id
stringlengths
6
6
text
stringlengths
20
17.2k
title
stringclasses
1 value
157653
"""Integration tests for the langchain tracer module.""" import asyncio import os from aiohttp import ClientSession from langchain_core.callbacks.manager import atrace_as_chain_group, trace_as_chain_group from langchain_core.prompts import PromptTemplate from langchain_core.tracers.context import tracing_v2_enabled from langchain_community.chat_models import ChatOpenAI from langchain_community.llms import OpenAI questions = [ ( "Who won the US Open men's final in 2019? " "What is his age raised to the 0.334 power?" ), ( "Who is Olivia Wilde's boyfriend? " "What is his current age raised to the 0.23 power?" ), ( "Who won the most recent formula 1 grand prix? " "What is their age raised to the 0.23 power?" ), ( "Who won the US Open women's final in 2019? " "What is her age raised to the 0.34 power?" ), ("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"), ] def test_tracing_sequential() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING"] = "true" for q in questions[:3]: llm = OpenAI(temperature=0) tools = load_tools(["llm-math", "serpapi"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(q) def test_tracing_session_env_var() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING"] = "true" os.environ["LANGCHAIN_SESSION"] = "my_session" llm = OpenAI(temperature=0) tools = load_tools(["llm-math", "serpapi"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(questions[0]) if "LANGCHAIN_SESSION" in os.environ: del os.environ["LANGCHAIN_SESSION"] async def test_tracing_concurrent() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING"] = "true" aiosession = ClientSession() llm = OpenAI(temperature=0) async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) tasks = [agent.arun(q) for q in questions[:3]] await asyncio.gather(*tasks) await aiosession.close() async def test_tracing_concurrent_bw_compat_environ() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_HANDLER"] = "langchain" if "LANGCHAIN_TRACING" in os.environ: del os.environ["LANGCHAIN_TRACING"] aiosession = ClientSession() llm = OpenAI(temperature=0) async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) tasks = [agent.arun(q) for q in questions[:3]] await asyncio.gather(*tasks) await aiosession.close() if "LANGCHAIN_HANDLER" in os.environ: del os.environ["LANGCHAIN_HANDLER"] async def test_tracing_v2_environment_variable() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING_V2"] = "true" aiosession = ClientSession() llm = OpenAI(temperature=0) async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) tasks = [agent.arun(q) for q in questions[:3]] await asyncio.gather(*tasks) await aiosession.close() def test_tracing_v2_context_manager() -> None: from langchain.agents import AgentType, initialize_agent, load_tools llm = ChatOpenAI(temperature=0) tools = load_tools(["llm-math", "serpapi"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) if "LANGCHAIN_TRACING_V2" in os.environ: del os.environ["LANGCHAIN_TRACING_V2"] with tracing_v2_enabled(): agent.run(questions[0]) # this should be traced agent.run(questions[0]) # this should not be traced def test_tracing_v2_chain_with_tags() -> None: from langchain.chains.constitutional_ai.base import ConstitutionalChain from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain llm = OpenAI(temperature=0) chain = ConstitutionalChain.from_llm( llm, chain=LLMChain.from_string(llm, "Q: {question} A:"), tags=["only-root"], constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) if "LANGCHAIN_TRACING_V2" in os.environ: del os.environ["LANGCHAIN_TRACING_V2"] with tracing_v2_enabled(): chain.run("what is the meaning of life", tags=["a-tag"]) def test_tracing_v2_agent_with_metadata() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING_V2"] = "true" llm = OpenAI(temperature=0) chat = ChatOpenAI(temperature=0) tools = load_tools(["llm-math", "serpapi"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) chat_agent = initialize_agent( tools, chat, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"}) chat_agent.run(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"}) async def test_tracing_v2_async_agent_with_metadata() -> None: from langchain.agents import AgentType, initialize_agent, load_tools os.environ["LANGCHAIN_TRACING_V2"] = "true" llm = OpenAI(temperature=0, metadata={"f": "g", "h": "i"}) chat = ChatOpenAI(temperature=0, metadata={"f": "g", "h": "i"}) async_tools = load_tools(["llm-math", "serpapi"], llm=llm) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) chat_agent = initialize_agent( async_tools, chat, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) await agent.arun(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"}) await chat_agent.arun(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
