axises=[0, -1]), self.t_next_observ: expand_dims(bmp, axises=[0, -1]), } ) m = 100.0 if i < m: loss_s_av = loss_s_av * (i / m) + loss_s * (1 - i / m) loss_o_av = loss_o_av * (i / m) + loss_o * (1 - i / m) else: loss_s_av = loss_s_av * ((m - 1) / m) + loss_s * (1 / m) loss_o_av = loss_o_av * ((m - 1) / m) + loss_o * (1 / m) if i % 1000 == 0: print("Itr=%d States=%.5f Observ=%.5f" % (i, loss_s_av, loss_o_av)) bmp_merged = merge_bmp(bmp, cut(pred[0, :, :, 0])) save_bmp(bmp_merged, i, dump_path) # print('acceleration=%s' % str(action_)) # print('previous velocity=%s' % str(states_last[0, :])) # print('previous position=%s' % str(states_last[1, :])) # print('velocity=%s' % str(states[0, :])) # print('position=%s' % str(states[1, :])) saver.save(self.sess, model_path) def load(self, model_path): pass def test(self, samples): pass class StatePredictor: def __init__(self): self.t_action = tf.placeholder(dtype=tf.float32, shape=[1, 3]) self.t_states = tf.placeholder(dtype=tf.float32, shape=[2, 3]) self.t_next_states = tf.placeholder(dtype=tf.float32, shape=[2, 3]) t_feat = tf.concat((self.t_action, self.t_states), axis=0) t_feat = tf.reshape(t_feat, shape=[1, 9]) t_feat = tf.layers.dense( t_feat, 8, act_fn(), True, kernel_initializer=ini_fn()) t_feat = tf.layers.dense( t_feat, 16, act_fn(), True, kernel_initializer=ini_fn()) t_feat = tf.layers.dense( t_feat, 6, act_fn(), True, kernel_initializer=ini_fn()) self.t_pred_states = tf.reshape(t_feat, shape=[2, 3]) self.t_loss = tf.reduce_max(tf.abs(self.t_pred_states - self.t_next_states)) self.t_opt = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(self.t_loss) self.sess = tf.Session() def train(self, model_path, dump_path): saver = tf.train.Saver() if tf.train.checkpoint_exists(model_path): saver.restore(self.sess, model_path) else: self.sess.run(tf.global_variables_initializer()) train_step = 1000000 reset_prob = 0.01 pos = np.random.rand(3) vel = np.random.rand(3) states = np.stack([vel, pos], axis=0) states_last = np.copy(states) loss_cache = np.zeros([1000]) for i in range(train_step): if np.random.rand() < reset_prob: pos = np.random.rand(3) vel = np.random.rand(3) states[0, :] = vel[:] states[1, :] = pos[:] states_last[:, :] = states[:, :] action_ = np.random.rand(3) - 0.5 action_[:2] = 0.1 * action_[:2] action_[2] = 0.5 * action_[2] # update the states with physical rules pos = pos + vel + 0.5 * action_ vel = vel + action_ valid_mask = np.float32(pos >= 0) valid_mask = valid_mask * np.float32(pos <= 1) vel = vel * valid_mask pos = np.maximum(np.minimum(pos, 1), 0) states[0, :] = vel[:] states[1, :] = pos[:] pred, _, loss = self.sess.run( [ self.t_pred_states, self.t_opt, self.t_loss ], feed_dict={ self.t_action: expand_dims(action_, axises=[0]), self.t_states: states_last, self.t_next_states: states } ) loss_cache[i%len(loss_cache)] = loss if i % 1000 == 0: loss_mean = np.mean(loss_cache) loss_vari = np.sqrt(np.sum(np.square(loss_cache - loss_mean)) / (len(loss_cache) - 1)) print("Itr=%d Loss=%.5f(+/-%.5f)" % (i, loss_mean, loss_vari)) print('velocity: %s - %s' % (str(states[0, :]), str(pred[0, :]))) print('position: %s - %s' % (str(states[1, :]), str(pred[1, :]))) saver.save(self.sess, model_path) # pos: the input position # vel: the input velocity # acc: tge input acceleration def coordconv(pos, vel, acc): h, w = x.shape.as_list()[1], x.shape.as_list()[2] rows = np.linspace(0, 1, h) cols = np.linspace(0, 1, w) rows, cols = np.meshgrid(rows, cols) coords = np.stack([rows, cols], axis=-1) spots = 1 / (1 + tf.reduce_sum(tf.square(coords - pos), axis=-1, keep_dims=True)) class ObservationPredictor: def __init__(self): self.t_action = tf.placeholder(dtype=tf.float32, shape=[1, 3]) self.t_states = tf.placeholder(dtype=tf.float32, shape=[2, 3]) self.t_observ = tf.placeholder(dtype=tf.float32, shape=[1, h, w, 1]) self.t_next_observ = tf.placeholder(dtype=tf.float32, shape=[1, h, w, 1]) t_feat = tf.concat((self.t_action, self.t_states), axis=0) t_feat = tf.reshape(t_feat, shape=[1, 9]) t_feat = tf.layers.dense( t_feat, 8, act_fn(), True, kernel_initializer=ini_fn()) t_feat = tf.layers.dense( t_feat, 16, act_fn(), True, kernel_initializer=ini_fn()) t_feat = tf.layers.dense( t_feat, 64, act_fn(), True, kernel_initializer=ini_fn()) # convert into a image t_feat = tf.reshape(t_feat, [1, 8, 8, 1]) t_feat = tf.image.resize_bilinear(t_feat, [h, w]) # t_feat = tf.layers.conv2d_transpose( # inputs=t_feat, # filters=4, # kernel_size=3, # strides=2, # padding='same', # activation=act_fn(), # kernel_initializer=ini_fn()) # t_feat = tf.layers.conv2d_transpose( # inputs=t_feat, # filters=4, # kernel_size=3, # strides=2, # padding='same', # activation=act_fn(), # kernel_initializer=ini_fn()) # t_feat = tf.layers.conv2d_transpose( # inputs=t_feat, # filters=4, # kernel_size=3, # strides=2, # padding='same', # activation=act_fn(), # kernel_initializer=ini_fn()) # t_feat = tf.layers.conv2d_transpose( # inputs=t_feat, # filters=1, # kernel_size=3, # strides=2, # padding='same', # activation=act_fn(), # kernel_initializer=ini_fn()) self.t_pred_observ = tf.minimum(t_feat + self.t_observ, 1.0) self.t_loss = tf.reduce_sum(tf.abs(self.t_pred_observ - self.t_next_observ)) self.t_opt = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(self.t_loss) self.sess = tf.Session() def train(self, model_path, dump_path): saver = tf.train.Saver() if tf.train.checkpoint_exists(model_path): saver.restore(self.sess, model_path) else: self.sess.run(tf.global_variables_initializer()) train_step = 100000 reset_prob = 1.0 bmp = np.zeros([h, w], dtype=np.float32) bmp_last = np.zeros([h, w], dtype=np.float32) pos = np.random.rand(3) vel = np.random.rand(3) states = np.stack([vel, pos], axis=0) states_last = np.copy(states) loss_cache = np.zeros([1000]) for i in range(train_step): if np.random.rand() < reset_prob: bmp[:, :] = 0 pos = np.random.rand(3) vel = np.random.rand(3) - 0.5 states[0, :] = vel[:] states[1, :] = pos[:] bmp_last[:, :] = bmp[:, :] states_last[:, :] = states[:, :] action_ = np.random.rand(3) - 0.5 action_[:2] = 0.1 * action_[:2] action_[2] = 0.5 * action_[2] # update the states with physical rules update_sheet(bmp, pos, vel, action_) states[0, :] = vel states[1, :] = pos pred, _, loss = self.sess.run( [ self.t_pred_observ, self.t_opt, self.t_loss ], feed_dict={ self.t_action: expand_dims(action_, axises=[0]), self.t_states: states_last, self.t_observ: expand_dims(bmp_last, axises=[-1, 0]), self.t_next_observ: expand_dims(bmp, axises=[-1, 0]) } ) loss_cache[i%len(loss_cache)] = loss if (i + 1) % 1000 == 0: loss_mean = np.mean(loss_cache) loss_vari = np.sqrt(np.sum(np.square(loss_cache - loss_mean)) / (len(loss_cache) - 1)) print("Itr=%d Loss=%.5f(+/-%.5f)" % (i, loss_mean, loss_vari)) bmp_merged = merge_bmp(bmp, cut(bmp - bmp_last), cut(pred[0, :, :, 0] - bmp_last)) save_bmp(bmp_merged, i, dump_path) saver.save(self.sess, model_path) def example_chinese_word(): return np.array([ [0.01, 0.02, 0.2], [0.0, -0.02, 0.0], [0.3, -0.02, -0.07], [-0.3, 0.04, 0.03], [-0.1, 0.25, -0.5], [-0.05, 0.0, 0.5], [0.1, -0.7, -1.0], [0.1, 0.0, 1.0], [0.05, 0.6, 0.8], [-0.35, 0.3, -1.5], [0.0, -0.3, 1.0] ]) def dataset_stroke(): strokes = list() # horizontal strokes strokes.append(np.array([ [0.1, 0.05, 0.5], ])) return strokes if __name__ == '__main__': bmp = np.zeros([h, w], dtype=np.float32) pos = np.array([0.5, 0.5, 0.0]) vel = np.zeros([3]) moves = dataset_stroke()[0] for mov_ in moves: update_sheet(bmp, pos, vel, mov_) visualize_bmp(bmp) # sim = Simulator() # sim.train('models/simulator.ckpt', 'shots') # state_predictor = StatePredictor() # state_predictor.train('models/state_predictor.ckpt', 'shots') # observ_predictor = ObservationPredictor() # observ_predictor.train('models/observ_predictor.ckpt', 'shots')
31.931818
102
0.528114
4a196720344766ddc87bbf07add93a6b48fe114f
5,276
py
Python
src/raman_fitting/exporting/exporter.py
MyPyDavid/raman_fitting
a827ab578ae801e185384159f145ae4dfad39549
[ "MIT" ]
3
2021-03-03T21:02:11.000Z
2021-05-14T09:24:40.000Z
src/raman_fitting/exporting/exporter.py
MyPyDavid/raman_fitting
a827ab578ae801e185384159f145ae4dfad39549
[ "MIT" ]
8
2021-06-25T22:54:53.000Z
2021-08-09T10:07:30.000Z
src/raman_fitting/exporting/exporter.py
MyPyDavid/raman_fitting
a827ab578ae801e185384159f145ae4dfad39549
[ "MIT" ]
2
2021-07-08T09:49:49.000Z
2022-03-19T14:43:01.000Z
import pandas as pd from raman_fitting.exporting.plotting import fit_spectrum_plot, raw_data_export import logging logger = logging.getLogger(__name__) class ExporterError(Exception): """Error occured during the exporting functions""" class Exporter: """ The Exporter class handles all the exporting of spectra and models into figures and xlsx files. """ def __init__(self, arg, raw_out=True, plot=True, model_names_prefix=["1st", "2nd"]): self.raw_out = raw_out self.plot = plot try: self.delegator(arg) except ExporterError: logger.warning( "f{self.__class__.__qualname__} failed export from {type(arg)}" ) except Exception as e: logger.error( "f{self.__class__.__qualname__} failed export with unexpected error {e}" ) # Exporting and Plotting def delegator(self, arg): self.fitter = arg if "Fitter" in type(arg).__name__: self.fitter = arg self.split_results() if self.raw_out: self.raw_export() if self.plot: self.export_fitting_plotting_models() elif isinstance(arg, list): # "list" in type([]).__name__: # FIXME try: self.export_from_list(arg) except Exception as e: logger.error( "f{self.__class__.__qualname__} failed export from list", e ) else: logger.warning( "f{self.__class__.__qualname__} failed export from unknown arg type {type(arg)}" ) raise ExporterError def export_from_list(self, arg): fitter_args = [i for i in arg if hasattr(arg, "fitter")] if fitter_args: FitRes = pd.concat( [ val.FitParameters for exp in fitter_args for k, val in exp.fitter.FitResults.items() ] ) _info = fitter_args[0].fitter.info # self.fitter[0].fitter.info self.export_fitparams_grp_per_model(FitRes, _info) def export_fitparams_grp_per_model(self, FitRes, _info): DestGrpDir = _info.get("DestGrpDir") grpnm = _info["SampleGroup"] for pknm, pkgrp in FitRes.groupby(level=0): peak_destpath = DestGrpDir.joinpath(f"{grpnm}_FitParameters_{pknm}") pkgrp.dropna(axis=1).to_excel( peak_destpath.with_suffix(".xlsx"), index=False ) def raw_export(self): raw_data_export(self.fitter.spectra_arg.fitting_spectra) def split_results(self): pass # self._2nd = _2nd # _1st = {k:val for k,val in self.fitter.FitResults.items() if k.startswith('1st')} # self._1st = _1st def export_fitting_plotting_models(self): pars1, pars2 = [], [] _1st = { k: val for k, val in self.fitter.FitResults.items() if k.startswith("1st") } _2nd = { k: val for k, val in self.fitter.FitResults.items() if k.startswith("2nd") } for modname_2, fitres_2 in _2nd.items(): self.export_xls_from_spec(fitres_2) pars2.append(fitres_2.FitParameters) for modname_1, fitres_1 in _1st.items(): self.export_xls_from_spec(fitres_1) try: fit_spectrum_plot( modname_1, modname_2, fitres_1, fitres_2, plot_Annotation=True, plot_Residuals=True, ) except Exception as e: print( f"Error fit_spectrum_plot:{modname_1}, {fitres_1.raw_data_col}.\n {e}" ) pars1.append(fitres_1.FitParameters) return pd.concat(pars1, sort=False), pd.concat(pars2, sort=False) def export_xls_from_spec(self, res_peak_spec): try: # sID = res_peak_spec.extrainfo['SampleID'] # peak_destpath = res_peak_spec.extrainfo['DestFittingComps.unique()[0].joinpath(f'Model_{res_peak_spec.peak_model}_{sID}') # peak_destpath_extra = res_peak_spec.extrainfo.DestFittingComps.unique()[0].joinpath(f'Extra_{res_peak_spec.peak_model}_{sID}') res_peak_spec.FitComponents.to_excel( res_peak_spec.extrainfo["DestFittingModel"].with_suffix(".xlsx"), index=False, ) # res_peak_spec.extrainfo.to_excel(peak_destpath_extra.with_suffix('.xlsx'), index=False) except Exception as e: print("Error export_xls_from_spec", e) # TODO define fuction for exporting all the indexes _all_index_export # index = RamanExport().export_FitParams_Grp(FitParams1, FitParams2, export_info_out, grpnm,sID) # all_index.append(index) # pars_index = pd.DataFrame(*all_index,columns=list(GrpNames.sGrp_cols[0:2] +('PeakModel','DestPars'))) # pars_index.to_excel( export_info_out.get('DestGrpDir').joinpath(f'{sGr}_index.xlsx'))
36.895105
140
0.576194
4a19682e2c558afd870406e85f48116351d701bd
17,280
py
Python
VENV/lib/python3.6/site-packages/pandas/tests/dtypes/test_cast.py
workingyifei/display-pattern-generator
b27be84c6221fa93833f283109870737b05bfbf6
[ "MIT" ]
69
2020-03-31T06:40:17.000Z
2022-02-25T11:48:18.000Z
venv/lib/python3.7/site-packages/pandas/tests/dtypes/test_cast.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
8
2019-12-04T23:44:11.000Z
2022-02-10T08:31:40.000Z
venv/lib/python3.7/site-packages/pandas/tests/dtypes/test_cast.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
28
2020-04-15T15:24:17.000Z
2021-12-26T04:05:02.000Z
# -*- coding: utf-8 -*- """ These test the private routines in types/cast.py """ import pytest from datetime import datetime, timedelta, date import numpy as np import pandas as pd from pandas import (Timedelta, Timestamp, DatetimeIndex, DataFrame, NaT, Period, Series) from pandas.core.dtypes.cast import ( maybe_downcast_to_dtype, maybe_convert_objects, cast_scalar_to_array, infer_dtype_from_scalar, infer_dtype_from_array, maybe_convert_string_to_object, maybe_convert_scalar, find_common_type, construct_1d_object_array_from_listlike, construct_1d_ndarray_preserving_na, construct_1d_arraylike_from_scalar) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, PeriodDtype) from pandas.core.dtypes.common import ( is_dtype_equal) from pandas.util import testing as tm class TestMaybeDowncast(object): def test_downcast_conv(self): # test downcasting arr = np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_numpy_array_equal(result, arr) arr = np.array([8., 8., 8., 8., 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) arr = np.array([8., 8., 8., 8., 9.0000000000005]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) # GH16875 coercing of bools ser = Series([True, True, False]) result = maybe_downcast_to_dtype(ser, np.dtype(np.float64)) expected = ser tm.assert_series_equal(result, expected) # conversions expected = np.array([1, 2]) for dtype in [np.float64, object, np.int64]: arr = np.array([1.0, 2.0], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected, check_dtype=False) for dtype in [np.float64, object]: expected = np.array([1.0, 2.0, np.nan], dtype=dtype) arr = np.array([1.0, 2.0, np.nan], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected) # empties for dtype in [np.int32, np.float64, np.float32, np.bool_, np.int64, object]: arr = np.array([], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'int64') tm.assert_almost_equal(result, np.array([], dtype=np.int64)) assert result.dtype == np.int64 def test_datetimelikes_nan(self): arr = np.array([1, 2, np.nan]) exp = np.array([1, 2, np.datetime64('NaT')], dtype='datetime64[ns]') res = maybe_downcast_to_dtype(arr, 'datetime64[ns]') tm.assert_numpy_array_equal(res, exp) exp = np.array([1, 2, np.timedelta64('NaT')], dtype='timedelta64[ns]') res = maybe_downcast_to_dtype(arr, 'timedelta64[ns]') tm.assert_numpy_array_equal(res, exp) def test_datetime_with_timezone(self): # GH 15426 ts = Timestamp("2016-01-01 12:00:00", tz='US/Pacific') exp = DatetimeIndex([ts, ts]) res = maybe_downcast_to_dtype(exp, exp.dtype) tm.assert_index_equal(res, exp) res = maybe_downcast_to_dtype(exp.asi8, exp.dtype) tm.assert_index_equal(res, exp) class TestInferDtype(object): def testinfer_dtype_from_scalar(self): # Test that infer_dtype_from_scalar is returning correct dtype for int # and float. for dtypec in [np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == type(data) data = 12 dtype, val = infer_dtype_from_scalar(data) assert dtype == np.int64 for dtypec in [np.float16, np.float32, np.float64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == dtypec data = np.float(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == np.float64 for data in [True, False]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.bool_ for data in [np.complex64(1), np.complex128(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.complex_ for data in [np.datetime64(1, 'ns'), Timestamp(1), datetime(2000, 1, 1, 0, 0)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'M8[ns]' for data in [np.timedelta64(1, 'ns'), Timedelta(1), timedelta(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'm8[ns]' for freq in ['M', 'D']: p = Period('2011-01-01', freq=freq) dtype, val = infer_dtype_from_scalar(p, pandas_dtype=True) assert dtype == 'period[{0}]'.format(freq) assert val == p.ordinal dtype, val = infer_dtype_from_scalar(p) dtype == np.object_ assert val == p # misc for data in [date(2000, 1, 1), Timestamp(1, tz='US/Eastern'), 'foo']: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.object_ @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern', 'Asia/Tokyo']) def testinfer_from_scalar_tz(self, tz): dt = Timestamp(1, tz=tz) dtype, val = infer_dtype_from_scalar(dt, pandas_dtype=True) assert dtype == 'datetime64[ns, {0}]'.format(tz) assert val == dt.value dtype, val = infer_dtype_from_scalar(dt) assert dtype == np.object_ assert val == dt def testinfer_dtype_from_scalar_errors(self): with pytest.raises(ValueError): infer_dtype_from_scalar(np.array([1])) @pytest.mark.parametrize( "arr, expected, pandas_dtype", [('foo', np.object_, False), (b'foo', np.object_, False), (1, np.int_, False), (1.5, np.float_, False), ([1], np.int_, False), (np.array([1], dtype=np.int64), np.int64, False), ([np.nan, 1, ''], np.object_, False), (np.array([[1.0, 2.0]]), np.float_, False), (pd.Categorical(list('aabc')), np.object_, False), (pd.Categorical([1, 2, 3]), np.int64, False), (pd.Categorical(list('aabc')), 'category', True), (pd.Categorical([1, 2, 3]), 'category', True), (Timestamp('20160101'), np.object_, False), (np.datetime64('2016-01-01'), np.dtype('=M8[D]'), False), (pd.date_range('20160101', periods=3), np.dtype('=M8[ns]'), False), (pd.date_range('20160101', periods=3, tz='US/Eastern'), 'datetime64[ns, US/Eastern]', True), (pd.Series([1., 2, 3]), np.float64, False), (pd.Series(list('abc')), np.object_, False), (pd.Series(pd.date_range('20160101', periods=3, tz='US/Eastern')), 'datetime64[ns, US/Eastern]', True)]) def test_infer_dtype_from_array(self, arr, expected, pandas_dtype): dtype, _ = infer_dtype_from_array(arr, pandas_dtype=pandas_dtype) assert is_dtype_equal(dtype, expected) def test_cast_scalar_to_array(self): arr = cast_scalar_to_array((3, 2), 1, dtype=np.int64) exp = np.ones((3, 2), dtype=np.int64) tm.assert_numpy_array_equal(arr, exp) arr = cast_scalar_to_array((3, 2), 1.1) exp = np.empty((3, 2), dtype=np.float64) exp.fill(1.1) tm.assert_numpy_array_equal(arr, exp) arr = cast_scalar_to_array((2, 3), Timestamp('2011-01-01')) exp = np.empty((2, 3), dtype='datetime64[ns]') exp.fill(np.datetime64('2011-01-01')) tm.assert_numpy_array_equal(arr, exp) # pandas dtype is stored as object dtype obj = Timestamp('2011-01-01', tz='US/Eastern') arr = cast_scalar_to_array((2, 3), obj) exp = np.empty((2, 3), dtype=np.object) exp.fill(obj) tm.assert_numpy_array_equal(arr, exp) obj = Period('2011-01-01', freq='D') arr = cast_scalar_to_array((2, 3), obj) exp = np.empty((2, 3), dtype=np.object) exp.fill(obj) tm.assert_numpy_array_equal(arr, exp) class TestMaybe(object): def test_maybe_convert_string_to_array(self): result = maybe_convert_string_to_object('x') tm.assert_numpy_array_equal(result, np.array(['x'], dtype=object)) assert result.dtype == object result = maybe_convert_string_to_object(1) assert result == 1 arr = np.array(['x', 'y'], dtype=str) result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 'y'], dtype=object)) assert result.dtype == object # unicode arr = np.array(['x', 'y']).astype('U') result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 'y'], dtype=object)) assert result.dtype == object # object arr = np.array(['x', 2], dtype=object) result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 2], dtype=object)) assert result.dtype == object def test_maybe_convert_scalar(self): # pass thru result = maybe_convert_scalar('x') assert result == 'x' result = maybe_convert_scalar(np.array([1])) assert result == np.array([1]) # leave scalar dtype result = maybe_convert_scalar(np.int64(1)) assert result == np.int64(1) result = maybe_convert_scalar(np.int32(1)) assert result == np.int32(1) result = maybe_convert_scalar(np.float32(1)) assert result == np.float32(1) result = maybe_convert_scalar(np.int64(1)) assert result == np.float64(1) # coerce result = maybe_convert_scalar(1) assert result == np.int64(1) result = maybe_convert_scalar(1.0) assert result == np.float64(1) result = maybe_convert_scalar(Timestamp('20130101')) assert result == Timestamp('20130101').value result = maybe_convert_scalar(datetime(2013, 1, 1)) assert result == Timestamp('20130101').value result = maybe_convert_scalar(Timedelta('1 day 1 min')) assert result == Timedelta('1 day 1 min').value def test_maybe_infer_to_datetimelike(self): # GH16362 # pandas=0.20.1 raises IndexError: tuple index out of range result = DataFrame(np.array([[NaT, 'a', 'b', 0], [NaT, 'b', 'c', 1]])) assert result.size == 8 # this construction was fine result = DataFrame(np.array([[NaT, 'a', 0], [NaT, 'b', 1]])) assert result.size == 6 # GH19671 result = Series(['M1701', Timestamp('20130101')]) assert result.dtype.kind == 'O' class TestConvert(object): def test_maybe_convert_objects_copy(self): values = np.array([1, 2]) out = maybe_convert_objects(values, copy=False) assert values is out out = maybe_convert_objects(values, copy=True) assert values is not out values = np.array(['apply', 'banana']) out = maybe_convert_objects(values, copy=False) assert values is out out = maybe_convert_objects(values, copy=True) assert values is not out class TestCommonTypes(object): def test_numpy_dtypes(self): # (source_types, destination_type) testcases = ( # identity ((np.int64,), np.int64), ((np.uint64,), np.uint64), ((np.float32,), np.float32), ((np.object,), np.object), # into ints ((np.int16, np.int64), np.int64), ((np.int32, np.uint32), np.int64), ((np.uint16, np.uint64), np.uint64), # into floats ((np.float16, np.float32), np.float32), ((np.float16, np.int16), np.float32), ((np.float32, np.int16), np.float32), ((np.uint64, np.int64), np.float64), ((np.int16, np.float64), np.float64), ((np.float16, np.int64), np.float64), # into others ((np.complex128, np.int32), np.complex128), ((np.object, np.float32), np.object), ((np.object, np.int16), np.object), # bool with int ((np.dtype('bool'), np.int64), np.object), ((np.dtype('bool'), np.int32), np.object), ((np.dtype('bool'), np.int16), np.object), ((np.dtype('bool'), np.int8), np.object), ((np.dtype('bool'), np.uint64), np.object), ((np.dtype('bool'), np.uint32), np.object), ((np.dtype('bool'), np.uint16), np.object), ((np.dtype('bool'), np.uint8), np.object), # bool with float ((np.dtype('bool'), np.float64), np.object), ((np.dtype('bool'), np.float32), np.object), ((np.dtype('datetime64[ns]'), np.dtype('datetime64[ns]')), np.dtype('datetime64[ns]')), ((np.dtype('timedelta64[ns]'), np.dtype('timedelta64[ns]')), np.dtype('timedelta64[ns]')), ((np.dtype('datetime64[ns]'), np.dtype('datetime64[ms]')), np.dtype('datetime64[ns]')), ((np.dtype('timedelta64[ms]'), np.dtype('timedelta64[ns]')), np.dtype('timedelta64[ns]')), ((np.dtype('datetime64[ns]'), np.dtype('timedelta64[ns]')), np.object), ((np.dtype('datetime64[ns]'), np.int64), np.object) ) for src, common in testcases: assert find_common_type(src) == common with pytest.raises(ValueError): # empty find_common_type([]) def test_categorical_dtype(self): dtype = CategoricalDtype() assert find_common_type([dtype]) == 'category' assert find_common_type([dtype, dtype]) == 'category' assert find_common_type([np.object, dtype]) == np.object def test_datetimetz_dtype(self): dtype = DatetimeTZDtype(unit='ns', tz='US/Eastern') assert find_common_type([dtype, dtype]) == 'datetime64[ns, US/Eastern]' for dtype2 in [DatetimeTZDtype(unit='ns', tz='Asia/Tokyo'), np.dtype('datetime64[ns]'), np.object, np.int64]: assert find_common_type([dtype, dtype2]) == np.object assert find_common_type([dtype2, dtype]) == np.object def test_period_dtype(self): dtype = PeriodDtype(freq='D') assert find_common_type([dtype, dtype]) == 'period[D]' for dtype2 in [DatetimeTZDtype(unit='ns', tz='Asia/Tokyo'), PeriodDtype(freq='2D'), PeriodDtype(freq='H'), np.dtype('datetime64[ns]'), np.object, np.int64]: assert find_common_type([dtype, dtype2]) == np.object assert find_common_type([dtype2, dtype]) == np.object @pytest.mark.parametrize('datum1', [1, 2., "3", (4, 5), [6, 7], None]) @pytest.mark.parametrize('datum2', [8, 9., "10", (11, 12), [13, 14], None]) def test_cast_1d_array(self, datum1, datum2): data = [datum1, datum2] result = construct_1d_object_array_from_listlike(data) # Direct comparison fails: https://github.com/numpy/numpy/issues/10218 assert result.dtype == 'object' assert list(result) == data @pytest.mark.parametrize('val', [1, 2., None]) def test_cast_1d_array_invalid_scalar(self, val): pytest.raises(TypeError, construct_1d_object_array_from_listlike, val) def test_cast_1d_arraylike_from_scalar_categorical(self): # GH 19565 - Categorical result from scalar did not maintain categories # and ordering of the passed dtype cats = ['a', 'b', 'c'] cat_type = CategoricalDtype(categories=cats, ordered=False) expected = pd.Categorical(['a', 'a'], categories=cats) result = construct_1d_arraylike_from_scalar('a', len(expected), cat_type) tm.assert_categorical_equal(result, expected, check_category_order=True, check_dtype=True) @pytest.mark.parametrize('values, dtype, expected', [ ([1, 2, 3], None, np.array([1, 2, 3])), (np.array([1, 2, 3]), None, np.array([1, 2, 3])), (['1', '2', None], None, np.array(['1', '2', None])), (['1', '2', None], np.dtype('str'), np.array(['1', '2', None])), ([1, 2, None], np.dtype('str'), np.array(['1', '2', None])), ]) def test_construct_1d_ndarray_preserving_na(values, dtype, expected): result = construct_1d_ndarray_preserving_na(values, dtype=dtype) tm.assert_numpy_array_equal(result, expected)
37.894737
79
0.585532
4a1968791a65079fb0276f740d9d957058347dd3
396
py
Python
fwl-automation-decisions/domain/src/domain/model/zone/ZoneName.py
aherculano/fwl-project
6d4c4d40393b76d45cf13b572b5aabc0696e9285
[ "MIT" ]
null
null
null
fwl-automation-decisions/domain/src/domain/model/zone/ZoneName.py
aherculano/fwl-project
6d4c4d40393b76d45cf13b572b5aabc0696e9285
[ "MIT" ]
null
null
null
fwl-automation-decisions/domain/src/domain/model/zone/ZoneName.py
aherculano/fwl-project
6d4c4d40393b76d45cf13b572b5aabc0696e9285
[ "MIT" ]
null
null
null
class ZoneName(object): def __init__(self, value: str): self.value = value @property def value(self): return self._value @value.setter def value(self, value: str): self._value = value.strip().upper() def __eq__(self, other) -> bool: if isinstance(other, ZoneName): return self.value.__eq__(other.value) return False
22
49
0.598485
4a19698c26c536b09708eb73487d5da431508734
3,745
py
Python
src/third_party/beaengine/tests/0f3865.py
CrackerCat/rp
5fe693c26d76b514efaedb4084f6e37d820db023
[ "MIT" ]
1
2022-01-17T17:40:29.000Z
2022-01-17T17:40:29.000Z
src/third_party/beaengine/tests/0f3865.py
CrackerCat/rp
5fe693c26d76b514efaedb4084f6e37d820db023
[ "MIT" ]
null
null
null
src/third_party/beaengine/tests/0f3865.py
CrackerCat/rp
5fe693c26d76b514efaedb4084f6e37d820db023
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # # @author : beaengine@gmail.com from headers.BeaEnginePython import * from nose.tools import * class TestSuite: def test(self): # EVEX.128.66.0F38.W0 65 /r # vpblendmps xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst myEVEX = EVEX('EVEX.128.66.0F38.W0') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmps') assert_equal(myDisasm.repr(), 'vpblendmps xmm25, xmm16, xmmword ptr [r14]') # EVEX.256.66.0F38.W0 65 /r # vpblendmps ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst myEVEX = EVEX('EVEX.256.66.0F38.W0') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmps') assert_equal(myDisasm.repr(), 'vpblendmps ymm25, ymm16, ymmword ptr [r14]') # EVEX.512.66.0F38.W0 65 /r # vpblendmps zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst myEVEX = EVEX('EVEX.512.66.0F38.W0') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmps') assert_equal(myDisasm.repr(), 'vpblendmps zmm25, zmm16, zmmword ptr [r14]') # EVEX.128.66.0F38.W1 65 /r # vpblendmpd xmm1 {k1}{z}, xmm2, xmm3/m128/m65bcst myEVEX = EVEX('EVEX.128.66.0F38.W1') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmpd') assert_equal(myDisasm.repr(), 'vpblendmpd xmm25, xmm16, xmmword ptr [r14]') # EVEX.256.66.0F38.W1 65 /r # vpblendmpd ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst myEVEX = EVEX('EVEX.256.66.0F38.W1') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmpd') assert_equal(myDisasm.repr(), 'vpblendmpd ymm25, ymm16, ymmword ptr [r14]') # EVEX.512.66.0F38.W1 65 /r # vpblendmpd zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst myEVEX = EVEX('EVEX.512.66.0F38.W1') Buffer = bytes.fromhex('{}650e'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x65) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpblendmpd') assert_equal(myDisasm.repr(), 'vpblendmpd zmm25, zmm16, zmmword ptr [r14]')
42.078652
83
0.657143
4a196b3e67747aa6e900537d286e290b24c2a492
5,959
py
Python
bb-master/sandbox/lib/python3.5/site-packages/buildbot/reporters/pushover.py
Alecto3-D/testable-greeter
09e8e488edfb7e46cf5867b2b5a6ebe0b1929f78
[ "MIT" ]
2
2017-07-11T18:56:27.000Z
2017-07-28T14:01:12.000Z
bb-master/sandbox/lib/python3.5/site-packages/buildbot/reporters/pushover.py
Alecto3-D/testable-greeter
09e8e488edfb7e46cf5867b2b5a6ebe0b1929f78
[ "MIT" ]
1
2017-07-28T13:53:41.000Z
2017-07-31T15:30:40.000Z
bb-master/sandbox/lib/python3.5/site-packages/buildbot/reporters/pushover.py
Alecto3-D/testable-greeter
09e8e488edfb7e46cf5867b2b5a6ebe0b1929f78
[ "MIT" ]
null
null
null
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from __future__ import absolute_import from __future__ import print_function from twisted.internet import defer from twisted.python import log as twlog from buildbot import config from buildbot.process.results import CANCELLED from buildbot.process.results import EXCEPTION from buildbot.process.results import FAILURE from buildbot.process.results import SUCCESS from buildbot.process.results import WARNINGS from buildbot.process.results import Results from buildbot.reporters.message import MessageFormatter as DefaultMessageFormatter from buildbot.reporters.message import MessageFormatterMissingWorker from buildbot.reporters.notifier import NotifierBase from buildbot.util import httpclientservice ENCODING = 'utf8' VALID_PARAMS = {"sound", "callback", "timestamp", "url", "url_title", "device", "retry", "expire", "html"} PRIORITIES = { CANCELLED: 'cancelled', EXCEPTION: 'exception', FAILURE: 'failing', SUCCESS: 'passing', WARNINGS: 'warnings' } class PushoverNotifier(NotifierBase): def checkConfig(self, user_key, api_token, mode=("failing", "passing", "warnings"), tags=None, builders=None, buildSetSummary=False, messageFormatter=None, subject="Buildbot %(result)s in %(title)s on %(builder)s", name=None, schedulers=None, branches=None, priorities=None, otherParams=None, watchedWorkers=None, messageFormatterMissingWorker=None): super(PushoverNotifier, self).checkConfig(mode, tags, builders, buildSetSummary, messageFormatter, subject, False, False, name, schedulers, branches, watchedWorkers) httpclientservice.HTTPClientService.checkAvailable(self.__class__.__name__) if otherParams is not None and set(otherParams.keys()) - VALID_PARAMS: config.error("otherParams can be only 'sound', 'callback', 'timestamp', " "'url', 'url_title', 'device', 'retry', 'expire', or 'html'") @defer.inlineCallbacks def reconfigService(self, user_key, api_token, mode=("failing", "passing", "warnings"), tags=None, builders=None, buildSetSummary=False, messageFormatter=None, subject="Buildbot %(result)s in %(title)s on %(builder)s", name=None, schedulers=None, branches=None, priorities=None, otherParams=None, watchedWorkers=None, messageFormatterMissingWorker=None): if messageFormatter is None: messageFormatter = DefaultMessageFormatter(template_type='html', template_filename='default_notification.txt') if messageFormatterMissingWorker is None: messageFormatterMissingWorker = MessageFormatterMissingWorker( template_filename='missing_notification.txt') super(PushoverNotifier, self).reconfigService(mode, tags, builders, buildSetSummary, messageFormatter, subject, False, False, name, schedulers, branches, watchedWorkers, messageFormatterMissingWorker) self.user_key = user_key self.api_token = api_token if priorities is None: self.priorities = {} else: self.priorities = priorities if otherParams is None: self.otherParams = {} else: self.otherParams = otherParams self._http = yield httpclientservice.HTTPClientService.getService( self.master, 'https://api.pushover.net') def sendMessage(self, body, subject=None, type=None, builderName=None, results=None, builds=None, users=None, patches=None, logs=None, worker=None): if worker is not None and worker not in self.watchedWorkers: return msg = {'message': body} if type == 'html': msg['html'] = '1' try: msg['priority'] = self.priorities[PRIORITIES[results] if worker is None else 'worker_missing'] except KeyError: pass if subject is not None: msg['title'] = subject else: msg['title'] = self.subject % {'result': Results[results], 'projectName': self.master.config.title, 'title': self.master.config.title, 'builder': builderName} return self.sendNotification(msg) def sendNotification(self, params): twlog.msg("sending pushover notification") params.update(dict(user=self.user_key, token=self.api_token)) params.update(self.otherParams) return self._http.post('/1/messages.json', params=params)
44.804511
106
0.608827
4a196b53ef74994b9d4760dfbbf5ce4641ccbb52
1,606
py
Python
setup.py
CADWRDeltaModeling/pydelmod
31700b6853467dfb1af418267426e5014369080f
[ "MIT" ]
null
null
null
setup.py
CADWRDeltaModeling/pydelmod
31700b6853467dfb1af418267426e5014369080f
[ "MIT" ]
4
2020-01-25T00:19:45.000Z
2021-04-06T22:46:34.000Z
setup.py
CADWRDeltaModeling/pydelmod
31700b6853467dfb1af418267426e5014369080f
[ "MIT" ]
2
2019-11-06T20:29:35.000Z
2020-01-03T19:44:55.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages ##------------------ VERSIONING BEST PRACTICES --------------------------## import versioneer with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = ['python', 'pandas', 'pyhecdss', 'pydsm', 'plotly', 'psutil', 'plotly-orca', 'netcdf4', 'qgrid'] setup_requirements = ['pytest-runner', ] test_requirements = ['pytest>=3', ] setup( author="Kijin Nam", author_email='knam@water.ca.gov', python_requires='>=3.7', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.7', ], description="Python package to work with Delta Modeling tasks", entry_points={ 'console_scripts': [ 'pydelmod=pydelmod.cli:main', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='pydelmod', name='pydelmod', packages=find_packages(include=['pydelmod', 'pydelmod.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/CADWRDeltaModeling/pydelmod', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), zip_safe=False, )
28.678571
75
0.631382
4a196cdd07669d0c31fcae309dc385ce2f99d451
931
py
Python
setup.py
traviscook21/pylivy
01bd6bf974323dbe366a7045f5b7cea0aac759dc
[ "MIT" ]
null
null
null
setup.py
traviscook21/pylivy
01bd6bf974323dbe366a7045f5b7cea0aac759dc
[ "MIT" ]
null
null
null
setup.py
traviscook21/pylivy
01bd6bf974323dbe366a7045f5b7cea0aac759dc
[ "MIT" ]
null
null
null
from pathlib import Path from setuptools import setup README = Path(__file__).parent / "README.rst" setup( name="livy", description="A Python client for Apache Livy", long_description=README.read_text(), packages=["livy"], url="https://github.com/acroz/pylivy", author="Andrew Crozier", author_email="wacrozier@gmail.com", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], use_scm_version={"version_scheme": "post-release"}, setup_requires=["wheel", "setuptools_scm"], install_requires=[ "dataclasses; python_version<'3.7'", "requests", "pandas", ], extras_require={"docs": ["sphinx", "sphinx-autodoc-typehints"]}, )
28.212121
68
0.622986
4a196dc030f836477d25d47ccb386d892ec65f3d
6,508
py
Python
aws_jumpcloud/jumpcloud.py
jtimberlake/aws-jumpcloud
61b92f451587635e93437307c85ff0775a5a2f83
[ "MIT" ]
null
null
null
aws_jumpcloud/jumpcloud.py
jtimberlake/aws-jumpcloud
61b92f451587635e93437307c85ff0775a5a2f83
[ "MIT" ]
null
null
null
aws_jumpcloud/jumpcloud.py
jtimberlake/aws-jumpcloud
61b92f451587635e93437307c85ff0775a5a2f83
[ "MIT" ]
null
null
null
import base64 from datetime import datetime, timezone from json import JSONDecodeError import sys from bs4 import BeautifulSoup # pylint: disable=E0401 from requests import Session as HTTPSession from aws_jumpcloud.keyring import Keyring import aws_jumpcloud.onepassword as op class JumpCloudSession(object): HTTP_TIMEOUT = 5 def __init__(self, email, password): self.email = email self.password = password self.http = HTTPSession() self.logged_in = False self.xsrf_token = None def login(self): try: self._authenticate() except JumpCloudMFARequired as e: if sys.stdout.isatty(): otp = self._get_mfa() self._authenticate(otp=otp) else: raise e def _get_mfa(self): if op.installed(): sys.stderr.write(f"1Password CLI found. Using OTP from item: {op.ITEM}\n") mfa = op.get_totp() if mfa: return mfa else: sys.stderr.write(f"1Password OTP not configured for item: {op.ITEM}. " "Falling back to user input.\n") return self._input_mfa() else: return self._input_mfa() def _input_mfa(self): return input("Enter your JumpCloud multi-factor auth code: ").strip() def _authenticate(self, otp=None): assert(not self.logged_in) headers = {'Content-Type': 'application/json', 'X-Requested-With': 'XMLHttpRequest', 'X-Xsrftoken': self._get_xsrf_token()} data = {"email": self.email, "password": self.password} if otp is not None: data['otp'] = otp auth_resp = self.http.post("https://console.jumpcloud.com/userconsole/auth", headers=headers, json=data, allow_redirects=False, timeout=JumpCloudSession.HTTP_TIMEOUT) if auth_resp.status_code == 200: self.logged_in = True Keyring().store_jumpcloud_timestamp(datetime.now(tz=timezone.utc)) else: raise self._auth_failure_exception(auth_resp, otp) def _auth_failure_exception(self, auth_resp, otp): assert(auth_resp.status_code != 200) if self._is_mfa_missing(auth_resp, otp): exception = JumpCloudMFARequired(auth_resp) elif self._is_mfa_failure(auth_resp, otp): exception = JumpCloudMFAFailure(auth_resp) elif auth_resp.status_code == 401: exception = JumpCloudAuthFailure(auth_resp) elif auth_resp.status_code > 500: exception = JumpCloudServerError(auth_resp) else: exception = JumpCloudUnexpectedStatus(auth_resp) return exception def _is_mfa_missing(self, auth_resp, otp): return auth_resp.status_code == 302 and otp is None and \ "error=4014" in auth_resp.headers['Location'] def _is_mfa_failure(self, auth_resp, otp): try: error_msg = auth_resp.json().get("error", "") except JSONDecodeError: error_msg = "" return auth_resp.status_code == 401 and otp is not None and \ "multifactor" in error_msg def _get_xsrf_token(self): if self.xsrf_token is None: xsrf_resp = self.http.get("https://console.jumpcloud.com/userconsole/xsrf", timeout=JumpCloudSession.HTTP_TIMEOUT) assert(xsrf_resp.status_code == 200) self.xsrf_token = xsrf_resp.json().get("xsrf") return self.xsrf_token def get_aws_saml_assertion(self, profile): assert(self.logged_in) aws_resp = self.http.get(profile.jumpcloud_url) if aws_resp.status_code != 200: raise JumpCloudUnexpectedStatus(aws_resp) if "SAMLResponse" not in aws_resp.text: raise JumpCloudMissingSAMLResponse(aws_resp) return self._extract_saml_response(aws_resp.text) def _extract_saml_response(self, html): soup = BeautifulSoup(html, "lxml") tag = soup.find("input", attrs={'name': "SAMLResponse"}) assert(tag is not None) saml_response_b64 = tag.attrs['value'] saml_response = base64.b64decode(saml_response_b64) return saml_response class JumpCloudError(Exception): def __init__(self, message, resp): Exception.__init__(self, message) self.message = message self.response = resp try: self.jumpcloud_error_message = resp.json().get("error") except JSONDecodeError: self.jumpcloud_error_message = None class JumpCloudServerError(JumpCloudError): def __init__(self, resp): message = f"JumpCloud returned HTTP {resp.status_code} server error" JumpCloudError.__init__(self, message, resp) class JumpCloudAuthFailure(JumpCloudError): def __init__(self, resp=None): message = """ JumpCloud authentication failed. Check your username and password and try again. If you are authenticating with a MFA token, ensure you are not reusing a token. """ JumpCloudError.__init__(self, message, resp) class JumpCloudMFARequired(JumpCloudError): def __init__(self, resp): message = "Multi-factor authentication is required on your JumpCloud account." JumpCloudError.__init__(self, message, resp) class JumpCloudMFAFailure(JumpCloudError): def __init__(self, resp): message = "Multi-factor authentication failed. Check your MFA token and try again." JumpCloudError.__init__(self, message, resp) class JumpCloudUnexpectedStatus(JumpCloudError): """Indicates a response that we weren't expecting, i.e. that JumpCloud changed their auth workflow or we didn't reverse-engineer it properly.""" def __init__(self, resp): message = f"JumpCloud returned unexpected HTTP {resp.status_code} response" JumpCloudError.__init__(self, message, resp) class JumpCloudMissingSAMLResponse(JumpCloudError): """Indicates that the SSO URL did not include the expected SAMLResponse field. Either the profile contains an incorrect URL, or JumpCloud changed their SSO workflow.""" def __init__(self, resp): message = "JumpCloud's SSO response did not contain the expected \"SAMLResponse\" field." JumpCloudError.__init__(self, message, resp)
37.402299
97
0.644438
4a196ea4925983aeaca6d26b58181606709b1786
8,324
py
Python
openpnm/algorithms/Porosimetry.py
halotudio/openPNM-copy2
d400ec65e9421256a531f6d22a38255b002d5dcb
[ "MIT" ]
1
2021-05-01T11:10:43.000Z
2021-05-01T11:10:43.000Z
openpnm/algorithms/Porosimetry.py
Jimmy-INL/OpenPNM
1546fa1ac2204443bde916f2037fac383c5069ae
[ "MIT" ]
null
null
null
openpnm/algorithms/Porosimetry.py
Jimmy-INL/OpenPNM
1546fa1ac2204443bde916f2037fac383c5069ae
[ "MIT" ]
null
null
null
from openpnm.algorithms import OrdinaryPercolation from openpnm.utils import logging import numpy as np logger = logging.getLogger(__name__) class Porosimetry(OrdinaryPercolation): r""" Simulates mercury instrustion porosimetry using ordinary percolation Parameters ---------- network : OpenPNM Network object The Network upon which this simulation should be run name : string, optional An identifying name for the object. If none is given then one is generated. project : OpenPNM Project object Either a Network or a Project must be specified Notes ----- Mercury intrusion progresses by applying increasing pressures to the invading mercury phase, and measuring the resultant volume of invading fluid. This corresponds directly to an ordinary percolation process, with access limitations enabled. See Also -------- OrdinaryPercolation """ def __init__(self, settings={}, phase=None, **kwargs): def_set = {'phase': None, 'pore_volume': 'pore.volume', 'throat_volume': 'throat.volume', 'mode': 'bond', 'access_limited': True, 'quantity': 'pressure', 'throat_entry_pressure': 'throat.entry_pressure', 'pore_volume': 'pore.volume', 'throat_volume': 'throat.volume', 'late_pore_filling': '', 'late_throat_filling': '', 'gui': {'setup': {'phase': None, 'quantity': '', 'throat_entry_pressure': '', 'pore_volume': '', 'throat_volume': '', 'late_pore_filling': '', 'late_throat_filling': ''}, 'set_inlets': {'pores': None, 'overwrite': False}, 'set_outlets': {'pores': None, 'overwrite': False}, 'set_residual': {'pores': None, 'throats': None, 'overwrite': False} } } super().__init__(**kwargs) self.settings.update(def_set) # Apply user settings, if any self.settings.update(settings) # Use the reset method to initialize all arrays self.reset() if phase is not None: self.setup(phase=phase) def setup(self, phase=None, quantity='', throat_entry_pressure='', pore_volume='', throat_volume='', late_pore_filling='', late_throat_filling=''): r""" Used to specify necessary arguments to the simulation. This method is useful for resetting the algorithm or applying more explicit control. Parameters ---------- phase : OpenPNM Phase object The Phase object containing the physical properties of the invading fluid. quantity : string The name of the quantity calculated by this algorithm. This is used for instance, by the late pore and throat filling models to indicate the prevailing fluid pressure in the invading phase for calculating the extent of filling. The default is 'pressure'. Note that there is no need to specify 'pore' and/or 'throat' with this as the given value will apply to both. throat_entry_pressure : string The dictionary key on the Phase object where the throat entry pressure values are stored. The default is 'throat.entry_pressure'. pore_volume : string The dictionary key containing the pore volume information. The default is 'pore.volume'. throat_volume : string The dictionary key containing the throat volume information. The default is 'throat.volume'. pore_partial_filling : string The name of the model used to determine partial pore filling as a function of applied pressure. throat_partial_filling : string The name of the model used to determine partial throat filling as a function of applied pressure. """ if phase: self.settings['phase'] = phase.name if quantity: self.settings['quantity'] = quantity if throat_entry_pressure: self.settings['throat_entry_pressure'] = throat_entry_pressure phase = self.project.find_phase(self) self['throat.entry_pressure'] = phase[throat_entry_pressure] if pore_volume: self.settings['pore_volume'] = pore_volume if throat_volume: self.settings['throat_volume'] = throat_volume if late_pore_filling: self.settings['late_pore_filling'] = late_pore_filling if late_throat_filling: self.settings['late_throat_filling'] = late_throat_filling def set_partial_filling(self, propname): r""" Define which pore filling model to apply. Parameters ---------- propname : string Dictionary key on the physics object(s) containing the pore filling model(s) to apply. Notes ----- It is assumed that these models are functions of the `quantity` specified in the algorithms settings. This values is applied to the corresponding phase just prior to regenerating the given pore-scale model(s). """ if propname.startswith('pore'): self.settings['pore_partial_filling'] = propname if propname.startswith('throat'): self.settings['throat_partial_filling'] = propname def run(self, points=25, start=None, stop=None): if self.settings['mode'] != 'bond': raise Exception('Porosimetry must be run as bond percolation') if self.settings['access_limited'] is False: raise Exception('Porosimetry must be run as access limited') super().run(points=points, start=start, stop=stop) run.__doc__ = OrdinaryPercolation.run.__doc__ def results(self, Pc=None): r""" """ if Pc is None: p_inv = self['pore.invasion_pressure'] t_inv = self['throat.invasion_pressure'] results = {'pore.invasion_pressure': p_inv, 'throat.invasion_pressure': t_inv} else: p_inv, t_inv = super().results(Pc).values() phase = self.project.find_phase(self) quantity = self.settings['quantity'].split('.')[-1] lpf = np.array([1]) if self.settings['pore_partial_filling']: # Set pressure on phase to current capillary pressure phase['pore.'+quantity] = Pc # Regenerate corresponding physics model for phys in self.project.find_physics(phase=phase): phys.regenerate_models(self.settings['pore_partial_filling']) # Fetch partial filling fraction from phase object (0->1) lpf = phase[self.settings['pore_partial_filling']] # Calculate filled throat volumes ltf = np.array([1]) if self.settings['throat_partial_filling']: # Set pressure on phase to current capillary pressure phase['throat.'+quantity] = Pc # Regenerate corresponding physics model for phys in self.project.find_physics(phase=phase): phys.regenerate_models(self.settings['throat_partial_filling']) # Fetch partial filling fraction from phase object (0->1) ltf = phase[self.settings['throat_partial_filling']] p_inv = p_inv*lpf t_inv = t_inv*ltf results = {'pore.occupancy': p_inv, 'throat.occupancy': t_inv} return results
40.407767
83
0.566314
4a196f27a908cd166610531f97b8b3ceec6572fb
32,065
py
Python
tests/test_client.py
awesome-archive/WeRoBot
42ac05aa2780fb3681d82c5f8612956d2990c630
[ "MIT" ]
1
2017-06-30T01:29:33.000Z
2017-06-30T01:29:33.000Z
tests/test_client.py
awesome-archive/WeRoBot
42ac05aa2780fb3681d82c5f8612956d2990c630
[ "MIT" ]
null
null
null
tests/test_client.py
awesome-archive/WeRoBot
42ac05aa2780fb3681d82c5f8612956d2990c630
[ "MIT" ]
1
2020-11-01T16:35:32.000Z
2020-11-01T16:35:32.000Z
# -*- coding: utf-8 -*- import os import responses import json import pytest import requests from werobot import WeRoBot from werobot.config import Config from werobot.client import Client, check_error, ClientException from werobot.utils import cached_property try: import urllib.parse as urlparse except ImportError: import urlparse basedir = os.path.dirname(os.path.abspath(__file__)) TOKEN_URL = "https://api.weixin.qq.com/cgi-bin/token" json_header = {'content-type': 'application/json'} def token_callback(request): return 200, json_header, json.dumps({"access_token": "ACCESS_TOKEN", "expires_in": 7200}) def add_token_response(method): def wrapped_func(self, *args, **kwargs): responses.add_callback(responses.GET, TOKEN_URL, callback=token_callback) method(self, *args, **kwargs) return wrapped_func class BaseTestClass: @cached_property def client(self): config = Config() config.from_pyfile(os.path.join(basedir, "client_config.py")) return Client(config) @staticmethod def callback_without_check(request): return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) class TestClientBaseClass(BaseTestClass): def test_id_and_secret(self): assert self.client.appid == "123" assert self.client.appsecret == "321" def test_robot_client(self): robot = WeRoBot() assert robot.client.config == robot.config def test_robot_reuse_client(self): robot = WeRoBot() client_1 = robot.client client_2 = robot.client assert client_1 is client_2 def test_check_error(self): error_json = dict( error_code=0 ) assert error_json == check_error(error_json) error_json = dict( errcode=1, errmsg="test" ) with pytest.raises(ClientException) as err: check_error(error_json) assert err.value.args[0] == "1: test" @responses.activate @add_token_response def test_grant_token(self): # responses.add_callback(responses.GET, TOKEN_URL, callback=token_callback) self.client.grant_token() assert self.client.token == "ACCESS_TOKEN" @responses.activate @add_token_response def test_client_request(self): EMPTY_PARAMS_URL = "http://empty-params.werobot.com/" DATA_EXISTS_URL = "http://data-exists.werobot.com/" def empty_params_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert params["access_token"][0] == self.client.token return 200, json_header, json.dumps({"test": "test"}) def data_exists_url(request): assert json.loads(request.body.decode('utf-8')) == {"test": "test"} return 200, json_header, json.dumps({"test": "test"}) responses.add_callback(responses.POST, DATA_EXISTS_URL, callback=data_exists_url) responses.add_callback(responses.GET, EMPTY_PARAMS_URL, callback=empty_params_callback) responses.add_callback(responses.GET, TOKEN_URL, callback=token_callback) r = self.client.get(url=EMPTY_PARAMS_URL) assert r == {"test": "test"} r = self.client.post(url=DATA_EXISTS_URL, data={"test": "test"}) assert r == {"test": "test"} class TestClientMenuClass(BaseTestClass): CREATE_URL = "https://api.weixin.qq.com/cgi-bin/menu/create" GET_URL = "https://api.weixin.qq.com/cgi-bin/menu/get" DELETE_URL = "https://api.weixin.qq.com/cgi-bin/menu/delete" menu_data = { "button": [ { "type": "click", "name": u"今日歌曲", "key": "V1001_TODAY_MUSIC" }, { "type": "click", "name": u"歌手简介", "key": "V1001_TODAY_SINGER" }, { "name": u"菜单", "sub_button": [ { "type": "view", "name": u"搜索", "url": "http://www.soso.com/" }, { "type": "view", "name": u"视频", "url": "http://v.qq.com/" }, { "type": "click", "name": u"赞一下我们", "key": "V1001_GOOD" } ] } ]} @staticmethod def create_menu_callback(request): def check_menu_data(item): keys = item.keys() assert "name" in keys if "sub_button" in keys: for button in item["sub_button"]: check_menu_data(button) return assert "type" in keys if "type" == "click": assert "key" in keys elif "type" == "view": assert "url" in keys elif "type" == "media_id" or "type" == "view_limited": assert "media_id" in keys try: body = json.loads(request.body.decode("utf-8"))["button"] except KeyError: return 200, json_header, json.dumps({"errcode": 1, "errmsg": "error"}) try: for item in body: check_menu_data(item) except AssertionError: return 200, json_header, json.dumps({"errcode": 1, "errmsg": "error"}) return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_create_menu(self): responses.add_callback(responses.POST, self.CREATE_URL, callback=self.create_menu_callback) r = self.client.create_menu(self.menu_data) assert r == {"errcode": 0, "errmsg": "ok"} with pytest.raises(ClientException) as err: self.client.create_menu({"error": "error"}) assert err.value.args[0] == "1: error" @responses.activate @add_token_response def test_get_menu(self): responses.add_callback(responses.GET, self.GET_URL, callback=self.callback_without_check) r = self.client.get_menu() assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_delete_menu(self): responses.add_callback(responses.GET, self.DELETE_URL, callback=self.callback_without_check) r = self.client.delete_menu() assert r == {"errcode": 0, "errmsg": "ok"} class TestClientGroupClass(BaseTestClass): CREATE_URL = "https://api.weixin.qq.com/cgi-bin/groups/create" GET_URL = "https://api.weixin.qq.com/cgi-bin/groups/get" GET_WITH_ID_URL = "https://api.weixin.qq.com/cgi-bin/groups/getid" UPDATE_URL = "https://api.weixin.qq.com/cgi-bin/groups/update" MOVE_URL = "https://api.weixin.qq.com/cgi-bin/groups/members/update" MOVE_USERS_URL = "https://api.weixin.qq.com/cgi-bin/groups/members/batchupdate" DELETE_URL = "https://api.weixin.qq.com/cgi-bin/groups/delete" @staticmethod def create_group_callback(request): body = json.loads(request.body.decode("utf-8")) assert "group" in body.keys() assert "name" in body["group"].keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def get_groups_with_id_callback(request): body = json.loads(request.body.decode("utf-8")) assert "openid" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def update_group_callback(request): body = json.loads(request.body.decode("utf-8")) assert "group" in body.keys() assert "id" in body["group"].keys() assert "name" in body["group"].keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def move_user_callback(request): body = json.loads(request.body.decode("utf-8")) assert "openid" in body.keys() assert "to_groupid" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def move_users_callback(request): body = json.loads(request.body.decode("utf-8")) assert "openid_list" in body.keys() assert "to_groupid" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def delete_group_callback(request): body = json.loads(request.body.decode("utf-8")) assert "group" in body.keys() assert "id" in body["group"].keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_create_group(self): responses.add_callback(responses.POST, self.CREATE_URL, callback=self.create_group_callback) r = self.client.create_group("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_get_group(self): responses.add_callback(responses.GET, self.GET_URL, callback=self.callback_without_check) r = self.client.get_groups() assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_get_group_with_id(self): responses.add_callback( responses.POST, self.GET_WITH_ID_URL, callback=self.get_groups_with_id_callback ) r = self.client.get_group_by_id("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_update_group(self): responses.add_callback(responses.POST, self.UPDATE_URL, callback=self.update_group_callback) r = self.client.update_group("0", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_move_user(self): responses.add_callback(responses.POST, self.MOVE_URL, callback=self.move_user_callback) r = self.client.move_user("test", "0") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_move_users(self): responses.add_callback( responses.POST, self.MOVE_USERS_URL, callback=self.move_users_callback ) r = self.client.move_users("test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_delete_group(self): responses.add_callback(responses.POST, self.DELETE_URL, callback=self.delete_group_callback) r = self.client.delete_group("test") assert r == {"errcode": 0, "errmsg": "ok"} class TestClientRemarkClass(BaseTestClass): REMARK_URL = "https://api.weixin.qq.com/cgi-bin/user/info/updateremark" @staticmethod def remark_callback(request): body = json.loads(request.body.decode("utf-8")) assert "openid" in body.keys() assert "remark" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_client_remark(self): responses.add_callback(responses.POST, self.REMARK_URL, callback=self.remark_callback) r = self.client.remark_user("test", "test") assert r == {"errcode": 0, "errmsg": "ok"} class TestClientUserInfo(BaseTestClass): SINGLE_USER_URL = "https://api.weixin.qq.com/cgi-bin/user/info" MULTI_USER_URL = "https://api.weixin.qq.com/cgi-bin/user/info/batchget" @staticmethod def single_user_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() assert "openid" in params.keys() assert "lang" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def multi_user_callback(request): body = json.loads(request.body.decode("utf-8")) assert "user_list" in body.keys() for user in body["user_list"]: assert "openid" in user.keys() assert "lang" in user.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_single_user(self): responses.add_callback( responses.GET, self.SINGLE_USER_URL, callback=self.single_user_callback ) r = self.client.get_user_info("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_multi_user(self): responses.add_callback( responses.POST, self.MULTI_USER_URL, callback=self.multi_user_callback ) r = self.client.get_users_info(["test1", "test2"]) assert r == {"errcode": 0, "errmsg": "ok"} class TestClientGetFollowersClass(BaseTestClass): FOLLOWER_URL = "https://api.weixin.qq.com/cgi-bin/user/get" @staticmethod def get_followers_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() assert "next_openid" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_get_followers(self): responses.add_callback( responses.GET, self.FOLLOWER_URL, callback=self.get_followers_callback ) r = self.client.get_followers("test") assert r == {"errcode": 0, "errmsg": "ok"} class TestClientCustomMenuClass(BaseTestClass): CREATE_URL = "https://api.weixin.qq.com/cgi-bin/menu/addconditional" DELETE_URL = "https://api.weixin.qq.com/cgi-bin/menu/delconditional" MATCH_URL = "https://api.weixin.qq.com/cgi-bin/menu/trymatch" custom_data = { "menu_data": [ { "type": "click", "name": u"今日歌曲", "key": "V1001_TODAY_MUSIC" }, { "name": u"菜单", "sub_button": [ { "type": "view", "name": u"搜索", "url": "http://www.soso.com/" }, { "type": "view", "name": u"视频", "url": "http://v.qq.com/" }, { "type": "click", "name": u"赞一下我们", "key": "V1001_GOOD" }] }], "matchrule": { "group_id": "2", "sex": "1", "country": u"中国", "province": u"广东", "city": u"广州", "client_platform_type": "2", "language": "zh_CN" } } @staticmethod def create_custom_menu_callback(request): body = json.loads(request.body.decode("utf-8")) assert "button" in body.keys() assert "matchrule" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def delete_custom_menu_callback(request): body = json.loads(request.body.decode("utf-8")) assert "menuid" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def match_custom_menu(request): body = json.loads(request.body.decode("utf-8")) assert "user_id" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_create_custom_menu(self): responses.add_callback( responses.POST, self.CREATE_URL, callback=self.create_custom_menu_callback ) r = self.client.create_custom_menu(**self.custom_data) assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_delete_custom_menu(self): responses.add_callback( responses.POST, self.DELETE_URL, callback=self.delete_custom_menu_callback ) r = self.client.delete_custom_menu("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_march_custom_menu(self): responses.add_callback(responses.POST, self.MATCH_URL, callback=self.match_custom_menu) r = self.client.match_custom_menu("test") assert r == {"errcode": 0, "errmsg": "ok"} class TestClientResourceClass(BaseTestClass): UPLOAD_URL = "https://api.weixin.qq.com/cgi-bin/media/upload" DOWNLOAD_URL = "https://api.weixin.qq.com/cgi-bin/media/get" ADD_NEWS_URL = "https://api.weixin.qq.com/cgi-bin/material/add_news" UPLOAD_PICTURE_URL = "https://api.weixin.qq.com/cgi-bin/media/uploadimg" UPLOAD_P_URL = "https://api.weixin.qq.com/cgi-bin/material/add_material" DOWNLOAD_P_URL = "https://api.weixin.qq.com/cgi-bin/material/get_material" DELETE_P_URL = "https://api.weixin.qq.com/cgi-bin/material/del_material" UPDATE_NEWS_URL = "https://api.weixin.qq.com/cgi-bin/material/update_news" add_news_data = [{ "title": "test_title", "thumb_media_id": "test", "author": "test", "digest": "test", "show_cover_pic": 1, "content": "test", "content_source_url": "test" }] update_data = { "media_id": "test", "index": "test", "articles": { "title": "test", "thumb_media_id": "test", "author": "test", "digest": "test", "show_cover_pic": 1, "content": "test", "content_source_url": "test" } } @staticmethod def upload_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "type" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def download_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "media_id" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def add_news_callback(request): body = json.loads(request.body.decode("utf-8")) assert "articles" in body.keys() for article in body["articles"]: assert "title" in article.keys() assert "thumb_media_id" in article.keys() assert "author" in article.keys() assert "digest" in article.keys() assert "show_cover_pic" in article.keys() assert "content" in article.keys() assert "content_source_url" in article.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def upload_picture_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def upload_p_media_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() assert "type" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def download_p_media_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() body = json.loads(request.body.decode("utf-8")) assert "media_id" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def delete_p_media_callback(request): body = json.loads(request.body.decode("utf-8")) assert "media_id" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def update_news_callback(request): body = json.loads(request.body.decode("utf-8")) assert "media_id" in body.keys() assert "index" in body.keys() assert "articles" in body.keys() articles = body["articles"] assert "title" in articles.keys() assert "thumb_media_id" in articles.keys() assert "author" in articles.keys() assert "digest" in articles.keys() assert "show_cover_pic" in articles.keys() assert "content" in articles.keys() assert "content_source_url" in articles.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_upload_media(self): responses.add_callback(responses.POST, self.UPLOAD_URL, callback=self.upload_callback) r = self.client.upload_media("test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_download_media(self): responses.add_callback(responses.GET, self.DOWNLOAD_URL, callback=self.download_callback) r = self.client.download_media("test") assert isinstance(r, requests.Response) @responses.activate @add_token_response def test_add_news(self): responses.add_callback(responses.POST, self.ADD_NEWS_URL, callback=self.add_news_callback) r = self.client.add_news(self.add_news_data) assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_upload_news_picture(self): responses.add_callback( responses.POST, self.UPLOAD_PICTURE_URL, callback=self.upload_picture_callback ) r = self.client.upload_news_picture("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_upload_permanent_media(self): responses.add_callback( responses.POST, self.UPLOAD_P_URL, callback=self.upload_p_media_callback) r = self.client.upload_permanent_media("test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_download_permanent_media(self): responses.add_callback( responses.POST, self.DOWNLOAD_P_URL, callback=self.download_p_media_callback ) r = self.client.download_permanent_media("test") assert isinstance(r, requests.Response) @responses.activate @add_token_response def test_delete_permanent_media(self): responses.add_callback( responses.POST, self.DELETE_P_URL, callback=self.delete_p_media_callback ) r = self.client.delete_permanent_media("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_update_news(self): responses.add_callback( responses.POST, self.UPDATE_NEWS_URL, callback=self.update_news_callback ) r = self.client.update_news(self.update_data) assert r == {"errcode": 0, "errmsg": "ok"} class TestUploadVideoClass(BaseTestClass): UPLOAD_VIDEO_URL = "https://api.weixin.qq.com/cgi-bin/material/add_material" @staticmethod def upload_video_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "type" in params.keys() assert params["type"][0] == "video" return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_upload_video(self): responses.add_callback( responses.POST, self.UPLOAD_VIDEO_URL, callback=self.upload_video_callback ) r = self.client.upload_permanent_video("test", "test", "test") assert isinstance(r, requests.Response) class TestMediaClass(BaseTestClass): GET_URL = "https://api.weixin.qq.com/cgi-bin/material/get_materialcount" GET_LIST_URL = "https://api.weixin.qq.com/cgi-bin/material/batchget_material" @staticmethod def get_media_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def get_media_list_callback(request): body = json.loads(request.body.decode("utf-8")) assert "type" in body.keys() assert "offset" in body.keys() assert "count" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_get_media(self): responses.add_callback(responses.GET, self.GET_URL, callback=self.get_media_callback) r = self.client.get_media_count() assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_get_media_list(self): responses.add_callback( responses.POST, self.GET_LIST_URL, callback=self.get_media_list_callback ) r = self.client.get_media_list("test", "test", "test") assert r == {"errcode": 0, "errmsg": "ok"} class TestGetIpListClass(BaseTestClass): GET_URL = "https://api.weixin.qq.com/cgi-bin/getcallbackip" @staticmethod def get_ip_list_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_get_ip_list(self): responses.add_callback(responses.GET, self.GET_URL, callback=self.get_ip_list_callback) r = self.client.get_ip_list() assert r == {"errcode": 0, "errmsg": "ok"} class TestCustomService(BaseTestClass): ADD_URL = "https://api.weixin.qq.com/customservice/kfaccount/add" UPDATE_URL = "https://api.weixin.qq.com/customservice/kfaccount/update" DELETE_URL = "https://api.weixin.qq.com/customservice/kfaccount/del" UPLOAD_URL = "http://api.weixin.qq.com/customservice/kfaccount/uploadheadimg" GET_URL = "https://api.weixin.qq.com/cgi-bin/customservice/getkflist" @staticmethod def add_update_delete_callback(request): body = json.loads(request.body.decode("utf-8")) assert "kf_account" in body.keys() assert "nickname" in body.keys() assert "password" in body.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def upload_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def get_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_add_custom_service_account(self): responses.add_callback( responses.POST, self.ADD_URL, callback=self.add_update_delete_callback ) r = self.client.add_custom_service_account("test", "test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_update_custom_service_account(self): responses.add_callback( responses.POST, self.UPDATE_URL, callback=self.add_update_delete_callback ) r = self.client.update_custom_service_account("test", "test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_delete_custom_service_account(self): responses.add_callback( responses.POST, self.DELETE_URL, callback=self.add_update_delete_callback ) r = self.client.delete_custom_service_account("test", "test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_upload_custom_service_account_avatar(self): responses.add_callback(responses.POST, self.UPLOAD_URL, callback=self.upload_callback) r = self.client.upload_custom_service_account_avatar("test", "test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_get_custom_service_account_list(self): responses.add_callback(responses.GET, self.GET_URL, callback=self.get_callback) r = self.client.get_custom_service_account_list() assert r == {"errcode": 0, "errmsg": "ok"} class TestQrcodeClass(BaseTestClass): CREATE_URL = "https://api.weixin.qq.com/cgi-bin/qrcode/create" SHOW_URL = "https://mp.weixin.qq.com/cgi-bin/showqrcode" @staticmethod def create_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "access_token" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @staticmethod def show_callback(request): params = urlparse.parse_qs(urlparse.urlparse(request.url).query) assert "ticket" in params.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_create_qrcode(self): responses.add_callback(responses.POST, self.CREATE_URL, callback=self.create_callback) r = self.client.create_qrcode("test") assert r == {"errcode": 0, "errmsg": "ok"} @responses.activate @add_token_response def test_show_qrcode(self): responses.add_callback(responses.GET, self.SHOW_URL, callback=self.show_callback) r = self.client.show_qrcode("test") assert isinstance(r, requests.Response) class TestSendArticleMessagesClass(BaseTestClass): URL = "https://api.weixin.qq.com/cgi-bin/message/custom/send" @staticmethod def article_callback(request): body = json.loads(request.body.decode("utf-8")) assert "touser" in body.keys() assert "msgtype" in body.keys() assert body["msgtype"] == "news" assert "news" in body.keys() for article in body["news"]["articles"]: assert "title" in article.keys() assert "description" in article.keys() assert "url" in article.keys() assert "picurl" in article.keys() return 200, json_header, json.dumps({"errcode": 0, "errmsg": "ok"}) @responses.activate @add_token_response def test_send_article_messages(self): responses.add_callback(responses.POST, self.URL, callback=self.article_callback) from werobot.replies import Article articles = [] for _ in range(0, 8): articles.append(Article(*["test_title", "test_description", "test_img", "test_url"])) r = self.client.send_article_message("test_id", articles) assert r == {"errcode": 0, "errmsg": "ok"} articles = [] for _ in range(0, 8): articles.append({ "title": "test_title", "description": "test_description", "url": "test_url", "picurl": "test_pic_url" }) r = self.client.send_article_message("test_id", articles) assert r == {"errcode": 0, "errmsg": "ok"}
36.190745
100
0.61578
4a196f54aa6a64dca205da3f108a7d32d24152e4
4,371
py
Python
config.py
ch-its/DIN-Group-Activity-Recognition-Benchmark
02d29decc7ed8c6c85bf53436956ef36f76e4872
[ "MIT" ]
14
2021-11-29T08:11:07.000Z
2022-02-26T14:23:28.000Z
config.py
ch-its/DIN-Group-Activity-Recognition-Benchmark
02d29decc7ed8c6c85bf53436956ef36f76e4872
[ "MIT" ]
9
2021-08-31T11:55:49.000Z
2021-11-21T03:29:33.000Z
config.py
ch-its/DIN-Group-Activity-Recognition-Benchmark
02d29decc7ed8c6c85bf53436956ef36f76e4872
[ "MIT" ]
6
2021-09-16T11:41:54.000Z
2021-11-10T09:27:19.000Z
import time import os class Config(object): """ class to save config parameter """ def __init__(self, dataset_name): # Global self.image_size = 720, 1280 #input image size self.batch_size = 32 #train batch size self.test_batch_size = 8 #test batch size self.num_boxes = 12 #max number of bounding boxes in each frame # Gpu self.use_gpu=True self.use_multi_gpu=True self.device_list="0,1,2,3" #id list of gpus used for training # Dataset assert(dataset_name in ['volleyball', 'collective']) self.dataset_name=dataset_name if dataset_name=='volleyball': self.data_path = 'data/volleyball/videos' #data path for the volleyball dataset self.train_seqs = [ 1,3,6,7,10,13,15,16,18,22,23,31,32,36,38,39,40,41,42,48,50,52,53,54, 0,2,8,12,17,19,24,26,27,28,30,33,46,49,51] #video id list of train set self.test_seqs = [4,5,9,11,14,20,21,25,29,34,35,37,43,44,45,47] #video id list of test set else: self.data_path='data/collective' #data path for the collective dataset self.test_seqs=[5,6,7,8,9,10,11,15,16,25,28,29] self.train_seqs=[s for s in range(1,45) if s not in self.test_seqs] # Backbone self.backbone='res18' self.crop_size = 5, 5 #crop size of roi align self.train_backbone = False #if freeze the feature extraction part of network, True for stage 1, False for stage 2 self.out_size = 87, 157 #output feature map size of backbone self.emb_features=1056 #output feature map channel of backbone # Activity Action self.num_actions = 9 #number of action categories self.num_activities = 8 #number of activity categories self.actions_loss_weight = 1.0 #weight used to balance action loss and activity loss self.actions_weights = None # Sample self.num_frames = 3 self.num_before = 5 self.num_after = 4 # ARG params self.num_features_boxes = 1024 self.num_features_relation=256 self.num_graph=16 #number of graphs self.num_features_gcn=self.num_features_boxes self.gcn_layers=1 #number of GCN layers self.tau_sqrt=False self.pos_threshold=0.2 #distance mask threshold in position relation # Training Parameters self.train_random_seed = 0 self.train_learning_rate = 1e-4 #initial learning rate self.lr_plan = {11:3e-5, 21:1e-5} #change learning rate in these epochs self.train_dropout_prob = 0.3 #dropout probability self.weight_decay = 0 #l2 weight decay self.max_epoch = 30 #max training epoch self.test_interval_epoch = 1 # Exp self.training_stage=1 #specify stage1 or stage2 self.stage1_model_path='' #path of the base model, need to be set in stage2 self.test_before_train=False self.exp_note='Group-Activity-Recognition' self.exp_name=None self.set_bn_eval = False self.inference_module_name = 'dynamic_volleyball' # Dynamic Inference self.stride = 1 self.ST_kernel_size = 3 self.dynamic_sampling = True self.sampling_ratio = [1, 3] # [1,2,4] self.group = 1 self.scale_factor = True self.beta_factor = True self.load_backbone_stage2 = False self.parallel_inference = False self.hierarchical_inference = False self.lite_dim = None self.num_DIM = 1 self.load_stage2model = False self.stage2model = None # Actor Transformer self.temporal_pooled_first = False # SACRF + BiUTE self.halting_penalty = 0.0001 def init_config(self, need_new_folder=True): if self.exp_name is None: time_str=time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime()) self.exp_name='[%s_stage%d]<%s>'%(self.exp_note,self.training_stage,time_str) self.result_path='result/%s'%self.exp_name self.log_path='result/%s/log.txt'%self.exp_name if need_new_folder: os.mkdir(self.result_path)
37.358974
123
0.614505
4a196f7282c7a05afb85826eb0310c88ccaeae06
546
py
Python
appgen/appgen/admin.py
Ecotrust/madrona-app-generator
078d124a8aacadf8a151da7a5434f68868564431
[ "BSD-3-Clause" ]
null
null
null
appgen/appgen/admin.py
Ecotrust/madrona-app-generator
078d124a8aacadf8a151da7a5434f68868564431
[ "BSD-3-Clause" ]
null
null
null
appgen/appgen/admin.py
Ecotrust/madrona-app-generator
078d124a8aacadf8a151da7a5434f68868564431
[ "BSD-3-Clause" ]
null
null
null
from django.contrib.gis import admin from appgen.models import * from appgen.forms import AppConfigForm admin.site.register(UserFeature) admin.site.register(BaseKml) class WorldGeoAdmin(admin.OSMGeoAdmin): default_lon = 0 default_lat = 0 default_zoom = 1 map_width = 600 map_height = 400 class AppGeoModelAdmin(WorldGeoAdmin): form = AppConfigForm list_display = ('app', 'wms', 'links', 'status', 'desc', 'data_list', 'command_html') # command_html must be last! admin.site.register(AppConfig, AppGeoModelAdmin)
27.3
118
0.739927
4a19701561dbef42247da0d49d382e3de6e45233
672
py
Python
pygipo/management/commands/is_db_up.py
felixhummel/pygipo
e7323de052e3c7f44ec4912bddcbb58abebcc6bf
[ "MIT" ]
null
null
null
pygipo/management/commands/is_db_up.py
felixhummel/pygipo
e7323de052e3c7f44ec4912bddcbb58abebcc6bf
[ "MIT" ]
null
null
null
pygipo/management/commands/is_db_up.py
felixhummel/pygipo
e7323de052e3c7f44ec4912bddcbb58abebcc6bf
[ "MIT" ]
null
null
null
# vim: set fileencoding=utf-8 filetype=python : import django from django.core.management.base import BaseCommand from django.db import connection EXPECTED_EXCEPTIONS = [ 'Name does not resolve', 'the database system is starting up', ] class Command(BaseCommand): def handle(self, *args, **options): try: # this tries to run a statement using the credentials in settings.py with connection.cursor() as cursor: cursor.execute('SELECT 1') except django.db.utils.OperationalError as e: for exp in EXPECTED_EXCEPTIONS: if exp in str(e): raise SystemExit(1)
30.545455
80
0.642857
4a1970e0122c600b5ce85319ff6c687a355b5187
4,735
py
Python
oneflow_cambricon-cambricon/oneflow/python/test/ops/test_smooth_l1_loss.py
wanghongsheng01/oneflow_cambricon
187faaa2cb9ba995080ba22499b6219c2d36f0ac
[ "Apache-2.0" ]
null
null
null
oneflow_cambricon-cambricon/oneflow/python/test/ops/test_smooth_l1_loss.py
wanghongsheng01/oneflow_cambricon
187faaa2cb9ba995080ba22499b6219c2d36f0ac
[ "Apache-2.0" ]
null
null
null
oneflow_cambricon-cambricon/oneflow/python/test/ops/test_smooth_l1_loss.py
wanghongsheng01/oneflow_cambricon
187faaa2cb9ba995080ba22499b6219c2d36f0ac
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import uuid from collections import OrderedDict import os import numpy as np import oneflow as flow import oneflow.typing as oft from test_util import GenArgList, type_name_to_flow_type, type_name_to_np_type def gen_numpy_data(prediction, label, beta=1.0): original_shape = prediction.shape elem_cnt = prediction.size prediction = prediction.reshape(-1) label = label.reshape(-1) loss = np.zeros((elem_cnt)).astype(prediction.dtype) prediction_grad = np.zeros((elem_cnt)).astype(prediction.dtype) # Forward for i in np.arange(elem_cnt): abs_diff = abs(prediction[i] - label[i]) if abs_diff < beta: loss[i] = 0.5 * abs_diff * abs_diff / beta else: loss[i] = abs_diff - 0.5 * beta # Backward for i in np.arange(elem_cnt): diff = prediction[i] - label[i] abs_diff = abs(diff) if abs_diff < beta: prediction_grad[i] = diff / beta else: prediction_grad[i] = np.sign(diff) return { "loss": loss.reshape(original_shape), "prediction_grad": prediction_grad.reshape(original_shape), } @flow.unittest.skip_unless_1n1d() class TestSmoothL1Loss(flow.unittest.TestCase): @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") def test_smooth_l1_loss(_): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["prediction_shape"] = [ (100,), (10, 10), ] arg_dict["data_type"] = ["float32", "double"] arg_dict["beta"] = [0, 0.5, 1] for case in GenArgList(arg_dict): device_type, prediction_shape, data_type, beta = case assert flow.is_valid_device_tag(device_type) assert data_type in ["float32", "double", "int8", "int32", "int64"] flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) prediction = np.random.randn(*prediction_shape).astype( type_name_to_np_type[data_type] ) label = np.random.randn(*prediction_shape).astype( type_name_to_np_type[data_type] ) np_result = gen_numpy_data(prediction, label, beta) def assert_prediction_grad(b): prediction_grad = np_result["prediction_grad"] assert prediction_grad.dtype == type_name_to_np_type[data_type] assert np.allclose(prediction_grad, b.numpy()), ( case, prediction_grad, b.numpy(), ) @flow.global_function(type="train", function_config=func_config) def TestJob( prediction: oft.Numpy.Placeholder( prediction_shape, dtype=type_name_to_flow_type[data_type] ), label: oft.Numpy.Placeholder( prediction_shape, dtype=type_name_to_flow_type[data_type] ), ): v = flow.get_variable( "prediction", shape=prediction_shape, dtype=type_name_to_flow_type[data_type], initializer=flow.constant_initializer(0), trainable=True, ) flow.watch_diff(v, assert_prediction_grad) prediction += v with flow.scope.placement(device_type, "0:0"): loss = flow.smooth_l1_loss(prediction, label, beta) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0, ).minimize(loss) return loss loss_np = np_result["loss"] assert loss_np.dtype == type_name_to_np_type[data_type] loss = TestJob(prediction, label).get().numpy() assert np.allclose(loss_np, loss), (case, loss_np, loss) if __name__ == "__main__": unittest.main()