157675
"""Test AzureChatOpenAI wrapper.""" import os from typing import Any import pytest from langchain_core.callbacks import CallbackManager from langchain_core.messages import BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult from langchain_community.chat_models import AzureChatOpenAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") DEPLOYMENT_NAME = os.environ.get( "AZURE_OPENAI_DEPLOYMENT_NAME", os.environ.get("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME", ""), ) def _get_llm(**kwargs: Any) -> AzureChatOpenAI: return AzureChatOpenAI( # type: ignore[call-arg] deployment_name=DEPLOYMENT_NAME, openai_api_version=OPENAI_API_VERSION, azure_endpoint=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY, **kwargs, ) @pytest.mark.scheduled @pytest.fixture def llm() -> AzureChatOpenAI: return _get_llm( max_tokens=10, ) def test_chat_openai(llm: AzureChatOpenAI) -> None: """Test AzureChatOpenAI wrapper.""" message = HumanMessage(content="Hello") response = llm.invoke([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_chat_openai_generate() -> None: """Test AzureChatOpenAI wrapper with generate.""" chat = _get_llm(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_chat_openai_multiple_completions() -> None: """Test AzureChatOpenAI wrapper with multiple completions.""" chat = _get_llm(max_tokens=10, n=5) message = HumanMessage(content="Hello") response = chat._generate([message]) assert isinstance(response, ChatResult) assert len(response.generations) == 5 for generation in response.generations: assert isinstance(generation.message, BaseMessage) assert isinstance(generation.message.content, str) @pytest.mark.scheduled def test_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = _get_llm( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = chat.invoke([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage) @pytest.mark.scheduled def test_chat_openai_streaming_generation_info() -> None: """Test that generation info is preserved when streaming.""" class _FakeCallback(FakeCallbackHandler): saved_things: dict = {} def on_llm_end( self, *args: Any, **kwargs: Any, ) -> Any: # Save the generation self.saved_things["generation"] = args[0] callback = _FakeCallback() callback_manager = CallbackManager([callback]) chat = _get_llm( max_tokens=2, temperature=0, callback_manager=callback_manager, ) list(chat.stream("hi")) generation = callback.saved_things["generation"] # `Hello!` is two tokens, assert that that is what is returned assert generation.generations[0][0].text == "Hello!" @pytest.mark.scheduled async def test_async_chat_openai() -> None: """Test async generation.""" chat = _get_llm(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled async def test_async_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = _get_llm( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert callback_handler.llm_streams > 0 assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_openai_streaming(llm: AzureChatOpenAI) -> None: """Test streaming tokens from OpenAI.""" for token in llm.stream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_astream(llm: AzureChatOpenAI) -> None: """Test streaming tokens from OpenAI.""" async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_abatch(llm: AzureChatOpenAI) -> None: """Test streaming tokens from AzureChatOpenAI.""" result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_abatch_tags(llm: AzureChatOpenAI) -> None: """Test batch tokens from AzureChatOpenAI.""" result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled def test_openai_batch(llm: AzureChatOpenAI) -> None: """Test batch tokens from AzureChatOpenAI.""" result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_ainvoke(llm: AzureChatOpenAI) -> None: """Test invoke tokens from AzureChatOpenAI.""" result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result.content, str) @pytest.mark.scheduled def test_openai_invoke(llm: AzureChatOpenAI) -> None: """Test invoke tokens from AzureChatOpenAI.""" result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result.content, str)
157826