36.145038
79
0.601478
4a19714332f0e9d061b6396d85de130800577bbf
3,058
py
Python
oo/carro_arthur.py
arthurbragav/pythonbirds
f653ac1038e571529f55d0e490b2a8bd193ad523
[ "MIT" ]
null
null
null
oo/carro_arthur.py
arthurbragav/pythonbirds
f653ac1038e571529f55d0e490b2a8bd193ad523
[ "MIT" ]
null
null
null
oo/carro_arthur.py
arthurbragav/pythonbirds
f653ac1038e571529f55d0e490b2a8bd193ad523
[ "MIT" ]
null
null
null
""" >>> # Testando motor >>> motor = Motor() >>> motor.velocidade 0 >>> motor.acelerar() >>> motor.velocidade 1 >>> motor.acelerar() >>> motor.velocidade 2 >>> motor.acelerar() >>> motor.velocidade 3 >>> motor.frear() >>> motor.velocidade 1 >>> motor.frear() >>> motor.velocidade 0 >>> # Testando Direcao >>> direcao = Direcao() >>> direcao.valor 'Norte' >>> direcao.girar_a_direita() >>> direcao.valor 'Leste' >>> direcao.girar_a_direita() >>> direcao.valor 'Sul' >>> direcao.girar_a_direita() >>> direcao.valor 'Oeste' >>> direcao.girar_a_direita() >>> direcao.valor 'Norte' >>> direcao.girar_a_esquerda() >>> direcao.valor 'Oeste' >>> direcao.girar_a_esquerda() >>> direcao.valor 'Sul' >>> direcao.girar_a_esquerda() >>> direcao.valor 'Leste' >>> direcao.girar_a_esquerda() >>> direcao.valor 'Norte' >>> carro = Carro(direcao, motor) >>> carro.calcular_velocidade() 0 >>> carro.acelerar() >>> carro.calcular_velocidade() 1 >>> carro.acelerar() >>> carro.calcular_velocidade() 2 >>> carro.frear() >>> carro.calcular_velocidade() 0 >>> carro.calcular_direcao() 'Norte' >>> carro.girar_a_direita() >>> carro.calcular_direcao() 'Leste' >>> carro.girar_a_esquerda() >>> carro.calcular_direcao() 'Norte' >>> carro.girar_a_esquerda() >>> carro.calcular_direcao() 'Oeste' """ class Carro: def __init__(self, direcao, motor): self.motor = motor self.direcao = direcao def calcular_velocidade(self): return self.motor.velocidade def acelerar(self): self.motor.acelerar() def frear(self): self.motor.frear() def girar_a_direita(self): self.direcao.girar_a_direita() def girar_a_esquerda(self): self.direcao.girar_a_esquerda() def calcular_direcao(self): return self.direcao.valor class Motor: def __init__(self, velocidade=0): self.velocidade = velocidade def acelerar(self): self.velocidade += 1 def frear(self): self.velocidade -= 2 if self.velocidade < 0: self.velocidade = 0 class Direcao: def __init__(self, valor='Norte'): self.valor = valor def girar_a_direita(self): if self.valor == 'Norte': self.valor = 'Leste' elif self.valor == 'Leste': self.valor = 'Sul' elif self.valor == 'Sul': self.valor = 'Oeste' elif self.valor == 'Oeste': self.valor = 'Norte' def girar_a_esquerda(self): if self.valor == 'Norte': self.valor = 'Oeste' elif self.valor == 'Leste': self.valor = 'Norte' elif self.valor == 'Sul': self.valor = 'Leste' elif self.valor == 'Oeste': self.valor = 'Sul' def calcular_direcao(self): return self.valor
22.15942
39
0.558535
4a1971561ec79f3a7d5ff2cb6f2a8748f9468d5a
17,365
py
Python
qcodes/instrument_drivers/AlazarTech/ATS9440.py
mizkulg/Qcodes
28448e2ce60041d436958a66529317d355ee4a9d
[ "MIT" ]
null
null
null
qcodes/instrument_drivers/AlazarTech/ATS9440.py
mizkulg/Qcodes
28448e2ce60041d436958a66529317d355ee4a9d
[ "MIT" ]
73
2020-10-08T09:28:41.000Z
2021-09-16T11:04:28.000Z
qcodes/instrument_drivers/AlazarTech/ATS9440.py
mizkulg/Qcodes
28448e2ce60041d436958a66529317d355ee4a9d
[ "MIT" ]
null
null
null
from .ATS import AlazarTech_ATS from .utils import TraceParameter from qcodes.utils import validators class AlazarTech_ATS9440(AlazarTech_ATS): """ This class is the driver for the ATS9440 board it inherits from the ATS base class """ samples_divisor = 256 channels = 4 def __init__(self, name, **kwargs): dll_path = '/usr/lib64/libATSApi.so' super().__init__(name, dll_path=dll_path, **kwargs) # add parameters # ----- Parameters for the configuration of the board ----- self.add_parameter(name='clock_source', parameter_class=TraceParameter, get_cmd=None, set_cmd=None, label='Clock Source', unit=None, initial_value='INTERNAL_CLOCK', val_mapping={'INTERNAL_CLOCK': 1, 'FAST_EXTERNAL_CLOCK': 2, 'SLOW_EXTERNAL_CLOCK': 4, 'EXTERNAL_CLOCK_10MHz_REF': 7}) self.add_parameter(name='external_sample_rate', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='External Sample Rate', unit='S/s', vals=validators.MultiType(validators.Ints(1000000, 125000000), validators.Enum('UNDEFINED')), initial_value='UNDEFINED') self.add_parameter(name='sample_rate', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Internal Sample Rate', unit='S/s', initial_value=100000000, val_mapping={1_000: 1, 2_000: 2, 5_000: 4, 10_000: 8, 20_000: 10, 50_000: 12, 100_000: 14, 200_000: 16, 500_000: 18, 1_000_000: 20, 2_000_000: 24, 5_000_000: 26, 10_000_000: 28, 20_000_000: 30, 50_000_000: 34, 100_000_000: 36, 125_000_000: 38, 'EXTERNAL_CLOCK': 64, 'UNDEFINED': 'UNDEFINED'}) self.add_parameter(name='clock_edge', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Clock Edge', unit=None, initial_value='CLOCK_EDGE_RISING', val_mapping={'CLOCK_EDGE_RISING': 0, 'CLOCK_EDGE_FALLING': 1}) self.add_parameter(name='decimation', get_cmd=None, parameter_class=TraceParameter, label='Decimation', unit=None, initial_value=1, vals=validators.Ints(1, 100000)) for i in ['1', '2', '3', '4']: self.add_parameter(name='coupling' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Coupling channel ' + i, unit=None, initial_value='DC', val_mapping={'AC': 1, 'DC': 2}) self.add_parameter(name='channel_range' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Range channel ' + i, unit='V', initial_value=0.1, val_mapping={0.1: 5, 0.2: 6, 0.4: 7, 1: 10, 2: 11, 4: 12}) self.add_parameter(name='impedance' + i, get_cmd=None, parameter_class=TraceParameter, label='Impedance channel ' + i, unit='Ohm', initial_value=50, val_mapping={50: 2}) self.add_parameter(name='bwlimit' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Bandwidth limit channel ' + i, unit=None, initial_value='DISABLED', val_mapping={'DISABLED': 0, 'ENABLED': 1}) self.add_parameter(name='trigger_operation', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Operation', unit=None, initial_value='TRIG_ENGINE_OP_J', val_mapping={'TRIG_ENGINE_OP_J': 0, 'TRIG_ENGINE_OP_K': 1, 'TRIG_ENGINE_OP_J_OR_K': 2, 'TRIG_ENGINE_OP_J_AND_K': 3, 'TRIG_ENGINE_OP_J_XOR_K': 4, 'TRIG_ENGINE_OP_J_AND_NOT_K': 5, 'TRIG_ENGINE_OP_NOT_J_AND_K': 6}) for i in ['1', '2']: self.add_parameter(name='trigger_engine' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Engine ' + i, unit=None, initial_value='TRIG_ENGINE_' + ('J' if i == '1' else 'K'), val_mapping={'TRIG_ENGINE_J': 0, 'TRIG_ENGINE_K': 1}) self.add_parameter(name='trigger_source' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Source ' + i, unit=None, initial_value='EXTERNAL', val_mapping={'CHANNEL_A': 0, 'CHANNEL_B': 1, 'EXTERNAL': 2, 'DISABLE': 3, 'CHANNEL_C': 4, 'CHANNEL_D': 5}) self.add_parameter(name='trigger_slope' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Slope ' + i, unit=None, initial_value='TRIG_SLOPE_POSITIVE', val_mapping={'TRIG_SLOPE_POSITIVE': 1, 'TRIG_SLOPE_NEGATIVE': 2}) self.add_parameter(name='trigger_level' + i, get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Level ' + i, unit=None, initial_value=140, vals=validators.Ints(0, 255)) self.add_parameter(name='external_trigger_coupling', get_cmd=None, parameter_class=TraceParameter, label='External Trigger Coupling', unit=None, initial_value='DC', val_mapping={'AC': 1, 'DC': 2}) self.add_parameter(name='external_trigger_range', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='External Trigger Range', unit=None, initial_value='ETR_5V', val_mapping={'ETR_5V': 0, 'ETR_TTL': 2}) self.add_parameter(name='trigger_delay', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Trigger Delay', unit='Sample clock cycles', initial_value=0, vals=validators.Multiples(divisor=8, min_value=0)) self.add_parameter(name='timeout_ticks', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='Timeout Ticks', unit='10 us', initial_value=0, vals=validators.Ints(min_value=0)) # The card has two AUX I/O ports, which only AUX 2 is controlled by # the software (AUX 1 is controlled by the firmware). The user should # use AUX 2 for controlling the AUX via aux_io_mode and aux_io_param. self.add_parameter(name='aux_io_mode', get_cmd=None, set_cmd=None, parameter_class=TraceParameter, label='AUX I/O Mode', unit=None, initial_value='AUX_OUT_TRIGGER', val_mapping={'AUX_OUT_TRIGGER': 0, 'AUX_IN_TRIGGER_ENABLE': 1, 'AUX_IN_AUXILIARY': 13}) self.add_parameter(name='aux_io_param', get_cmd=None, parameter_class=TraceParameter, label='AUX I/O Param', unit=None, initial_value='NONE', val_mapping={'NONE': 0, 'TRIG_SLOPE_POSITIVE': 1, 'TRIG_SLOPE_NEGATIVE': 2}) # The above parameters are important for preparing the card. self.add_parameter(name='mode', label='Acquisition mode', unit=None, initial_value='NPT', get_cmd=None, set_cmd=None, val_mapping={'NPT': 0x200, 'TS': 0x400}) self.add_parameter(name='samples_per_record', label='Samples per Record', unit=None, initial_value=1024, get_cmd=None, set_cmd=None, vals=validators.Multiples( divisor=self.samples_divisor, min_value=256)) self.add_parameter(name='records_per_buffer', label='Records per Buffer', unit=None, initial_value=10, get_cmd=None, set_cmd=None, vals=validators.Ints(min_value=0)) self.add_parameter(name='buffers_per_acquisition', label='Buffers per Acquisition', unit=None, get_cmd=None, set_cmd=None, initial_value=10, vals=validators.Ints(min_value=0)) self.add_parameter(name='channel_selection', label='Channel Selection', unit=None, get_cmd=None, set_cmd=None, initial_value='AB', val_mapping={'A': 1, 'B': 2, 'AB': 3, 'C': 4, 'AC': 5, 'BC': 6, 'D': 7, 'AD': 8, 'BD': 9, 'CD': 10, 'ABCD': 11}) self.add_parameter(name='transfer_offset', label='Transfer Offset', unit='Samples', get_cmd=None, set_cmd=None, initial_value=0, vals=validators.Ints(min_value=0)) self.add_parameter(name='external_startcapture', label='External Startcapture', unit=None, get_cmd=None, set_cmd=None, initial_value='ENABLED', val_mapping={'DISABLED': 0X0, 'ENABLED': 0x1}) self.add_parameter(name='enable_record_headers', label='Enable Record Headers', unit=None, get_cmd=None, set_cmd=None, initial_value='DISABLED', val_mapping={'DISABLED': 0x0, 'ENABLED': 0x8}) self.add_parameter(name='alloc_buffers', label='Alloc Buffers', unit=None, get_cmd=None, set_cmd=None, initial_value='DISABLED', val_mapping={'DISABLED': 0x0, 'ENABLED': 0x20}) self.add_parameter(name='fifo_only_streaming', label='Fifo Only Streaming', unit=None, get_cmd=None, set_cmd=None, initial_value='DISABLED', val_mapping={'DISABLED': 0x0, 'ENABLED': 0x800}) self.add_parameter(name='interleave_samples', label='Interleave Samples', unit=None, get_cmd=None, set_cmd=None, initial_value='DISABLED', val_mapping={'DISABLED': 0x0, 'ENABLED': 0x1000}) self.add_parameter(name='get_processed_data', label='Get Processed Data', unit=None, get_cmd=None, set_cmd=None, initial_value='DISABLED', val_mapping={'DISABLED': 0x0, 'ENABLED': 0x2000}) self.add_parameter(name='allocated_buffers', label='Allocated Buffers', unit=None, get_cmd=None, set_cmd=None, initial_value=4, vals=validators.Ints(min_value=0)) self.add_parameter(name='buffer_timeout', label='Buffer Timeout', unit='ms', get_cmd=None, set_cmd=None, initial_value=1000, vals=validators.Ints(min_value=0))
50.043228
89
0.364008
4a1972100a9b8abc15ee298b37472c14ba649dac
6,699
py
Python
bindings/python/ensmallen_graph/datasets/string/nitrobacterwinogradskyi.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/nitrobacterwinogradskyi.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/nitrobacterwinogradskyi.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Nitrobacter winogradskyi. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:28:15.057404 The undirected graph Nitrobacter winogradskyi has 3081 nodes and 199697 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04209 and has 20 connected components, where the component with most nodes has 3039 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 104, the mean node degree is 129.63, and the node degree mode is 1. The top 5 most central nodes are 323098.Nwi_0357 (degree 1095), 323098.Nwi_2641 (degree 923), 323098.Nwi_0119 (degree 840), 323098.Nwi_2143 (degree 823) and 323098.Nwi_0197 (degree 754). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import NitrobacterWinogradskyi # Then load the graph graph = NitrobacterWinogradskyi() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def NitrobacterWinogradskyi( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Nitrobacter winogradskyi graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Nitrobacter winogradskyi graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:28:15.057404 The undirected graph Nitrobacter winogradskyi has 3081 nodes and 199697 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04209 and has 20 connected components, where the component with most nodes has 3039 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 104, the mean node degree is 129.63, and the node degree mode is 1. The top 5 most central nodes are 323098.Nwi_0357 (degree 1095), 323098.Nwi_2641 (degree 923), 323098.Nwi_0119 (degree 840), 323098.Nwi_2143 (degree 823) and 323098.Nwi_0197 (degree 754). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import NitrobacterWinogradskyi # Then load the graph graph = NitrobacterWinogradskyi() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="NitrobacterWinogradskyi", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.444444
223
0.704284
4a19730e1e79089bb8673e0b22b5c67959bd9435
2,974
py
Python
glance/tests/unit/base.py
cloudbau/glance
616b097c052f5bf59b05326ed1d2d1ae1c703dc9
[ "Apache-2.0" ]
1
2018-05-03T03:52:39.000Z
2018-05-03T03:52:39.000Z
glance/tests/unit/base.py
cloudbau/glance
616b097c052f5bf59b05326ed1d2d1ae1c703dc9
[ "Apache-2.0" ]
null
null
null
glance/tests/unit/base.py
cloudbau/glance
616b097c052f5bf59b05326ed1d2d1ae1c703dc9
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import os import shutil import fixtures from oslo.config import cfg import stubout from glance import store from glance.store import location from glance.store import sheepdog from glance.tests import stubs from glance.tests import utils as test_utils CONF = cfg.CONF CONF.import_opt('filesystem_store_datadir', 'glance.store.filesystem') CONF.import_opt('sql_connection', 'glance.db.sqlalchemy.api') class StoreClearingUnitTest(test_utils.BaseTestCase): def setUp(self): super(StoreClearingUnitTest, self).setUp() # Ensure stores + locations cleared location.SCHEME_TO_CLS_MAP = {} self._create_stores() self.addCleanup(setattr, location, 'SCHEME_TO_CLS_MAP', dict()) def _create_stores(self): """Create known stores. Mock out sheepdog's subprocess dependency on collie. """ self.stubs.Set(sheepdog.Store, 'configure_add', lambda x: None) store.create_stores() class IsolatedUnitTest(StoreClearingUnitTest): """ Unit test case that establishes a mock environment within a testing directory (in isolation) """ registry = None def setUp(self): super(IsolatedUnitTest, self).setUp() self.test_dir = self.useFixture(fixtures.TempDir()).path policy_file = self._copy_data_file('policy.json', self.test_dir) self.config(sql_connection='sqlite://', verbose=False, debug=False, default_store='filesystem', filesystem_store_datadir=os.path.join(self.test_dir), policy_file=policy_file, lock_path=os.path.join(self.test_dir)) stubs.stub_out_registry_and_store_server(self.stubs, self.test_dir, registry=self.registry) def _copy_data_file(self, file_name, dst_dir): src_file_name = os.path.join('glance/tests/etc', file_name) shutil.copy(src_file_name, dst_dir) dst_file_name = os.path.join(dst_dir, file_name) return dst_file_name def set_policy_rules(self, rules): fap = open(CONF.policy_file, 'w') fap.write(json.dumps(rules)) fap.close()
33.795455
78
0.666779
4a1973d34ed2552467fa429d40d5b02d46ba83c5
9,017
py
Python
lib/helpers/theaudiodb.py
cartmandos/script.module.metadatautils
536d935f91691d3b73861b7f5aa235bc182cdf07
[ "Apache-2.0" ]
1
2019-03-24T00:43:46.000Z
2019-03-24T00:43:46.000Z
lib/helpers/theaudiodb.py
cartmandos/script.module.metadatautils
536d935f91691d3b73861b7f5aa235bc182cdf07
[ "Apache-2.0" ]
1
2019-09-07T13:47:28.000Z
2019-09-07T13:47:28.000Z
lib/helpers/theaudiodb.py
cartmandos/script.module.metadatautils
536d935f91691d3b73861b7f5aa235bc182cdf07
[ "Apache-2.0" ]
5
2019-04-07T01:40:45.000Z
2021-01-05T10:17:06.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- """ script.module.metadatautils theaudiodb.py Get metadata from theaudiodb """ from utils import get_json, strip_newlines, KODI_LANGUAGE, get_compare_string from simplecache import use_cache import xbmcvfs class TheAudioDb(object): """get metadata from the audiodb""" api_key = "12376f5352254d85853987" ignore_cache = False def __init__(self, simplecache=None): """Initialize - optionaly provide simplecache object""" if not simplecache: from simplecache import SimpleCache self.cache = SimpleCache() else: self.cache = simplecache def search(self, artist, album, track): """get musicbrainz id by query of artist, album and/or track""" artistid = "" albumid = "" artist = artist.lower() params = {'s': artist, 'a': album} data = self.get_data("searchalbum.php", params) if data and data.get("album") and len(data.get("album")) > 0: adbdetails = data["album"][0] # safety check - only allow exact artist match foundartist = adbdetails.get("strArtist", "").lower() if foundartist and get_compare_string(foundartist) == get_compare_string(artist): albumid = adbdetails.get("strMusicBrainzID", "") artistid = adbdetails.get("strMusicBrainzArtistID", "") if (not artistid or not albumid) and artist and track: params = {'s': artist, 't': track} data = self.get_data("searchtrack.php", params) if data and data.get("track") and len(data.get("track")) > 0: adbdetails = data["track"][0] # safety check - only allow exact artist match foundartist = adbdetails.get("strArtist", "").lower() if foundartist and get_compare_string(foundartist) == get_compare_string(artist): albumid = adbdetails.get("strMusicBrainzID", "") artistid = adbdetails.get("strMusicBrainzArtistID", "") return artistid, albumid def get_artist_id(self, artist, album, track): """get musicbrainz id by query of artist, album and/or track""" return self.search(artist, album, track)[0] def get_album_id(self, artist, album, track): """get musicbrainz id by query of artist, album and/or track""" return self.search(artist, album, track)[1] def artist_info(self, artist_id): """get artist metadata by musicbrainz id""" details = {"art": {}} data = self.get_data("/artist-mb.php", {'i': artist_id}) if data and data.get("artists"): adbdetails = data["artists"][0] if adbdetails.get("strArtistBanner") and xbmcvfs.exists(adbdetails.get("strArtistBanner")): details["art"]["banner"] = adbdetails.get("strArtistBanner") details["art"]["banners"] = [adbdetails.get("strArtistBanner")] details["art"]["fanarts"] = [] if adbdetails.get("strArtistFanart") and xbmcvfs.exists(adbdetails.get("strArtistFanart")): details["art"]["fanart"] = adbdetails.get("strArtistFanart") details["art"]["fanarts"].append(adbdetails.get("strArtistFanart")) if adbdetails.get("strArtistFanart2") and xbmcvfs.exists(adbdetails.get("strArtistFanart2")): details["art"]["fanarts"].append(adbdetails.get("strArtistFanart2")) if adbdetails.get("strArtistFanart3") and xbmcvfs.exists(adbdetails.get("strArtistFanart3")): details["art"]["fanarts"].append(adbdetails.get("strArtistFanart3")) if adbdetails.get("strArtistLogo") and xbmcvfs.exists(adbdetails.get("strArtistLogo")): details["art"]["clearlogo"] = adbdetails.get("strArtistLogo") details["art"]["clearlogos"] = [adbdetails.get("strArtistLogo")] if adbdetails.get("strArtistClearart") and xbmcvfs.exists(adbdetails.get("strArtistClearart")): details["art"]["clearart"] = adbdetails.get("strArtistClearart") details["art"]["cleararts"] = [adbdetails.get("strArtistClearart")] if adbdetails.get("strArtistThumb") and xbmcvfs.exists(adbdetails.get("strArtistThumb")): details["art"]["thumb"] = adbdetails["strArtistThumb"] details["art"]["thumbs"] = [adbdetails["strArtistThumb"]] if adbdetails.get("strBiography" + KODI_LANGUAGE.upper()): details["plot"] = adbdetails["strBiography" + KODI_LANGUAGE.upper()] if adbdetails.get("strBiographyEN") and not details.get("plot"): details["plot"] = adbdetails.get("strBiographyEN") if details.get("plot"): details["plot"] = strip_newlines(details["plot"]) if adbdetails.get("strArtistAlternate"): details["alternamename"] = adbdetails["strArtistAlternate"] if adbdetails.get("intFormedYear"): details["formed"] = adbdetails["intFormedYear"] if adbdetails.get("intBornYear"): details["born"] = adbdetails["intBornYear"] if adbdetails.get("intDiedYear"): details["died"] = adbdetails["intDiedYear"] if adbdetails.get("strDisbanded"): details["disbanded"] = adbdetails["strDisbanded"] if adbdetails.get("strStyle"): details["style"] = adbdetails["strStyle"].split("/") if adbdetails.get("strGenre"): details["genre"] = adbdetails["strGenre"].split("/") if adbdetails.get("strMood"): details["mood"] = adbdetails["strMood"].split("/") if adbdetails.get("strWebsite"): details["homepage"] = adbdetails["strWebsite"] if adbdetails.get("strFacebook"): details["facebook"] = adbdetails["strFacebook"] if adbdetails.get("strTwitter"): details["twitter"] = adbdetails["strTwitter"] if adbdetails.get("strGender"): details["gender"] = adbdetails["strGender"] if adbdetails.get("intMembers"): details["members"] = adbdetails["intMembers"] if adbdetails.get("strCountry"): details["country"] = adbdetails["strCountry"].split(", ") return details def album_info(self, album_id): """get album metadata by musicbrainz id""" details = {"art": {}} data = self.get_data("/album-mb.php", {'i': album_id}) if data and data.get("album"): adbdetails = data["album"][0] if adbdetails.get("strAlbumThumb") and xbmcvfs.exists(adbdetails.get("strAlbumThumb")): details["art"]["thumb"] = adbdetails.get("strAlbumThumb") details["art"]["thumbs"] = [adbdetails.get("strAlbumThumb")] if adbdetails.get("strAlbumCDart") and xbmcvfs.exists(adbdetails.get("strAlbumCDart")): details["art"]["discart"] = adbdetails.get("strAlbumCDart") details["art"]["discarts"] = [adbdetails.get("strAlbumCDart")] if adbdetails.get("strAlbumSpine") and xbmcvfs.exists(adbdetails.get("strAlbumSpine")): details["art"]["spine"] = adbdetails.get("strAlbumSpine") if adbdetails.get("strAlbumThumbBack") and xbmcvfs.exists(adbdetails.get("strAlbumThumbBack")): details["art"]["thumbback"] = adbdetails.get("strAlbumThumbBack") if adbdetails.get("strDescription%s" % KODI_LANGUAGE.upper()): details["plot"] = adbdetails.get("strDescription%s" % KODI_LANGUAGE.upper()) if not details.get("plot") and adbdetails.get("strDescriptionEN"): details["plot"] = adbdetails.get("strDescriptionEN") if details.get("plot"): details["plot"] = strip_newlines(details["plot"]) if adbdetails.get("strGenre"): details["genre"] = adbdetails["strGenre"].split("/") if adbdetails.get("strStyle"): details["style"] = adbdetails["strStyle"].split("/") if adbdetails.get("strMood"): details["mood"] = adbdetails["strMood"].split("/") if adbdetails.get("intYearReleased"): details["year"] = adbdetails["intYearReleased"] if adbdetails.get("intScore"): details["rating"] = adbdetails["intScore"] if adbdetails.get("strAlbum"): details["title"] = adbdetails["strAlbum"] return details @use_cache(60) def get_data(self, endpoint, params): """helper method to get data from theaudiodb json API""" endpoint = 'http://www.theaudiodb.com/api/v1/json/%s/%s' % (self.api_key, endpoint) data = get_json(endpoint, params) if data: return data else: return {}
53.35503
107
0.594433
4a197415b48bec360d540b8b3d1f721ce870b7bf
4,395
py
Python
moai/engine/lightning/test/tester.py
ai-in-motion/moai
e38cac046c059d2e2331ef4883bbabc5a500a5cf
[ "Apache-2.0" ]
10
2021-04-02T11:21:33.000Z
2022-01-18T18:32:32.000Z
moai/engine/lightning/test/tester.py
ai-in-motion/moai
e38cac046c059d2e2331ef4883bbabc5a500a5cf
[ "Apache-2.0" ]
1
2022-03-22T20:10:55.000Z
2022-03-24T13:11:02.000Z
moai/engine/lightning/test/tester.py
ai-in-motion/moai
e38cac046c059d2e2331ef4883bbabc5a500a5cf
[ "Apache-2.0" ]
3
2021-05-16T20:47:40.000Z
2021-12-01T21:15:36.000Z
import moai.checkpoint.lightning as mickpt import moai.log.lightning as milog import pytorch_lightning import hydra.utils as hyu import omegaconf.omegaconf import typing __all__ = ["LightningTester"] class LightningTester(pytorch_lightning.Trainer): def __init__(self, logging: omegaconf.DictConfig=None, callbacks: omegaconf.DictConfig=None, default_root_dir: typing.Optional[str]=None, process_position: int=0, num_nodes: int=1, num_processes: int=1, gpus: typing.Optional[typing.Union[typing.List[int], str, int]]=None, tpu_cores: typing.Optional[typing.Union[typing.List[int], str, int]]=None, log_gpu_memory: typing.Optional[str]=None, max_steps: typing.Optional[int]=None, min_steps: typing.Optional[int]=None, limit_test_batches: typing.Union[int, float]=1.0, accelerator: typing.Optional[typing.Union[str, pytorch_lightning.accelerators.Accelerator]]=None, sync_batchnorm: bool=False, precision: int=32, weights_summary: typing.Optional[str]='full', weights_save_path: typing.Optional[str]=None, truncated_bptt_steps: typing.Optional[int]=None, resume_from_checkpoint: typing.Optional[str]=None, profiler: typing.Optional[typing.Union[pytorch_lightning.profiler.BaseProfiler, bool, str]]=None, benchmark: bool=False, deterministic: bool=True, replace_sampler_ddp: bool=True, prepare_data_per_node: bool=True, plugins: typing.Optional[list]=None, amp_backend: str='native', amp_level: str='O2', distributed_backend: typing.Optional[str]=None, **kwargs ): logger = hyu.instantiate(logging)\ if logging is not None else milog.NoOp() pytl_callbacks = [hyu.instantiate(c) for c in callbacks.values()]\ if callbacks is not None else [] super(LightningTester, self).__init__( logger=logger, checkpoint_callback=False, callbacks=pytl_callbacks, default_root_dir=None if not default_root_dir else default_root_dir, gradient_clip_val=0.0, process_position=process_position, num_nodes=num_nodes, gpus=gpus, auto_select_gpus=False, tpu_cores=tpu_cores, log_gpu_memory=log_gpu_memory, progress_bar_refresh_rate=1, overfit_batches=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1, min_epochs=1, max_steps=max_steps, min_steps=min_steps, limit_train_batches=1.0, limit_val_batches=1.0, limit_test_batches=limit_test_batches, val_check_interval=1, flush_logs_every_n_steps=1, log_every_n_steps=1, accelerator=accelerator, sync_batchnorm=sync_batchnorm, precision=precision, weights_summary=weights_summary, weights_save_path=weights_save_path, num_sanity_val_steps=0, truncated_bptt_steps=truncated_bptt_steps, resume_from_checkpoint=resume_from_checkpoint, profiler=profiler, benchmark=benchmark, deterministic=deterministic, reload_dataloaders_every_epoch=False, auto_lr_find=False, replace_sampler_ddp=replace_sampler_ddp, terminate_on_nan=False, auto_scale_batch_size=False, prepare_data_per_node=prepare_data_per_node, plugins=plugins, amp_backend=amp_backend, distributed_backend=distributed_backend, amp_level=amp_level, automatic_optimization=False, **kwargs ) def run(self, model): return self.test(model, verbose=False)
43.514851
123
0.586348
4a1974b8d3c398edbb170c203d02cd75fd9d56b7
1,405
py
Python
src/APIs/SpeechAPI.py
dinispeixoto/Kaydara
5a22be3f9e931a00f3f3c9bcd1dbda8e1cce0b4d
[ "MIT" ]
null
null
null
src/APIs/SpeechAPI.py
dinispeixoto/Kaydara
5a22be3f9e931a00f3f3c9bcd1dbda8e1cce0b4d
[ "MIT" ]
3
2021-02-08T20:22:41.000Z
2022-03-25T14:38:24.000Z
src/APIs/SpeechAPI.py
dinispeixoto/Kaydara
5a22be3f9e931a00f3f3c9bcd1dbda8e1cce0b4d
[ "MIT" ]
null
null
null
from pydub import AudioSegment import os, json, requests, urllib # Environment variables on heroku USERNAME = os.environ['SPEECH_USERNAME'] PASSWORD = os.environ['SPEECH_PASSWORD'] # send audio file and return the transcript def send_audio(audio_url): headers = {'Content-Type': 'audio/flac',} params = {'model': 'en-US_NarrowbandModel',} audio_file = __download(audio_url) __convert(audio_file) data = open(audio_file + '.flac', 'rb').read() response = requests.post('https://stream.watsonplatform.net/speech-to-text/api/v1/recognize', headers=headers, data=data, params=params, auth=(USERNAME, PASSWORD)) response_decoded = response.content.decode("utf-8") dict_response = json.loads(response_decoded) print(dict_response) os.remove(audio_file) os.remove(audio_file + '.flac') if dict_response['results']: return dict_response['results'][0]['alternatives'][0]['transcript'] else: return 'Nothing' def __download(audio_url): webFile = urllib.request.urlopen(audio_url) fileName = audio_url.split('/')[-1] localFile = open(fileName, 'wb') localFile.write(webFile.read()) webFile.close() localFile.close() return fileName def __convert(audio): AudioSegment.from_file(audio).export(audio + '.flac', format='flac')
31.931818
100
0.659786
4a1974d3c2258d2ac81762c5df24f08cb6446aa6
2,393
py
Python
pakage/endreader.py
Cubestudio001/cEncrypter
3514c692616ce02af0002dee36f6432f9d9023d2
[ "Apache-2.0" ]
null
null
null
pakage/endreader.py
Cubestudio001/cEncrypter
3514c692616ce02af0002dee36f6432f9d9023d2
[ "Apache-2.0" ]
null
null
null
pakage/endreader.py
Cubestudio001/cEncrypter
3514c692616ce02af0002dee36f6432f9d9023d2
[ "Apache-2.0" ]
null
null
null
import getpass def decode_string(index,ens="$infile:<red ascii>$.:dt$,:sq$/:lr$\:rl$;:ff$':sg$\":db",createfile=False): ''' This function still requst you to verfiry the legitimacy of input value But an illegal input won\'t lead a fatal error index -> input ens —> standard using createfile -> Whether create file on PATH ''' #此版本后ens采用已读取的str形式传入 #分割加密字符串,去除乱码 index = index.split("$") for i in range(len(index)): if index[i] == '': index.pop(i) index.pop(0) index.pop(len(index)-1) __return = "" #读取标准库 std = ens.split("$") #分割 #删除无效数据 for s in range(len(std)): if std[s-1] == '': std.pop(s) __ens = {} for i in std: b = i.split(':') if b[0] != 'infile': try: __ens[b[1]] = b[0] except: continue for s in index: try: __return = __return + __ens[s] except: __return = __return + str(chr(int(s))) return __return def decode_file(filename,ens="$infile:<red ascii>$.:dt$,:sq$/:lr$\:rl$;:ff$':sg$\":db",createfile=False): ''' This function still requst you to verfiry the legitimacy of input value An illegal input will lead a fatal error filename -> input file name ens —> standard using createfile -> Whether create file on PATH ''' std = open(ens,'r',encoding="utf-8") #分割加密字符串,去除乱码 index = open(filename,'r',encoding='utf-8') index = index.split("$") for i in range(len(index)): if index[i] == '': index.pop(i) index.pop(0) index.pop(len(index)-1) __return = "" #读取标准库 std1 = std.read() std.close() std = std1.split("$") #分割 #删除无效数据 for s in range(len(std)): if std[s-1] == '': std.pop(s) __ens = {} for i in std: b = i.split(':') if b[0] != 'infile': try: __ens[b[1]] = b[0] except: continue for s in index: try: __return = __return + __ens[s] except: __return = __return + str(chr(int(s))) return __return
23.460784
106
0.475972
4a1975a713ac9f120da3d21b1240bd84da2327aa
8,937
py
Python
cptest.py
outofmbufs/imagetools
a4d35744f7e67a4b824026762b758257fb2d3994
[ "MIT" ]
null
null
null
cptest.py
outofmbufs/imagetools
a4d35744f7e67a4b824026762b758257fb2d3994
[ "MIT" ]
null
null
null
cptest.py
outofmbufs/imagetools
a4d35744f7e67a4b824026762b758257fb2d3994
[ "MIT" ]
null
null
null
# tests for croppan import json import os import tempfile import unittest from croppan import expand_pans, gen_panspecs, PanSpec from contextlib import contextmanager class TestMethods(unittest.TestCase): NDN = 200 # number of dummy names. DN = None # the actual dummy names @classmethod def makedummynames(cls): if cls.NDN < 10: raise ValueError(f"NDN ({cls.NDN}) too small. Minimum is 10.") # find a directory name that does not exist, starting with "/X" # (almost always sufficient) and adding additional X's as necessary d = "/X" while True: try: with open(d) as _: pass except FileNotFoundError: break except IsADirectoryError: pass d += "X" # make the dummynames with the non-existent directory prefix cls.DN = [d + f"/F{i:03d}" for i in range(cls.NDN)] def setUp(self): if self.DN is None: self.makedummynames() @staticmethod def cbstr(cropbox): """Return a string suitable for gen_waypoints from a crop box""" return f"{cropbox[0]},{cropbox[1]},{cropbox[2]},{cropbox[3]}" def checkallnames(self, cropspecs): self.assertEqual(len(cropspecs), len(self.DN)) for i, t in enumerate(cropspecs): self.assertEqual(t[0], self.DN[i]) def test0(self): # test basic interpolation crop_A = [0, 10, 200, 210] crop_B = [2, 12, 202, 212] crop_M = [1, 11, 201, 211] # hand-calculated midpoint p = PanSpec(image0=self.DN[0], crop0=crop_A, image1=self.DN[2], crop1=crop_B) crops = [crop_A, crop_M, crop_B] for i, t in enumerate(expand_pans(self.DN, [p])): self.assertEqual(t[0], self.DN[i]) if i < len(crops): self.assertEqual(t[1], crops[i]) else: self.assertEqual(t[1], crop_B) def test1(self): # like test0, just more, and using JSON input format halfNDN = self.NDN // 2 crop_A = [0, 10, 200, 210] crop_B = [x + halfNDN for x in crop_A] pans = list(gen_panspecs(json.dumps( [{'image0': self.DN[0], 'crop0': self.cbstr(crop_A), 'image1': self.DN[halfNDN], 'crop1': self.cbstr(crop_B)}]))) xp = list(expand_pans(self.DN, pans)) # all the file names should be in the resulting expansion self.checkallnames(xp) # the crop box should have been interpolated one unit at a time for i in range(halfNDN): self.assertEqual(xp[i][1], [x + i for x in crop_A]) # and the rest should be all the last one for i in range(halfNDN+1, self.NDN): self.assertEqual(xp[i][1], crop_B) def test2(self): # test basic interpolation not starting at the first file offset = 3 npan = 4 crop_A = [0, 10, 200, 210] crop_B = [x + npan for x in crop_A] pans = [PanSpec(image0=self.DN[offset], crop0=crop_A, image1=self.DN[offset+npan], crop1=crop_B)] xp = list(expand_pans(self.DN, pans)) # all the file names should be in the resulting expansion self.checkallnames(xp) # the initial images, including the start of the pan, should all # be crop_A (inferred initial crop) for i in range(offset+1): with self.subTest(i=i): self.assertEqual(xp[i][1], crop_A) # the next npan should all increase by 1 (based on how crop_B was made) for i in range(npan): self.assertEqual(xp[i+offset][1], [crop_A[k] + i for k in (0, 1, 2, 3)]) def test3(self): # like test1 but go up to a midpoint and then back down # want an even number of test cases if (self.NDN // 2) * 2 != self.NDN: ntests = self.NDN - 1 else: ntests = self.NDN halfNDN = ntests // 2 crop_A = [0, 10, 200, 210] crop_B = [x + halfNDN - 1 for x in crop_A] crop_C = crop_A pans = list(gen_panspecs(json.dumps( [{'image0': self.DN[0], 'crop0': self.cbstr(crop_A), 'image1': self.DN[halfNDN-1], 'crop1': self.cbstr(crop_B)}, {'image0': self.DN[halfNDN], 'crop0': None, 'image1': self.DN[ntests-1], 'crop1': self.cbstr(crop_C)}]))) xp = list(expand_pans(self.DN, pans)) self.checkallnames(xp) # the way up... for i in range(halfNDN): with self.subTest(i=i): self.assertEqual(xp[i][1], [x + i for x in crop_A]) # and the way back down... for i in range(halfNDN, ntests): with self.subTest(i=i): self.assertEqual(xp[i][1], [x - (i - halfNDN) for x in crop_B]) def test4(self): # test the repeat 'n' times single file form repeater = 20 crop0 = [0, 10, 200, 210] crop1 = [x + repeater - 1 for x in crop0] pans = [PanSpec(image0=self.DN[0], crop0=crop0, crop1=crop1, n=repeater), PanSpec(image0=self.DN[1], crop0=crop1)] xp = list(expand_pans(self.DN, pans)) # the result should have 'repeater' copies of the # first file name and then the rest of them. Based on that, # this construction should pass checkallnames(): self.checkallnames([xp[0]] + xp[repeater:]) # The results should pan 1 unit at a time # over those first 'repeater' copies of the image and # then be at crop1 for the remainder for i, t in enumerate(xp): with self.subTest(i=i, t=t): if i < repeater: self.assertEqual(t[1], [x + i for x in crop0]) self.assertEqual(t[0], self.DN[0]) else: self.assertEqual(t[1], crop1) self.assertEqual(t[0], self.DN[i + 1 - repeater]) def test5(self): # Three edge cases - just one pan at: # - the very beginning # - the very end # - somewhere in the middle crop0 = [0, 10, 200, 210] for nth in (0, 5, self.NDN-1): with self.subTest(nth=nth): pans = [PanSpec(image0=self.DN[nth], crop0=crop0)] xp = list(expand_pans(self.DN, pans)) self.checkallnames(xp) # every cropbox should just be crop0 for t in xp: self.assertEqual(t[1], crop0) def test6(self): # every file has an individual crop box crop_A = [0, 10, 200, 210] pans = [PanSpec(image0=fn, crop0=[x + k for x in crop_A]) for k, fn in enumerate(self.DN)] xp = list(expand_pans(self.DN, pans)) self.checkallnames(xp) for i, t in enumerate(xp): self.assertEqual(t[1], [x + i for x in crop_A]) def test7(self): # every file has an individual crop box using the None form # for all but the first (it's illegal on the first) crop_A = [0, 10, 200, 210] pans = [PanSpec(image0=self.DN[0], crop0=crop_A)] pans += [PanSpec(image0=fn, crop0=None) for fn in self.DN[1:]] xp = list(expand_pans(self.DN, pans)) self.checkallnames(xp) for i, t in enumerate(xp): self.assertEqual(t[0], self.DN[i]) self.assertEqual(t[1], crop_A) # context manager encapsulates "delete the temp file when done" @contextmanager def _tempfile(self): tfd, tfname = tempfile.mkstemp(text=True) try: yield tfd, tfname finally: # Close the file descriptor, but don't bomb if the file was # closed already (which the test does Because Reasons) try: os.close(tfd) except OSError: pass os.remove(tfname) def test8(self): # test the file form of gen_panspecs with self._tempfile() as (tfd, tfname): os.write(tfd, b'{"image0": "abc", "crop0": "0,1,2,3"}') os.close(tfd) pans = list(gen_panspecs(tfname)) self.assertEqual(len(pans), 1) with self._tempfile() as (tfd, tfname): os.write(tfd, b'[{"image0": "abc", "crop0": "0,1,2,3"},' b'{"image0": "def", "crop0": "3,2,1,0"}]') os.close(tfd) pans = list(gen_panspecs(tfname)) self.assertEqual(len(pans), 2) j1, j2 = pans self.assertEqual(j1.image0, "abc") self.assertEqual(j1.crop0, (0, 1, 2, 3)) self.assertEqual(j2.image0, "def") self.assertEqual(j2.crop0, (3, 2, 1, 0)) unittest.main()
35.324111
79
0.540897
4a1975b2b4071b40477bc9bfebd8b957c0f78fa6
18,000
py
Python
test/functional/rpc_rawtransaction.py
JSKitty/dogecash
99b07b15c396da2a8fa5852655bf193016ee270a
[ "MIT" ]
1
2021-12-16T01:12:10.000Z
2021-12-16T01:12:10.000Z
test/functional/rpc_rawtransaction.py
JSKitty/dogecash
99b07b15c396da2a8fa5852655bf193016ee270a
[ "MIT" ]
null
null
null
test/functional/rpc_rawtransaction.py
JSKitty/dogecash
99b07b15c396da2a8fa5852655bf193016ee270a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the rawtransaction RPCs. Test the following RPCs: - createrawtransaction - signrawtransaction - sendrawtransaction - decoderawtransaction - getrawtransaction """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self, split=False): super().setup_network() connect_nodes_bi(self.nodes,0,2) def run_test(self): #prepare some coins for multiple *rawtransaction commands self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {}) assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() assert_raises_rpc_error(-3, "Expected type object", self.nodes[0].createrawtransaction, [], 'foo') #assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid DogeCash address", self.nodes[0].createrawtransaction, [], {'foo': 0}) #assert_raises_rpc_error(-3, "Amount is not a number", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) addr = self.nodes[0].getnewaddress("") addrinfo = self.nodes[0].validateaddress(addr) pubkey = addrinfo["scriptPubKey"] self.log.info('sendrawtransaction with missing prevtx info') # Test `signrawtransaction` invalid `prevtxs` inputs = [ {'txid' : txid, 'vout' : 3, 'sequence' : 1000}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1) succ = self.nodes[0].signrawtransaction(rawtx, [prevtx]) assert succ["complete"] del prevtx["amount"] succ = self.nodes[0].signrawtransaction(rawtx, [prevtx]) assert succ["complete"] assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransaction, rawtx, [ { "txid": txid, "scriptPubKey": pubkey, "amount": 1, } ]) assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransaction, rawtx, [ { "scriptPubKey": pubkey, "vout": 3, "amount": 1, } ]) assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransaction, rawtx, [ { "txid": txid, "vout": 3, "amount": 1 } ]) ######################################### # sendrawtransaction with missing input # ######################################### inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists outputs = { self.nodes[0].getnewaddress() : 4.998 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = self.nodes[2].signrawtransaction(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error(-25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) ######################### # RAW TX MULTISIG TESTS # ######################### # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-1, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here. assert_raises_rpc_error(-1, "no full public key for address", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1]) #use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BTC to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) addr3Obj = self.nodes[2].validateaddress(addr3) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']]) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() #THIS IS A INCOMPLETE FEATURE #NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex']}] outputs = { self.nodes[0].getnewaddress() : 2.19 } rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransaction(rawTx, inputs) assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx rawTxSigned = self.nodes[2].signrawtransaction(rawTx, inputs) assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal+Decimal('250.00000000')+Decimal('2.19000000')) #block reward + tx # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) mSigObjValid = self.nodes[2].validateaddress(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx2['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}] outputs = { self.nodes[0].getnewaddress() : 2.19 } rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransaction(rawTx2, inputs) self.log.info(rawTxPartialSigned1) assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx rawTxPartialSigned2 = self.nodes[2].signrawtransaction(rawTx2, inputs) self.log.info(rawTxPartialSigned2) assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx rawTxSignedComplete = self.nodes[2].signrawtransaction(rawTxPartialSigned1['hex'], inputs) self.log.info(rawTxSignedComplete) assert_equal(rawTxSignedComplete['complete'], True) self.nodes[2].sendrawtransaction(rawTxSignedComplete['hex']) rawTx2 = self.nodes[0].decoderawtransaction(rawTxSignedComplete['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal+Decimal('250.00000000')+Decimal('2.19000000')) #block reward + tx # decoderawtransaction tests encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx) # decode as non-witness transaction assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000')) # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["txid"] assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex']) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) if __name__ == '__main__': RawTransactionsTest().main()
51.873199
174
0.653
4a197644e6ae91fca7341bd3eb45b12b7ca04c9e
8,879
py
Python
retarded.py
velo223/Velo-s-Spam-Scripts
286943dee2734b0a412602794026b91b210565bc
[ "CC0-1.0" ]
null
null
null
retarded.py
velo223/Velo-s-Spam-Scripts
286943dee2734b0a412602794026b91b210565bc
[ "CC0-1.0" ]
null
null
null
retarded.py
velo223/Velo-s-Spam-Scripts
286943dee2734b0a412602794026b91b210565bc
[ "CC0-1.0" ]
null
null
null
# Copypastas by BACVelocifaptor#6969, he#9999 and u/GerardDG on Reddit. Script written by BACVelocifaptor#6969. If you kang, you big gei. opt = { "v":""" I always knew humanity cannot be the only cognizant species in the galaxy. The fact that we are less than type 1 on the Kardashev scale always bothered me, as did the hubris of humans who believed only in the power of money and sex, only on this plane of existence. I was always open to the existence of higher civilizations, higher-dimensional beings. What I did not really subscribe to was the notion that this life could be a simulation created by these higher-dimensional beings for their amusement. So I was rudely shocked while aboard an airplane I was kidnapped by a giant tentacled creature, its body apparently so massive that its tentacles extended into hyperspace. Through the jetstream, it picked me up, and led me to another world through some watery ether. And then I saw what I thought was God in all his glory: a giant Patrick the starfish angel. But he was just an archangel, who announced the coming of the one true God. And that is when I beheld his beautiful personage, a four-headed SpongeBob SquarePants adonis, his name written on the giant scarlet popcorn boxes distributed to all his devotees, who previously appeared as animalistic cartoons in a very realistic animation. Yes, it was him, the Being-Best-Friends-With-A-Woman-Is-Better-Than-Getting-Laid-Once God. As I chomped on the divine, giant popcorn, which was like Cheetos Flamin' Hot Popcorn but with KFC India Hot Wings masala instead, I saw the light and sought out my best friend, as I leaned my head on her shoulder, contemplating the very meaning of existence and the nature of the universe. ""","c":''' It’s late, you’ve been in bed sleeping for a few hours. I crawl under the covers. I always sleep naked, so the cool sheets give my whole body goosebumps. I snuggle on my side into the blankets and shiver.\n\nSuddenly I feel you behind me, pressing your warm body to mine, wrapping your arms tight around me. You rub my skin firmly, warming me. Your hand makes its way to my hip and pulls me close. Your cock is hard and throbbing; pulsing between my ass cheeks. I push back, wiggling my hips. Your other hand moves up my body and moves around my neck. You gently squeeze and tilt my head back. You start to grip my neck tighter. You begin to whisper sweet and dirty things in my ear; telling me how you can’t wait to fill me, how badly you want me, how your cock will fit perfectly in my tight pussy.\n \nYour hand on my hip slides down between my legs. You touch my wet pussy, but I can tell you’re not satisfied. You know how to fix that though. You grip my throat tight and whisper:\n\n“Baby…make Daddy proud”\n\nI can feel my pussy soak your fingers when you say that. You know I love it when you’re my Daddy. You chuckle and moan your approval.\n\n“Mmm. My baby girl needs her Daddy to fill her pussy. Are you going to be good and take your Daddy’s big cock?”\n\nAs you say that your fingers slide deep into my pussy. I try to scream, but your hand on my throat muffles the sound. I grind back to try to find release. You’re right - I am so turned on when you take control of my body. I push back on your fingers and start to thrust. I’m desperate to cum for you; to make my Daddy proud. I can feel you smile as I wantonly fuck your fingers.\n\n“That’s right. Be a good girl and cum for your Daddy.”\n\nI let out a moan. My whole body tenses up and my back arches as I gush on your fingers. My pussy clenches and spasms, trying to find what it desperately needs: my Daddy’s hard cock to stuff it full of cum. You sense my need and chuckle in my ear.\n\n“Come on my greedy little slut. Show your Daddy how bad you need it.”\n\nI roll towards you on my other side and wrap my leg around your waist. My hand goes between our legs and grips your hard cock. I can feel precum oozing from the tip. I play with your cock and guide it between my legs where my spread, swollen pussy is waiting for you. I thrust forward so that the tip of your cock is touching my clit. I guide you around, smearing my clit with your precum. Your hand moves to my ass and forcefully spreads me apart, causing the tip of your cock to slip into my wet pussy. I clench around you, trying to draw you in deeper. The penetration is enough to drive me wild. I’m so close to cumming for you, but I need more.\n\nWithout warning you wrap your arms tight around me, pin me to your chest, and roll on to your back. You grip my hair and kiss me deeply. The tip of your cock is teasing my pussy. I’m trying to grind my hips to take you in. You move your hands down to my ass and give me a sharp swat. I yelp in pain and surprise. You use your hands to spread my ass wide as you tell me,\n\n“Baby, put it in. Bounce on your Daddy’s cock.”\n\nI don’t waste a moment. I slide down your thick shaft and stay there a moment, savoring the feeling of being full of your cock. It’s short-lived as I quickly feel the sting of your hand on my ass.\n\n“Bounce baby girl. Make Daddy drain his balls in your hungry little pussy.”\n\nI immediately start sliding up and down your thick cock. I can feel my cum dripping down your shaft. I feel my pussy lips spread and stretch around your cock as I start to fuck you. My pussy is so wet I can hear it each time I thrust your cock deep. My tits bounce as I ride you. Your fingers dig into my hips. I can feel your cock twitch and throb. You’re so close. I need your cum.\n\nI stop a moment to put my feet under me and raise myself up in a squatting position. I know this is what you really wanted all along; it will make you cum so hard. I start with shallow thrusts that tease your cockhead. I move down with deep, slower thrusts and feel the tip of your cock swell as I do. I smile. With my final thrusts I take all of your cock. I clench my pussy as I lift myself back to the tip and that’s when I feel the spurts of your thick, hot cum. I lower myself back down as you twitch, pushing your cum deep. You hold me there so you can pump me full. I grind to make sure your balls are totally empty. I groan your name as I cum for the last time.\n\nI shift back to my knees and bend forward to collapse on your chest. Your breathing is heavy but starting to slow. You wrap your arms around me and start giving me little kisses all over my neck. You whisper in my ear how much you love me, how you love it when I get so turned on when you talk dirty to me. You gently roll me on my back and start rubbing my sore thighs. You kiss me lovingly, bringing me down as I start to relax and drift to sleep.\n\nAs I start to feel your cum drip from my pussy I think, “I can’t wait until my Daddy fucks me again.” ''',"d":""" Zwemmen in Bacardi Lemon is eigenlijk helemaal niet chill. Denk maar na. Ten eerste is het zoete plakzooi. Bacardi is 300 percent suiker weet je, het is gewoon vloeibare kauwgom. Als je daarin gaat zwemmen gaat dat enorm kleven.\n\nTen tweede ben je waarschijnlijk dronken voordat je je eerste baantje hebt gezwommen. De alcohol krijg je niet alleen binnen door het door te slikken maar ook via je gehemelte enzo. Het doet pijn aan je ogen en ik gok dat het brandt in je neus. Dronken worden is op zich lachen, maar het belemmert je zwemvermogen. Plus je kan moeilijk bijhouden hoeveel je binnenkrijgt. Dus de kans bestaat dat je jezelf in een coma zuipt en/of dat je in de Bacardi Lemon verdrinkt. Een ignobele dood als je het mij vraagt.\n\nMaar wat dus wel een goeie oplossing is, is als je een Bacardi Lemon sauna maakt. Dan heb je wel de alcohol, maar niet de zoete teringzooi (want die blijft achter na distillatie en de kans op comazuipen is kleiner). """, "o":''' There was once an unfortunate soul known as Onestone. As is probably evident from his name, he only had one testicle. He was always ostracized and made fun of as a kid. One day, he was drinking at a bar, when he met this cute girl, Beverly Bird, who was a childhood acquaintance. She found his name and condition very quaint, but he felt offended by it, so he got her drunk, took her home, and fucked her till she died. He dumped her body in a vat of acid. Two weeks later, Beverly's cousin, Penny Bird, who had no idea of the ill fate that had befallen her sister, saw Onestone at the same bar. "Hey Onestone. How's it hanging?" she asked. Onestone, offended by this, got her drunk and took her home. But no matter how brutally he'd fuck her, she just wouldn't die. Why? Because you can't kill two Birds with Onestone. ''' } userinput = input(""" Choose your option: [V]elo [C]at [D]utch [O]nestone """) with open('retarded.txt','w') as f: f.write(opt[userinput.lower()]) print("Output saved to file. Now force-feed all your friends that sweet, sweet pasta until they hate you.")
355.16
5,006
0.7636
4a1978bf25138ad6f72eab4fa7e482ecabc9c326
3,419
py
Python
toontown/building/DistributedTrophyMgrAI.py
CrankySupertoon01/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
1
2021-02-13T22:40:50.000Z
2021-02-13T22:40:50.000Z
toontown/building/DistributedTrophyMgrAI.py
TrueBlueDogemon/Toontown
ebed7fc3f2ef06a529cf02eda7ab46361aceef9d
[ "MIT" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
toontown/building/DistributedTrophyMgrAI.py
TrueBlueDogemon/Toontown
ebed7fc3f2ef06a529cf02eda7ab46361aceef9d
[ "MIT" ]
2
2020-11-08T03:38:35.000Z
2021-09-02T07:03:47.000Z
from direct.directnotify.DirectNotifyGlobal import * from direct.distributed.DistributedObjectAI import DistributedObjectAI MAX_LISTING = 10 AV_ID_INDEX = 0 NAME_INDEX = 1 SCORE_INDEX = 2 class DistributedTrophyMgrAI(DistributedObjectAI): notify = directNotify.newCategory('DistributedTrophyMgrAI') def __init__(self, air): DistributedObjectAI.__init__(self, air) # Load the leaderboard backup for this shard: self.leaderInfo, self.trophyScores = simbase.backups.load( 'trophy-mgr', (simbase.air.districtId,), default=(([], [], []), {})) def requestTrophyScore(self): avId = self.air.getAvatarIdFromSender() av = self.air.doId2do.get(avId) if av is not None: av.d_setTrophyScore(self.trophyScores.get(avId, 0)) def addTrophy(self, avId, name, numFloors): if avId not in self.trophyScores: self.trophyScores[avId] = 0 trophyScore = self.trophyScores[avId] + numFloors self.updateTrophyScore(avId, trophyScore) def removeTrophy(self, avId, numFloors): if avId in self.trophyScores: trophyScore = self.trophyScores[avId] - numFloors self.updateTrophyScore(avId, trophyScore) def updateTrophyScore(self, avId, trophyScore): av = self.air.doId2do.get(avId) if trophyScore <= 0: # Take the player off the listing: if avId in self.trophyScores: del self.trophyScores[avId] if avId in self.leaderInfo[AV_ID_INDEX]: scoreIndex = self.leaderInfo[AV_ID_INDEX].index(avId) del self.leaderInfo[AV_ID_INDEX][scoreIndex] del self.leaderInfo[NAME_INDEX][scoreIndex] del self.leaderInfo[SCORE_INDEX][scoreIndex] else: # Add the player to the listing if they haven't been. Otherwise, # update their current trophy score: self.trophyScores[avId] = trophyScore if avId not in self.leaderInfo[AV_ID_INDEX]: if av is None: return self.leaderInfo[AV_ID_INDEX].append(avId) self.leaderInfo[NAME_INDEX].append(av.getName()) self.leaderInfo[SCORE_INDEX].append(trophyScore) else: scoreIndex = self.leaderInfo[AV_ID_INDEX].index(avId) self.leaderInfo[SCORE_INDEX][scoreIndex] = trophyScore # Truncate and reorganize the listing: self.reorganize() # Update the listing in the various Toon HQs: messenger.send('leaderboardChanged') messenger.send('leaderboardFlush') if av is not None: av.d_setTrophyScore(trophyScore) simbase.backups.save('trophy-mgr', (simbase.air.districtId,), (self.leaderInfo, self.trophyScores)) def reorganize(self): # Sort the leader info: leaderInfo = zip(*reversed(self.leaderInfo)) leaderInfo.sort(reverse=True) # Construct the new, truncated leader info: self.leaderInfo = [[], [], []] for trophyScore, name, avId in leaderInfo[:MAX_LISTING]: self.leaderInfo[AV_ID_INDEX].append(avId) self.leaderInfo[NAME_INDEX].append(name) self.leaderInfo[SCORE_INDEX].append(trophyScore) def getLeaderInfo(self): return self.leaderInfo
37.163043
80
0.632641
4a1978d263afd7a127c82febc6bff217f6447c5d
849
py
Python
naeval/ner/datasets/wikiner.py
sdspieg/naeval
52c4a508bf212b95d4e610cfe1b5e23b8ca94d2f
[ "MIT" ]
36
2020-03-22T09:37:10.000Z
2022-01-17T14:49:30.000Z
naeval/ner/datasets/wikiner.py
sdspieg/naeval
52c4a508bf212b95d4e610cfe1b5e23b8ca94d2f
[ "MIT" ]
11
2020-03-25T09:39:45.000Z
2020-08-16T05:37:02.000Z
naeval/ner/datasets/wikiner.py
sdspieg/naeval
52c4a508bf212b95d4e610cfe1b5e23b8ca94d2f
[ "MIT" ]
6
2020-05-16T05:52:04.000Z
2022-01-16T06:45:29.000Z
from corus import load_wikiner as load_wikiner_ from naeval.tokenizer import Token from ..bio import bio_spans from ..adapt import adapt_wikiner from ..markup import Markup class WikinerMarkup(Markup): @property def adapted(self): return adapt_wikiner(self) def chunk_tokens(chunks, sep=1): start = 0 for chunk in chunks: stop = start + len(chunk) yield Token(start, stop, chunk) start = stop + sep def parse_wikiner(record): chunks, tags = [], [] for chunk, pos, tag in record.tokens: chunks.append(chunk) tags.append(tag) text = ' '.join(chunks) tokens = chunk_tokens(chunks) spans = list(bio_spans(tokens, tags)) return WikinerMarkup(text, spans) def load_wikiner(path): for record in load_wikiner_(path): yield parse_wikiner(record)
21.225
47
0.669022
4a19792c39952b5f8ec395436a23056744ad007b
5,481
py
Python
spio/models/put_pages_page_id_components.py
bsneade/statuspageio-python
30526a2984251885381e781b12b5070d46063537
[ "Apache-2.0" ]
2
2020-03-02T20:32:32.000Z
2020-05-20T16:54:58.000Z
spio/models/put_pages_page_id_components.py
bsneade/statuspageio-python
30526a2984251885381e781b12b5070d46063537
[ "Apache-2.0" ]
null
null
null
spio/models/put_pages_page_id_components.py
bsneade/statuspageio-python
30526a2984251885381e781b12b5070d46063537
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Statuspage API # Code of Conduct Please don't abuse the API, and please report all feature requests and issues to https://help.statuspage.io/help/contact-us-30 # Rate Limiting Each API token is limited to 1 request / second as measured on a 60 second rolling window. To get this limit increased or lifted, please contact us at https://help.statuspage.io/help/contact-us-30 # Basics ## HTTPS It's required ## URL Prefix In order to maintain version integrity into the future, the API is versioned. All calls currently begin with the following prefix: https://api.statuspage.io/v1/ ## RESTful Interface Wherever possible, the API seeks to implement repeatable patterns with logical, representative URLs and descriptive HTTP verbs. Below are some examples and conventions you will see throughout the documentation. * Collections are buckets: https://api.statuspage.io/v1/pages/asdf123/incidents.json * Elements have unique IDs: https://api.statuspage.io/v1/pages/asdf123/incidents/jklm456.json * GET will retrieve information about a collection/element * POST will create an element in a collection * PATCH will update a single element * PUT will replace a single element in a collection (rarely used) * DELETE will destroy a single element ## Sending Data Information can be sent in the body as form urlencoded or JSON, but make sure the Content-Type header matches the body structure or the server gremlins will be angry. All examples are provided in JSON format, however they can easily be converted to form encoding if required. Some examples of how to convert things are below: // JSON { \"incident\": { \"name\": \"test incident\", \"components\": [\"8kbf7d35c070\", \"vtnh60py4yd7\"] } } // Form Encoded (using curl as an example): curl -X POST https://api.statuspage.io/v1/example \\ -d \"incident[name]=test incident\" \\ -d \"incident[components][]=8kbf7d35c070\" \\ -d \"incident[components][]=vtnh60py4yd7\" # Authentication <!-- ReDoc-Inject: <security-definitions> --> # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from spio.configuration import Configuration class PutPagesPageIdComponents(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'component': 'PostPagesPageIdComponentsComponent' } attribute_map = { 'component': 'component' } def __init__(self, component=None, local_vars_configuration=None): # noqa: E501 """PutPagesPageIdComponents - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._component = None self.discriminator = None if component is not None: self.component = component @property def component(self): """Gets the component of this PutPagesPageIdComponents. # noqa: E501 :return: The component of this PutPagesPageIdComponents. # noqa: E501 :rtype: PostPagesPageIdComponentsComponent """ return self._component @component.setter def component(self, component): """Sets the component of this PutPagesPageIdComponents. :param component: The component of this PutPagesPageIdComponents. # noqa: E501 :type: PostPagesPageIdComponentsComponent """ self._component = component def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PutPagesPageIdComponents): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, PutPagesPageIdComponents): return True return self.to_dict() != other.to_dict()
45.297521
2,064
0.647874
4a19792fc90160824cb71ad52afbfd0ed876585e
8,468
py
Python
google/cloud/pubsub_v1/subscriber/_protocol/leaser.py
tmatsuo/python-pubsub
bfe37ddce4d421344068aa45454ee2176c1c06c8
[ "Apache-2.0" ]
null
null
null
google/cloud/pubsub_v1/subscriber/_protocol/leaser.py
tmatsuo/python-pubsub
bfe37ddce4d421344068aa45454ee2176c1c06c8
[ "Apache-2.0" ]
null
null
null
google/cloud/pubsub_v1/subscriber/_protocol/leaser.py
tmatsuo/python-pubsub
bfe37ddce4d421344068aa45454ee2176c1c06c8
[ "Apache-2.0" ]
null
null
null
# Copyright 2017, Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import collections import copy import logging import random import threading import time import six from google.cloud.pubsub_v1.subscriber._protocol import requests _LOGGER = logging.getLogger(__name__) _LEASE_WORKER_NAME = "Thread-LeaseMaintainer" _LeasedMessage = collections.namedtuple( "_LeasedMessage", ["sent_time", "size", "ordering_key"] ) class Leaser(object): def __init__(self, manager): self._thread = None self._manager = manager # a lock used for start/stop operations, protecting the _thread attribute self._operational_lock = threading.Lock() # A lock ensuring that add/remove operations are atomic and cannot be # intertwined. Protects the _leased_messages and _bytes attributes. self._add_remove_lock = threading.Lock() # Dict of ack_id -> _LeasedMessage self._leased_messages = {} """dict[str, float]: A mapping of ack IDs to the local time when the ack ID was initially leased in seconds since the epoch.""" self._bytes = 0 """int: The total number of bytes consumed by leased messages.""" self._stop_event = threading.Event() @property def message_count(self): """int: The number of leased messages.""" return len(self._leased_messages) @property def ack_ids(self): """Sequence[str]: The ack IDs of all leased messages.""" return self._leased_messages.keys() @property def bytes(self): """int: The total size, in bytes, of all leased messages.""" return self._bytes def add(self, items): """Add messages to be managed by the leaser.""" with self._add_remove_lock: for item in items: # Add the ack ID to the set of managed ack IDs, and increment # the size counter. if item.ack_id not in self._leased_messages: self._leased_messages[item.ack_id] = _LeasedMessage( sent_time=float("inf"), size=item.byte_size, ordering_key=item.ordering_key, ) self._bytes += item.byte_size else: _LOGGER.debug("Message %s is already lease managed", item.ack_id) def start_lease_expiry_timer(self, ack_ids): """Start the lease expiry timer for `items`. Args: items (Sequence[str]): Sequence of ack-ids for which to start lease expiry timers. """ with self._add_remove_lock: for ack_id in ack_ids: lease_info = self._leased_messages.get(ack_id) # Lease info might not exist for this ack_id because it has already # been removed by remove(). if lease_info: self._leased_messages[ack_id] = lease_info._replace( sent_time=time.time() ) def remove(self, items): """Remove messages from lease management.""" with self._add_remove_lock: # Remove the ack ID from lease management, and decrement the # byte counter. for item in items: if self._leased_messages.pop(item.ack_id, None) is not None: self._bytes -= item.byte_size else: _LOGGER.debug("Item %s was not managed.", item.ack_id) if self._bytes < 0: _LOGGER.debug("Bytes was unexpectedly negative: %d", self._bytes) self._bytes = 0 def maintain_leases(self): """Maintain all of the leases being managed. This method modifies the ack deadline for all of the managed ack IDs, then waits for most of that time (but with jitter), and repeats. """ while not self._stop_event.is_set(): # Determine the appropriate duration for the lease. This is # based off of how long previous messages have taken to ack, with # a sensible default and within the ranges allowed by Pub/Sub. deadline = self._manager.ack_deadline _LOGGER.debug("The current deadline value is %d seconds.", deadline) # Make a copy of the leased messages. This is needed because it's # possible for another thread to modify the dictionary while # we're iterating over it. leased_messages = copy.copy(self._leased_messages) # Drop any leases that are beyond the max lease time. This ensures # that in the event of a badly behaving actor, we can drop messages # and allow the Pub/Sub server to resend them. cutoff = time.time() - self._manager.flow_control.max_lease_duration to_drop = [ requests.DropRequest(ack_id, item.size, item.ordering_key) for ack_id, item in six.iteritems(leased_messages) if item.sent_time < cutoff ] if to_drop: _LOGGER.warning( "Dropping %s items because they were leased too long.", len(to_drop) ) self._manager.dispatcher.drop(to_drop) # Remove dropped items from our copy of the leased messages (they # have already been removed from the real one by # self._manager.drop(), which calls self.remove()). for item in to_drop: leased_messages.pop(item.ack_id) # Create a streaming pull request. # We do not actually call `modify_ack_deadline` over and over # because it is more efficient to make a single request. ack_ids = leased_messages.keys() if ack_ids: _LOGGER.debug("Renewing lease for %d ack IDs.", len(ack_ids)) # NOTE: This may not work as expected if ``consumer.active`` # has changed since we checked it. An implementation # without any sort of race condition would require a # way for ``send_request`` to fail when the consumer # is inactive. self._manager.dispatcher.modify_ack_deadline( [requests.ModAckRequest(ack_id, deadline) for ack_id in ack_ids] ) # Now wait an appropriate period of time and do this again. # # We determine the appropriate period of time based on a random # period between 0 seconds and 90% of the lease. This use of # jitter (http://bit.ly/2s2ekL7) helps decrease contention in cases # where there are many clients. snooze = random.uniform(0.0, deadline * 0.9) _LOGGER.debug("Snoozing lease management for %f seconds.", snooze) self._stop_event.wait(timeout=snooze) _LOGGER.info("%s exiting.", _LEASE_WORKER_NAME) def start(self): with self._operational_lock: if self._thread is not None: raise ValueError("Leaser is already running.") # Create and start the helper thread. self._stop_event.clear() thread = threading.Thread( name=_LEASE_WORKER_NAME, target=self.maintain_leases ) thread.daemon = True thread.start() _LOGGER.debug("Started helper thread %s", thread.name) self._thread = thread def stop(self): with self._operational_lock: self._stop_event.set() if self._thread is not None: # The thread should automatically exit when the consumer is # inactive. self._thread.join() self._thread = None
39.203704
88
0.602858
4a1979f443b7dd8b5614278b43b107112373d18f
8,234
py
Python
hypebeast/hypebeast/spiders/hypebeast_sneaker.py
suntian123/sneaker_crawler
accde7b5331abb1b6d5780a30ad74c7018bfbf71
[ "MIT" ]
4
2019-05-05T06:26:29.000Z
2019-06-25T03:37:38.000Z
hypebeast/hypebeast/spiders/hypebeast_sneaker.py
suntian123/sneaker_crawler
accde7b5331abb1b6d5780a30ad74c7018bfbf71
[ "MIT" ]
null
null
null
hypebeast/hypebeast/spiders/hypebeast_sneaker.py
suntian123/sneaker_crawler
accde7b5331abb1b6d5780a30ad74c7018bfbf71
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy import os from items import HypebeastItem import datetime import re from sneakers import sneaker class HypebeastSneakerSpider(scrapy.Spider): name = 'hypebeast_sneaker' page_crawled = 0 # allowed_domains = ['https://hypebeast.com/footwear'] start_urls = ['https://hypebeast.com/footwear/page/'] urls = [('hypebeast','https://hypebeast.com/footwear/page/'), ('snkr_news','https://sneakernews.com/page/')] last_ids = {'hype': '-1', 'snkr': '-1','where2b': '-1'} last_ids_reached = {'hype': 0, 'snkr': 0, 'where2b': 0} most_ids = {'hype': '-1', 'snkr': '-1', 'where2b': '-1'} _Debug = False def parse(self, response): self.last_ids = self.get_last_crawled() for (site, url) in self.urls: for page_num in range(4,0,-1): crawling_url = url + str(page_num) if(site == 'hypebeast'): pass #if not(self.last_ids_reached['hype']): #yield scrapy.Request(crawling_url, callback=self.parse_hype_pages) else: if not (self.last_ids_reached['snkr']): yield scrapy.Request(crawling_url, callback=self.parse_snkr_pages) def parse_hype_pages(self, response): if(self.last_ids_reached['hype']): return item = HypebeastItem() selector = scrapy.Selector(response) articles = selector.xpath('//div[@class="post-box-content-container"]') ##找到每篇文章的div# for article in articles: title_div = article.xpath('div[@class="post-box-content-title"]') artical_mata = article.xpath('div[@class="post-box-content-meta"]') artical_url = title_div.xpath('a/@href').extract()[0] if str(artical_url) == self.last_ids['hype'].strip('\n'): self.last_ids_reached['hype'] = 1 return if self.most_ids['hype'] == '-1': self.most_ids['hype'] = artical_url title_text = title_div.xpath('a/@title').extract()[0] artical_mata = artical_mata.xpath('div[@class="post-box-content-meta-time-info"]')[0] datetime = artical_mata.xpath('span[@class="time"]/time/text()').extract()[0] views = artical_mata.xpath('div[@class="post-box-stats"]/hype-count/span[@class="hype-count"]/text()').extract()[0] views = views.replace("\n", "") views = views.replace(" ", "") views = views.replace(",", "") views = views.strip('Hypes') views = int(views) self.page_crawled += 1 item['url'] = artical_url item['title'] = title_text item['views'] = views item['time'] = self.convert_hype_time(datetime) yield item def parse_snkr_pages(self, response): if(self.last_ids_reached['snkr']): return selector = scrapy.Selector(response) articles = selector.xpath('//div[contains(@class, "-post-box")]') title_div = articles.xpath('//div[contains(@class, "post-content")]') post_box = title_div[0] big_artical_url = post_box.xpath('//h2/a/@href').extract() article_url = big_artical_url + post_box.xpath('//h4/a/@href').extract() for url in article_url: if url == self.last_ids['snkr'].strip('\n'): self.last_ids_reached['snkr'] = 1 return yield scrapy.Request(url, callback=self.process_snkr_page) def process_snkr_page(self, response): if str(response.url) == self.last_ids['hype'].strip('\n'): self.last_ids_reached['hype'] = 1 return if (self.last_ids_reached['snkr']): return print("\n================================Getting SNKRS page:{}==========================\n".format(response.url)) item = HypebeastItem() snkrs = "" time = response.url[24:34] if (self.is_today(time) and self.most_ids['snkr'] == '-1'): self.most_ids['snkr'] = response.url self.write_last_crawled(self.most_ids) selector = scrapy.Selector(response) title = selector.xpath('/html/body/div[1]/div[2]/div/div[1]/div[1]/h1/text()').extract_first() votes = selector.xpath('//div[@class = "vote-box"]/div[@class="post-ratings"]/span/i/text()').extract_first().strip(" ") votes = votes.strip("VOTES") print('-----------Titel = {}-----------\n'.format(title)) print('-----------Votes = {}-----------\n'.format(votes)) print('-----------Time = {}-----------\n'.format(time)) release_divs = selector.xpath('//blockquote[@class = "releases"]/p') print('-----------Found {} Release Divs:{}\n'.format(len(release_divs), release_divs)) for release_div in release_divs: snkr = sneaker() prize = "".join(release_div.xpath('text()').extract()).strip("\n$").strip(' ') print('-----------Prize = {}-----------\n'.format(prize)) info = release_div.xpath('strong') if len(info) > 1: date = info[1].xpath('text()').extract()[0].strip("Release Date: ") else: date = "unknown" name = info[0].xpath('text()').extract()[0] info = release_div.xpath('//small/text()').extract() color = '-' code = '-' while(len(info)>0): if("Color: "in info[0]): color = info[0].strip("Color: ") elif("Style Code: " in info[0]): code = info[0].strip("Style Code: ") del(info[0]) snkr.name(name) snkr.color(color) snkr.prize(prize) snkr.release(date) snkr.id(code) print(str(snkr)) snkrs += snkr.snkr_name snkrs += ", " item['url'] = response.url item['time'] = time item['votes'] = votes item['title'] = title item['sneaker'] = str(snkrs) self.page_crawled += 1 yield item def get_last_crawled(self): last_doc = open("last_doc.txt",'r') result = {'hype': '', 'snkr': '', 'where2b': ''} if(os.stat('last_doc.txt').st_size==0): last_doc.close() return result for line in last_doc: id_entry = line.split(',') if id_entry[0] == 'where2b': result['where2b'] = id_entry[-1] elif id_entry[0] == 'snkr': result['snkr'] = id_entry[-1] elif id_entry[0] == 'hype': result['hype'] = id_entry[-1] last_doc.close() return result def write_last_crawled(self, last_crawled): last_doc = open("last_doc.txt",'w') for site,url in last_crawled.items(): last_doc.write('{},{}\n'.format(site,url)) last_doc.close() def is_today(self, date): ''' Check if the input date is the current date :param date: string e.g.: 2018/07/23 :return: bool ''' if(datetime.datetime.now().strftime("%Y/%m/%d") == date): return True else: return False def convert_hype_time(self, text_time): result = '' if("ago" in text_time): reobject = re.match(r'^(\d+) ([\w]+) ago', text_time) if('Hr' in reobject.group(2) or 'Min' in reobject.group(2)): result = datetime.datetime.now().strftime("%Y/%m/%d") if ('day' in reobject.group(2)): time_obj = datetime.datetime.today() - datetime.timedelta(days=int(reobject.group(1))) result = time_obj.strftime("%Y/%m/%d") else: time_obj = datetime.datetime.strptime(text_time, '%b %d, %Y') result = time_obj.strftime("%Y/%m/%d") return result def get_inpage_sneaker(self, url): print("\n================================Getting Request From({})==========================\n".format(url)) return scrapy.Request(url, callback=self.process_snkr_page)
39.397129
128
0.527083
4a197b78d70afc84d61a3ad46a0ee564bbeab103
5,227
py
Python
template_profiler_panel/panels/template.py
Penagwin/django-debug-toolbar-template-profiler
d8a908a5c36c4d40dfeb975ff04e016da6cacc8e
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
template_profiler_panel/panels/template.py
Penagwin/django-debug-toolbar-template-profiler
d8a908a5c36c4d40dfeb975ff04e016da6cacc8e
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
template_profiler_panel/panels/template.py
Penagwin/django-debug-toolbar-template-profiler
d8a908a5c36c4d40dfeb975ff04e016da6cacc8e
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
import inspect from collections import defaultdict from time import time import wrapt from django.dispatch import Signal from django.utils.translation import ugettext_lazy as _ from debug_toolbar.panels import Panel from debug_toolbar.panels.sql.utils import contrasting_color_generator template_rendered = Signal(providing_args=['instance', 'start', 'end', 'level']) class TemplateProfilerPanel(Panel): ''' Displays template rendering times on the request timeline ''' template = 'template_profiler_panel/template.html' def __init__(self, *args, **kwargs): self.colors = {} self.templates = [] self.color_generator = contrasting_color_generator() self.t_min = 0 self.t_max = 0 self.total = 0 self.monkey_patch_template_classes() self.is_enabled = False template_rendered.connect(self.record) super(TemplateProfilerPanel, self).__init__(*args, **kwargs) have_monkey_patched_template_classes = False @classmethod def monkey_patch_template_classes(cls): if cls.have_monkey_patched_template_classes: return from django.template import Template as DjangoTemplate template_classes = [DjangoTemplate] try: from jinja2 import Template as Jinja2Template except ImportError: pass else: template_classes.append(Jinja2Template) @wrapt.decorator def render_wrapper(wrapped, instance, args, kwargs): start = time() result = wrapped(*args, **kwargs) end = time() stack_depth = 1 current_frame = inspect.currentframe() while True: current_frame = current_frame.f_back if current_frame is None: break stack_depth += 1 template_rendered.send( sender=instance.__class__, instance=instance, start=start, end=end, level=stack_depth, ) return result for template_class in template_classes: template_class.render = render_wrapper(template_class.render) cls.have_monkey_patched_template_classes = True @property def nav_title(self): return _('Template Profiler') @property def nav_subtitle(self): return _('{} calls in {:.2f} ms').format( self.total, (self.t_max - self.t_min) * 1000.0) @property def title(self): return _('Template Rendering Time') def _get_color(self, level): return self.colors.setdefault(level, next(self.color_generator)) def record(self, instance, start, end, level, **kwargs): if not self.enabled: return template_name = instance.name # Logic copied from django-debug-toolbar: # https://github.com/jazzband/django-debug-toolbar/blob/5d095f66fde8f10b45a93c0b35be0a85762b0458/debug_toolbar/panels/templates/panel.py#L77 is_skipped_template = isinstance(template_name, str) and ( template_name.startswith("debug_toolbar/") or template_name.startswith( tuple(self.toolbar.config["SKIP_TEMPLATE_PREFIXES"]) ) ) if is_skipped_template: return bg = self._get_color(level) text = '#ffffff' if int(bg[1:], 16) < 0x8fffff else '#000000' color = {'bg': bg, 'text': text} self.templates.append({ 'start': start, 'end': end, 'time': (end - start) * 1000.0, 'level': level, 'name': template_name, 'color': color, }) def enable_instrumentation(self): self.is_enabled = True def disable_instrumentation(self): self.is_enabled = False def _calc_p(self, part, whole): return (part / whole) * 100.0 def _calc_timeline(self, start, end): result = {} result['offset_p'] = self._calc_p( start - self.t_min, self.t_max - self.t_min) result['duration_p'] = self._calc_p( end - start, self.t_max - self.t_min) result['rel_duration_p'] = self._calc_p( result['duration_p'], 100 - result['offset_p']) return result def generate_stats(self, request, response): summary = defaultdict(float) # Collect stats for template in self.templates: if self.t_min == 0: self.t_min = template['start'] elif template['start'] < self.t_min: self.t_min = template['start'] if template['end'] > self.t_max: self.t_max = template['end'] summary[template['name']] += template['time'] # Calc timelines for template in self.templates: template.update( self._calc_timeline(template['start'], template['end'])) self.total = len(self.templates) self.record_stats( {'templates': sorted(self.templates, key=lambda d: d['start']), 'summary': sorted(summary.items(), key=lambda t: -t[1])})
30.389535
148
0.598623
4a197b906b5597cf233ce958fc7fb56937a6dee3
101
py
Python
examples/cors_per_route.py
izi-global/izir
d1a4bfb5c082c3de1956402ef0280564014a3bd8
[ "MIT" ]
null
null
null
examples/cors_per_route.py
izi-global/izir
d1a4bfb5c082c3de1956402ef0280564014a3bd8
[ "MIT" ]
5
2021-03-18T21:01:05.000Z
2022-03-11T23:29:48.000Z
examples/cors_per_route.py
izi-global/izir
d1a4bfb5c082c3de1956402ef0280564014a3bd8
[ "MIT" ]
null
null
null
import izi @izi.get() def cors_supported(cors: izi.directives.cors="*"): return "Hello world!"