def test_chroma_update_document() -> None: """Test the update_document function in the Chroma class.""" # Make a consistent embedding embedding = ConsistentFakeEmbeddings() # Initial document content and id initial_content = "foo" document_id = "doc1" # Create an instance of Document with initial content and metadata original_doc = Document(page_content=initial_content, metadata={"page": "0"}) # Initialize a Chroma instance with the original document docsearch = Chroma.from_documents( collection_name="test_collection", documents=[original_doc], embedding=embedding, ids=[document_id], ) old_embedding = docsearch._collection.peek()["embeddings"][ docsearch._collection.peek()["ids"].index(document_id) ] # Define updated content for the document updated_content = "updated foo" # Create a new Document instance with the updated content and the same id updated_doc = Document(page_content=updated_content, metadata={"page": "0"}) # Update the document in the Chroma instance docsearch.update_document(document_id=document_id, document=updated_doc) # Perform a similarity search with the updated content output = docsearch.similarity_search(updated_content, k=1) # Assert that the updated document is returned by the search assert output == [Document(page_content=updated_content, metadata={"page": "0"})] # Assert that the new embedding is correct new_embedding = docsearch._collection.peek()["embeddings"][ docsearch._collection.peek()["ids"].index(document_id) ] assert new_embedding == embedding.embed_documents([updated_content])[0] assert new_embedding != old_embedding def test_chroma_with_relevance_score() -> None: """Test to make sure the relevance score is scaled to 0-1.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, collection_metadata={"hnsw:space": "l2"}, ) output = docsearch.similarity_search_with_relevance_scores("foo", k=3) assert output == [ (Document(page_content="foo", metadata={"page": "0"}), 1.0), (Document(page_content="bar", metadata={"page": "1"}), 0.8), (Document(page_content="baz", metadata={"page": "2"}), 0.5), ] def test_chroma_with_relevance_score_custom_normalization_fn() -> None: """Test searching with relevance score and custom normalization function.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, relevance_score_fn=lambda d: d * 0, collection_metadata={"hnsw:space": "l2"}, ) output = docsearch.similarity_search_with_relevance_scores("foo", k=3) assert output == [ (Document(page_content="foo", metadata={"page": "0"}), -0.0), (Document(page_content="bar", metadata={"page": "1"}), -0.0), (Document(page_content="baz", metadata={"page": "2"}), -0.0), ] def test_init_from_client() -> None: import chromadb client = chromadb.Client(chromadb.config.Settings()) Chroma(client=client) def test_init_from_client_settings() -> None: import chromadb client_settings = chromadb.config.Settings() Chroma(client_settings=client_settings) def test_chroma_add_documents_no_metadata() -> None: db = Chroma(embedding_function=FakeEmbeddings()) db.add_documents([Document(page_content="foo")]) def test_chroma_add_documents_mixed_metadata() -> None: db = Chroma(embedding_function=FakeEmbeddings()) docs = [ Document(page_content="foo"), Document(page_content="bar", metadata={"baz": 1}), ] ids = ["0", "1"] actual_ids = db.add_documents(docs, ids=ids) assert actual_ids == ids search = db.similarity_search("foo bar") assert sorted(search, key=lambda d: d.page_content) == sorted( docs, key=lambda d: d.page_content ) def is_api_accessible(url: str) -> bool: try: response = requests.get(url) return response.status_code == 200 except Exception: return False def batch_support_chroma_version() -> bool: try: import chromadb except Exception: return False major, minor, patch = chromadb.__version__.split(".") if int(major) == 0 and int(minor) >= 4 and int(patch) >= 10: return True return False @pytest.mark.requires("chromadb") @pytest.mark.skipif( not is_api_accessible("http://localhost:8000/api/v1/heartbeat"), reason="API not accessible", ) @pytest.mark.skipif( not batch_support_chroma_version(), reason="ChromaDB version does not support batching", ) def test_chroma_large_batch() -> None: import chromadb client = chromadb.HttpClient() embedding_function = Fak(size=255) col = client.get_or_create_collection( "my_collection", embedding_function=embedding_function.embed_documents, # type: ignore ) docs = ["This is a test document"] * (client.max_batch_size + 100) Chroma.from_texts( client=client, collection_name=col.name, texts=docs, embedding=embedding_function, ids=[str(uuid.uuid4()) for _ in range(len(docs))], ) @pytest.mark.requires("chromadb") @pytest.mark.skipif( not is_api_accessible("http://localhost:8000/api/v1/heartbeat"), reason="API not