14.428571
50
0.683168
4a197c5d5eb4a31d4a2e698d001a1ac85fb34bed
7,944
py
Python
src/practice_problem2.py
bednartc/Exam2Practice
3856b9a899d8144a7356e225e161e5fb100ddb4a
[ "MIT" ]
null
null
null
src/practice_problem2.py
bednartc/Exam2Practice
3856b9a899d8144a7356e225e161e5fb100ddb4a
[ "MIT" ]
null
null
null
src/practice_problem2.py
bednartc/Exam2Practice
3856b9a899d8144a7356e225e161e5fb100ddb4a
[ "MIT" ]
null
null
null
""" PRACTICE Test 2, practice_problem 2. Authors: David Mutchler, Dave Fisher, Valerie Galluzzi, Amanda Stouder, their colleagues and Travis Bednarek. """ # Done: 1. PUT YOUR NAME IN THE ABOVE LINE. ######################################################################## # Students: # # These problems have DIFFICULTY and TIME ratings: # DIFFICULTY rating: 1 to 10, where: # 1 is very easy # 3 is an "easy" Test 2 question. # 5 is a "typical" Test 2 question. # 7 is a "hard" Test 2 question. # 10 is an EXTREMELY hard problem (too hard for a Test 2 question) # # TIME ratings: A ROUGH estimate of the number of minutes that we # would expect a well-prepared student to take on the problem. # # IMPORTANT: For ALL the problems in this module, # if you reach the time estimate and are NOT close to a solution, # STOP working on that problem and ASK YOUR INSTRUCTOR FOR HELP # on it, in class or via Piazza. ######################################################################## import simple_testing as st def main(): """ Calls the TEST functions in this module. """ run_test_practice_problem2a() run_test_practice_problem2b() # ---------------------------------------------------------------------- # Students: Some of the testing code below uses SimpleTestCase objects, # from the imported simple_testing (st) module. # ---------------------------------------------------------------------- def run_test_practice_problem2a(): """ Tests the practice_problem2a function. """ # ------------------------------------------------------------------ # Done: 2. Implement this TEST function. # It TESTS the practice_problem2a function defined below. # Include at least ** 4 reasonable ** tests. # #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 3 # TIME ESTIMATE: 5 minutes. #################################################################### print() print('--------------------------------------------------') print('Testing the practice_problem2a function:') print('--------------------------------------------------') sequence = [2,10,5,-20,8] delta = 6 expected = [8,16,11,-14,14] print('expected:', expected) print('actual:', practice_problem2a(sequence, delta)) def practice_problem2a(sequence, delta): """ What comes in: -- A sequence of integers, e.g. ([2, 10, 5, -20, 8]) -- A number delta What goes out: -- Returns a new list that is the same as the given list, but with each number in the list having had the given delta added to it (see example below) Side effects: None. Example: Given the list [2, 10, 5, -20, 8] and the number 6, this problem returns [8, 16, 11, -14, 14] Type hints: :type sequence: [int] :type delta: int """ #################################################################### # Done: 3. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 5 # TIME ESTIMATE: 5 minutes. #################################################################### for k in range(len(sequence)): sequence[k] = sequence[k] + delta return sequence def run_test_practice_problem2b(): """ Tests the practice_problem2b function. """ # ------------------------------------------------------------------ # 4 tests, plus a 5th after these. # They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem2b(('hello', 'Bye', 'ok joe')) # and compare the returned value against 'hBo' (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem2b, [('hello', 'Bye', 'ok joe')], 'hBo'), st.SimpleTestCase(practice_problem2b, [('Alice', 'Bob', 'Carson', 'Devi')], 'ABCD'), st.SimpleTestCase(practice_problem2b, [('', 'tricky', '', 'one, no?', '!')], 'to!'), st.SimpleTestCase(practice_problem2b, [('my very long string', 'ok', 'mmmm')], 'mom'), ] jokes = """ Q: What is it called when a cat wins a dog show? A: A CAT-HAS-TROPHY! Q: What do you call a pile of kittens? A: a meowntain Q: Why don't cats like online shopping? A: They prefer a cat-alogue. Q: What did the cat say when he lost all his money? A: I'm paw! Q: Did you hear about the cat who swallowed a ball of yarn? A: She had a litter of mittens. Q: What do you call a lion who has eaten your mother's sister? A: An aunt-eater! Q. How do you know when your cat's done cleaning herself? A. She's smoking a cigarette. source: http://www.jokes4us.com/animaljokes/catjokes.html """ # 5th test: Split jokes at spaces to get a list of strings. sequence = jokes.split() answer = ('QWiicwacwadsAACQWdycapokAamQWdclosAT' + 'pacQWdtcswhlahmAIpQDyhatcwsaboyAShalom' + 'QWdycalwheymsAAaQHdykwycdchASsacsh') tests.append(st.SimpleTestCase(practice_problem2b, [sequence], answer)) # ------------------------------------------------------------------ # Run the 5 tests in the tests list constructed above. # ------------------------------------------------------------------ st.SimpleTestCase.run_tests('practice_problem2b', tests) def practice_problem2b(sequence): """ What comes in: -- A sequence of strings, e.g. ('hello', 'Bye', 'ok joe') What goes out: -- Returns the string that contains the first letter in each of the strings in the given sequence, in the order in which they appear in the sequence. (So 'hBo' for the example sequence above). Side effects: None. Examples: Given ['hello', 'Bye', 'ok joe'] returns 'hBo'. Given ('Alice, 'Bob', 'Carson', 'Devi') returns 'ABCD'. Given ('', 'tricky', '', 'one, no?', '!') returns 'to!' Given [] returns '' Given ('my very long string', 'ok', 'mmmm') returns 'mom' Type hints: :type sequence [str] """ #################################################################### # Done: 4. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 7 # TIME ESTIMATE: 10 minutes. #################################################################### word = '' for k in range (len(sequence)): length = len(sequence[k]) if length < 1: word = word else: word = word + sequence[k][0] return word # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
38.941176
72
0.482125
4a197d3f60d0e0063c636ba18cafb29af21167cd
3,750
py
Python
src/gen_data.py
Atharva-Gundawar/Not-So-Deep-Face
b4721078317ae67fa4f18e0a875329f90be2c112
[ "MIT" ]
null
null
null
src/gen_data.py
Atharva-Gundawar/Not-So-Deep-Face
b4721078317ae67fa4f18e0a875329f90be2c112
[ "MIT" ]
null
null
null
src/gen_data.py
Atharva-Gundawar/Not-So-Deep-Face
b4721078317ae67fa4f18e0a875329f90be2c112
[ "MIT" ]
null
null
null
import os import cv2 import dlib import time import argparse import numpy as np from imutils import video DOWNSAMPLE_RATIO = 4 def reshape_for_polyline(array): return np.array(array, np.int32).reshape((-1, 1, 2)) def main(): os.makedirs('original', exist_ok=True) os.makedirs('landmarks', exist_ok=True) cap = cv2.VideoCapture(args.filename) fps = video.FPS().start() count = 0 while cap.isOpened(): ret, frame = cap.read() frame_resize = cv2.resize(frame, None, fx=1 / DOWNSAMPLE_RATIO, fy=1 / DOWNSAMPLE_RATIO) gray = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2GRAY) faces = detector(gray, 1) black_image = np.zeros(frame.shape, np.uint8) t = time.time() # Perform if there is a face detected if len(faces) == 1: for face in faces: detected_landmarks = predictor(gray, face).parts() landmarks = [[p.x * DOWNSAMPLE_RATIO, p.y * DOWNSAMPLE_RATIO] for p in detected_landmarks] jaw = reshape_for_polyline(landmarks[0:17]) left_eyebrow = reshape_for_polyline(landmarks[22:27]) right_eyebrow = reshape_for_polyline(landmarks[17:22]) nose_bridge = reshape_for_polyline(landmarks[27:31]) lower_nose = reshape_for_polyline(landmarks[30:35]) left_eye = reshape_for_polyline(landmarks[42:48]) right_eye = reshape_for_polyline(landmarks[36:42]) outer_lip = reshape_for_polyline(landmarks[48:60]) inner_lip = reshape_for_polyline(landmarks[60:68]) color = (255, 255, 255) thickness = 3 cv2.polylines(black_image, [jaw], False, color, thickness) cv2.polylines(black_image, [left_eyebrow], False, color, thickness) cv2.polylines(black_image, [right_eyebrow], False, color, thickness) cv2.polylines(black_image, [nose_bridge], False, color, thickness) cv2.polylines(black_image, [lower_nose], True, color, thickness) cv2.polylines(black_image, [left_eye], True, color, thickness) cv2.polylines(black_image, [right_eye], True, color, thickness) cv2.polylines(black_image, [outer_lip], True, color, thickness) cv2.polylines(black_image, [inner_lip], True, color, thickness) # Display the resulting frame count += 1 print(count) cv2.imwrite("original/{}.png".format(count), frame) cv2.imwrite("landmarks/{}.png".format(count), black_image) fps.update() print('[INFO] elapsed time: {:.2f}'.format(time.time() - t)) if count == args.number: # only take 400 photos break elif cv2.waitKey(1) & 0xFF == ord('q'): break else: print("No face detected") fps.stop() print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed())) print('[INFO] approx. FPS: {:.2f}'.format(fps.fps())) cap.release() cv2.destroyAllWindows() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--file', dest='filename', type=str, help='Name of the video file.') parser.add_argument('--num', dest='number', type=int, help='Number of train data to be created.') parser.add_argument('--landmark-model', dest='face_landmark_shape_file', type=str, help='Face landmark model file.') args = parser.parse_args() # Create the face predictor and landmark predictor detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(args.face_landmark_shape_file) main()
38.265306
120
0.617333
4a197d50de68ef762da231759d8a463f76c24561
68
py
Python
lightautoml/addons/interpretation/__init__.py
Zhurik/LightAutoML
506d0602f40eca79ed0e5d58e7d4f71aeb1d8059
[ "Apache-2.0" ]
null
null
null
lightautoml/addons/interpretation/__init__.py
Zhurik/LightAutoML
506d0602f40eca79ed0e5d58e7d4f71aeb1d8059
[ "Apache-2.0" ]
null
null
null
lightautoml/addons/interpretation/__init__.py
Zhurik/LightAutoML
506d0602f40eca79ed0e5d58e7d4f71aeb1d8059
[ "Apache-2.0" ]
1
2021-12-08T13:52:45.000Z
2021-12-08T13:52:45.000Z
from .lime import LimeTextExplainer __all__ = ['LimeTextExplainer']
22.666667
35
0.808824
4a197da24bc1970966bf66e0c43b72ad5bfee80a
2,032
py
Python
Course_Material/MyCustomEnv.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
3
2022-02-14T17:59:56.000Z
2022-02-15T10:08:43.000Z
Course_Material/MyCustomEnv.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
21
2021-11-02T21:35:26.000Z
2022-01-17T18:50:42.000Z
Course_Material/MyCustomEnv.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
2
2021-11-24T15:25:17.000Z
2022-02-14T19:04:56.000Z
import gym, gym.spaces, gym.utils, gym.utils.seeding import numpy as np class MyCustomEnvClass(gym.Env): def __init__(self): self.action_space = gym.spaces.box.Box( low=np.array([-40.0, -40.0], dtype=np.float32), high=np.array([40.0, 40.0], dtype=np.float32)) self.observation_space = gym.spaces.box.Box( low=np.array([-100, -100, -100, -100, 0], dtype=np.float32), high=np.array([100, 100, 100, 100, 360], dtype=np.float32)) #alternative way of writing the obs space if all high/low are the same: gym.spaces.box.Box(low=-100,high=100, shape=(4,), dtype=np.float32) self.init_x = 30 self.init_y = 30 self.heading = 0 self.timestep = 0.5 self.reset() def step(self, action): self.heading += action[0] self.heading = self.heading%360 throttle = action[1]/40 angle_to_move = self.heading * np.pi / 180.0 old_distance = np.linalg.norm([self.target_x - self.x, self.target_y - self.y]) self.x += throttle*self.timestep*np.cos(angle_to_move) self.y += throttle*self.timestep*np.sin(angle_to_move) new_distance = np.linalg.norm([self.target_x - self.x, self.target_y - self.y]) reward = float(old_distance - new_distance) self.state = np.array([self.target_x, self.target_y, self.x, self.y, self.heading], dtype=np.float32) done = self.done info = {} return self.state, reward, done, info def render(self): pass def reset(self): self.target_x = self.init_x self.target_y = self.init_y self.x = 0 self.y = 0 self.done = False self.state = np.array([self.target_x, self.target_y, self.x, self.y, self.heading], dtype=np.float32) return self.state def seed(self, seed=None): self.np_random, seed = gym.utils.seeding.np_random(seed) return [seed]
36.285714
147
0.587598
4a197ec9a91261201d8b87a0986a3a8b0851ad07
42
py
Python
dhlmex/version.py
cuenca-mx/dhlmex-python
3b09e172e33c56023bf702a8bb2f2d9ccf15b758
[ "MIT" ]
1
2020-11-02T21:14:43.000Z
2020-11-02T21:14:43.000Z
dhlmex/version.py
cuenca-mx/dhlmex-python
3b09e172e33c56023bf702a8bb2f2d9ccf15b758
[ "MIT" ]
5
2020-01-15T10:54:41.000Z
2021-02-26T04:11:28.000Z
dhlmex/version.py
cuenca-mx/dhlmex-python
3b09e172e33c56023bf702a8bb2f2d9ccf15b758
[ "MIT" ]
1
2020-11-02T21:14:35.000Z
2020-11-02T21:14:35.000Z
__version__ = '0.0.5' # pragma: no cover
21
41
0.642857
4a197f6d318d674dd81f1ad37bfd114d1bddf696
5,961
py
Python
power_outage_notify/settings.py
MakingL/power_outage_notify
a1d18e5a2ca6fab32ef7cac241dac135aef06709
[ "MIT" ]
6
2019-10-24T09:22:27.000Z
2020-12-11T02:12:35.000Z
power_outage_notify/settings.py
MakingL/power_outage_notify
a1d18e5a2ca6fab32ef7cac241dac135aef06709
[ "MIT" ]
null
null
null
power_outage_notify/settings.py
MakingL/power_outage_notify
a1d18e5a2ca6fab32ef7cac241dac135aef06709
[ "MIT" ]
null
null
null
""" Django settings for power_outage_notify project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2$k5oiw00n1fb@rs=_&@=7#-5ugnt!ykg&+zmlld+02@3ctu$m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ["*", ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_crontab', 'notify.apps.NotifyConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'power_outage_notify.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'power_outage_notify.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') # Email Setting # 发送邮件设置 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # SMTP地址 EMAIL_HOST = 'smtp.126.com' # SMTP端口 EMAIL_PORT = 25 # TODO: 请设置自己用于发邮件的邮箱, 设置自己的邮箱及授权码 # 自己的邮箱 EMAIL_HOST_USER = 'xxx@126.com' # 自己的邮箱授权码,非密码 EMAIL_HOST_PASSWORD = 'xxxx' EMAIL_SUBJECT_PREFIX = '[Power Outage Notify]' DEFAULT_FROM_EMAIL = EMAIL_HOST_USER # 与SMTP服务器通信时,是否启动TLS链接(安全链接)。默认是false EMAIL_USE_TLS = False # logging configurations log_save_path = { 'server': 'log/server/service.log', } for log_path in log_save_path.values(): log_dir = os.path.dirname(log_path) if not os.path.isdir(log_dir): os.makedirs(log_dir) LOG_FILE_BACKUP_DAYS = 5 LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'default': { 'format': '[%(asctime)s] %(levelname)s [%(funcName)s: %(filename)s, %(lineno)d] %(message)s' }, 'thread_simple': { 'format': '[%(asctime)s] %(levelname)s [thread: %(threadName)s] %(message)s' }, 'thread': { 'format': '[%(asctime)s] %(levelname)s [thread: %(threadName)s] [%(funcName)s: %(filename)s, %(lineno)d] %(message)s' }, }, 'handlers': { 'console': { 'level': 'INFO', 'class': 'logging.StreamHandler', 'formatter': 'default', }, 'file_backup': { 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', 'filename': log_save_path['server'], 'formatter': 'default', 'maxBytes': 1024 * 1024, # 1M 'backupCount': LOG_FILE_BACKUP_DAYS, }, 'file': { 'level': 'INFO', 'class': 'logging.handlers.TimedRotatingFileHandler', 'filename': log_save_path['server'], 'formatter': 'default', 'when': 'midnight', 'interval': 1, 'backupCount': LOG_FILE_BACKUP_DAYS, }, }, 'loggers': { '': { 'handlers': ['file'], 'level': 'DEBUG', 'propagate': True, }, 'file': { 'handlers': ['file'], 'level': 'DEBUG', 'propagate': True, }, 'console': { 'handlers': ['console'], 'level': 'DEBUG', 'propagate': True, }, } } # ==== 定时任务 ==== # 每天 19:30 分爬取一次通告信息 CRONJOBS = ( ('30 19 * * *', 'notify.task.task_crawl_power_outage_info'), )
27.985915
129
0.607784
4a197fec74450d9eab3e1711db2840fd62021959
240
py
Python
example/simul_sort.py
jackd/numba-neighbors
613fcc9be3a4050f23eb1fa319ea16b6848dc754
[ "MIT" ]
5
2020-04-07T08:11:13.000Z
2022-03-01T21:43:27.000Z
example/simul_sort.py
jackd/numba-neighbors
613fcc9be3a4050f23eb1fa319ea16b6848dc754
[ "MIT" ]
3
2020-06-14T22:13:51.000Z
2021-09-08T01:33:01.000Z
example/simul_sort.py
jackd/numba-neighbors
613fcc9be3a4050f23eb1fa319ea16b6848dc754
[ "MIT" ]
1
2020-06-14T19:50:05.000Z
2020-06-14T19:50:05.000Z
import numpy as np import sklearn.neighbors k = 10 dist = np.random.uniform(size=(1, k,), high=100) idx = np.random.uniform(size=(1, k,), high=1000).astype(np.int64) sklearn.neighbors._kd_tree.simultaneous_sort(dist, idx) print(dist[0])
21.818182
65
0.729167
4a19801a1f86a588fd8ac13655d3e91bf4f48fda
4,444
py
Python
tensorflow/python/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
190,993
2015-11-09T13:17:30.000Z
2022-03-31T23:05:27.000Z
tensorflow/python/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
48,461
2015-11-09T14:21:11.000Z
2022-03-31T23:17:33.000Z
tensorflow/python/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
104,981
2015-11-09T13:40:17.000Z
2022-03-31T19:51:54.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark for Keras text vectorization preprocessing layer's adapt method.""" import collections import itertools import random import string import time import numpy as np from tensorflow.python import keras from tensorflow.python.compat import v2_compat from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.keras.layers.preprocessing import index_lookup from tensorflow.python.platform import benchmark from tensorflow.python.platform import test v2_compat.enable_v2_behavior() # word_gen creates random sequences of ASCII letters (both lowercase and upper). # The number of unique strings is ~2,700. def word_gen(): for _ in itertools.count(1): yield "".join(random.choice(string.ascii_letters) for i in range(2)) def get_top_k(dataset, k): """Python implementation of vocabulary building using a defaultdict.""" counts = collections.defaultdict(int) for tensor in dataset: data = tensor.numpy() for element in data: counts[element] += 1 sorted_vocab = [ k for k, _ in sorted( counts.items(), key=lambda item: item[1], reverse=True) ] if len(sorted_vocab) > k: sorted_vocab = sorted_vocab[:k] return sorted_vocab class BenchmarkAdapt(benchmark.TensorFlowBenchmark): """Benchmark adapt.""" def run_numpy_implementation(self, num_elements, batch_size, k): """Test the python implementation.""" ds = dataset_ops.Dataset.from_generator(word_gen, dtypes.string, tensor_shape.TensorShape([])) batched_ds = ds.take(num_elements).batch(batch_size) input_t = keras.Input(shape=(), dtype=dtypes.string) layer = index_lookup.IndexLookup( max_tokens=k, num_oov_indices=0, mask_token=None, oov_token="OOV", dtype=dtypes.string) _ = layer(input_t) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): starts.append(time.time()) vocab = get_top_k(batched_ds, k) layer.set_vocabulary(vocab) ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) return avg_time def bm_adapt_implementation(self, num_elements, batch_size, k): """Test the KPL adapt implementation.""" ds = dataset_ops.Dataset.from_generator(word_gen, dtypes.string, tensor_shape.TensorShape([])) batched_ds = ds.take(num_elements).batch(batch_size) input_t = keras.Input(shape=(), dtype=dtypes.string) layer = index_lookup.IndexLookup( max_tokens=k, num_oov_indices=0, mask_token=None, oov_token="OOV", dtype=dtypes.string) _ = layer(input_t) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): starts.append(time.time()) layer.adapt(batched_ds) ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) name = "index_lookup_adapt|%s_elements|vocab_size_%s|batch_%s" % ( num_elements, k, batch_size) baseline = self.run_numpy_implementation(num_elements, batch_size, k) extras = { "numpy implementation baseline": baseline, "delta seconds": (baseline - avg_time), "delta percent": ((baseline - avg_time) / baseline) * 100 } self.report_benchmark( iters=num_repeats, wall_time=avg_time, extras=extras, name=name) def benchmark_vocab_size_by_batch(self): for vocab_size in [100, 1000, 10000, 100000, 1000000]: for batch in [1, 16, 2048]: self.bm_adapt_implementation(vocab_size, batch, int(vocab_size / 10)) if __name__ == "__main__": test.main()
34.992126
80
0.683843
4a19802b9ef9bd05bfc1ce6736ee9d37052f9048
595
py
Python
Physics250-ME27/magneticTorqueofCoilBnotIJK.py
illusion173/Physics250
69f2ffdb8af013e8b0739779861c1455b579ddaf
[ "MIT" ]
null
null
null
Physics250-ME27/magneticTorqueofCoilBnotIJK.py
illusion173/Physics250
69f2ffdb8af013e8b0739779861c1455b579ddaf
[ "MIT" ]
null
null
null
Physics250-ME27/magneticTorqueofCoilBnotIJK.py
illusion173/Physics250
69f2ffdb8af013e8b0739779861c1455b579ddaf
[ "MIT" ]
null
null
null
import numpy as np import math def initialtorque(): loops = input("Input number of Loops: ") radius = input("Input Diameter (cm): ") current = input("Input current (A): ") magField = input("Input the magnetic field (T): ") angle = input("Input the given angle: ") radius = float(radius) loops = float(loops) current = float(current) magField = float(magField) angle = float(angle) radius = radius/200 torque = loops * pow(radius,2) * math.pi * current * magField * math.cos(math.radians(angle)) print(torque) initialtorque()
33.055556
98
0.628571
4a19809a0e67738c7033110ed8c7a03bcddd7ffc
939
py
Python
src/204. Count Primes.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
src/204. Count Primes.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
src/204. Count Primes.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
class SolutionMine(object): def countPrimes(self, n): """ :type n: int :rtype: int """ if n <= 2: return 0 A = [1] * n numPrimes = 0 for p in xrange(2, n): if not A[p]: continue # p is prime! clear from p*2 to p*k ... where p*k <= n numPrimes += 1 pp = p + p while pp < n: A[pp] = 0 pp += p return numPrimes class Solution: # good solution! # @param {integer} n # @return {integer} def countPrimes(self, n): if n < 3: return 0 primes = [True] * n primes[0] = primes[1] = False for i in range(2, int(n ** 0.5) + 1): if primes[i]: primes[i * i: n: i] = [False] * len(primes[i * i: n: i]) return sum(primes) print Solution().countPrimes(1) print Solution().countPrimes(2) print Solution().countPrimes(3) print Solution().countPrimes(6) print Solution().countPrimes(10) print Solution().countPrimes(100)
22.902439
72
0.554846
4a1981c6b8c4bf7c94469afaeaa354cc9bfe546b
6,488
py
Python
Reference/qpc/examples/workstation/dpp/qview/dpp1.py
Harveyhubbell/Paid-RTOS
e56a1346cce026428c2bfef05b6a4e6bb2ee7f4e
[ "MIT" ]
null
null
null
Reference/qpc/examples/workstation/dpp/qview/dpp1.py
Harveyhubbell/Paid-RTOS
e56a1346cce026428c2bfef05b6a4e6bb2ee7f4e
[ "MIT" ]
null
null
null
Reference/qpc/examples/workstation/dpp/qview/dpp1.py
Harveyhubbell/Paid-RTOS
e56a1346cce026428c2bfef05b6a4e6bb2ee7f4e
[ "MIT" ]
null
null
null
# This is an example of QView customization for a specific application # (DPP in this case). This example animates the Phil images on the # QView canvas. Additionally, there is a button in the middle of the screen, # which, when clicked once pauses the DPP ("forks" are not being served). # A second click on the button, "un-pauses" the DPP ("forks" are served # to all hungry Philosophers). # # This version of the DPP customization uses the standard QS_QEP_STATE_ENTRY # packet, which provides information about the current states of the dining # Philosophers. The example also demonstrates how to intercept the QS # "dictionary" records QS_OBJ_DICT and QS_FUN_DICT to extract the information # about the addresses of the Philosopher objects and the states of their # state machines. # class DPP: def __init__(self): # add commands to the Custom menu... QView.custom_menu.add_command(label="Custom command", command=self.cust_command) # configure the custom QView.canvas... QView.show_canvas() # make the canvas visible QView.canvas.configure(width=400, height=260) # tuple of activity images (correspond to self._philo_state) self._act_img = ( PhotoImage(file=HOME_DIR + "/img/thinking.gif"), PhotoImage(file=HOME_DIR + "/img/hungry.gif"), PhotoImage(file=HOME_DIR + "/img/eating.gif"), ) # tuple of philo canvas images (correspond to self._philo_obj) self._philo_img = (\ QView.canvas.create_image(190, 57, image=self._act_img[0]), QView.canvas.create_image(273, 100, image=self._act_img[0]), QView.canvas.create_image(237, 185, image=self._act_img[0]), QView.canvas.create_image(146, 185, image=self._act_img[0]), QView.canvas.create_image(107, 100, image=self._act_img[0]) ) # button images for UP and DOWN self.img_UP = PhotoImage(file=HOME_DIR + "/img/BTN_UP.gif") self.img_DWN = PhotoImage(file=HOME_DIR + "/img/BTN_DWN.gif") # images of a button for pause/serve self.btn = QView.canvas.create_image(200, 120, image=self.img_UP) QView.canvas.tag_bind(self.btn, "<ButtonPress-1>", self.cust_pause) # request target reset on startup... # NOTE: Normally, for an embedded application you would like # to start with resetting the Target, to start clean with # Qs dictionaries, etc. # # Howver, this is a desktop appliction, which you cannot reset # (and restart). Therefore, the desktop applications must be started # *after* the QView is already running. #reset_target() # on_reset() callback invoked when Target-reset packet is received # NOTE: the QS dictionaries are not known at this time yet, so # this callback shouild generally not set filters or current objects def on_reset(self): # (re)set the lists self._philo_obj = [0, 0, 0, 0, 0] self._philo_state = [0, 0, 0] # on_run() callback invoked when the QF_RUN packet is received # NOTE: the QS dictionaries are typically known at this time yet, so # this callback can set filters or current objects def on_run(self): glb_filter("QS_QEP_TRAN") # NOTE: the names of objects for current_obj() must match # the QS Object Dictionaries produced by the application. current_obj(OBJ_AO, "Table_inst") # turn lists into tuples for better performance self._philo_obj = tuple(self._philo_obj) self._philo_state = tuple(self._philo_state) # example of a custom command def cust_command(self): command(1, 12345) # example of a custom interaction with a canvas object (pause/serve) def cust_pause(self, event): if QView.canvas.itemcget(self.btn, "image") != str(self.img_UP): QView.canvas.itemconfig(self.btn, image=self.img_UP) post("SERVE_SIG") QView.print_text("Table SERVING") else: QView.canvas.itemconfig(self.btn, image=self.img_DWN) post("PAUSE_SIG") QView.print_text("Table PAUSED") # intercept the QS_OBJ_DICT stadard packet # this packet has the following structure: # record-ID, seq-num, Object-ptr, Zero-terminated string def QS_OBJ_DICT(self, packet): data = qunpack("xxOZ", packet) try: # NOTE: the names of objects must match the QS Object Dictionaries # produced by the application. i = ("Philo_inst[0]", "Philo_inst[1]", "Philo_inst[2]", "Philo_inst[3]", "Philo_inst[4]").index(data[1]) self._philo_obj[i] = data[0] except: pass # dictionary for a different object # intercept the QS_FUN_DICT stadard packet # this packet has the following structure: # record-ID, seq-num, Function-ptr, Zero-terminated string def QS_FUN_DICT(self, packet): data = qunpack("xxFZ", packet) try: # NOTE: the names of states must match the QS Object Dictionaries # produced by the application. j = ("Philo_thinking", "Philo_hungry", "Philo_eating").index(data[1]) self._philo_state[j] = data[0] except: pass # dictionary for a different state # intercept the QS_QEP_TRAN stadard packet # this packet has the following structure: # record-ID, seq-num, Timestamp, Signal, Object-ptr, # Function-ptr (source state), Function-ptr (new active state) def QS_QEP_TRAN(self, packet): data = qunpack("xxTSOFF", packet) try: i = self._philo_obj.index(data[2]) j = self._philo_state.index(data[4]) # animate the given philo image according to its activity QView.canvas.itemconfig(self._philo_img[i], image=self._act_img[j]) # print a message to the text view QView.print_text("%010d Philo %d is %s"\ %(data[0], i, ("thinking", "hungry", "eating")[j])) except: pass # state-entry in a different object #============================================================================= # instantiate the DPP class and set it as the QView customization QView.customize(DPP())
42.405229
78
0.625617
4a19821154f2b2bfbd7d439384a90c7b1a30bc70
3,008
py
Python
snips_nlu/cli/dataset/assistant_dataset.py
ddorian/snips-nlu
0934d386bb138ebb34764446416856cfac664e65
[ "Apache-2.0" ]
1
2021-01-03T09:23:55.000Z
2021-01-03T09:23:55.000Z
snips_nlu/cli/dataset/assistant_dataset.py
ddorian/snips-nlu
0934d386bb138ebb34764446416856cfac664e65
[ "Apache-2.0" ]
null
null
null
snips_nlu/cli/dataset/assistant_dataset.py
ddorian/snips-nlu
0934d386bb138ebb34764446416856cfac664e65
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 from __future__ import unicode_literals, print_function from pathlib import Path from snips_nlu.cli.dataset.entities import CustomEntity, create_entity from snips_nlu.cli.dataset.intent_dataset import IntentDataset class AssistantDataset(object): """Dataset of an assistant Merges a list of :class:`.AssistantDataset` into a single dataset ready to be used by Snips NLU Attributes: language (str): language of the assistant intents_datasets (list of :class:`.IntentDataset`): data of the assistant intents entities (list of :class:`.Entity`): data of the assistant entities """ def __init__(self, language, intent_datasets, entities): self.language = language self.intents_datasets = intent_datasets self.entities = entities @classmethod def from_files(cls, language, filenames): """Creates an :class:`.AssistantDataset` from a language and a list of intent and entity files Args: language (str): language of the assistant filenames (list of str): Intent and entity files. The assistant will associate each intent file to an intent, and each entity file to an entity. For instance, the intent file 'intent_setTemperature.txt' will correspond to the intent 'setTemperature', and the entity file 'entity_room.txt' will correspond to the entity 'room'. """ intent_filepaths = set() entity_filepaths = set() for filename in filenames: filepath = Path(filename) stem = filepath.stem if stem.startswith("intent_"): intent_filepaths.add(filepath) elif stem.startswith("entity_"): entity_filepaths.add(filepath) else: raise AssertionError("Filename should start either with " "'intent_' or 'entity_' but found: %s" % stem) intents_datasets = [IntentDataset.from_file(f) for f in intent_filepaths] entities = [CustomEntity.from_file(f) for f in entity_filepaths] entity_names = set(e.name for e in entities) # Add entities appearing only in the intents data for intent_data in intents_datasets: for entity_name in intent_data.entities_names: if entity_name not in entity_names: entity_names.add(entity_name) entities.append(create_entity(entity_name)) return cls(language, intents_datasets, entities) @property def json(self): intents = {intent_data.intent_name: intent_data.json for intent_data in self.intents_datasets} entities = {entity.name: entity.json for entity in self.entities} return dict(language=self.language, intents=intents, entities=entities)
39.578947
79
0.631316
4a198286d05e3e9e78ec0bbc376a0d05232a778b
154
py
Python
mysite/rainbowfood/apps.py
ChiaraDM/RainbowFood
d62bbd002b4aad7450ffde20a2787d424c18d2f7
[ "Apache-2.0" ]
null
null
null
mysite/rainbowfood/apps.py
ChiaraDM/RainbowFood
d62bbd002b4aad7450ffde20a2787d424c18d2f7
[ "Apache-2.0" ]
null
null
null
mysite/rainbowfood/apps.py
ChiaraDM/RainbowFood
d62bbd002b4aad7450ffde20a2787d424c18d2f7
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class RainbowfoodConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'rainbowfood'
22
56
0.772727
4a1982e3f5eb9d2a758adeed5e499a650df907ef
645
py
Python
profiles/util.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
profiles/util.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
profiles/util.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User, AnonymousUser def user_authenticated(user): """ Checks if a user is authenticated. :param user: User to check :return: True, if the useris verified and accepted general terms and conditions as well as the privacy policy; False otherwise. """ if isinstance(user, User): return \ user.is_authenticated and \ user.profile.verified and \ user.profile.accepted_general_terms_and_conditions and \ user.profile.accepted_privacy_policy elif isinstance(user, AnonymousUser): return False else: pass
30.714286
114
0.669767
4a1983517eb0310f5573f6239de4fbec9f939069
30,275
py
Python
xarray/core/accessor_str.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
null
null
null
xarray/core/accessor_str.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
null
null
null
xarray/core/accessor_str.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
2
2019-08-22T21:07:03.000Z
2020-03-30T10:25:00.000Z
# The StringAccessor class defined below is an adaptation of the # pandas string methods source code (see pd.core.strings) # For reference, here is a copy of the pandas copyright notice: # (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team # All rights reserved. # Copyright (c) 2008-2011 AQR Capital Management, LLC # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the copyright holder nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import codecs import re import textwrap import numpy as np from .computation import apply_ufunc _cpython_optimized_encoders = ( "utf-8", "utf8", "latin-1", "latin1", "iso-8859-1", "mbcs", "ascii" ) _cpython_optimized_decoders = _cpython_optimized_encoders + ( "utf-16", "utf-32" ) def _is_str_like(x): return isinstance(x, str) or isinstance(x, bytes) class StringAccessor: """Vectorized string functions for string-like arrays. Similar to pandas, fields can be accessed through the `.str` attribute for applicable DataArrays. >>> da = xr.DataArray(['some', 'text', 'in', 'an', 'array']) >>> ds.str.len() <xarray.DataArray (dim_0: 5)> array([4, 4, 2, 2, 5]) Dimensions without coordinates: dim_0 """ def __init__(self, obj): self._obj = obj def _apply(self, f, dtype=None): # TODO handling of na values ? if dtype is None: dtype = self._obj.dtype g = np.vectorize(f, otypes=[dtype]) return apply_ufunc( g, self._obj, dask='parallelized', output_dtypes=[dtype]) def len(self): ''' Compute the length of each element in the array. Returns ------- lengths array : array of int ''' return self._apply(len, dtype=int) def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def get(self, i): ''' Extract element from indexable in each element in the array. Parameters ---------- i : int Position of element to extract. default : optional Value for out-of-range index. If not specified (None) defaults to an empty string. Returns ------- items : array of objects ''' obj = slice(-1, None) if i == -1 else slice(i, i + 1) return self._apply(lambda x: x[obj]) def slice(self, start=None, stop=None, step=None): ''' Slice substrings from each element in the array. Parameters ---------- start : int, optional Start position for slice operation. stop : int, optional Stop position for slice operation. step : int, optional Step size for slice operation. Returns ------- sliced strings : same type as values ''' s = slice(start, stop, step) f = lambda x: x[s] return self._apply(f) def slice_replace(self, start=None, stop=None, repl=''): ''' Replace a positional slice of a string with another value. Parameters ---------- start : int, optional Left index position to use for the slice. If not specified (None), the slice is unbounded on the left, i.e. slice from the start of the string. stop : int, optional Right index position to use for the slice. If not specified (None), the slice is unbounded on the right, i.e. slice until the end of the string. repl : str, optional String for replacement. If not specified, the sliced region is replaced with an empty string. Returns ------- replaced : same type as values ''' repl = self._obj.dtype.type(repl) def f(x): if len(x[start:stop]) == 0: local_stop = start else: local_stop = stop y = self._obj.dtype.type('') if start is not None: y += x[:start] y += repl if stop is not None: y += x[local_stop:] return y return self._apply(f) def capitalize(self): ''' Convert strings in the array to be capitalized. Returns ------- capitalized : same type as values ''' return self._apply(lambda x: x.capitalize()) def lower(self): ''' Convert strings in the array to lowercase. Returns ------- lowerd : same type as values ''' return self._apply(lambda x: x.lower()) def swapcase(self): ''' Convert strings in the array to be swapcased. Returns ------- swapcased : same type as values ''' return self._apply(lambda x: x.swapcase()) def title(self): ''' Convert strings in the array to titlecase. Returns ------- titled : same type as values ''' return self._apply(lambda x: x.title()) def upper(self): ''' Convert strings in the array to uppercase. Returns ------- uppered : same type as values ''' return self._apply(lambda x: x.upper()) def isalnum(self): ''' Check whether all characters in each string are alphanumeric. Returns ------- isalnum : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isalnum(), dtype=bool) def isalpha(self): ''' Check whether all characters in each string are alphabetic. Returns ------- isalpha : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isalpha(), dtype=bool) def isdecimal(self): ''' Check whether all characters in each string are decimal. Returns ------- isdecimal : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isdecimal(), dtype=bool) def isdigit(self): ''' Check whether all characters in each string are digits. Returns ------- isdigit : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isdigit(), dtype=bool) def islower(self): ''' Check whether all characters in each string are lowercase. Returns ------- islower : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.islower(), dtype=bool) def isnumeric(self): ''' Check whether all characters in each string are numeric. Returns ------- isnumeric : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isnumeric(), dtype=bool) def isspace(self): ''' Check whether all characters in each string are spaces. Returns ------- isspace : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isspace(), dtype=bool) def istitle(self): ''' Check whether all characters in each string are titlecase. Returns ------- istitle : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.istitle(), dtype=bool) def isupper(self): ''' Check whether all characters in each string are uppercase. Returns ------- isupper : array of bool Array of boolean values with the same shape as the original array. ''' return self._apply(lambda x: x.isupper(), dtype=bool) def count(self, pat, flags=0): ''' Count occurrences of pattern in each string of the array. This function is used to count the number of times a particular regex pattern is repeated in each of the string elements of the :class:`~xarray.DatArray`. Parameters ---------- pat : str Valid regular expression. flags : int, default 0, meaning no flags Flags for the `re` module. For a complete list, `see here <https://docs.python.org/3/howto/regex.html#compilation-flags>`_. Returns ------- counts : array of int ''' pat = self._obj.dtype.type(pat) regex = re.compile(pat, flags=flags) f = lambda x: len(regex.findall(x)) return self._apply(f, dtype=int) def startswith(self, pat): ''' Test if the start of each string element matches a pattern. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. Returns ------- startswith : array of bool An array of booleans indicating whether the given pattern matches the start of each string element. ''' pat = self._obj.dtype.type(pat) f = lambda x: x.startswith(pat) return self._apply(f, dtype=bool) def endswith(self, pat): ''' Test if the end of each string element matches a pattern. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. Returns ------- endswith : array of bool A Series of booleans indicating whether the given pattern matches the end of each string element. ''' pat = self._obj.dtype.type(pat) f = lambda x: x.endswith(pat) return self._apply(f, dtype=bool) def pad(self, width, side='left', fillchar=' '): ''' Pad strings in the array up to width. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with character defined in `fillchar`. side : {'left', 'right', 'both'}, default 'left' Side from which to fill resulting string. fillchar : str, default ' ' Additional character for filling, default is whitespace. Returns ------- filled : same type as values Array with a minimum number of char in each element. ''' width = int(width) fillchar = self._obj.dtype.type(fillchar) if len(fillchar) != 1: raise TypeError('fillchar must be a character, not str') if side == 'left': f = lambda s: s.rjust(width, fillchar) elif side == 'right': f = lambda s: s.ljust(width, fillchar) elif side == 'both': f = lambda s: s.center(width, fillchar) else: # pragma: no cover raise ValueError('Invalid side') return self._apply(f) def center(self, width, fillchar=' '): ''' Filling left and right side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values ''' return self.pad(width, side='both', fillchar=fillchar) def ljust(self, width, fillchar=' '): ''' Filling right side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values ''' return self.pad(width, side='right', fillchar=fillchar) def rjust(self, width, fillchar=' '): ''' Filling left side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values ''' return self.pad(width, side='left', fillchar=fillchar) def zfill(self, width): ''' Pad strings in the array by prepending '0' characters. Strings in the array are padded with '0' characters on the left of the string to reach a total string length `width`. Strings in the array with length greater or equal to `width` are unchanged. Parameters ---------- width : int Minimum length of resulting string; strings with length less than `width` be prepended with '0' characters. Returns ------- filled : same type as values ''' return self.pad(width, side='left', fillchar='0') def contains(self, pat, case=True, flags=0, regex=True): ''' Test if pattern or regex is contained within a string of the array. Return boolean array based on whether a given pattern or regex is contained within a string of the array. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Flags to pass through to the re module, e.g. re.IGNORECASE. regex : bool, default True If True, assumes the pat is a regular expression. If False, treats the pat as a literal string. Returns ------- contains : array of bool An array of boolean values indicating whether the given pattern is contained within the string of each element of the array. ''' pat = self._obj.dtype.type(pat) if regex: if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if regex.groups > 0: # pragma: no cover raise ValueError("This pattern has match groups.") f = lambda x: bool(regex.search(x)) else: if case: f = lambda x: pat in x else: uppered = self._obj.str.upper() return uppered.str.contains(pat.upper(), regex=False) return self._apply(f, dtype=bool) def match(self, pat, case=True, flags=0): ''' Determine if each string matches a regular expression. Parameters ---------- pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns ------- matched : array of bool ''' if not case: flags |= re.IGNORECASE pat = self._obj.dtype.type(pat) regex = re.compile(pat, flags=flags) f = lambda x: bool(regex.match(x)) return self._apply(f, dtype=bool) def strip(self, to_strip=None, side='both'): ''' Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from left and/or right sides. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. side : {'left', 'right', 'both'}, default 'left' Side from which to strip. Returns ------- stripped : same type as values ''' if to_strip is not None: to_strip = self._obj.dtype.type(to_strip) if side == 'both': f = lambda x: x.strip(to_strip) elif side == 'left': f = lambda x: x.lstrip(to_strip) elif side == 'right': f = lambda x: x.rstrip(to_strip) else: # pragma: no cover raise ValueError('Invalid side') return self._apply(f) def lstrip(self, to_strip=None): ''' Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from the left side. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- stripped : same type as values ''' return self.strip(to_strip, side='left') def rstrip(self, to_strip=None): ''' Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from the right side. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- stripped : same type as values ''' return self.strip(to_strip, side='right') def wrap(self, width, **kwargs): ''' Wrap long strings in the array to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as :class:`textwrap.TextWrapper`. Parameters ---------- width : int Maximum line-width expand_tabs : bool, optional If true, tab characters will be expanded to spaces (default: True) replace_whitespace : bool, optional If true, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True) drop_whitespace : bool, optional If true, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True) break_long_words : bool, optional If true, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width. (default: True) break_on_hyphens : bool, optional If true, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words. (default: True) Returns ------- wrapped : same type as values ''' tw = textwrap.TextWrapper(width=width) f = lambda x: '\n'.join(tw.wrap(x)) return self._apply(f) def translate(self, table): ''' Map all characters in the string through the given mapping table. Parameters ---------- table : dict A a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. :meth:`str.maketrans` is a helper function for making translation tables. Returns ------- translated : same type as values ''' f = lambda x: x.translate(table) return self._apply(f) def repeat(self, repeats): ''' Duplicate each string in the array. Parameters ---------- repeats : int Number of repetitions. Returns ------- repeated : same type as values Array of repeated string objects. ''' f = lambda x: repeats * x return self._apply(f) def find(self, sub, start=0, end=None, side='left'): ''' Return lowest or highest indexes in each strings in the array where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index side : {'left', 'right'}, default 'left' Starting side for search. Returns ------- found : array of integer values ''' sub = self._obj.dtype.type(sub) if side == 'left': method = 'find' elif side == 'right': method = 'rfind' else: # pragma: no cover raise ValueError('Invalid side') if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return self._apply(f, dtype=int) def rfind(self, sub, start=0, end=None): ''' Return highest indexes in each strings in the array where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : array of integer values ''' return self.find(sub, start=start, end=end, side='right') def index(self, sub, start=0, end=None, side='left'): ''' Return lowest or highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.find`` except instead of returning -1, it raises a ValueError when the substring is not found. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index side : {'left', 'right'}, default 'left' Starting side for search. Returns ------- found : array of integer values ''' sub = self._obj.dtype.type(sub) if side == 'left': method = 'index' elif side == 'right': method = 'rindex' else: # pragma: no cover raise ValueError('Invalid side') if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return self._apply(f, dtype=int) def rindex(self, sub, start=0, end=None): ''' Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.rfind`` except instead of returning -1, it raises a ValueError when the substring is not found. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : array of integer values ''' return self.index(sub, start=start, end=end, side='right') def replace(self, pat, repl, n=-1, case=None, flags=0, regex=True): ''' Replace occurrences of pattern/regex in the array with some string. Parameters ---------- pat : string or compiled regex String can be a character sequence or regular expression. repl : string or callable Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See :func:`re.sub`. n : int, default -1 (all) Number of replacements to make from start case : boolean, default None - If True, case sensitive (the default if `pat` is a string) - Set to False for case insensitive - Cannot be set if `pat` is a compiled regex flags : int, default 0 (no flags) - re module flags, e.g. re.IGNORECASE - Cannot be set if `pat` is a compiled regex regex : boolean, default True - If True, assumes the passed-in pattern is a regular expression. - If False, treats the pattern as a literal string - Cannot be set to False if `pat` is a compiled regex or `repl` is a callable. Returns ------- replaced : same type as values A copy of the object with all matching occurrences of `pat` replaced by `repl`. ''' if not (_is_str_like(repl) or callable(repl)): # pragma: no cover raise TypeError("repl must be a string or callable") if _is_str_like(pat): pat = self._obj.dtype.type(pat) if _is_str_like(repl): repl = self._obj.dtype.type(repl) is_compiled_re = isinstance(pat, type(re.compile(''))) if regex: if is_compiled_re: if (case is not None) or (flags != 0): raise ValueError("case and flags cannot be set" " when pat is a compiled regex") else: # not a compiled regex # set default case if case is None: case = True # add case flag, if provided if case is False: flags |= re.IGNORECASE if is_compiled_re or len(pat) > 1 or flags or callable(repl): n = n if n >= 0 else 0 compiled = re.compile(pat, flags=flags) f = lambda x: compiled.sub(repl=repl, string=x, count=n) else: f = lambda x: x.replace(pat, repl, n) else: if is_compiled_re: raise ValueError("Cannot use a compiled regex as replacement " "pattern with regex=False") if callable(repl): raise ValueError("Cannot use a callable replacement when " "regex=False") f = lambda x: x.replace(pat, repl, n) return self._apply(f) def decode(self, encoding, errors='strict'): ''' Decode character string in the array using indicated encoding. Parameters ---------- encoding : str errors : str, optional Returns ------- decoded : same type as values ''' if encoding in _cpython_optimized_decoders: f = lambda x: x.decode(encoding, errors) else: decoder = codecs.getdecoder(encoding) f = lambda x: decoder(x, errors)[0] return self._apply(f, dtype=np.str_) def encode(self, encoding, errors='strict'): ''' Encode character string in the array using indicated encoding. Parameters ---------- encoding : str errors : str, optional Returns ------- encoded : same type as values ''' if encoding in _cpython_optimized_encoders: f = lambda x: x.encode(encoding, errors) else: encoder = codecs.getencoder(encoding) f = lambda x: encoder(x, errors)[0] return self._apply(f, dtype=np.bytes_)
31.602296
79
0.563567
4a1983a9a8eed5a495aca44167b7c2aeeea23f79
1,888
py
Python
mlresearch/__init__.py
joaopfonseca/ml-research
a2a063e341010397bd13df812109f31ce05ac9f7
[ "MIT" ]
1
2021-12-13T09:27:06.000Z
2021-12-13T09:27:06.000Z
mlresearch/__init__.py
joaopfonseca/research
ac4ad6fa05b5985050c63dc9e4e18cd00965e09b
[ "MIT" ]
20
2021-12-10T11:54:59.000Z
2022-03-18T17:55:33.000Z
mlresearch/__init__.py
joaopfonseca/research
ac4ad6fa05b5985050c63dc9e4e18cd00965e09b
[ "MIT" ]
null
null
null
"""Toolbox to develop research in Machine Learning. ``research`` is a library containing the implementation of various algorithms developed in Machine Learning research, as well as utilities to facilitate the formatting of pandas dataframes into LaTeX tables. Subpackages ----------- active_learning Module which contains the code developed for experiments related to Active Learning. data_augmentation Module which contains the implementation of variations of oversampling/data augmentation algorithms, as well as helper classes to use oversampling algorithms as data augmentation techniques. datasets Module which contains code to download, transform and simulate various datasets. metrics Module which contains performance metrics/scorers that are not included in scikit-learn's scorers' dictionary. utils contains a variety of general utility functions and tools used to format and prepare tables to incorporate into LaTeX code. """ import sys try: # This variable is injected in the __builtins__ by the build # process. It is used to enable importing subpackages of sklearn when # the binaries are not built # mypy error: Cannot determine type of '__SKLEARN_SETUP__' __MLRESEARCH_SETUP__ # type: ignore except NameError: __MLRESEARCH_SETUP__ = False if __MLRESEARCH_SETUP__: sys.stderr.write("Partial import of imblearn during the build process.\n") # We are not importing the rest of scikit-learn during the build # process, as it may not be compiled yet else: from . import active_learning from . import data_augmentation from . import datasets from . import metrics from . import utils from ._version import __version__ __all__ = [ "active_learning", "data_augmentation", "datasets", "metrics", "utils", "__version__", ]
33.714286
89
0.741525
4a19847884aa1621c530bdb1d2f39b0cf8ce4ee0
2,273
py
Python
FNETR/src/evaluate.py
rajathpatel23/joint-kge-fnet-lm
413371c96b2a7ffa734a47c03b631233b089d74b
[ "MIT" ]
3
2021-03-16T22:56:55.000Z
2022-02-12T20:09:37.000Z
FNETR/src/evaluate.py
rajathpatel23/joint-kge-fnet-lm
413371c96b2a7ffa734a47c03b631233b089d74b
[ "MIT" ]
null
null
null
FNETR/src/evaluate.py
rajathpatel23/joint-kge-fnet-lm
413371c96b2a7ffa734a47c03b631233b089d74b
[ "MIT" ]
null
null
null
import sys def f1(p, r): if r == 0.: return 0. return 2 * p * r / float(p + r) def strict(true_and_prediction): num_entities = len(true_and_prediction) correct_num = 0. for true_labels, predicted_labels in true_and_prediction: correct_num += set(true_labels) == set(predicted_labels) precision = recall = correct_num / num_entities return precision, recall, f1(precision, recall) def loose_macro(true_and_prediction): num_entities = len(true_and_prediction) p = 0. r = 0. for true_labels, predicted_labels in true_and_prediction: if len(predicted_labels) > 0: p += len(set(predicted_labels).intersection(set(true_labels))) / float(len(predicted_labels)) if len(true_labels): r += len(set(predicted_labels).intersection(set(true_labels))) / float(len(true_labels)) precision = p / num_entities recall = r / num_entities return precision, recall, f1(precision, recall) def loose_micro(true_and_prediction): num_predicted_labels = 0. num_true_labels = 0. num_correct_labels = 0. for true_labels, predicted_labels in true_and_prediction: num_predicted_labels += len(predicted_labels) num_true_labels += len(true_labels) num_correct_labels += len(set(predicted_labels).intersection(set(true_labels))) precision = num_correct_labels / num_predicted_labels recall = num_correct_labels / num_true_labels return precision, recall, f1(precision, recall) if __name__ == "__main__": file = open(sys.argv[1]) true_and_prediction = [] for line in file: temp = line.split("\t") if len(temp) == 1: true_labels = temp[0].split() predicted_labels = [] else: true_labels, predicted_labels = temp true_labels = true_labels.split() predicted_labels = predicted_labels.split() true_and_prediction.append((true_labels, predicted_labels)) # for each in true_and_prediction: # print(each) print(" strict (p,r,f1):", strict(true_and_prediction)) print("loose macro (p,r,f1):", loose_macro(true_and_prediction)) print("loose micro (p,r,f1):", loose_micro(true_and_prediction)) file.close()
34.969231
105
0.672239
4a1984917ab0022fa30f645dbf03d1ec43d19cca
140,175
py
Python
thwipper.py
spidey711/Thwipper-Bot
9a847b5b519f5ad0112528ad72d0f1f877e01c58
[ "MIT" ]
2
2021-09-04T16:28:23.000Z
2021-10-03T13:07:12.000Z
thwipper.py
spidey711/Thwipper-bot
9a847b5b519f5ad0112528ad72d0f1f877e01c58
[ "MIT" ]
null
null
null
thwipper.py
spidey711/Thwipper-bot
9a847b5b519f5ad0112528ad72d0f1f877e01c58
[ "MIT" ]
3
2021-07-06T09:04:33.000Z
2021-10-03T11:38:21.000Z
# IMPORTS try: import discord from discord.utils import get from discord.ext import commands, tasks from links import * from responses import * from dotenv import load_dotenv import mysql.connector as ms import os import random import calendar import pytz import datetime import asyncio import regex import praw import pytube import imdb import requests import aiohttp import urllib.request import youtube_dl import wikipedia from googlesearch import search from cryptography.fernet import Fernet print("All modules and libraries imported...") except ImportError as ie: print(ie) # SETUP prefixes = ["t!", "_", "|"] intents = discord.Intents.default() intents.members = True bot = commands.Bot( command_prefix=[prefix for prefix in prefixes], intents=intents, case_insensitive=True, ) color = discord.Color.from_rgb(223, 31, 45) bot.remove_command("help") # Enviroment Variables global auth load_dotenv(".env") auth = os.getenv("transformer_auth") # SNIPE deleted_messages = {} # NUMBER OF REQUESTS num = 0 # MUSIC server_index = {} FFMPEG_OPTS = { "before_options": "-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5", "options": "-vn", } ydl_op = { "format": "bestaudio/best", "postprocessors": [ { "key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "128", } ], } # DEFAULT TIMEZONE default_tz = "Asia/Kolkata" # ENCRYPTER DECRYPTER key = Fernet.generate_key() cipher = Fernet(key) # REDDIT reddit = praw.Reddit( client_id=os.getenv("reddit_client_id"), client_secret=os.getenv("reddit_client_secret"), user_agent=os.getenv("reddit_user_agent"), username=os.getenv("reddit_username"), password=os.getenv("reddit_userpass"), ) default_topic = {} # HELP MENU help_toggle = 0 # QUIPS dialogue_list = [] # SQL conn = ms.connect( user="root", host="localhost", password=os.getenv("sql_pass"), database="discord" ) cursor = conn.cursor() # ---------------------------------------------- NON ASYNC FUNCTIONS ----------------------------------------- def help_menu(): global help_toggle embed_help_menu = discord.Embed( title="🕸𝗖𝗼𝗺𝗺𝗮𝗻𝗱 𝗠𝗲𝗻𝘂🕸", description="Prefixes: t! _ |", color=color ) embed_help_menu.set_thumbnail(url=random.choice(url_thumbnails)) embed_help_menu.set_footer(text="New Features Coming Soon 🛠") if help_toggle == 0 or help_toggle < 0: help_toggle = 0 embed_help_menu.add_field( name="𝗦𝘁𝗮𝗻𝗱𝗮𝗿𝗱", value="`hello` to greet bot\n`help` to get this menu\n`quips` to get a famous dialogue or plot\n`@Thwipper` to get more info about thwipper", inline=False, ) embed_help_menu.set_image(url=bot.user.avatar_url) if help_toggle == 1: embed_help_menu.add_field( name="𝗜𝗻𝘁𝗲𝗿𝗻𝗲𝘁", value="w `topic` for wikipedia\ng `topic` to google\nimdb `movie` to get movie details from IMDb\n reddit `topic` to get reddit memes", inline=False, ) embed_help_menu.set_image(url=help_page1) if help_toggle == 2: embed_help_menu.add_field( name="𝗗𝗧𝗖", value="dt `timezone` to get IST date and time\ncal `year` `month` to get calendar\nNote: The default timezone is set as `Asia/Kolkata`", inline=False, ) embed_help_menu.set_image(url=help_page2) if help_toggle == 3: embed_help_menu.add_field( name="𝗦𝗵𝗲𝗹𝗹𝘀", value="; `query` to use SQL Shell\npy `expression` for python shell\npydoc `function` to get information about that python function\nNote: The functions, when using `pydoc` command, will not be executed. Try without `()`.", inline=False, ) embed_help_menu.set_image(url=help_page3) if help_toggle == 4: embed_help_menu.add_field( name="𝗘𝗻𝗰𝗿𝘆𝗽𝘁𝗲𝗿 𝗗𝗲𝗰𝗿𝘆𝗽𝘁𝗲𝗿", value="hush `en` `text` to encrypt message\nhush `dec` `text` to decrypt message\n", inline=False, ) embed_help_menu.set_image(url=help_page4) if help_toggle == 5: embed_help_menu.add_field( name="𝗦𝗽𝗶𝗱𝗲𝗿-𝗣𝘂𝗻𝗸 𝗥𝗮𝗱𝗶𝗼™", value="🔉 `cn` to get the bot to join voice channel\n🔇 `dc` to remove bot from voice channel\n🎶 p `name` or `index` to play songs\n▶ `res` to resume a song\n⏸ `pause` to pause a song\n⏹ `st` to stop a song\n🔂 `rep` to repeat song\n⏭ `skip` to skip song\n⏮ `prev` for previous song\n*️⃣ `songinfo` to get current song\n🔠 `q` to display queue\n🔼 scroll queue`up`\n🔽scroll queue `down`\n✔ q `name` to add a song to the queue\n❌ rem `index` to remove song from queue\n💥 `cq` to clear queue", inline=False, ) embed_help_menu.set_image(url=help_page5) if help_toggle == 6: embed_help_menu.add_field( name="𝗕𝗶𝗿𝘁𝗵𝗱𝗮𝘆𝘀", value="addbday `mention` `month` `day` to add a user's birthday from DB\n`bday` to get thwipper to wish the members\nrembday `mention` to remove a member's birthday.", inline=False, ) embed_help_menu.set_image(url=help_page6) if help_toggle == 7 or help_toggle > 7: help_toggle = 7 embed_help_menu.add_field( name="𝗨𝘁𝗶𝗹𝗶𝘁𝘆", value="`req` to get number of requests\n`web` to see deleted message\n`ping` to get bot's latency\n`serverinfo` to get server's information\npfp `mention` to get user's profile picture\n`setbit` to set quality of bitrate\n`polls` to see how to conduct a poll", inline=False, ) embed_help_menu.set_image(url=help_page7) return embed_help_menu def time_converter(seconds): mins, secs = divmod(seconds, 60) hours, mins = divmod(mins, 60) if hours == 0: return "%02d mins %02d secs" % (mins, secs) if hours > 0: return "%d hrs %02d mins %02d secs" % (hours, mins, secs) def youtube_download(ctx, url): if True: with youtube_dl.YoutubeDL(ydl_op) as ydl: URL = ydl.extract_info(url, download=False)["formats"][0]["url"] return URL def requests_query(): global cursor operation = "INSERT INTO requests(number)VALUES({})".format(num) cursor.execute(operation) def number_of_requests(): global num # num = 0 num += 1 requests_query() # ----------------------------------------- EVENTS -------------------------------------- @bot.event async def on_ready(): print("{0.user} is now online...\nHey Tamonud! How's it going?".format(bot)) stop = 0 # QUIPS global dialogue_list site = ( requests.get("https://geektrippers.com/spiderman-quotes/") .content.decode() .replace("<br>", "\n") .replace("<strong>", " ") .replace("</strong>", " ") .replace("<em>", " ") .replace("</em>", " ") .replace("&#8217;", "'") .replace("&#8221;", '"\n\r') .replace("&#8230;", "...") .replace("&#8220;", '"') .replace("&nbsp;", " ") .replace("&#8211;", "-") .replace("&#8216;", "'") .replace("]", "]\n") .replace("[", "\n[") ) for i in range(0, 1000): q = site.find( '<p class="has-background" style="background-color:#dedfe0">', stop ) + len('<p class="has-background style="background-color:#dedfe0">') w = site.find("</p>", stop) stop = w + len("</p>") dialogues = "" if not site[q:w]: continue else: dialogues = site[q:w] dialogue_list += [dialogues] # STATUSES @tasks.loop(minutes=10) async def multiple_statuses(): while True: for status in status_list: await asyncio.sleep(300) await bot.change_presence( activity=discord.Activity( type=discord.ActivityType.playing, name=status ) ) multiple_statuses.start() # UPDATION @tasks.loop(seconds=5.0) async def updation(): # REQUESTS UPDATE global cursor global num op = "SELECT MAX(number) FROM requests" cursor.execute(op) req1 = cursor.fetchall() req2 = str(req1).replace("[(", " ").replace(",)]", " ") num = int(req2) conn.commit() updation.start() async def transformer(api, header, json): async with aiohttp.ClientSession() as session: async with session.post(api, headers=header, json=json) as resp: return await resp.json() @bot.event async def on_message(message): headeras = {"Authorization": auth} API_URL = ( "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill" ) if message.content.lower().startswith("thwip"): past_respose = [] generated = [] input_text = message.content.lower().replace("thwip", "") payload = { "inputs": { "past_user_inputs": past_respose, "generated_responses": generated, "text": input_text, }, } output = await transformer(API_URL, header=headeras, json=payload) if len(past_respose) < 100: past_respose.append(input_text) generated.append(output["generated_text"]) else: past_respose.pop(0) generated.pop(0) past_respose.append(input_text) generated.append(output["generated_text"]) await message.reply(output["generated_text"]) if f"<@!{bot.user.id}>" == message.content: number_of_requests() embed = discord.Embed( title="About", description=f"Hi {message.author.name}!\nI am Thwipper. I aim to be a multipurpose bot. From music to memes, I have it all 😎", color=color, ) embed.add_field( name="Made By", value="[Tamonud](https://github.com/spidey711)", inline=True ) embed.add_field( name="Source Code", value="[Thwipper](https://github.com/spidey711/Thwipper-bot)", inline=True, ) embed.set_thumbnail(url=bot.user.avatar_url) # embed.set_image(url="https://txt.1001fonts.net/img/txt/dHRmLjcyLjAwMDAwMC5WRWhYU1ZCUVJWSSwuMA,,/lazenby-computer.liquid.png") embed.set_footer( text="Type _help for command menu", icon_url=message.author.avatar_url ) await message.reply(embed=embed) else: await bot.process_commands(message) async def genpost(api, header, json): async with aiohttp.ClientSession() as session: async with session.post(api, headers=header, json=json) as resp: return await resp.json() @bot.command() async def gen(ctx, *, text): API_URL2 = "https://api-inference.huggingface.co/models/EleutherAI/gpt-neo-2.7B" header2 = {"Authorization": auth} payload2 = { "inputs": text, "parameters": {"max_new_tokens": 250, "return_full_text": True}, } output = await genpost(API_URL2, header2, payload2) await ctx.send( embed=discord.Embed( title="Generated text", description=output[0]["generated_text"], color=color ) ) @bot.event async def on_message_delete(message): if not message.channel.id in list(deleted_messages.keys()): deleted_messages[message.channel.id] = [] if len(message.embeds) <= 0: deleted_messages[message.channel.id].append( (str(message.author.id), message.content) ) else: deleted_messages[message.channel.id].append( (str(message.author.id), message.embeds[0], True) ) @bot.event async def on_reaction_add(reaction, user): number_of_requests() if not user.bot: if reaction.emoji == "🖱": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) try: sub = reddit.subreddit( default_topic[str(reaction.message.guild.id)] ).random() embed = discord.Embed( description="**Caption:\n**{}".format(sub.title), color=color ) embed.set_author( name="Post by: {}".format(sub.author), icon_url=url_reddit_author ) embed.set_thumbnail(url=url_reddit_thumbnail) embed.set_image(url=sub.url) embed.set_footer( text="🔺: {} 🔻: {} 💬: {}".format( sub.ups, sub.downs, sub.num_comments ) ) await reaction.message.edit(embed=embed) except Exception: embed = discord.Embed( description="Default topic is not set", color=color ) embed.set_author(name="Uh oh...", icon_url=url_reddit_author) await reaction.message.edit(embed=embed) global help_toggle if reaction.emoji == "➡": help_toggle += 1 if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) await reaction.message.edit(embed=help_menu()) if reaction.emoji == "⬅": help_toggle -= 1 if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) await reaction.message.edit(embed=help_menu()) if reaction.emoji == "🕸": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) embed = discord.Embed( title="🕸Mutual Guilds🕸", description="\n".join( [servers.name for servers in user.mutual_guilds] ), color=color, ) embed.set_thumbnail(url=random.choice(url_thumbnails)) embed.set_footer(text="New Features Coming Soon 🛠") await reaction.message.edit(embed=embed) # MUSIC PLAYER voice = discord.utils.get( bot.voice_clients, guild=reaction.message.guild) voice_client = reaction.message.guild.voice_client playing = reaction.message.guild.voice_client.is_playing() pause = reaction.message.guild.voice_client.is_paused() # SERVER QUEUE operation_view = "SELECT * FROM music_queue WHERE server={}".format( str(reaction.message.guild.id) ) cursor.execute(operation_view) server_queue = cursor.fetchall() members_in_vc = [ str(names) for names in reaction.message.guild.voice_client.channel.members ] string = "" if reaction.emoji == "🔼": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) index = server_index[str(reaction.message.guild.id)] try: index -= 10 for song in server_queue[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{reaction.message.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail(url=random.choice(url_thumbnail_music)) embed.set_footer( text=f"Number Of Songs: {len(server_queue)}") await reaction.message.edit(embed=embed) except KeyError: embed = discord.Embed( description=random.choice(default_index), color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "🔽": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) index = server_index[str(reaction.message.guild.id)] try: for song in server_queue[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{reaction.message.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail(url=random.choice(url_thumbnail_music)) embed.set_footer(text=f"Number Of Songs: {len(server_queue)}") index += 10 await reaction.message.edit(embed=embed) except KeyError: embed = discord.Embed( description=random.choice(default_index), color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "🔠": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) try: index = server_index[str(reaction.message.guild.id)] - 10 if server_index[str(reaction.message.guild.id)] > 10: for song in server_queue[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{reaction.message.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail( url=random.choice(url_thumbnail_music)) embed.set_footer( text=f"Number Of Songs: {len(server_queue)}") await reaction.message.edit(embed=embed) else: index = server_index[str(reaction.message.guild.id)] for song in server_queue[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{reaction.message.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail( url=random.choice(url_thumbnail_music)) embed.set_footer( text=f"Number Of Songs: {len(server_queue)}") await reaction.message.edit(embed=embed) except KeyError: embed = discord.Embed( description=random.choice(default_index), color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "▶": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if members_in_vc.count(str(user)) > 0: try: if server_index[str(reaction.message.guild.id)] is not None: if pause == True: voice_client.resume() embed = discord.Embed( description="Song has resumed playing 🎸", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: if playing == True: embed = discord.Embed( description="Song is not paused 🤔", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music, ) embed.set_footer( text=f"Voice Channel Bitrate: {reaction.message.guild.voice_client.channel.bitrate/1000} kbps" ) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description="Nothing is playing right now ❗", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: if playing != True: voice_client.resume() embed = discord.Embed( description="Song has resumed playing ▶", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description="Song is already playing 🎸", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author( name="Error", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: users = set() message = await reaction.message.channel.fetch_message( reaction.message ) for reaction in message.reactions: async for user in reaction.users(): users.add(user) str1 = ",".join([str(users)]) pre_li = str1.replace("{", "").replace("}", "") li = list(pre_li.split(",")) # li[-1] embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "⏸": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if members_in_vc.count(str(user)) > 0: try: if playing == True: voice_client.pause() embed = discord.Embed( description="Song is paused ⏸", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: if pause == True: embed = discord.Embed( description="Song is already paused ⏸", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description="No song playing currently ❗", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author( name="Error", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "⏮": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) server_index[str(reaction.message.guild.id)] -= 1 if members_in_vc.count(str(user)) > 0: try: URL_queue = youtube_download( reaction.message, server_queue[server_index[str(reaction.message.guild.id)]][ 1 ], ) if playing != True: embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str( reaction.message.guild.id)], ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) else: voice.stop() embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str( reaction.message.guild.id)], ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) except IndexError: embed = discord.Embed( description="Looks like there is no song at this index", color=color, ) embed.set_author( name="Oops...", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "⏭": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) server_index[str(reaction.message.guild.id)] += 1 if members_in_vc.count(str(user)) > 0: try: URL_queue = youtube_download( reaction.message, server_queue[server_index[str(reaction.message.guild.id)]][ 1 ], ) if playing != True: embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str( reaction.message.guild.id)], ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now Playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) else: voice.stop() embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str( reaction.message.guild.id)], ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now Playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) except IndexError: embed = discord.Embed( description="Looks like there is no song at this index", color=color, ) embed.set_author( name="Oops...", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "⏹": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if members_in_vc.count(str(user)) > 0: try: if playing == True or pause == True: voice_client.stop() embed = discord.Embed( description="Song has been stopped ⏹", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description="Nothing is playing at the moment ❗", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author( name="Error", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "*️⃣": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if len(server_queue) <= 0: embed = discord.Embed( description=random.choice(empty_queue), color=color ) embed.set_author( name="Uh oh...", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: try: try: embed = discord.Embed( description="**Song: **{a}\n**Index: **{b}\n**Views: **{c}\n**Description: **\n{d}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str(reaction.message.guild.id)], c=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).views, d=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).description, ), color=color, ) embed.set_author( name="Currently Playing", url=server_queue[ server_index[str(reaction.message.guild.id)] ][1], icon_url=url_author_music, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) await reaction.message.edit(embed=embed) except discord.errors.HTTPException: embed = discord.Embed( description="**Song: **{a}\n**Index: **{b}\n**Views: **{c}\n**Description: **\n{d}".format( a=server_queue[ server_index[str( reaction.message.guild.id)] ][0], b=server_index[str(reaction.message.guild.id)], c=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).views, d=random.choice(description_embed_errors), ), color=color, ) embed.set_author( name="Currently Playing", url=server_queue[ server_index[str(reaction.message.guild.id)] ][1], icon_url=url_author_music, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) await reaction.message.edit(embed=embed) except KeyError: embed = discord.Embed( description="Looks like you weren't playing anything before this so there is no current song. Play song from queue to set a current song", color=color, ) embed.set_author( name="Uh oh...", icon_url=url_author_music) await reaction.message.edit(embed=embed) if reaction.emoji == "🔂": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if members_in_vc.count(str(user)) > 0: try: URL_queue = youtube_download( reaction.message, server_queue[server_index[str(reaction.message.guild.id)]][ 1 ], ) if reaction.message.guild.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{}".format( server_queue[ server_index[str( reaction.message.guild.id)] ][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author( name="Repeating Song", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) else: voice.stop() embed = discord.Embed( description="**Song: **{}".format( server_queue[ server_index[str( reaction.message.guild.id)] ][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author( name="Repeating Song", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[ server_index[str( reaction.message.guild.id)] ][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( reaction.message.guild.voice_client.channel.bitrate / 1000 ) ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author( name="Error", icon_url=url_author_music) await reaction.message.edit(embed=embed) else: embed = discord.Embed( description=f"Connect to the voice channel first 🔊", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) if reaction.emoji == "🔀": if str(user) != str(bot.user) and reaction.message.author == bot.user: await reaction.remove(user) if members_in_vc.count(str(user)) > 0: random_song = random.choice(server_queue) queue_index = server_index[str(reaction.message.guild.id)] for index in range(len(server_queue)): if random_song == server_queue[index]: queue_index = int(index) server_index[str(reaction.message.guild.id)] = queue_index URL_shuffle = youtube_download( reaction.message, random_song[1]) if reaction.message.guild.voice_client.is_playing() == False: embed = discord.Embed( description=f"**Song: **{random_song[0]}\n**Queue Index: **{queue_index}".replace( " - YouTube", " " ), color=color, ) embed.set_author(name="Shuffle Play", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=random_song[1]).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube(url=random_song[1]).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube(url=random_song[1]).length ), inline=True, ) embed.set_footer( text=f"Voice Channel Bitrate: {reaction.message.guild.voice_client.channel.bitrate/1000} kbps" ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_shuffle, **FFMPEG_OPTS)) else: voice.stop() embed = discord.Embed( description=f"**Song: **{random_song[0]}\n**Queue Index: **{queue_index}".replace( " - YouTube", " " ), color=color, ) embed.set_author(name="Shuffle Play", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=random_song[1]).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube(url=random_song[1]).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube(url=random_song[1]).length ), inline=True, ) embed.set_footer( text=f"Voice Channel Bitrate: {reaction.message.guild.voice_client.channel.bitrate/1000} kbps" ) await reaction.message.edit(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_shuffle, **FFMPEG_OPTS)) else: embed = discord.Embed( description=f"{reaction.message.author.name}, connect to a voice channel first 🔊", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await reaction.message.edit(embed=embed) # ---------------------------------------------- STANDARD ---------------------------------------------------- @bot.command(aliases=["spidey", "spiderman", "webslinger", "webhead", "wallcrawler"]) async def spiderman_signal(ctx): number_of_requests() calls = [ f"{ctx.author.name} is calling you!", f"Your aid has been requested by {ctx.author.name}.", f"{ctx.author.name} has got something for ya.", f"{ctx.author.name} requires your assistance.", f"{ctx.author.name} has called.", ] embed = discord.Embed(description=random.choice(calls), color=color) embed.set_image(url=random.choice(hello_urls)) await ctx.send("<@!622497106657148939>") await ctx.send(embed=embed) @bot.command( aliases=["hello", "hi", "hey", "hey there", "salut", "kon'nichiwa", "hola", "aloha"] ) async def greet_bot(ctx): number_of_requests() greetings = [ f"Hey {ctx.author.name}!", f"Hi {ctx.author.name}!", f"How's it going {ctx.author.name}?", f"What can I do for you {ctx.author.name}?", f"What's up {ctx.author.name}?", f"Hello {ctx.author.name}!", f"So {ctx.author.name}, how's your day going?", ] embed = discord.Embed(color=color) embed.set_author(name=random.choice(greetings), icon_url=ctx.author.avatar_url) embed.set_image(url=random.choice(hello_urls)) await ctx.send(embed=embed) @bot.command(aliases=["help", "use"]) async def embed_help(ctx): number_of_requests() message = await ctx.send(embed=help_menu()) await message.add_reaction("⬅") await message.add_reaction("🕸") await message.add_reaction("➡") @bot.command(aliases=["quips"]) async def get_quips(ctx): number_of_requests() try: embed = discord.Embed( title=random.choice(titles), description=random.choice(dialogue_list), color=color, ) embed.set_thumbnail(url=random.choice(url_thumbnails)) embed.set_footer(text=random.choice(footers), icon_url=bot.user.avatar_url) await ctx.send(embed=embed) print("Quip successfully sent!") except Exception as e: embed = discord.Embed(title="Error", description=str(e), color=color) # ----------------------------------------------- INTERNET --------------------------------------------- @bot.command(aliases=["imdb"]) async def IMDb_movies(ctx, *, movie_name=None): number_of_requests() if movie_name is None: embed = discord.Embed(description=random.choice( imdb_responses), color=color) embed.set_author(name="Ahem ahem", icon_url=url_imdb_author) await ctx.send(embed=embed) if movie_name is not None: try: db = imdb.IMDb() movie = db.search_movie(movie_name) title = movie[0]["title"] movie_summary = ( db.get_movie(movie[0].getID()) .summary() .replace("=", "") .replace("Title", "**Title**") .replace("Movie", "") .replace("Genres", "**Genres**") .replace("Director", "**Director**") .replace("Writer", "**Writer(s)**") .replace("Cast", "**Cast**") .replace("Country", "**Country**") .replace("Language", "**Language**") .replace("Rating", "**Rating**") .replace("Plot", "**Plot**") .replace("Runtime", "**Runtime**") ) movie_cover = movie[0]["full-size cover url"] embed = discord.Embed( title="🎬 {} 🍿".format(title), description=movie_summary, color=color ) embed.set_thumbnail(url=url_imdb_thumbnail) # 🎥 🎬 📽 embed.set_image(url=movie_cover) await ctx.send(embed=embed) except Exception: embed = discord.Embed( description="I couldn't find `{}`.\nTry again and make sure you enter the correct movie name.".format( movie_name ), color=color, ) embed.set_author(name="Movie Not Found 💬", icon_url=url_imdb_author) await ctx.send(embed=embed) @bot.command(aliases=["reddit", "rd"]) async def reddit_memes(ctx, *, topic): number_of_requests() if str(ctx.guild.id) not in default_topic: default_topic[str(ctx.guild.id)] = str(topic) else: pass if str(ctx.guild.id) in default_topic: default_topic[str(ctx.guild.id)] = str(topic) sub = reddit.subreddit(topic).random() try: embed = discord.Embed( description="**Caption:\n**{}".format(sub.title), color=color ) embed.set_author( name="Post by: {}".format(sub.author), icon_url=url_reddit_author ) embed.set_thumbnail(url=url_reddit_thumbnail) embed.set_image(url=sub.url) embed.set_footer( text="🔺: {} 🔻: {} 💬: {}".format( sub.ups, sub.downs, sub.num_comments) ) message = await ctx.send(embed=embed) await message.add_reaction("🖱") except Exception: default_topic[str(ctx.guild.id)] = "" embed = discord.Embed( description="Looks like the subreddit is either banned or does not exist 🤔", color=color, ) embed.set_author(name="Subreddit Not Found", icon_url=url_reddit_author) await ctx.send(embed=embed) @bot.command(aliases=["wiki", "w"]) async def wikipedia_results(ctx, *, thing_to_search): number_of_requests() try: try: title = wikipedia.page(thing_to_search) embed = discord.Embed( description=wikipedia.summary(thing_to_search), color=color ) embed.set_author(name=title.title, icon_url=url_wiki) embed.add_field( name="Search References", value=", ".join( [x for x in wikipedia.search(thing_to_search)][:5]), inline=False, ) embed.set_footer( text="Searched by: {}".format(ctx.author.name), icon_url=ctx.author.avatar_url, ) await ctx.send(embed=embed) print("Results for wikipedia search sent...") except wikipedia.PageError as pe: embed = discord.Embed(description=str(pe), color=color) embed.set_author(name="Error", icon_url=url_wiki) await ctx.send(embed=embed) except wikipedia.DisambiguationError as de: embed = discord.Embed(description=str(de), color=color) embed.set_author(name="Hmm...", icon_url=url_wiki) await ctx.send(embed=embed) @bot.command(aliases=["google", "g"]) async def google_results(ctx, *, thing_to_search): number_of_requests() results = " " for result in search( thing_to_search, tld="com", lang="en", safe="off", num=6, start=0, stop=10, pause=1.0, ): results += result + "\n" await ctx.send("Search results for: **{}**".format(thing_to_search)) await ctx.send(results) print("Results for google search sent...") # ------------------------------------------------- UTILITY ------------------------------------------------- @bot.command(aliases=["delete", "del"]) async def clear(ctx, text, num=10000000000000): number_of_requests() await ctx.channel.purge(limit=1) if str(text) == "WEB": await ctx.channel.purge(limit=num) else: await ctx.send("Incorrect Password") @bot.command(aliases=["[X]"]) async def stop_program(ctx): number_of_requests() msgs = [ f"Bye {ctx.author.name}!", f"See ya {ctx.author.name}!", f"Till next time {ctx.author.name}!", ] if ctx.author.id == 622497106657148939: try: voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) voice.stop() await voice.disconnect() except: pass conn.commit() await ctx.send(random.choice(msgs)) print(random.choice(msgs)) exit() else: await ctx.send("Access Denied") @bot.command(aliases=["say"]) async def replicate_user_text(ctx, *, text): number_of_requests() await ctx.channel.purge(limit=1) await ctx.send(text) @bot.command(aliases=["polls", "poll"]) async def conduct_poll(ctx, ems=None, title=None, *, description=None): number_of_requests() poll_channel = None for i in ctx.guild.channels: for j in poll_channels: if i.name == j: send_to = i.name = j poll_channel = discord.utils.get( ctx.guild.channels, name=send_to) if title is not None: if "_" in title: title = title.replace("_", " ") if ems is not None and title is not None and description is not None: embed = discord.Embed( title=f"Topic: {title}", description=description, color=color ) embed.set_footer( text=f"Conducted by: {ctx.author.name}", icon_url=ctx.author.avatar_url ) message = await poll_channel.send(embed=embed) if ems == "y/n" or ems == "yes/no": await message.add_reaction("✅") await message.add_reaction("❌") elif ems == "t/t" or ems == "this/that": await message.add_reaction("👈🏻") await message.add_reaction("👉🏻") else: emojis = list(ems.split(",")) for emoji in emojis: await message.add_reaction(emoji) if ctx.channel.name != poll_channel: await ctx.send( embed=discord.Embed( description="Poll Sent Successfully 👍🏻", color=color ) ) elif title is None and description is None and ems is None: embed = discord.Embed( title="Polls", description="Command: `_polls emojis title description`", color=color, ) embed.add_field( name="Details", value="`emojis:` enter emojis for the poll and they will be added as reactions\n`title:` give a title to your poll.\n`description:` tell everyone what the poll is about.", inline=False, ) embed.add_field( name="Notes", value="To add reactions to poll the multiple emojis should be separated by a `,`.\nIf you wish to use default emojis, `y/n` for yes or no and `t/t` for this or that.\nIf the title happens to be more than one word long, use `_` in place of spaces as demonstrated below.