accessible", ) @pytest.mark.skipif( not batch_support_chroma_version(), reason="ChromaDB version does not support batching", ) def test_chroma_large_batch_update() -> None: import chromadb client = chromadb.HttpClient() embedding_function = Fak(size=255) col = client.get_or_create_collection( "my_collection", embedding_function=embedding_function.embed_documents, # type: ignore ) docs = ["This is a test document"] * (client.max_batch_size + 100) ids = [str(uuid.uuid4()) for _ in range(len(docs))] db = Chroma.from_texts( client=client, collection_name=col.name, texts=docs, embedding=embedding_function, ids=ids, ) new_docs = [ Document( page_content="This is a new test document", metadata={"doc_id": f"{i}"} ) for i in range(len(docs) - 10) ] new_ids = [_id for _id in ids[: len(new_docs)]] db.update_documents(ids=new_ids, documents=new_docs) @pytest.mark.requires("chromadb") @pytest.mark.skipif( not is_api_accessible("http://localhost:8000/api/v1/heartbeat"), reason="API not accessible", ) @pytest.mark.skipif( batch_support_chroma_version(), reason="ChromaDB version does not support batching" ) def test_chroma_legacy_batching() -> None: import chromadb client = chromadb.HttpClient() embedding_function = Fak(size=255) col = client.get_or_create_collection( "my_collection", embedding_function=embedding_function.embed_documents, # type: ignore ) docs = ["This is a test document"] * 100 Chroma.from_texts( client=client, collection_name=col.name, texts=docs, embedding=embedding_function, ids=[str(uuid.uuid4()) for _ in range(len(docs))], )
157835
import importlib import os import time import uuid from typing import TYPE_CHECKING, List import numpy as np import pytest from langchain_core.documents import Document from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores.pinecone import Pinecone if TYPE_CHECKING: import pinecone index_name = "langchain-test-index" # name of the index namespace_name = "langchain-test-namespace" # name of the namespace dimension = 1536 # dimension of the embeddings def reset_pinecone() -> None: assert os.environ.get("PINECONE_API_KEY") is not None assert os.environ.get("PINECONE_ENVIRONMENT") is not None import pinecone importlib.reload(pinecone) pinecone.init( api_key=os.environ.get("PINECONE_API_KEY"), environment=os.environ.get("PINECONE_ENVIRONMENT"), ) class TestPinecone: index: "pinecone.Index" @classmethod def setup_class(cls) -> None: import pinecone reset_pinecone() cls.index = pinecone.Index(index_name) if index_name in pinecone.list_indexes(): index_stats = cls.index.describe_index_stats() if index_stats["dimension"] == dimension: # delete all the vectors in the index if the dimension is the same # from all namespaces index_stats = cls.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): cls.index.delete(delete_all=True, namespace=_namespace_name) else: pinecone.delete_index(index_name) pinecone.create_index(name=index_name, dimension=dimension) else: pinecone.create_index(name=index_name, dimension=dimension) # insure the index is empty index_stats = cls.index.describe_index_stats() assert index_stats["dimension"] == dimension if index_stats["namespaces"].get(namespace_name) is not None: assert index_stats["namespaces"][namespace_name]["vector_count"] == 0 @classmethod def teardown_class(cls) -> None: index_stats = cls.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): cls.index.delete(delete_all=True, namespace=_namespace_name) reset_pinecone() @pytest.fixture(autouse=True) def setup(self) -> None: # delete all the vectors in the index index_stats = self.index.describe_index_stats() for _namespace_name in index_stats["namespaces"].keys(): self.index.delete(delete_all=True, namespace=_namespace_name) reset_pinecone() @pytest.mark.vcr() def test_from_texts( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search.""" unique_id = uuid.uuid4().hex needs = f"foobuu {unique_id} booo" texts.insert(0, needs) docsearch = Pinecone.from_texts( texts=texts, embedding=embedding_openai, index_name=index_name, namespace=namespace_name, ) output = docsearch.similarity_search(unique_id, k=1, namespace=namespace_name) assert output == [Document(page_content=needs)] @pytest.mark.vcr() def test_from_texts_with_metadatas( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search.""" unique_id = uuid.uuid4().hex needs = f"foobuu {unique_id} booo" texts.insert(0, needs) metadatas = [{"page": i} for i in range(len(texts))] docsearch = Pinecone.from_texts( texts, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=namespace_name, ) output = docsearch.similarity_search(needs, k=1, namespace=namespace_name) # TODO: why metadata={"page": 0.0}) instead of {"page": 0}? assert output == [Document(page_content=needs, metadata={"page": 0.0})] @pytest.mark.vcr() def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> None: """Test end to end construction and search with scores and IDs.