\nExample: `The_Ultimate_Choice` will be displayed in the title of poll as `The Ultimate Choice`.", inline=False, ) embed.set_thumbnail(url=random.choice(url_thumbnails)) await ctx.send(embed=embed) @bot.command(aliases=["req", "requests"]) async def total_requests(ctx): number_of_requests() operation = "SELECT MAX(number) FROM requests" cursor.execute(operation) total = cursor.fetchall() embed = discord.Embed( description=f"""**Requests Made:\n**{str(total).replace("[(", " ").replace(",)]", " ")}""", color=color, ) await ctx.send(embed=embed) @bot.command(aliases=["troll"]) async def troll_snipe(ctx): await ctx.channel.purge(limit=1) await ctx.send(random.choice(troll_links)) await ctx.channel.purge(limit=1) @bot.command(aliases=["web"]) async def snipe(ctx): number_of_requests() try: message = deleted_messages[ctx.channel.id][-1] if len(message) < 3: embed = discord.Embed( title="Deleted Message", description=message[1], color=color ) embed.set_footer( text=f"Sent by: {bot.get_user(int(message[0]))}", icon_url=bot.get_user(int(message[0])).avatar_url, ) await ctx.send(embed=embed) else: embed = discord.Embed(description="Embed deleted 👇🏻", color=color) embed.set_author( name=bot.get_user(int(message[0])), icon_url=bot.get_user(int(message[0])).avatar_url, ) await ctx.send(embed=embed) await ctx.send(embed=message[1]) except KeyError: await ctx.send( embed=discord.Embed( description="There is nothing to web up 🕸", color=color) ) @bot.command(aliases=["pfp"]) async def user_pfp(ctx, member: discord.Member = None): number_of_requests() if member is None: embed = discord.Embed( title="Profile Picture : {}".format(ctx.author.name), color=color ) embed.set_image(url=ctx.author.avatar_url) else: embed = discord.Embed( title="Profile Picture : {}".format(member.name), color=color ) embed.set_image(url=member.avatar_url) embed.set_footer( text=random.choice(compliments), icon_url="https://i.pinimg.com/236x/9f/9c/11/9f9c11d4eaa3d99bc9a8ece092f5e979.jpg", ) await ctx.send(embed=embed) @bot.command(aliases=["ping"]) async def get_ping(ctx): number_of_requests() ping = round(bot.latency * 1000) c1 = "🟢" c2 = "🟡" c3 = "🔴" if ping >= 350: embed = discord.Embed(description=f"{c3} {ping} ms", color=color) await ctx.send(embed=embed) elif ping <= 320: embed = discord.Embed(description=f"{c1} {ping} ms", color=color) await ctx.send(embed=embed) elif ping > 320 and ping < 350: embed = discord.Embed(description=f"{c2} {ping} ms", color=color) await ctx.send(embed=embed) @bot.command(aliases=["serverinfo", "si"]) async def server_information(ctx): number_of_requests() name = str(ctx.guild.name) ID = str(ctx.guild.id) description = str(ctx.guild.description) owner = str(ctx.guild.owner) region = str(ctx.guild.region) num_mem = str(ctx.guild.member_count) icon = str(ctx.guild.icon_url) role_count = len(ctx.guild.roles) # bots_list = [bot.mention for bot in ctx.guild.members if bot.bot] embed = discord.Embed(title=f"📚 {name} 📚", color=color) embed.add_field(name="Owner", value=f"`{owner}`", inline=True) embed.add_field(name="Member Count", value=f"`{num_mem}`", inline=True) embed.add_field(name="Role Count", value=f"`{role_count}`", inline=True) embed.add_field(name="Region", value=f"`{region}`", inline=True) embed.add_field(name="Server ID", value=f"`{ID}`", inline=False) embed.add_field(name="Description", value=f"```{description}```", inline=False) embed.set_footer( text=f"Created on {ctx.guild.created_at.__format__('%A, %B %d, %Y @ %H:%M:%S')}", icon_url=ctx.author.avatar_url, ) embed.set_image(url=icon) await ctx.send(embed=embed) # --------------------------------------- ENCRYPER DECRYPTER --------------------------------- @bot.command(aliases=["hush"]) async def encrypt_data(ctx, mode, *, message): number_of_requests() res = message.encode() try: if mode == "en": embed = discord.Embed( title="Message Encrpyted", description="```{}```".format(str(cipher.encrypt(res))) .replace("b'", "") .replace("'", ""), color=color, ) embed.set_thumbnail(url=url_en_dec) await ctx.channel.purge(limit=1) await ctx.send(embed=embed) if mode == "dec": embed = discord.Embed( title="Message Decrypted", description="```{}```".format(str(cipher.decrypt(res))) .replace("b'", "") .replace("'", ""), color=color, ) embed.set_thumbnail(url=url_en_dec) await ctx.channel.purge(limit=1) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(title="Error", description=str(e), color=color) embed.set_thumbnail(url=url_en_dec) await ctx.send(embed=embed) # ------------------------------------- DATE TIME CALENDAR --------------------------------------------- @bot.command(aliases=["dt"]) async def date_time_ist(ctx, timezone=None): number_of_requests() if timezone is None: tzinfo = pytz.timezone(default_tz) dateTime = datetime.datetime.now(tz=tzinfo) embed = discord.Embed(color=color) embed.add_field( name="Date", value="%s/%s/%s" % (dateTime.day, dateTime.month, dateTime.year), inline=True, ) embed.add_field( name="Time", value="%s:%s:%s" % ( dateTime.hour, dateTime.minute, dateTime.second), inline=True, ) embed.set_footer(text=f"Timezone : {default_tz}") # embed.set_thumbnail(url=url_dtc) await ctx.send(embed=embed) else: tzinfo = pytz.timezone(timezone) dateTime = datetime.datetime.now(tz=tzinfo) embed = discord.Embed(color=color) embed.add_field( name="Date", value="%s/%s/%s" % (dateTime.day, dateTime.month, dateTime.year), inline=True, ) embed.add_field( name="Time", value="%s:%s:%s" % ( dateTime.hour, dateTime.minute, dateTime.second), inline=True, ) # embed.set_thumbnail(url=url_dtc) embed.set_footer(text=f"Timezone : {timezone}") await ctx.send(embed=embed) @bot.command(aliases=["cal"]) async def get_calendar(ctx, year, month): number_of_requests() try: embed = discord.Embed( title="Calendar", description="```{}```".format( calendar.month(int(year), int(month))), color=color, ) embed.set_thumbnail(url=url_dtc) await ctx.send(embed=embed) except IndexError: embed = discord.Embed( description="{}, this month doesn't exist 📆".format( ctx.author.name), color=color, ) embed.set_author(name="Calendar", icon_url=url_dtc) await ctx.send(embed=embed) # ------------------------------------------ SHELLS -------------------------------------------- @bot.command(aliases=[";"]) async def sql_shell(ctx, *, expression): number_of_requests() try: output = "" cursor.execute(expression) for item in cursor.fetchall(): output += str(item) + "\n" conn.commit() embed = discord.Embed( title=str(expression), description=str(output), color=color ) embed.set_author(name="MySQL Shell", icon_url=url_author_sql) await ctx.send(embed=embed) except Exception as e: embed_err = discord.Embed( title="Error", description=str(e), color=color) embed_err.set_author(name="MySQL Shell", icon_url=url_author_sql) await ctx.send(embed=embed_err) @bot.command(aliases=["py"]) async def python_shell(ctx, *, expression): number_of_requests() if expression in denied or denied[-2] in expression or denied[-1] in expression: embed = discord.Embed(description=random.choice( denied_responses), color=color) embed.set_author(name="Access Denied", icon_url=url_author_python) await ctx.send(embed=embed) else: try: embed_acc = discord.Embed( title=str(expression), description=str(eval(expression)), color=color ) embed_acc.set_author(name="Python Shell", icon_url=url_author_python) await ctx.send(embed=embed_acc) except Exception as e: embed_err = discord.Embed( title="Error", description=str(e), color=color) embed_err.set_author(name="Python Shell", icon_url=url_author_python) await ctx.send(embed=embed_err) @bot.command(aliases=["pydoc"]) async def function_info(ctx, func): number_of_requests() try: if "(" in [char for char in func] and ")" in [char for char in func]: embed = discord.Embed( description=random.choice(no_functions), color=color) embed.set_author(name="Access Denied", icon_url=url_author_python) await ctx.send(embed=embed) else: function = eval(func) embed = discord.Embed(description=function.__doc__, color=color) embed.set_author(name="Info: {}".format( func), icon_url=url_author_python) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author(name="Error", icon_url=url_author_python) await ctx.send(embed=embed) # ----------------------------------------------- MUSIC ---------------------------------------------------- @bot.command(aliases=["cn", "connect"]) async def join_vc(ctx): number_of_requests() voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) try: if not ctx.message.author.voice: embed = discord.Embed( description="{}, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) if voice == None: channel = ctx.message.author.voice.channel await channel.connect() embed = discord.Embed( description=f"Connected to {ctx.guild.voice_client.channel.name}", color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) embed.set_footer(text=random.choice(connections)) await ctx.send(embed=embed) if voice != None: embed = discord.Embed( description="Already connected to a voice channel ✅", color=color ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(description="Error:\n" + str(e), color=color) embed.set_author(name="Error", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["dc", "disconnect"]) async def leave_vc(ctx): number_of_requests() try: if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: voice_client = ctx.message.guild.voice_client try: if voice_client.is_connected(): embed = discord.Embed( description=f"Disconnected from {ctx.guild.voice_client.channel.name}", color=color, ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer(text=random.choice(disconnections)) await ctx.send(embed=embed) await voice_client.disconnect() except AttributeError: embed = discord.Embed( description="I am not connected to a voice channel", color=color ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to the voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) except AttributeError: embed = discord.Embed( description="I am not connected to a voice channel", color=color ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["setbit", "bit"]) async def set_bitrate(ctx, kbps): number_of_requests() for items in ydl_op["postprocessors"]: items["preferredquality"] = str(kbps) embed = discord.Embed( description="**Bitrate:** {} kbps".format(kbps), color=color ) embed.set_author(name="Audio Quality", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["queue", "q"]) async def queue_song(ctx, *, name=None): number_of_requests() if ctx.author.id not in [ member.id for member in ctx.guild.voice_client.channel.members ]: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) else: if name is not None: # WEB SCRAPE name = name.replace(" ", "+") htm = urllib.request.urlopen( "https://www.youtube.com/results?search_query=" + name ) video = regex.findall(r"watch\?v=(\S{11})", htm.read().decode()) url = "https://www.youtube.com/watch?v=" + video[0] htm_code = str(urllib.request.urlopen(url).read().decode()) starting = htm_code.find("<title>") + len("<title>") ending = htm_code.find("</title>") name_of_the_song = ( htm_code[starting:ending].replace( "&#39;", "'").replace("&amp;", "&") ) # check if song is already queued operation_check = ( f"SELECT song_url FROM music_queue WHERE server={str(ctx.guild.id)}" ) cursor.execute(operation_check) index, check_list, links = None, [], cursor.fetchall() for link in links: link = str(link).replace( "(", "").replace(",)", "").replace("'", "") check_list.append(link) if url in check_list: def song_position(): for position in range(len(check_list)): if url == check_list[position]: return position embed = discord.Embed( description=f"{random.choice(already_queued)}\nSong Postion: {song_position()}", color=color, ) embed.set_author(name="Already Queued", icon_url=url_author_music) await ctx.send(embed=embed) else: operation_add_song = f"""INSERT INTO music_queue(song_name, song_url, server)VALUES("{name_of_the_song}","{url}","{str(ctx.guild.id)}")""" cursor.execute(operation_add_song) embed = discord.Embed( description=f"{name_of_the_song}".replace( " - YouTube", " "), color=color, ) embed.set_author(name="Song added", icon_url=url_author_music) await ctx.send(embed=embed) else: operation_view = ( "SELECT song_name, song_url FROM music_queue WHERE server={}".format( str(ctx.guild.id) ) ) cursor.execute(operation_view) songs = cursor.fetchall() if len(songs) > 0: try: string = "" if server_index[str(ctx.guild.id)] > 10: index = server_index[str(ctx.guild.id)] - 10 for song in songs[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{ctx.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail( url=random.choice(url_thumbnail_music)) embed.set_footer(text=f"Number Of Songs: {len(songs)}") player = await ctx.send(embed=embed) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll else: index = server_index[str(ctx.guild.id)] for song in songs[index: index + 20]: string += ( str(index) + ") " + f"{song[0]}\n".replace(" - YouTube", " ") ) index += 1 embed = discord.Embed(description=string, color=color) embed.set_author( name=f"{ctx.guild.name}'s Playlist", icon_url=url_author_music, ) embed.set_thumbnail( url=random.choice(url_thumbnail_music)) embed.set_footer(text=f"Number Of Songs: {len(songs)}") player = await ctx.send(embed=embed) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except KeyError: embed = discord.Embed( description=random.choice(default_index), color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) await ctx.send(embed=embed) else: embed = discord.Embed( description=random.choice(empty_queue), color=color ) embed.set_author( name=f"{ctx.guild.name}'s Playlist", icon_url=url_author_music ) embed.set_thumbnail(url=random.choice(url_thumbnail_music)) embed.set_footer( text="Queue songs by using _q song, t!q song, |q song") await ctx.send(embed=embed) @bot.command(aliases=["play", "p"]) async def play_music(ctx, *, char): number_of_requests() voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) try: if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: try: if char.isdigit() == False: if str(ctx.guild.id) not in server_index: server_index[str(ctx.guild.id)] = 0 else: pass # Web Scrape char = char.replace(" ", "+") htm = urllib.request.urlopen( "https://www.youtube.com/results?search_query=" + char ) video = regex.findall( r"watch\?v=(\S{11})", htm.read().decode()) url = "https://www.youtube.com/watch?v=" + video[0] htm_code = str(urllib.request.urlopen(url).read().decode()) starting = htm_code.find("<title>") + len("<title>") ending = htm_code.find("</title>") name_of_the_song = ( htm_code[starting:ending] .replace("&#39;", "'") .replace("&amp;", "&") .replace(" - YouTube", " ") ) URL_direct = youtube_download(ctx, url) if ctx.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{}".format(name_of_the_song).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", url=url, icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube(url=url).thumbnail_url) embed.add_field( name="Uploader", value=pytube.YouTube(url=url).author, inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube(url=url).length), inline=True, ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_direct, **FFMPEG_OPTS)) await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏹") # stop else: voice.stop() embed = discord.Embed( description="**Song: **{}".format(name_of_the_song).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", url=url, icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) embed.set_thumbnail( url=pytube.YouTube(url=url).thumbnail_url) embed.add_field( name="Uploader", value=pytube.YouTube(url=url).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube(url=url).length), inline=True, ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_direct, **FFMPEG_OPTS)) await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏹") # stop if char.isdigit() == True: # Server Specific Queue operation = ( f"SELECT * FROM music_queue WHERE server={str(ctx.guild.id)}" ) cursor.execute(operation) server_queue = cursor.fetchall() if str(ctx.guild.id) not in server_index: server_index[str(ctx.guild.id)] = int(char) if str(ctx.guild.id) in server_index: server_index[str(ctx.guild.id)] = int(char) try: URL_queue = youtube_download( ctx, server_queue[int(char)][1]) if ctx.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[int(char)][0], b=char ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[int(char)][1] ).thumbnail_url ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[int(char)][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[int(char)][1] ).length ), inline=True, ) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) player = await ctx.send(embed=embed) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll else: voice.stop() embed = discord.Embed( description="**Song: **{a}\n**Queue Index: **{b}".format( a=server_queue[int(char)][0], b=char ).replace( " - YouTube", " " ), color=color, ) embed.set_author( name="Now playing", icon_url=url_author_music ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[int(char)][1] ).thumbnail_url ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[int(char)][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[int(char)][1] ).length ), inline=True, ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio( URL_queue, **FFMPEG_OPTS)) # previous track await player.add_reaction("⏮") await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except IndexError: embed = discord.Embed( description="Looks like there is no song at this index", color=color, ) embed.set_author( name="Oops...", icon_url=url_author_music) await ctx.send(embed=embed) except AttributeError: embed = discord.Embed( description="I am not connected to a voice channel".format( ctx.author.name ), color=color, ) embed.set_author(name="Voice", icon_url=url_author_music) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) except AttributeError: embed = discord.Embed( description="I am not connected to a voice channel".format( ctx.author.name), color=color, ) embed.set_author(name="Voice", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["songinfo"]) async def fetch_current_song(ctx): number_of_requests() global server_index operation = "SELECT * FROM music_queue WHERE server={}".format( str(ctx.guild.id)) cursor.execute(operation) server_queue = cursor.fetchall() if len(server_queue) <= 0: embed = discord.Embed( description="There are no songs in the queue currently 🤔") embed.set_author(name="Uh oh...", icon_url=url_author_music) await ctx.send(embed=embed) else: try: embed = discord.Embed( description="**Song: **{a}\n**Index: **{b}\n**Views: **{c}\n**Description: **\n{d}".format( a=server_queue[server_index[str(ctx.guild.id)]][0], b=server_index[str(ctx.guild.id)], c=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).views, d=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).description, ), color=color, ) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) embed.set_author(name="Currently Playing", icon_url=url_author_music) player = await ctx.send(embed=embed) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except KeyError: embed = discord.Embed( description=random.choice(default_index), color=color) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["prev", "previous"]) async def previous_song(ctx): number_of_requests() global server_index server_index[str(ctx.guild.id)] -= 1 operation = "SELECT * FROM music_queue WHERE server={}".format( str(ctx.guild.id)) cursor.execute(operation) server_queue = cursor.fetchall() voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: try: URL_queue = youtube_download( ctx, server_queue[server_index[str(ctx.guild.id)]][1] ) if ctx.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Now playing", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str( ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll else: voice.stop() embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Now playing", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str( ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except IndexError: embed = discord.Embed( description="Looks like there is no song at this index", color=color ) embed.set_author(name="Oops...", icon_url=url_author_music) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["rep", "repeat"]) async def repeat_song(ctx): operation = "SELECT * FROM music_queue WHERE server={}".format( str(ctx.guild.id)) cursor.execute(operation) server_queue = cursor.fetchall() voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) try: URL_queue = youtube_download( ctx, server_queue[server_index[str(ctx.guild.id)]][1] ) if ctx.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Repeating Song", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll else: voice.stop() embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Repeating Song", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author(name="Error", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["skip", "next"]) async def skip_song(ctx): number_of_requests() global server_index server_index[str(ctx.guild.id)] += 1 operation = "SELECT * FROM music_queue WHERE server={}".format( str(ctx.guild.id)) cursor.execute(operation) server_queue = cursor.fetchall() voice = discord.utils.get(bot.voice_clients, guild=ctx.guild) if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: try: URL_queue = youtube_download( ctx, server_queue[server_index[str(ctx.guild.id)]][1] ) if ctx.voice_client.is_playing() != True: embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Now Playing", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str( ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll else: voice.stop() embed = discord.Embed( description="**Song: **{}".format( server_queue[server_index[str(ctx.guild.id)]][0] ).replace(" - YouTube", " "), color=color, ) embed.set_author(name="Now playing", icon_url=url_author_music) embed.set_thumbnail( url=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).thumbnail_url ) embed.add_field( name="Uploader", value=pytube.YouTube( url=server_queue[server_index[str(ctx.guild.id)]][1] ).author, inline=True, ) embed.add_field( name="Duration", value=time_converter( pytube.YouTube( url=server_queue[server_index[str( ctx.guild.id)]][1] ).length ), inline=True, ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) player = await ctx.send(embed=embed) voice.play(discord.FFmpegPCMAudio(URL_queue, **FFMPEG_OPTS)) await player.add_reaction("⏮") # previous track await player.add_reaction("▶") # resume await player.add_reaction("⏸") # pause await player.add_reaction("⏭") # next await player.add_reaction("🔂") # repeat await player.add_reaction("⏹") # stop await player.add_reaction("🔀") # shuffle await player.add_reaction("*️⃣") # current song await player.add_reaction("🔠") # display queue await player.add_reaction("🔼") # scroll await player.add_reaction("🔽") # scroll except IndexError: embed = discord.Embed( description="Looks like there is no song at this index", color=color ) embed.set_author(name="Oops...", icon_url=url_author_music) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["pause"]) async def pause_song(ctx): number_of_requests() voice_client = ctx.message.guild.voice_client pause = ctx.voice_client.is_paused() playing = ctx.voice_client.is_playing() if ctx.author.id in [mem.id for mem in ctx.voice_client.channel.members]: try: if playing == True: voice_client.pause() message = await ctx.send("Song paused") await message.add_reaction("⏸") else: if pause == True: embed = discord.Embed( description="Song is already paused ❗", color=color ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) else: embed = discord.Embed( description="No song playing currently ❗", color=color ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author(name="Error", icon_url=url_author_music) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["resume", "res"]) async def resume_song(ctx): number_of_requests() voice_client = ctx.message.guild.voice_client pause = ctx.voice_client.is_paused() playing = ctx.voice_client.is_playing() if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: try: if pause == True: voice_client.resume() message = await ctx.send("Song resumed") await message.add_reaction("▶") else: if playing == True: embed = discord.Embed( description="Song is not paused 🤔", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) else: embed = discord.Embed( description="Nothing is playing right now", color=color ) embed.set_author( name="Spider-Punk Radio™", icon_url=url_author_music ) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author(name="Error", icon_url=url_author_music) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["stop", "st"]) async def stop_song(ctx): number_of_requests() voice_client = ctx.message.guild.voice_client pause = ctx.voice_client.is_paused() playing = ctx.voice_client.is_playing() if ctx.author.id in [member.id for member in ctx.voice_client.channel.members]: try: if playing == True or pause == True: voice_client.stop() message = await ctx.send("Song stopped") await message.add_reaction("⏹") else: embed = discord.Embed( description="Nothing is playing right now", color=color ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) embed.set_footer( text="Voice Channel Bitrate: {} kbps".format( ctx.guild.voice_client.channel.bitrate / 1000 ) ) await ctx.send(embed=embed) except Exception as e: embed = discord.Embed(description=str(e), color=color) embed.set_author(name="Error", icon_url=url_author_music) await ctx.send(embed=embed) else: embed = discord.Embed( description="{}, buddy, connect to a voice channel first 🔊".format( ctx.author.name ), color=color, ) embed.set_author(name="Spider-Punk Radio™", icon_url=url_author_music) await ctx.send(embed=embed) @bot.command(aliases=["rem", "remove"]) async def remove_song(ctx, index): number_of_requests() operation_view = 'SELECT * FROM music_queue WHERE server="{}"'.format( str(ctx.guild.id) ) cursor.execute(operation_view) songs = cursor.fetchall() embed = discord.Embed(description="{}".format( songs[int(index)][0]), color=color) embed.set_author(name="Song removed", icon_url=url_author_music) await ctx.send(embed=embed) operation_remove = ( "DELETE FROM music_queue WHERE song_url = '{a}' AND server='{b}'".format( a=songs[int(index)][1], b=str(ctx.guild.id) ) ) cursor.execute(operation_remove) @bot.command(aliases=["clear_queue", "cq"]) async def clear_song_queue(ctx): number_of_requests() operation_queue = "SELECT * FROM music_queue WHERE server={}".format( str(ctx.guild.id) ) cursor.execute(operation_queue) songs = cursor.fetchall() if len(songs) > 0: operation_clear_song = "DELETE FROM music_queue WHERE server={}".format( str(ctx.guild.id) ) cursor.execute(operation_clear_song) message = await ctx.send("Queue Cleared") await message.add_reaction("✅") else: embed_empty = discord.Embed( description=random.choice(empty_queue), color=color) embed_empty.set_author(name="Hmm...", icon_url=url_author_music) await ctx.send(embed=embed_empty) # -------------------------------------------------- EXTRA --------------------------------------------------------- @bot.command(aliases=["thwip"]) async def thwipper(ctx): number_of_requests() await ctx.send(embed=discord.Embed(title="*Thwip!*", color=color)) @bot.command(aliases=["addbday"]) async def add_user_bday(ctx, member: discord.Member, month, day): number_of_requests() op_check = "SELECT mem_id FROM birthdays" cursor.execute(op_check) memIDs = cursor.fetchall() try: a = str([memID for memID in memIDs]).replace( "('", "").replace("',)", "") if str(member.id) not in a: op_insert = "INSERT INTO birthdays(mem_id, mem_month, mem_day)VALUES('{a}',{b},{c})".format( a=member.id, b=month, c=day ) cursor.execute(op_insert) await ctx.send( embed=discord.Embed( description="{}'s birthday added to database".format( member.display_name ), color=color, ) ) else: await ctx.send( embed=discord.Embed( description="{}'s birthday is already added in my database".format( member.display_name ), color=color, ) ) except Exception as e: await ctx.send(str(e)) @bot.command(aliases=["rembday"]) async def remove_user_bday(ctx, member: discord.Member): number_of_requests() op_check = "SELECT mem_id FROM birthdays" cursor.execute(op_check) memIDs = cursor.fetchall() try: a = str([memID for memID in memIDs]).replace( "('", "").replace("',)", "") if str(member.id) in a: op_insert = "DELETE FROM birthdays WHERE mem_id={}".format( member.id) cursor.execute(op_insert) await ctx.send( embed=discord.Embed( description="{}'s birthday removed from database".format( member.display_name ), color=color, ) ) else: await ctx.send( embed=discord.Embed( description="{}'s birthday does not exist in my database".format( member.display_name ), color=color, ) ) except Exception as e: await ctx.send(str(e)) @bot.command(aliases=["bday"]) async def check_user_bdays_and_wish(ctx): number_of_requests() await ctx.channel.purge(limit=1) op_check = "SELECT * FROM birthdays" cursor.execute(op_check) bdays = cursor.fetchall() channel = None toggle = 0 for i in ctx.guild.channels: for j in announcement_channels: if i.name == j: send_to = i.name = j channel = discord.utils.get(ctx.guild.channels, name=send_to) for bday in bdays: # bday[0] bday[1] bday[2] if ( datetime.datetime.today().month == bday[1] and datetime.datetime.today().day == bday[2] ): name = bot.get_user(int(bday[0])).name wishes = [ f"🎊 Happy Birthday {name} 🎊", f"🎉 Happy Birthday {name} 🎉", f"✨ Happy Birthday {name} ✨", f"🎇 Happy Birthday {name} 🎇", ] embed = discord.Embed( title=random.choice(wishes), description=random.choice(descriptions), color=color, ) embed.set_image(url=random.choice(url_bdays_spiderman)) embed.set_thumbnail(url=bot.get_user(int(bday[0])).avatar_url) await channel.send(f"<@!{bot.get_user(int(bday[0])).id}>") message = await channel.send(embed=embed) await ctx.send(embed=discord.Embed(description="Wish Sent 🥳", color=color)) await message.add_reaction("🎁") await message.add_reaction("🎈") await message.add_reaction("🎂") await message.add_reaction("🎆") await message.add_reaction("🎉") toggle = 1 if toggle == 0: await ctx.send( embed=discord.Embed( description=random.choice(none_today), color=color) ) # --------------------------------------------------------------------------------------------------------------------------------------
39.75468
498
0.445821
4a198597472f76d3c5214d8878ae42793b43f57c
33
py
Python
optimus/engines/base/cudf/dataframe.py
ironmussa/Optimus
fbaea6e0957f0bc016280a85ff021904faac20c5
[ "Apache-2.0" ]
1,045
2017-07-17T17:59:46.000Z
2021-06-15T07:06:48.000Z
optimus/engines/base/cudf/dataframe.py
ironmussa/Optimus
fbaea6e0957f0bc016280a85ff021904faac20c5
[ "Apache-2.0" ]
955
2017-07-14T15:47:58.000Z
2021-05-27T14:16:24.000Z
optimus/engines/base/cudf/dataframe.py
ironmussa/Optimus
fbaea6e0957f0bc016280a85ff021904faac20c5
[ "Apache-2.0" ]
226
2017-08-04T20:41:33.000Z
2021-05-21T08:28:33.000Z
class CUDFBaseDataFrame: pass
16.5
24
0.787879
4a1986395e0166494f27fce5b7d3e9f9fe3d84ac
1,614
py
Python
examples/dogpiling/dogpiling_tornado.py
mwek/memoize
bd35641d676dbaaf161a61dbf1176742cfa187cc
[ "Apache-2.0" ]
null
null
null
examples/dogpiling/dogpiling_tornado.py
mwek/memoize
bd35641d676dbaaf161a61dbf1176742cfa187cc
[ "Apache-2.0" ]
null
null
null
examples/dogpiling/dogpiling_tornado.py
mwek/memoize
bd35641d676dbaaf161a61dbf1176742cfa187cc
[ "Apache-2.0" ]
null
null
null
from datetime import timedelta from tornado import gen from tornado.ioloop import IOLoop from memoize.configuration import MutableCacheConfiguration, DefaultInMemoryCacheConfiguration from memoize.entrybuilder import ProvidedLifeSpanCacheEntryBuilder from memoize.wrapper import memoize # scenario configuration concurrent_requests = 5 request_batches_execution_count = 50 cached_value_ttl_millis = 200 delay_between_request_batches_millis = 70 # results/statistics unique_calls_under_memoize = 0 @memoize(configuration=MutableCacheConfiguration .initialized_with(DefaultInMemoryCacheConfiguration()) .set_entry_builder( ProvidedLifeSpanCacheEntryBuilder(update_after=timedelta(milliseconds=cached_value_ttl_millis)) )) @gen.coroutine def cached_with_memoize(): global unique_calls_under_memoize unique_calls_under_memoize += 1 yield gen.sleep(0.01) return unique_calls_under_memoize @gen.coroutine def main(): for i in range(request_batches_execution_count): res = yield [x() for x in [cached_with_memoize] * concurrent_requests] print(res) # yield [x() for x in [cached_with_different_cache] * concurrent_requests] yield gen.sleep(delay_between_request_batches_millis / 1000) print("Memoize generated {} unique backend calls".format(unique_calls_under_memoize)) predicted = (delay_between_request_batches_millis * request_batches_execution_count) // cached_value_ttl_millis print("Predicted (according to TTL) {} unique backend calls".format(predicted)) if __name__ == "__main__": IOLoop.current().run_sync(main)
33.625
115
0.797398
4a19876848d73ec59fa1a20029b91ba0479ff606
5,548
py
Python
test_settings.py
what-digital/aldryn-newsblog-blog-teaser-size
c52cb256fe3b608838f2184de9575b6cbbfd5f8e
[ "BSD-3-Clause" ]
null
null
null
test_settings.py
what-digital/aldryn-newsblog-blog-teaser-size
c52cb256fe3b608838f2184de9575b6cbbfd5f8e
[ "BSD-3-Clause" ]
null
null
null
test_settings.py
what-digital/aldryn-newsblog-blog-teaser-size
c52cb256fe3b608838f2184de9575b6cbbfd5f8e
[ "BSD-3-Clause" ]
2
2019-10-22T04:30:28.000Z
2019-10-22T05:09:16.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from distutils.version import LooseVersion from django import get_version from cms import __version__ as cms_string_version import os django_version = LooseVersion(get_version()) cms_version = LooseVersion(cms_string_version) HELPER_SETTINGS = { 'TIME_ZONE': 'Europe/Zurich', 'INSTALLED_APPS': [ 'aldryn_apphooks_config', 'aldryn_categories', 'aldryn_people', 'aldryn_reversion', 'aldryn_translation_tools', 'djangocms_text_ckeditor', 'easy_thumbnails', 'filer', 'mptt', 'parler', 'reversion', 'sortedm2m', 'taggit', ], 'TEMPLATE_DIRS': ( os.path.join( os.path.dirname(__file__), 'aldryn_newsblog', 'tests', 'templates'), ), 'ALDRYN_NEWSBLOG_TEMPLATE_PREFIXES': [('dummy', 'dummy'), ], 'CMS_PERMISSION': True, 'SITE_ID': 1, 'LANGUAGES': ( ('en', 'English'), ('de', 'German'), ('fr', 'French'), ), 'CMS_LANGUAGES': { 1: [ { 'code': 'en', 'name': 'English', 'fallbacks': ['de', 'fr', ] }, { 'code': 'de', 'name': 'Deutsche', 'fallbacks': ['en', ] # FOR TESTING DO NOT ADD 'fr' HERE }, { 'code': 'fr', 'name': 'Française', 'fallbacks': ['en', ] # FOR TESTING DO NOT ADD 'de' HERE }, { 'code': 'it', 'name': 'Italiano', 'fallbacks': ['fr', ] # FOR TESTING, LEAVE AS ONLY 'fr' }, ], 'default': { 'redirect_on_fallback': True, # PLEASE DO NOT CHANGE THIS } }, # app-specific 'PARLER_LANGUAGES': { 1: [ { 'code': 'en', 'fallbacks': ['de', ], }, { 'code': 'de', 'fallbacks': ['en', ], }, ], 'default': { 'code': 'en', 'fallbacks': ['en'], 'hide_untranslated': False } }, # # NOTE: The following setting `PARLER_ENABLE_CACHING = False` is required # for tests to pass. # # There appears to be a bug in Parler which leaves translations in Parler's # cache even after the parent object has been deleted. In production # environments, this is unlikely to affect anything, because newly created # objects will have new IDs. In testing, new objects are created with IDs # that were previously used, which reveals this issue. # 'PARLER_ENABLE_CACHING': False, 'ALDRYN_SEARCH_DEFAULT_LANGUAGE': 'en', 'HAYSTACK_CONNECTIONS': { 'default': { 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine', }, 'de': { 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine', }, }, 'THUMBNAIL_HIGH_RESOLUTION': True, 'THUMBNAIL_PROCESSORS': ( 'easy_thumbnails.processors.colorspace', 'easy_thumbnails.processors.autocrop', # 'easy_thumbnails.processors.scale_and_crop', 'filer.thumbnail_processors.scale_and_crop_with_subject_location', 'easy_thumbnails.processors.filters', ), # 'DATABASES': { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': 'mydatabase', # }, # 'mysql': { # 'ENGINE': 'django.db.backends.mysql', # 'NAME': 'newsblog_test', # 'USER': 'root', # 'PASSWORD': '', # 'HOST': '', # 'PORT': '3306', # }, # 'postgres': { # 'ENGINE': 'django.db.backends.postgresql_psycopg2', # 'NAME': 'newsblog_test', # 'USER': 'test', # 'PASSWORD': '', # 'HOST': '127.0.0.1', # 'PORT': '5432', # } # } # This set of MW classes should work for Django 1.6 and 1.7. 'MIDDLEWARE_CLASSES': [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # NOTE: This will actually be removed below in CMS<3.2 installs. 'cms.middleware.utils.ApphookReloadMiddleware', 'cms.middleware.user.CurrentUserMiddleware', 'cms.middleware.page.CurrentPageMiddleware', 'cms.middleware.toolbar.ToolbarMiddleware', 'cms.middleware.language.LanguageCookieMiddleware' ] } # If using CMS 3.2+, use the CMS middleware for ApphookReloading, otherwise, # use aldryn_apphook_reload's. if cms_version < LooseVersion('3.2.0'): HELPER_SETTINGS['MIDDLEWARE_CLASSES'].remove( 'cms.middleware.utils.ApphookReloadMiddleware') HELPER_SETTINGS['MIDDLEWARE_CLASSES'].insert( 0, 'aldryn_apphook_reload.middleware.ApphookReloadMiddleware') HELPER_SETTINGS['INSTALLED_APPS'].insert( 0, 'aldryn_apphook_reload') def run(): from djangocms_helper import runner # --boilerplate option will ensure correct boilerplate settings are # added to settings runner.cms('aldryn_newsblog', extra_args=[]) if __name__ == "__main__": run()
31.885057
79
0.553533
4a19877d272916b1371fc488f7f19a6471da2707
2,931
py
Python
vortexasdk/endpoints/freight_pricing_result.py
V0RT3X4/python-sdk
4cffae83b90a58a56f1a534057fa1ca1c8671e05
[ "Apache-2.0" ]
9
2019-11-13T17:14:55.000Z
2019-11-18T16:06:13.000Z
vortexasdk/endpoints/freight_pricing_result.py
VorTECHsa/python-sdk
d85aabd8d9843e4d04d857360492bea002c2b24b
[ "Apache-2.0" ]
114
2020-01-08T11:08:24.000Z
2022-03-30T16:42:23.000Z
vortexasdk/endpoints/freight_pricing_result.py
V0RT3X4/python-sdk
4cffae83b90a58a56f1a534057fa1ca1c8671e05
[ "Apache-2.0" ]
6
2020-05-28T00:09:02.000Z
2022-03-14T03:52:44.000Z
import functools import os from multiprocessing.pool import Pool from typing import List from vortexasdk.api.freight_pricing import FreightPricing from vortexasdk.api.vessel_availability import VesselAvailability import pandas as pd from vortexasdk.api.entity_flattening import convert_to_flat_dict from vortexasdk.api.search_result import Result from vortexasdk.result_conversions import create_dataframe, create_list from vortexasdk.logger import get_logger logger = get_logger(__name__) class FreightPricingResult(Result): """ Container class holdings search results returns from the freight pricing endpoint. This class has two methods, `to_list()`, and `to_df()`, allowing search results to be represented as a list or as a `pd.DataFrame` , respectively. """ def to_list(self) -> List[FreightPricing]: """Represent availability as a list.""" # noinspection PyTypeChecker return create_list(super().to_list(), FreightPricing) def to_df(self, columns=None) -> pd.DataFrame: """ Represent freight pricing as a `pd.DataFrame`. # Arguments columns: Output columns present in the `pd.DataFrame`. Enter `columns='all'` to return all available columns. Enter `columns=None` to use `freight_pricing_result.DEFAULT_COLUMNS`. # Returns `pd.DataFrame`, one row per `FreightPricing`. ## Notes By default, the columns returned are something along the lines of. ```python DEFAULT_COLUMNS = [ 'short_code', 'rate' 'rate_unit', 'cost', 'cost_unit', 'tce', 'tce_unit' ] ``` The exact default columns used can be found at `vessel_availability_result.DEFAULT_COLUMNS` A near complete list of columns is given below ``` [ 'id', 'short_code', 'rate' 'rate_precision', 'rate_unit', 'cost', 'cost_precision, 'cost_unit', 'tce', 'tce_precision', 'tce_unit', 'source', 'route_prediction' ] ``` """ if columns is None: columns = DEFAULT_COLUMNS logger.debug("Converting each Freight Pricing object to a flat dictionary") flatten = functools.partial( convert_to_flat_dict, cols=columns ) with Pool(os.cpu_count()) as pool: records = pool.map(flatten, super().to_list()) return create_dataframe( columns=columns, default_columns=DEFAULT_COLUMNS, data=records, logger_description="FreightPricing", ) DEFAULT_COLUMNS = [ 'short_code', 'rate' 'rate_unit', 'cost', 'cost_unit', 'tce', 'tce_unit' ]
27.138889
111
0.604231
4a1987855408b3d3916be773268a6f7bba79260d
543
py
Python
product/models/saleForm.py
puchopsky/pythonPdv
3a53212840c83f577be4b6a48774a4399e1bee04
[ "MIT" ]
null
null
null
product/models/saleForm.py
puchopsky/pythonPdv
3a53212840c83f577be4b6a48774a4399e1bee04
[ "MIT" ]
null
null
null
product/models/saleForm.py
puchopsky/pythonPdv
3a53212840c83f577be4b6a48774a4399e1bee04
[ "MIT" ]
null
null
null
from django.db import models import uuid class SaleForm(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) # This field specifies wether the producto is sold by box, unit, hanlfbox, liters, etc form = models.CharField(max_length=50, default='Unit') # This filed sets an equivalent on how many units needs to be discounted from the stock, ex. If a box contains 12 # units then 12 units needs to be removed from the stock totalUnitsInFromSale = models.FloatField(default=1.0)
36.2
117
0.745856
4a19886be809c305925ec789021a2df520e7edc9
4,018
py
Python
{{cookiecutter.project_slug}}/backend/app/manifest.py
beda-software/cookiecutter-beda-software-stack
f1f0aef4964d43d0720e45866420aa02b25626f8
[ "MIT" ]
2
2021-04-16T04:50:25.000Z
2021-04-29T07:49:16.000Z
{{cookiecutter.project_slug}}/backend/app/manifest.py
beda-software/cookiecutter-beda-software-stack
f1f0aef4964d43d0720e45866420aa02b25626f8
[ "MIT" ]
5
2020-10-08T08:14:16.000Z
2020-12-06T08:38:32.000Z
{{cookiecutter.project_slug}}/backend/app/manifest.py
beda-software/cookiecutter-beda-software-stack
f1f0aef4964d43d0720e45866420aa02b25626f8
[ "MIT" ]
1
2020-09-21T09:10:20.000Z
2020-09-21T09:10:20.000Z
import os from app import config from app.access_policy import access_policies from app.contrib.sdk_ext import ( merge_resources, load_notification_templates, load_resources, load_sql_migrations, ) meta_resources = merge_resources( { "Client": { "SPA": {"secret": "123456", "grant_types": ["password"]}, "google-client": { "auth": { "authorization_code": { "redirect_uri": "{}/google-signin".format(config.frontend_url) } }, "first_party": True, "grant_types": ["authorization_code"], }, }, {% if cookiecutter.add_google_oauth|lower == 'y' %} "IdentityProvider": { "google": { "type": "google", "client": { "id": config.google_oauth_app_id, "secret": config.google_oauth_app_secret, }, }, }, {% endif %} "AidboxConfig": { "provider": { "provider": {"console": {"type": "console"}, "default": "console"}, } }, "AccessPolicy": access_policies, "NotificationTemplate": { **load_notification_templates( os.path.join(config.root_dir, "resources/notificationtemplates/email") ), }, "SearchParameter": { # Place custom search parameters here }, "PGSequence": { # Don't forget to add new sequence to new migration # Remove this comment after https://github.com/Aidbox/Issues/issues/167 is solved }, "Attribute": { # TODO: remove when Aidbox adds this status "Notification.status": { "path": ["status"], "type": {"resourceType": "Entity", "id": "code"}, "resource": {"resourceType": "Entity", "id": "Notification"}, "module": "auth", "enum": ["delivered", "error", "failure"], }, }, }, load_resources(os.path.join(config.root_dir, "resources/entities")), ) seeds = merge_resources( { "User": { "superadmin": { "password": config.app_superadmin_password, "email": config.app_superadmin_email, "data": { "givenName": "Super", "familyName": "Admin", "superAdmin": {"resourceType": "Practitioner", "id": "superadmin"}, }, }, }, "Practitioner": { "superadmin": { "name": [{"given": ["Super"], "family": "Admin"}], "telecom": [{"system": "email", "value": config.app_superadmin_email,}], }, }, } if config.dev_init else {}, load_resources(os.path.join(config.root_dir, "resources/seeds")), ) entities = { {% if cookiecutter.add_push_notifications|lower == 'y' %} "PushSubscription": { "attrs": { "user": { "type": "Reference", "isRequired": True, "search": {"name": "user", "type": "reference",}, }, "session": { "type": "Reference", "isRequired": False, "search": {"name": "session", "type": "reference",}, }, "deviceType": { "type": "string", "enum": ["ios", "android"], "isRequired": True, "search": {"name": "status", "type": "token",}, }, "deviceToken": { "type": "string", "isRequired": True, "search": {"name": "device-token", "type": "token",}, }, }, }, {% endif %} } migrations = load_sql_migrations(os.path.join(config.root_dir, "resources/migrations"))