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Pinecone.from_texts( texts, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=namespace_name, ) output = docsearch.similarity_search_with_score( "foo", k=3, namespace=namespace_name ) docs = [o[0] for o in output] scores = [o[1] for o in output] sorted_documents = sorted(docs, key=lambda x: x.metadata["page"]) # TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc??? assert sorted_documents == [ Document(page_content="foo", metadata={"page": 0.0}), Document(page_content="bar", metadata={"page": 1.0}), Document(page_content="baz", metadata={"page": 2.0}), ] assert scores[0] > scores[1] > scores[2] def test_from_existing_index_with_namespaces( self, embedding_openai: OpenAIEmbeddings ) -> None: """Test that namespaces are properly handled.""" # Create two indexes with the same name but different namespaces texts_1 = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts_1))] Pinecone.from_texts( texts_1, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=f"{index_name}-1", ) texts_2 = ["foo2", "bar2", "baz2"] metadatas = [{"page": i} for i in range(len(texts_2))] Pinecone.from_texts( texts_2, embedding_openai, index_name=index_name, metadatas=metadatas, namespace=f"{index_name}-2", ) # Search with namespace docsearch = Pinecone.from_existing_index( index_name=index_name, embedding=embedding_openai, namespace=f"{index_name}-1", ) output = docsearch.similarity_search("foo", k=20, namespace=f"{index_name}-1") # check that we don't get results from the other namespace page_contents = sorted(set([o.page_content for o in output])) assert all(content in ["foo", "bar", "baz"] for content in page_contents) assert all(content not in ["foo2", "bar2", "baz2"] for content in page_contents) def test_add_documents_with_ids( self, texts: List[str], embedding_openai: OpenAIEmbeddings ) -> None: ids = [uuid.uuid4().hex for _ in range(len(texts))] Pinecone.from_texts( texts=texts, ids=ids, embedding=embedding_openai, index_name=index_name, namespace=index_name, ) index_stats = self.index.describe_index_stats() assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) ids_1 = [uuid.uuid4().hex for _ in range(len(texts))] Pinecone.from_texts( texts=texts, ids=ids_1, embedding=embedding_openai, index_name=index_name, namespace=index_name, ) index_stats = self.index.describe_index_stats() assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) * 2 assert index_stats["total_vector_count"] == len(texts) * 2 @pytest.mark.vcr() def test_relevance_score_bound(self, embedding_openai: OpenAIEmbeddings) -> None: """Ensures all relevance scores are between 0 and 1.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Pinecone.from_texts( texts, embedding_openai, index_name=index_name, metadatas=metadatas, ) # wait for the index to be ready time.sleep(20) output = docsearch.similarity_search_with_relevance_scores("foo", k=3) assert all( (1 >= score or np.isclose(score, 1)) and score >= 0 for _, score in output )
157882
@pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_filter_metadata_7(texts: List[str]) -> None: """Test filtering by float""" table_name = "test_singlestoredb_filter_metadata_7" drop(table_name) docs = [ Document( page_content=t, metadata={"index": i, "category": "budget", "score": i + 0.5}, ) for i, t in enumerate(texts) ] docsearch = SingleStoreDB.from_documents( docs, FakeEmbeddings(), distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name=table_name, host=TEST_SINGLESTOREDB_URL, ) output = docsearch.similarity_search( "bar", k=1, filter={"category": "budget", "score": 2.5} ) assert output == [ Document( page_content="baz", metadata={"index": 2, "category": "budget", "score": 2.5}, ) ] docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_as_retriever(texts: List[str]) -> None: table_name = "test_singlestoredb_8" drop(table_name) docsearch = SingleStoreDB.from_texts( texts, FakeEmbeddings(), distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name=table_name, host=TEST_SINGLESTOREDB_URL, ) retriever = docsearch.as_retriever(search_kwargs={"k": 2}) output = retriever.invoke("foo") assert output == [ Document( page_content="foo", ), Document( page_content="bar", ), ] docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_add_image(texts: List[str]) -> None: """Test adding images""" table_name = "test_singlestoredb_add_image" drop(table_name) docsearch = SingleStoreDB( RandomEmbeddings(), table_name=table_name, host=TEST_SINGLESTOREDB_URL, ) temp_files = [] for _ in range(3): temp_file = tempfile.NamedTemporaryFile(delete=False) temp_file.write(b"foo") temp_file.close() temp_files.append(temp_file.name) docsearch.add_images(temp_files) output = docsearch.similarity_search("foo", k=1) assert output[0].page_content in temp_files docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") @pytest.mark.skipif( not langchain_experimental_installed, reason="langchain_experimental not installed" ) def test_singestoredb_add_image2() -> None: table_name = "test_singlestoredb_add_images" drop(table_name) docsearch = SingleStoreDB( OpenCLIPEmbeddings(), table_name=table_name, host=TEST_SINGLESTOREDB_URL, ) image_uris = sorted( [ os.path.join(TEST_IMAGES_DIR, image_name) for image_name in os.listdir(TEST_IMAGES_DIR) if image_name.endswith(".jpg") ] ) docsearch.add_images(image_uris) output = docsearch.similarity_search("horse", k=1) assert "horse" in output[0].page_content docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_text_only_search(snow_rain_docs: List[Document]) -> None: table_name = "test_singlestoredb_text_only_search" drop(table_name) docsearch = SingleStoreDB( RandomEmbeddings(), table_name=table_name, use_full_text_search=True, host=TEST_SINGLESTOREDB_URL, ) docsearch.add_documents(snow_rain_docs) output = docsearch.similarity_search( "rainstorm in parched desert", k=3, filter={"count": "1"}, search_strategy=SingleStoreDB.SearchStrategy.TEXT_ONLY, ) assert len(output) == 2 assert ( "In the parched desert, a sudden rainstorm brought relief," in output[0].page_content ) assert ( "Blanketing the countryside in a soft, pristine layer" in output[1].page_content ) output = docsearch.similarity_search( "snowfall in countryside", k=3, search_strategy=SingleStoreDB.SearchStrategy.TEXT_ONLY, ) assert len(output) == 3 assert ( "Blanketing the countryside in a soft, pristine layer," in output[0].page_content ) docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_filter_by_text_search(snow_rain_docs: List[Document]) -> None: table_name = "test_singlestoredb_filter_by_text_search" drop(table_name) embeddings = IncrementalEmbeddings() docsearch = SingleStoreDB.from_documents( snow_rain_docs, embeddings, table_name=table_name, use_full_text_search=True, use_vector_index=True, vector_size=2, host=TEST_SINGLESTOREDB_URL, ) output = docsearch.similarity_search( "rainstorm in parched desert", k=1, search_strategy=SingleStoreDB.SearchStrategy.FILTER_BY_TEXT, filter_threshold=0, ) assert len(output) == 1 assert ( "In the parched desert, a sudden rainstorm brought relief" in output[0].page_content ) drop(table_name) @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_filter_by_vector_search1(snow_rain_docs: List[Document]) -> None: table_name = "test_singlestoredb_filter_by_vector_search1" drop(table_name) embeddings = IncrementalEmbeddings() docsearch = SingleStoreDB.from_documents( snow_rain_docs, embeddings, table_name=table_name, use_full_text_search=True, use_vector_index=True, vector_size=2, host=TEST_SINGLESTOREDB_URL, ) output = docsearch.similarity_search( "rainstorm in parched desert, rain", k=1, filter={"category": "rain"}, search_strategy=SingleStoreDB.SearchStrategy.FILTER_BY_VECTOR, filter_threshold=-0.2, ) assert len(output) == 1 assert ( "High in the mountains, the rain transformed into a delicate" in output[0].page_content ) docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_filter_by_vector_search2(snow_rain_docs: List[Document]) -> None: table_name = "test_singlestoredb_filter_by_vector_search2" drop(table_name) embeddings = IncrementalEmbeddings() docsearch = SingleStoreDB.from_documents( snow_rain_docs, embeddings, distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name=table_name, use_full_text_search=True, use_vector_index=True, vector_size=2, host=TEST_SINGLESTOREDB_URL, ) output = docsearch.similarity_search( "rainstorm in parched desert, rain", k=1, filter={"group": "a"}, search_strategy=SingleStoreDB.SearchStrategy.FILTER_BY_VECTOR, filter_threshold=1.5, ) assert len(output) == 1 assert ( "Amidst the bustling cityscape, the rain fell relentlessly" in output[0].page_content ) docsearch.drop() @pytest.mark.skipif(not singlestoredb_installed, reason="singlestoredb not installed") def