32.144
93
0.459681
4a1989930e62aada0c524f70a7bcac427a0973d9
4,828
py
Python
ResultsStats/AddInfo2Grid.py
petebunting/DEA_Mangroves_2018
791cb5d92c4382a0780c04a3b38c028b35224154
[ "MIT" ]
null
null
null
ResultsStats/AddInfo2Grid.py
petebunting/DEA_Mangroves_2018
791cb5d92c4382a0780c04a3b38c028b35224154
[ "MIT" ]
null
null
null
ResultsStats/AddInfo2Grid.py
petebunting/DEA_Mangroves_2018
791cb5d92c4382a0780c04a3b38c028b35224154
[ "MIT" ]
null
null
null
import pandas import numpy import os.path import osgeo.gdal as gdal import osgeo.ogr as ogr def calcStats(data, gridID): maxDiff = 0 maxDiffYear = 0 for i in range(data[gridID][['total']].index.shape[0]): if i == 1: maxDiff = abs(data[gridID][['total']].values[i][0] - data[gridID][['total']].values[i-1][0]) maxDiffYear = int(data[gridID][['total']].index[i]) elif i > 1: diff = abs(data[gridID][['total']].values[i][0] - data[gridID][['total']].values[i-1][0]) if diff > maxDiff: maxDiff = diff maxDiffYear = int(data[gridID][['total']].index[i]) StdTotalVal = data[gridID, 'total'].std()/data[gridID, 'total'].mean() MaxStdTotVal = numpy.max([data[gridID, 'low'].std(), data[gridID, 'mid'].std(), data[gridID, 'high'].std()])/data[gridID, 'total'].mean() MangAreaVal = data[gridID, 'total'].mean() diff8716AreaVal = data[gridID, 'total']['2016'] - data[gridID, 'total']['1987'] diff1216AreaVal = data[gridID, 'total']['2016'] - data[gridID, 'total']['2012'] diff9110AreaVal = data[gridID, 'total']['2010'] - data[gridID, 'total']['1991'] diff1016AreaVal = data[gridID, 'total']['2016'] - data[gridID, 'total']['2010'] diff9116AreaVal = data[gridID, 'total']['2016'] - data[gridID, 'total']['1991'] return maxDiffYear, StdTotalVal, MaxStdTotVal, MangAreaVal, diff8716AreaVal, diff1216AreaVal, diff9110AreaVal, diff1016AreaVal, diff9116AreaVal gridSHP = '/Users/pete/Temp/AustralianMangroves/AustraliaSqGrid_MangroveRegionsV1.shp' outGridSHP = '/Users/pete/Temp/AustralianMangroves/AustraliaSqGrid_MangroveRegionsV1_ExtraV3Info.shp' data = pandas.read_pickle("MangChangePVFC_V3.0_1987_to_2016.pkl.gz", compression="gzip") inDataSet = gdal.OpenEx(gridSHP, gdal.OF_VECTOR ) if inDataSet is None: raise("Failed to open input shapefile\n") inLayer = inDataSet.GetLayer() # Create shapefile driver driver = gdal.GetDriverByName( "ESRI Shapefile" ) # create the output layer if os.path.exists(outGridSHP): raise Exception('Output shapefile already exists - stopping.') outDataSet = driver.Create(outGridSHP, 0, 0, 0, gdal.GDT_Unknown ) outLyrName = os.path.splitext(os.path.basename(outGridSHP))[0] outLayer = outDataSet.CreateLayer(outLyrName, inLayer.GetSpatialRef(), inLayer.GetGeomType() ) inLayerDefn = inLayer.GetLayerDefn() for i in range(0, inLayerDefn.GetFieldCount()): fieldDefn = inLayerDefn.GetFieldDefn(i) outLayer.CreateField(fieldDefn) yearMaxField = ogr.FieldDefn("YearMax", ogr.OFTInteger) outLayer.CreateField(yearMaxField) stdTotalField = ogr.FieldDefn("StdTotal", ogr.OFTReal) outLayer.CreateField(stdTotalField) maxStdTotalField = ogr.FieldDefn("MaxStdTot", ogr.OFTReal) outLayer.CreateField(maxStdTotalField) meanAreaField = ogr.FieldDefn("MangArea", ogr.OFTInteger) outLayer.CreateField(meanAreaField) diff8716AreaField = ogr.FieldDefn("d8716Area", ogr.OFTInteger) outLayer.CreateField(diff8716AreaField) diff1216AreaField = ogr.FieldDefn("d1216Area", ogr.OFTInteger) outLayer.CreateField(diff1216AreaField) diff9110AreaField = ogr.FieldDefn("d9110Area", ogr.OFTInteger) outLayer.CreateField(diff9110AreaField) diff1016AreaField = ogr.FieldDefn("d1016Area", ogr.OFTInteger) outLayer.CreateField(diff1016AreaField) diff9116AreaField = ogr.FieldDefn("d9116Area", ogr.OFTInteger) outLayer.CreateField(diff9116AreaField) outLayerDefn = outLayer.GetLayerDefn() # loop through the input features inFeature = inLayer.GetNextFeature() while inFeature: geom = inFeature.GetGeometryRef() if geom is not None: gridID = inFeature.GetField('GridID') print(gridID) outFeature = ogr.Feature(outLayerDefn) outFeature.SetGeometry(geom) for i in range(0, inLayerDefn.GetFieldCount()): outFeature.SetField(outLayerDefn.GetFieldDefn(i).GetNameRef(), inFeature.GetField(i)) YearMaxVal, StdTotalVal, MaxStdTotVal, MangAreaVal, diff8716AreaVal, diff1216AreaVal, diff9110AreaVal, diff1016AreaVal, diff9116AreaVal = calcStats(data, gridID) outFeature.SetField("YearMax", YearMaxVal) outFeature.SetField("StdTotal", StdTotalVal) outFeature.SetField("MaxStdTot", MaxStdTotVal) outFeature.SetField("MangArea", MangAreaVal) outFeature.SetField("d8716Area", float(diff8716AreaVal)) outFeature.SetField("d1216Area", float(diff1216AreaVal)) outFeature.SetField("d9110Area", float(diff9110AreaVal)) outFeature.SetField("d1016Area", float(diff1016AreaVal)) outFeature.SetField("d9116Area", float(diff9116AreaVal)) outLayer.CreateFeature(outFeature) outFeature = None inFeature = inLayer.GetNextFeature() # Save and close the shapefiles inDataSet = None outDataSet = None
43.107143
169
0.719345
4a1989ba8e28e7e0599e645b21a661dbe91e1e2e
1,104
py
Python
modules/users/migrations/0001_initial.py
bobjiangps/automation_center
970262fe30942e6a9fc236f1ca41f060d3eb9f9d
[ "MIT" ]
8
2021-02-05T08:34:49.000Z
2022-03-12T09:55:11.000Z
modules/users/migrations/0001_initial.py
bobjiangps/automation_center
970262fe30942e6a9fc236f1ca41f060d3eb9f9d
[ "MIT" ]
null
null
null
modules/users/migrations/0001_initial.py
bobjiangps/automation_center
970262fe30942e6a9fc236f1ca41f060d3eb9f9d
[ "MIT" ]
null
null
null
# Generated by Django 2.2.9 on 2020-08-14 10:25 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('auth', '0011_update_proxy_permissions'), ('projects', '0007_auto_20200813_1750'), ] operations = [ migrations.CreateModel( name='Role', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.Group')), ('project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projects.Project')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('group', 'project', 'user')}, }, ), ]
34.5
118
0.622283
4a1989c750d03924231e1abdd598ef113a3e20bc
3,782
py
Python
python_pubsub/apps/publish.py
kragen/mod_pubsub
9abcdb07b02b7979bf4538ac8047783100ecb7bc
[ "BSD-3-Clause-Clear" ]
1
2021-04-05T14:53:29.000Z
2021-04-05T14:53:29.000Z
python_pubsub/apps/publish.py
kragen/mod_pubsub
9abcdb07b02b7979bf4538ac8047783100ecb7bc
[ "BSD-3-Clause-Clear" ]
null
null
null
python_pubsub/apps/publish.py
kragen/mod_pubsub
9abcdb07b02b7979bf4538ac8047783100ecb7bc
[ "BSD-3-Clause-Clear" ]
1
2021-04-05T14:53:41.000Z
2021-04-05T14:53:41.000Z
#!/usr/bin/python """ publish.py -- Command-line publish. Arguments are server URL, topic, payload size, and expires. Defaults are http://127.0.0.1:8000/kn , /what/chat , 1024, and +15. Example of usage: ./publish.py http://127.0.0.1:8000/kn /what/test "1024*1024" +15 $Id: publish.py,v 1.3 2004/04/19 05:39:15 bsittler Exp $ Contact Information: http://mod-pubsub.sf.net/ mod-pubsub-developer@lists.sourceforge.net """ ## Copyright 2000-2004 KnowNow, Inc. All rights reserved. ## @KNOWNOW_LICENSE_START@ ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions ## are met: ## ## 1. Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## ## 2. Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## ## 3. Neither the name of the KnowNow, Inc., nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## ## @KNOWNOW_LICENSE_END@ ## # Include standard system libraries: import sys # Include local pubsub library: sys.path = [ "../" ] + sys.path import pubsublib, scheduler, asyncore class publish_payload: def __init__(self, server_url = "http://127.0.0.1:8000/kn", topic = "/what/chat", payload_size = "1024", expires = "+15"): ua = pubsublib.HTTPUserAgent() self.client = pubsublib.SimpleClient(ua, server_url) print ("\nPublishing message of size " + str(eval(payload_size)) + " and expires " + expires + ".\n" + "Note that this creates two HTTPConnections: one for the tunnel" + " and one for the post.\n") self.client.publish(topic, { "kn_payload" : "X" * eval(payload_size), "kn_expires" : expires }, self) self.running = 1 def onStatus(self, event): print ("\n\nMessage published. Status is " + event['status'] + ".\n" + event['kn_payload'] + "\n\n") self.client.disconnect() asyncore.poll() self.running = 0 def main(argv): server_url = argv[1] if len(argv) > 2: topic = argv[2] if len(argv) > 3: payload_size = argv[3] if len(argv) > 4: expires = argv[4] publisher = publish_payload(server_url, topic, payload_size, expires) while publisher.running: asyncore.poll(scheduler.timeout()) scheduler.run() if __name__ == "__main__": main(sys.argv) # End of publish.py
36.019048
81
0.640137
4a1989cfc74de2130e7c84df6b9a1a26795dd873
2,235
py
Python
kedro_mlflow/mlflow/kedro_pipeline_model.py
akruszewski/kedro-mlflow
330cab52642a0993e957740726e7d453282f1588
[ "Apache-2.0" ]
null
null
null
kedro_mlflow/mlflow/kedro_pipeline_model.py
akruszewski/kedro-mlflow
330cab52642a0993e957740726e7d453282f1588
[ "Apache-2.0" ]
null
null
null
kedro_mlflow/mlflow/kedro_pipeline_model.py
akruszewski/kedro-mlflow
330cab52642a0993e957740726e7d453282f1588
[ "Apache-2.0" ]
null
null
null
from copy import deepcopy from pathlib import Path from kedro.io import DataCatalog, MemoryDataSet from kedro.runner import SequentialRunner from mlflow.pyfunc import PythonModel from kedro_mlflow.pipeline.pipeline_ml import PipelineML class KedroPipelineModel(PythonModel): def __init__(self, pipeline_ml: PipelineML, catalog: DataCatalog): self.pipeline_ml = pipeline_ml self.initial_catalog = pipeline_ml.extract_pipeline_catalog(catalog) self.loaded_catalog = DataCatalog() def load_context(self, context): # a consistency check is made when loading the model # it would be better to check when saving the model # but we rely on a mlflow function for saving, and it is unaware of kedro # pipeline structure mlflow_artifacts_keys = set(context.artifacts.keys()) kedro_artifacts_keys = set( self.pipeline_ml.inference.inputs() - {self.pipeline_ml.input_name} ) if mlflow_artifacts_keys != kedro_artifacts_keys: in_artifacts_but_not_inference = ( mlflow_artifacts_keys - kedro_artifacts_keys ) in_inference_but_not_artifacts = ( kedro_artifacts_keys - mlflow_artifacts_keys ) raise ValueError( f"Provided artifacts do not match catalog entries:\n- 'artifacts - inference.inputs()' = : {in_artifacts_but_not_inference}'\n- 'inference.inputs() - artifacts' = : {in_inference_but_not_artifacts}'" ) self.loaded_catalog = deepcopy(self.initial_catalog) for name, uri in context.artifacts.items(): self.loaded_catalog._data_sets[name]._filepath = Path(uri) def predict(self, context, model_input): # TODO : checkout out how to pass extra args in predict # for instance, to enable parallelization self.loaded_catalog.add( data_set_name=self.pipeline_ml.input_name, data_set=MemoryDataSet(model_input), replace=True, ) runner = SequentialRunner() run_outputs = runner.run( pipeline=self.pipeline_ml.inference, catalog=self.loaded_catalog ) return run_outputs
39.210526
215
0.6783
4a1989cfc8242cd22f370aaa1caf0c4cfa907a59
2,670
py
Python
config/settings/local.py
SantiR38/trello-api
a3bbbf6ab07169511819d0d6c1eee11d5f474542
[ "MIT" ]
null
null
null
config/settings/local.py
SantiR38/trello-api
a3bbbf6ab07169511819d0d6c1eee11d5f474542
[ "MIT" ]
null
null
null
config/settings/local.py
SantiR38/trello-api
a3bbbf6ab07169511819d0d6c1eee11d5f474542
[ "MIT" ]
null
null
null
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="yQuUgvQmoKLJiqFamg7fOUGIb1d9RRUYwFsnBamFBcyjbyMkSQjEAf2JDjHYbQRo", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] CORS_ORIGIN_ALLOW_ALL = True # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # WhiteNoise # ------------------------------------------------------------------------------ # http://whitenoise.evans.io/en/latest/django.html#using-whitenoise-in-development INSTALLED_APPS = ["whitenoise.runserver_nostatic"] + INSTALLED_APPS # noqa F405 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] if env("USE_DOCKER") == "yes": import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS += [".".join(ip.split(".")[:-1] + ["1"]) for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
40.454545
97
0.583895
4a198a7613a0119b6728c22e0519b16f197e48c7
30,244
py
Python
seshat/stock/models.py
XecusM/SESHAT
34cf989e99e11f645339ce7190d92ff816062243
[ "MIT" ]
null
null
null
seshat/stock/models.py
XecusM/SESHAT
34cf989e99e11f645339ce7190d92ff816062243
[ "MIT" ]
null
null
null
seshat/stock/models.py
XecusM/SESHAT
34cf989e99e11f645339ce7190d92ff816062243
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth import get_user_model from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.dispatch import receiver from django.db.models import Sum from django.db.models import Q from django.http import Http404 from django.core.validators import MinValueValidator from django.core.exceptions import ValidationError import uuid import os # Help Functions def get_image_path(instance, filename): ''' Uploading image function ''' ext = filename.split('.')[-1] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('items/', filename) # Create your models here. class Category(models.Model): ''' Model for items categories ''' name = models.CharField( verbose_name=_('Category name'), max_length=128, unique=True, blank=False, null=False ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) edited_by = models.ForeignKey( get_user_model(), verbose_name=_('Edited by'), related_name='category_item_user_edit', on_delete=models.PROTECT, blank=True, null=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) created_by = models.ForeignKey( get_user_model(), verbose_name=_('Created by'), related_name='category_item_user_create', on_delete=models.PROTECT, blank=True, null=True ) def clean(self): ''' Change cleaed data before save to datase ''' self.name = self.name.capitalize() def get_items(self): ''' Get all items for selected category ''' return self.item_category.filter(category=self.id) def edited(self, user): ''' Edit Category ''' self.edited_at = timezone.now() self.edited_by = user self.save() def __str__(self): ''' String representation for the record ''' return self.name class Item(models.Model): ''' Model for the items ''' code = models.CharField( verbose_name=_('Code'), max_length=8, unique=True, blank=False, null=False ) desciption = models.CharField( verbose_name=_('Desciption'), max_length=128, unique=False, blank=True, null=True ) barcode = models.CharField( verbose_name=_('Barcode'), max_length=128, unique=True, blank=True, null=True ) stock_limit = models.IntegerField( verbose_name=_('Stock Limit'), unique=False, blank=True, null=True ) is_assembly = models.BooleanField( verbose_name=_('Assembled Item'), default=False ) category = models.ForeignKey( 'Category', verbose_name=_('Category'), related_name='item_category', on_delete=models.PROTECT, blank=False, null=False ) location = models.ForeignKey( 'SubLocation', verbose_name=_('Default Location'), related_name='item_location', on_delete=models.PROTECT, blank=False, null=False ) price = models.DecimalField( verbose_name=_('Unit Price'), max_digits=8, decimal_places=2, unique=False, blank=False, null=False ) photo = models.ImageField( verbose_name=_('Item Picture'), upload_to=get_image_path, null=True, blank=True ) is_active = models.BooleanField( verbose_name=_('Enabled'), default=True ) note = models.TextField( verbose_name=_('Notes'), max_length=255, unique=False, blank=True, null=True ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) edited_by = models.ForeignKey( get_user_model(), verbose_name=_('Edited by'), related_name='item_user_edit', on_delete=models.PROTECT, blank=True, null=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) created_by = models.ForeignKey( get_user_model(), verbose_name=_('Created by'), related_name='item_user_create', on_delete=models.PROTECT, blank=True, null=True ) def clean(self): ''' Change cleaed data before save to datase ''' # let code be upper case only self.code = self.code.upper() @property def quantity(self): ''' return item quantity from its movements ''' if self.is_assembly: assembly_item = self.assembly_item.filter(item=self.id) quantity = None if assembly_item: for item in assembly_item: if quantity is None: quantity = int(int(item.sub_item.quantity) \ / item.quantity) else: quantity = min( quantity, int(int(item.sub_item.quantity) \ / item.quantity)) return int(quantity) else: raise ValidationError( _("Can't find items for assemblied item")) else: # sum all add movements sum_add = self.item_move_item.filter( item=self.id, type='A').aggregate(Sum('quantity')) if sum_add['quantity__sum'] is None: sum_add['quantity__sum'] = 0 # sum all remove movements sum_remove = self.item_move_item.filter( item=self.id, type='R').aggregate(Sum('quantity')) if sum_remove['quantity__sum'] is None: sum_remove['quantity__sum'] = 0 # calculate the deffreance between the add and remove sums sum_all = sum_add['quantity__sum'] - sum_remove['quantity__sum'] return int(sum_all) def get_item_moves(self): ''' Get all item moves ''' return self.item_move_item.filter( item=self).order_by('-created_at') def get_assembly_items(self): ''' Get all items for the selected assemblied item ''' if self.is_assembly: return self.assembly_item.filter(item=self.id).order_by('id') else: raise ValidationError(_('This is not assembly item')) def get_quantity(self, location): ''' Get avalible quantity for sublocation ''' if self.is_assembly: return int(self.quantity) else: # sum all add movements sum_add = self.item_move_item.filter( item=self.id, location=location, type='A').aggregate(Sum('quantity')) if sum_add['quantity__sum'] is None: sum_add['quantity__sum'] = 0 # sum all remove movements sum_remove = self.item_move_item.filter( item=self.id, location=location, type='R').aggregate(Sum('quantity')) if sum_remove['quantity__sum'] is None: sum_remove['quantity__sum'] = 0 # calculate the deffreance between the add and remove sums sum_all = sum_add['quantity__sum'] - sum_remove['quantity__sum'] return int(sum_all) def get_locations(self): ''' Get quantities by location ''' if not self.is_assembly: all_locations = [{ 'name': f"{move.location.location.name} / {move.location.name}", 'id': move.location.id } for move in self.item_move_item.filter(item=self.id)] # Remove deplucation locations = [d for i, d in enumerate( all_locations) if d not in all_locations[i + 1:]] for i, location in enumerate(locations): # sum all add movements sum_add = self.item_move_item.filter( item=self.id, type='A', location=location['id'] ).aggregate(Sum('quantity')) if sum_add['quantity__sum'] is None: sum_add['quantity__sum'] = 0 # sum all remove movements sum_remove = self.item_move_item.filter( item=self.id, type='R', location=location['id'] ).aggregate(Sum('quantity')) if sum_remove['quantity__sum'] is None: sum_remove['quantity__sum'] = 0 # calculate the deffreance between the add and remove sums sum_all = sum_add[ 'quantity__sum'] - sum_remove['quantity__sum'] locations[i]['quantity'] = sum_all return locations def edited(self, user): ''' Edit item ''' self.edited_at = timezone.now() self.edited_by = user self.save() def __str__(self): ''' String representation for the record ''' return self.code class AssemblyItem(models.Model): ''' link all items to assemblied item ''' item = models.ForeignKey( 'Item', verbose_name=_('Item'), limit_choices_to={'is_assembly': True}, related_name='assembly_item', on_delete=models.CASCADE, blank=False, null=False ) sub_item = models.ForeignKey( 'Item', verbose_name=_('Item'), related_name='assembly_sub_item', on_delete=models.PROTECT, blank=False, null=False ) quantity = models.IntegerField( verbose_name=_('Quantity'), unique=False, blank=False, null=False ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) @property def sub_item_quantity(self): ''' return asembled item quantity from its sub-items ''' return self.sub_item.quantity def __str__(self): ''' String representation for the record ''' return f"{self.item.code}/{self.sub_item.code}" class Location(models.Model): ''' Model for item locations to store ''' name = models.CharField( verbose_name=_('Location name'), max_length=128, unique=True, blank=False, null=False ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) edited_by = models.ForeignKey( get_user_model(), verbose_name=_('Edited by'), related_name='location_user_edit', on_delete=models.PROTECT, blank=True, null=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) created_by = models.ForeignKey( get_user_model(), verbose_name=_('Created by'), related_name='location_user_create', on_delete=models.PROTECT, blank=True, null=True ) def clean(self): ''' Change cleaed data before save to datase ''' self.name = self.name.upper() def get_sub_locations(self): ''' Get all sub-locations for selected location ''' return self.sub_location.filter(location=self.id) def edited(self, user): ''' Edit location ''' self.edited_at = timezone.now() self.edited_by = user self.save() def __str__(self): ''' String representation for the record ''' return self.name class SubLocation(models.Model): ''' Model for item sub-locations to store ''' location = models.ForeignKey( 'Location', verbose_name=_('Location'), related_name='sub_location', on_delete=models.PROTECT, blank=False, null=False ) name = models.CharField( verbose_name=_('Sub-location name'), max_length=128, unique=True, blank=False, null=False ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) edited_by = models.ForeignKey( get_user_model(), verbose_name=_('Edited by'), related_name='sublocation_user_edit', on_delete=models.PROTECT, blank=True, null=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) created_by = models.ForeignKey( get_user_model(), verbose_name=_('Created by'), related_name='sublocation_user_create', on_delete=models.PROTECT, blank=True, null=True ) def clean(self): ''' Change cleaed data before save to datase ''' self.name = self.name.upper() def get_items(self): ''' return all items in this sub-location ''' item_moves = self.item_move_location.filter(location=self.id) return Item.objects.filter(item_move_item__in=item_moves) def edited(self, user): ''' Edit sub-location ''' self.edited_at = timezone.now() self.edited_by = user self.save() def __str__(self): ''' String representation for the record ''' return f"{self.location.name} / {self.name}" class ItemMove(models.Model): ''' Model for item movements done on the items ''' ######################################### # Choices ADD = 'A' REMOVE = 'R' type_choices = [ (ADD, _('Add')), (REMOVE, _('Remove')) ] PURCHASE = 'P' SELL = 'S' ASSEMBLY = 'A' CUSTOM = 'U' TRANSFER = 'T' related_choices = [ (PURCHASE, _('Purchase')), (SELL, _('Sell')), (ASSEMBLY, _('Assembly')), (CUSTOM, _('Custom')), (TRANSFER, _('Transfer')) ] ######################################### item = models.ForeignKey( 'Item', verbose_name=_('Item'), related_name='item_move_item', on_delete=models.PROTECT, blank=False, null=False ) location = models.ForeignKey( 'SubLocation', verbose_name=_('Location'), related_name='item_move_location', on_delete=models.PROTECT, blank=False, null=False ) type = models.CharField( verbose_name=_('Movement type'), max_length=1, choices=type_choices, blank=False, null=False ) quantity = models.IntegerField( verbose_name=_('Quantity'), validators=[MinValueValidator(1)], unique=False, blank=False, null=False ) related_to = models.CharField( verbose_name=_('Related to'), max_length=1, choices=related_choices, default=CUSTOM, blank=False, null=False ) note = models.TextField( verbose_name=_('Notes'), max_length=255, unique=False, blank=True, null=True ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) edited_by = models.ForeignKey( get_user_model(), verbose_name=_('Edited by'), related_name='item_move_user_edit', on_delete=models.PROTECT, blank=True, null=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) created_by = models.ForeignKey( get_user_model(), verbose_name=_('Created by'), related_name='item_move_user_create', on_delete=models.PROTECT, blank=True, null=True ) def edited(self, user): ''' Edit movement ''' self.edited_at = timezone.now() self.edited_by = user self.save() def delete(self): ''' Delete Item ''' if self.item.is_assembly: moves_values = self.assembly_move_assembly_move.get( id=self).item_moves.values_list('id', flat=True) item_moves = ItemMove.objects.filter(id__in=moves_values) for item_move in item_moves: item_move.delete() super().delete() def save(self, *args, **kwargs): ''' Save record method ''' if self.item.get_quantity(self.location.id) < int(self.quantity) and \ self.type == ItemMove.REMOVE and not self.item.is_assembly: raise ValidationError( _("Quantity can't be negative for the selected location")) else: super().save(*args, **kwargs) if self.item.is_assembly: if AssemblyMove.objects.filter( assembly_move=self).exists(): moves_values = self.assembly_move_assembly_move.get( assembly_move=self).item_moves.values_list( 'id', flat=True) item_moves = ItemMove.objects.filter(id__in=moves_values) for item_move in item_moves: item_move.quantity = self.quantity * ( sub_item.quantity for sub_item in self.item.get_assembly_items() if sub_item == self.item) item_move.save() else: sub_item_list = list() for sub_item in self.item.get_assembly_items(): sub_item_move = ItemMove.objects.create( item=sub_item.sub_item, location=sub_item.sub_item.location, type=self.type, related_to=ItemMove.ASSEMBLY, quantity=self.quantity * sub_item.quantity) sub_item_list.append(sub_item_move) assembly_move = AssemblyMove.objects.create( assembly_move=self) for sub_item_add in sub_item_list: assembly_move.item_moves.add(sub_item_add) assembly_move.save() def __str__(self): ''' String representation for the record ''' return f"{self.type}-{self.id}" class AssemblyMove(models.Model): ''' Model for assemblied items retlated movements ''' assembly_move = models.OneToOneField( 'ItemMove', verbose_name=_('Item'), limit_choices_to=~Q(related_to=ItemMove.ASSEMBLY), related_name='assembly_move_assembly_move', on_delete=models.CASCADE, blank=False, null=False ) item_moves = models.ManyToManyField( 'ItemMove', verbose_name=_("Items' moves"), limit_choices_to={ 'related_to': ItemMove.ASSEMBLY}, related_name='assembly_move_item_move', blank=True, ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) def edited(self): ''' Edit assembly movement ''' self.edited_at = timezone.now() self.save() def delete(self): ''' Delete Item ''' moves_values = self.item_moves.values_list('id', flat=True) item_moves = ItemMove.objects.filter(id__in=moves_values) super().delete() for item_move in item_moves: item_move.delete() def __str__(self): ''' String representation for the record ''' return f"{self.assembly_move.item.code}-{self.id}" class ItemTransfer(models.Model): ''' Model for transfer item from location to another ''' item = models.ForeignKey( 'Item', verbose_name=_('Item'), related_name='item_transfer_item', on_delete=models.PROTECT, blank=False, null=False ) old_location = models.ForeignKey( 'SubLocation', verbose_name=_('Old Location'), related_name='item_transfer_old_location', on_delete=models.PROTECT, blank=False, null=False ) new_location = models.ForeignKey( 'SubLocation', verbose_name=_('New Location'), related_name='item_transfer_new_location', on_delete=models.PROTECT, blank=False, null=False ) add_move = models.ForeignKey( 'ItemMove', verbose_name=_('Add Move'), limit_choices_to={ 'type': ItemMove.ADD, 'related_to': ItemMove.TRANSFER}, related_name='item_move_transfer_add', on_delete=models.PROTECT, blank=False, null=False ) remove_move = models.ForeignKey( 'ItemMove', verbose_name=_('Remove Move'), limit_choices_to={ 'type': ItemMove.REMOVE, 'related_to': ItemMove.TRANSFER}, related_name='item_move_transfer_remove', on_delete=models.PROTECT, blank=False, null=False ) edited_at = models.DateTimeField( verbose_name=_('Edited at'), null=True, blank=True ) created_at = models.DateTimeField( verbose_name=_('Created at'), auto_now_add=True, blank=False ) def edited(self): ''' Edit item transfer ''' self.edited_at = timezone.now() self.save() def __str__(self): ''' String representation for the record ''' return f"{self.item.code}-({self.old_location}-{self.new_location})" # Signals @receiver(models.signals.post_delete, sender=Item) def auto_delete_file_on_delete(sender, instance, **kwargs): ''' Deletes file from filesystem when corresponding `Item` object is deleted. ''' if instance.photo and os.path.isfile(instance.photo.path): os.remove(instance.photo.path) @receiver(models.signals.pre_save, sender=Item) def auto_delete_file_on_change(sender, instance, **kwargs): ''' Deletes old file from filesystem when corresponding `Item` object is updated with new file. ''' if instance.pk: old_photo = Item.objects.get(pk=instance.pk).photo new_photo = instance.photo if not old_photo == new_photo and old_photo and \ os.path.isfile(old_photo.path): os.remove(old_photo.path) @receiver(models.signals.pre_save, sender=ItemMove) def auto_delete_moves_on_change(sender, instance, **kwargs): ''' Deletes old assembly moves when corresponding `ItemMove` object is updated with not assmbly item. ''' if instance.pk: old_move = ItemMove.objects.get(id=instance.id) if not instance.item == old_move.item and old_move.item.is_assembly: moves_values = instance.assembly_move_assembly_move.get( id=old_move.id).item_moves.values_list( 'id', flat=True) item_moves = ItemMove.objects.filter(id__in=moves_values) for item_move in item_moves: item_move.delete()
35.085847
118
0.444716
4a198b8fb59210446dac3d6420ce2dcc81b8f503
1,041
py
Python
core/plugins/rabbitmq.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
12
2020-06-02T14:22:40.000Z
2021-04-07T15:58:09.000Z
core/plugins/rabbitmq.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
72
2020-06-09T00:35:19.000Z
2021-09-29T11:00:41.000Z
core/plugins/rabbitmq.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
43
2020-06-05T15:09:37.000Z
2021-09-25T12:28:28.000Z
from core.ycheck.events import YEventCheckerBase from core import ( checks, plugintools, ) RMQ_SERVICES_EXPRS = [ r"beam.smp", r"epmd", r"rabbitmq-server", ] RMQ_PACKAGES = [ r"rabbitmq-server", ] class RabbitMQBase(object): pass class RabbitMQChecksBase(RabbitMQBase, plugintools.PluginPartBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.apt_check = checks.APTPackageChecksBase(core_pkgs=RMQ_PACKAGES) @property def plugin_runnable(self): if self.apt_check.core: return True return False class RabbitMQServiceChecksBase(RabbitMQChecksBase, checks.ServiceChecksBase): def __init__(self, *args, **kwargs): super().__init__(service_exprs=RMQ_SERVICES_EXPRS, *args, hint_range=(0, 3), **kwargs) class RabbitMQEventChecksBase(RabbitMQChecksBase, YEventCheckerBase): def __call__(self): ret = self.run_checks() if ret: self._output.update(ret)
21.6875
78
0.666667
4a199020f2834b9ff173bd0fb96ff46050a1090c
1,195
py
Python
src/test/gen_rule_test.py
MerlinXYoung/typhoon-blade
b1605fac6a2f112f98e2fb8eb4df64c0b4bb5500
[ "BSD-3-Clause" ]
2
2019-11-11T04:03:42.000Z
2019-11-11T04:03:47.000Z
src/test/gen_rule_test.py
MerlinXYoung/typhoon-blade
b1605fac6a2f112f98e2fb8eb4df64c0b4bb5500
[ "BSD-3-Clause" ]
null
null
null
src/test/gen_rule_test.py
MerlinXYoung/typhoon-blade
b1605fac6a2f112f98e2fb8eb4df64c0b4bb5500
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2011 Tencent Inc. # All rights reserved. # # Author: Michaelpeng <michaelpeng@tencent.com> # Date: October 20, 2011 """ This is the test module for cc_gen_rule target. """ import blade_test class TestGenRule(blade_test.TargetTest): """Test gen_rule """ def setUp(self): """setup method. """ self.doSetUp('test_gen_rule') def testGenerateRules(self): """Test that rules are generated correctly. """ self.assertTrue(self.dryRun()) com_lower_line = self.findCommand('plowercase.cpp.o -c') com_upper_line = self.findCommand('puppercase.cpp.o -c') self.assertCxxFlags(com_lower_line) self.assertCxxFlags(com_upper_line) lower_so_index = self.findCommandAndLine( ['-shared', 'liblowercase.so', 'plowercase.cpp.o']) gen_rule_index = self.findCommandAndLine('echo') upper_so_index = self.findCommandAndLine( ['-shared', 'libuppercase.so', 'puppercase.cpp.o']) #self.assertGreater(gen_rule_index, lower_so_index) #self.assertGreater(upper_so_index, gen_rule_index) if __name__ == '__main__': blade_test.run(TestGenRule)
27.159091
67
0.662762
4a19921608f2140d22f7399aa1c5a03921d8e610
15,732
py
Python
influxdb_client/service/default_service.py
Onemind-Services-LLC/influxdb-client-python
c902f07acadc07234ee845256bfc60ebdd296d63
[ "MIT" ]
null
null
null
influxdb_client/service/default_service.py
Onemind-Services-LLC/influxdb-client-python
c902f07acadc07234ee845256bfc60ebdd296d63
[ "MIT" ]
null
null
null
influxdb_client/service/default_service.py
Onemind-Services-LLC/influxdb-client-python
c902f07acadc07234ee845256bfc60ebdd296d63
[ "MIT" ]
null
null
null
# coding: utf-8 """ Influx OSS API Service. No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 2.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from influxdb_client.api_client import ApiClient class DefaultService(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): # noqa: E501,D401,D403 """DefaultService - a operation defined in OpenAPI.""" if api_client is None: api_client = ApiClient() self.api_client = api_client def get_routes(self, **kwargs): # noqa: E501,D401,D403 """Map of all top level routes available. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_routes(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: Routes If the method is called asynchronously, returns the request thread. """ # noqa: E501 kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_routes_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_routes_with_http_info(**kwargs) # noqa: E501 return data def get_routes_with_http_info(self, **kwargs): # noqa: E501,D401,D403 """Map of all top level routes available. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_routes_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: Routes If the method is called asynchronously, returns the request thread. """ # noqa: E501 local_var_params = locals() all_params = ['zap_trace_span'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') all_params.append('urlopen_kw') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_routes" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} if 'zap_trace_span' in local_var_params: header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 # urlopen optional setting urlopen_kw = None if 'urlopen_kw' in kwargs: urlopen_kw = kwargs['urlopen_kw'] return self.api_client.call_api( '/api/v2/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Routes', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, urlopen_kw=urlopen_kw) def get_telegraf_plugins(self, **kwargs): # noqa: E501,D401,D403 """get_telegraf_plugins. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_telegraf_plugins(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :param str type: The type of plugin desired. :return: TelegrafPlugins If the method is called asynchronously, returns the request thread. """ # noqa: E501 kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_telegraf_plugins_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_telegraf_plugins_with_http_info(**kwargs) # noqa: E501 return data def get_telegraf_plugins_with_http_info(self, **kwargs): # noqa: E501,D401,D403 """get_telegraf_plugins. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_telegraf_plugins_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :param str type: The type of plugin desired. :return: TelegrafPlugins If the method is called asynchronously, returns the request thread. """ # noqa: E501 local_var_params = locals() all_params = ['zap_trace_span', 'type'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') all_params.append('urlopen_kw') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_telegraf_plugins" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'type' in local_var_params: query_params.append(('type', local_var_params['type'])) # noqa: E501 header_params = {} if 'zap_trace_span' in local_var_params: header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 # urlopen optional setting urlopen_kw = None if 'urlopen_kw' in kwargs: urlopen_kw = kwargs['urlopen_kw'] return self.api_client.call_api( '/api/v2/telegraf/plugins', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TelegrafPlugins', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, urlopen_kw=urlopen_kw) def post_signin(self, **kwargs): # noqa: E501,D401,D403 """Exchange basic auth credentials for session. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_signin(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :param str authorization: An auth credential for the Basic scheme :return: None If the method is called asynchronously, returns the request thread. """ # noqa: E501 kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.post_signin_with_http_info(**kwargs) # noqa: E501 else: (data) = self.post_signin_with_http_info(**kwargs) # noqa: E501 return data def post_signin_with_http_info(self, **kwargs): # noqa: E501,D401,D403 """Exchange basic auth credentials for session. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_signin_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :param str authorization: An auth credential for the Basic scheme :return: None If the method is called asynchronously, returns the request thread. """ # noqa: E501 local_var_params = locals() all_params = ['zap_trace_span', 'authorization'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') all_params.append('urlopen_kw') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_signin" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} if 'zap_trace_span' in local_var_params: header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] # noqa: E501 if 'authorization' in local_var_params: header_params['Authorization'] = local_var_params['authorization'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['BasicAuth'] # noqa: E501 # urlopen optional setting urlopen_kw = None if 'urlopen_kw' in kwargs: urlopen_kw = kwargs['urlopen_kw'] return self.api_client.call_api( '/api/v2/signin', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, urlopen_kw=urlopen_kw) def post_signout(self, **kwargs): # noqa: E501,D401,D403 """Expire the current session. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_signout(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: None If the method is called asynchronously, returns the request thread. """ # noqa: E501 kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.post_signout_with_http_info(**kwargs) # noqa: E501 else: (data) = self.post_signout_with_http_info(**kwargs) # noqa: E501 return data def post_signout_with_http_info(self, **kwargs): # noqa: E501,D401,D403 """Expire the current session. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_signout_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str zap_trace_span: OpenTracing span context :return: None If the method is called asynchronously, returns the request thread. """ # noqa: E501 local_var_params = locals() all_params = ['zap_trace_span'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') all_params.append('urlopen_kw') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_signout" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} if 'zap_trace_span' in local_var_params: header_params['Zap-Trace-Span'] = local_var_params['zap_trace_span'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 # urlopen optional setting urlopen_kw = None if 'urlopen_kw' in kwargs: urlopen_kw = kwargs['urlopen_kw'] return self.api_client.call_api( '/api/v2/signout', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, urlopen_kw=urlopen_kw)
36.757009
120
0.614989
4a1993440effe78e0e557bdc132e949d9e81b842
821
py
Python
helpers/erai/erai2icar.py
scrasmussen/icar
88c59fed7595b176a81127993785fdeb514f28a3
[ "MIT" ]
61
2016-03-15T18:57:19.000Z
2022-03-30T03:00:55.000Z
helpers/erai/erai2icar.py
scrasmussen/icar
88c59fed7595b176a81127993785fdeb514f28a3
[ "MIT" ]
42
2016-03-17T16:10:59.000Z
2022-03-23T19:57:09.000Z
helpers/erai/erai2icar.py
scrasmussen/icar
88c59fed7595b176a81127993785fdeb514f28a3
[ "MIT" ]
50
2015-12-09T18:13:47.000Z
2021-12-09T02:29:35.000Z
#!/usr/bin/env python import os,traceback,sys import config import io_routines import output import convert def main(info): for i in range(info.ntimes): raw_data=io_routines.load_data(info.times[i],info) processed_data=convert.era2icar(raw_data) output.write_file(info.times[i],info,processed_data) if __name__ == '__main__': try: info=config.parse() config.update_info(info) exit_code = main(info) if exit_code is None: exit_code = 0 sys.exit(exit_code) except KeyboardInterrupt as e: # Ctrl-C raise e except SystemExit as e: # sys.exit() raise e except Exception as e: print('ERROR, UNEXPECTED EXCEPTION') print(str(e)) traceback.print_exc() os._exit(1)
24.147059
60
0.62363
4a199383a246f7ec0b57c97f9f091af7e8870c2b
2,096
py
Python
cheritest/trunk/tests/mem/test_raw_ld.py
tupipa/beri
cef1b41d52592cfa7454ddf59f9f2994e447cd66
[ "Apache-2.0" ]
36
2015-05-29T16:47:19.000Z
2022-02-08T21:16:26.000Z
cheritest/trunk/tests/mem/test_raw_ld.py
tupipa/beri
cef1b41d52592cfa7454ddf59f9f2994e447cd66
[ "Apache-2.0" ]
2
2020-06-02T13:44:55.000Z
2020-06-02T14:06:29.000Z
cheritest/trunk/tests/mem/test_raw_ld.py
tupipa/beri
cef1b41d52592cfa7454ddf59f9f2994e447cd66
[ "Apache-2.0" ]
15
2015-06-11T07:10:58.000Z
2021-06-18T05:14:54.000Z
#- # Copyright (c) 2011 Steven J. Murdoch # All rights reserved. # # This software was developed by SRI International and the University of # Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 # ("CTSRD"), as part of the DARPA CRASH research programme. # # @BERI_LICENSE_HEADER_START@ # # Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor # license agreements. See the NOTICE file distributed with this work for # additional information regarding copyright ownership. BERI licenses this # file to you under the BERI Hardware-Software License, Version 1.0 (the # "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at: # # http://www.beri-open-systems.org/legal/license-1-0.txt # # Unless required by applicable law or agreed to in writing, Work distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # @BERI_LICENSE_HEADER_END@ # from beritest_tools import BaseBERITestCase class test_raw_ld(BaseBERITestCase): def test_a0(self): '''Test load double word instruction''' self.assertRegisterEqual(self.MIPS.a0, 0xfedcba9876543210, "Double word load failed") def test_a1(self): '''Test load positive double word''' self.assertRegisterEqual(self.MIPS.a1, 0x7fffffffffffffff, "Positive double word load failed") def test_a2(self): '''Test load negative double word''' self.assertRegisterEqual(self.MIPS.a2, 0xffffffffffffffff, "Negative double word load failed") def test_pos_offset(self): '''Test double word load at positive offset''' self.assertRegisterEqual(self.MIPS.a3, 2, "Double word load at positive offset failed") def test_neg_offset(self): '''Test double word load at negative offset''' self.assertRegisterEqual(self.MIPS.a4, 1, "Double word load at negative offset failed")
41.098039
102
0.739504