test_singlestoredb_weighted_sum_search_unsupported_strategy( snow_rain_docs: List[Document], ) -> None: table_name = "test_singlestoredb_waighted_sum_search_unsupported_strategy" drop(table_name) embeddings = IncrementalEmbeddings() docsearch = SingleStoreDB.from_documents( snow_rain_docs, embeddings, table_name=table_name, use_full_text_search=True, use_vector_index=True, vector_size=2, host=TEST_SINGLESTOREDB_URL, distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, ) try: docsearch.similarity_search( "rainstorm in parched desert, rain", k=1, search_strategy=SingleStoreDB.SearchStrategy.WEIGHTED_SUM, ) except ValueError as e: assert "Search strategy WEIGHTED_SUM is not" in str(e) docsearch.drop()
157899
def test_add_texts_with_given_embedding(self, weaviate_url: str) -> None: texts = ["foo", "bar", "baz"] embedding = FakeEmbeddings() docsearch = Weaviate.from_texts( texts, embedding=embedding, weaviate_url=weaviate_url ) docsearch.add_texts(["foo"]) output = docsearch.similarity_search_by_vector( embedding.embed_query("foo"), k=2 ) assert output == [ Document(page_content="foo"), Document(page_content="foo"), ] def test_add_texts_with_given_uuids(self, weaviate_url: str) -> None: texts = ["foo", "bar", "baz"] embedding = FakeEmbeddings() uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, text) for text in texts] docsearch = Weaviate.from_texts( texts, embedding=embedding, weaviate_url=weaviate_url, uuids=uuids, ) # Weaviate replaces the object if the UUID already exists docsearch.add_texts(["foo"], uuids=[uuids[0]]) output = docsearch.similarity_search_by_vector( embedding.embed_query("foo"), k=2 ) assert output[0] == Document(page_content="foo") assert output[1] != Document(page_content="foo")
157903
"""Test Deep Lake functionality.""" import pytest from langchain_core.documents import Document from pytest import FixtureRequest from langchain_community.vectorstores import DeepLake from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings @pytest.fixture def deeplake_datastore() -> DeepLake: # type: ignore[misc] texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = DeepLake.from_texts( dataset_path="./test_path", texts=texts, metadatas=metadatas, embedding_function=FakeEmbeddings(), overwrite=True, ) yield docsearch docsearch.delete_dataset() @pytest.fixture(params=["L1", "L2", "max", "cos"]) def distance_metric(request: FixtureRequest) -> str: return request.param def test_deeplake() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = DeepLake.from_texts( dataset_path="mem://test_path", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_deeplake_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = DeepLake.from_texts( dataset_path="mem://test_path", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_deeplake_with_persistence(deeplake_datastore) -> None: # type: ignore[no-untyped-def] """Test end to end construction and search, with persistence.""" output = deeplake_datastore.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] # Get a new VectorStore from the persisted directory docsearch = DeepLake( dataset_path=deeplake_datastore.vectorstore.dataset_handler.path, embedding_function=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) # Clean up docsearch.delete_dataset() # Persist doesn't need to be called again # Data will be automatically persisted on object deletion # Or on program exit def test_deeplake_overwrite_flag(deeplake_datastore) -> None: # type: ignore[no-untyped-def] """Test overwrite behavior""" dataset_path = deeplake_datastore.vectorstore.dataset_handler.path output = deeplake_datastore.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] # Get a new VectorStore from the persisted directory, with no overwrite (implicit) docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) # assert page still present assert output == [Document(page_content="foo", metadata={"page": "0"})] # Get a new VectorStore from the persisted directory, with no overwrite (explicit) docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), overwrite=False, ) output = docsearch.similarity_search("foo", k=1) # assert page still present assert output == [Document(page_content="foo", metadata={"page": "0"})] # Get a new VectorStore from the persisted directory, with overwrite docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), overwrite=True, ) with pytest.raises(ValueError): output = docsearch.similarity_search("foo", k=1) def test_similarity_search(deeplake_datastore) -> None: # type: ignore[no-untyped-def] """Test similarity search.""" distance_metric = "cos" output = deeplake_datastore.similarity_search( "foo", k=1, distance_metric=distance_metric ) assert output == [Document(page_content="foo", metadata={"page": "0"})] tql_query = ( f"SELECT * WHERE " f"id=='{deeplake_datastore.vectorstore.dataset.id[0].numpy()[0]}'" ) output = deeplake_datastore.similarity_search( query="foo", tql_query=tql_query, k=1, distance_metric=distance_metric ) assert len(output) == 1 def test_similarity_search_by_vector( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search by vector.""" embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"]) output = deeplake_datastore.similarity_search_by_vector( embeddings[1], k=1, distance_metric=distance_metric ) assert output == [Document(page_content="bar", metadata={"page": "1"})] deeplake_datastore.delete_dataset() def test_similarity_search_with_score( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search with score.""" deeplake_datastore.vectorstore.summary() output, score = deeplake_datastore.similarity_search_with_score( "foo", k=1, distance_metric=distance_metric )[0] assert output == Document(page_content="foo", metadata={"page": "0"}) if distance_metric == "cos": assert score == 1.0 else: assert score == 0.0 deeplake_datastore.delete_dataset() def test_similarity_search_with_filter( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search.""" output = deeplake_datastore.similarity_search( "foo", k=1, distance_metric=distance_metric, filter={"metadata": {"page": "1"}}, ) assert output == [Document(page_content="bar", metadata={"page": "1"})] deeplake_datastore.delete_dataset() def test_max_marginal_relevance_search(deeplake_datastore: DeepLake) -> None: """Test max marginal relevance search by vector.""" output = deeplake_datastore.max_marginal_relevance_search("foo", k=1, fetch_k=2) assert output == [Document(page_content="foo", metadata={"page": "0"})] embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"]) output = deeplake_datastore.max_marginal_relevance_search_by_vector( embeddings[0], k=1, fetch_k=2 ) assert output == [Document(page_content="foo", metadata={"page": "0"})] deeplake_datastore.delete_dataset() def test_delete_dataset_by_ids(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" id = deeplake_datastore.vectorstore.dataset.id.data()["value"][0] deeplake_datastore.delete(ids=[id]) assert ( deeplake_datastore.similarity_search( "foo", k=1, filter={"metadata": {"page": "0"}} ) == [] ) assert len(deeplake_datastore.vectorstore) == 2 deeplake_datastore.delete_dataset() def test_delete_dataset_by_filter(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" deeplake_datastore.delete(filter={"metadata": {"page": "1"}}) assert ( deeplake_datastore.similarity_search( "bar", k=1, filter={"metadata": {"page": "1"}} ) == [] ) assert len(deeplake_datastore.vectorstore.dataset) == 2 deeplake_datastore.delete_dataset() def test_delete_by_path(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" import deeplake path = deeplake_datastore.dataset_path DeepLake.force_delete_by_path(path) assert not deeplake.exists(path)
158189
"""Test HuggingFace Pipeline wrapper.""" from pathlib import Path from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from langchain_community.llms.loading import load_llm from tests.integration_tests.llms.utils import assert_llm_equality def test_huggingface_pipeline_text_generation() -> None: """Test valid call to HuggingFace text generation model.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10} ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_huggingface_pipeline_text2text_generation() -> None: """Test valid call to HuggingFace text2text generation model.""" llm = HuggingFacePipeline.from_model_id( model_id="google/flan-t5-small", task="text2text-generation" ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_huggingface_pipeline_device_map() -> None: """Test pipelines specifying the device map parameter.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", device_map="auto", pipeline_kwargs={"max_new_tokens": 10}, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def text_huggingface_pipeline_summarization() -> None: """Test valid call to HuggingFace summarization model.""" llm = HuggingFacePipeline.from_model_id( model_id="facebook/bart-large-cnn", task="summarization" ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an HuggingFaceHub LLM.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10} ) llm.save(file_path=tmp_path / "hf.yaml") loaded_llm = load_llm(tmp_path / "hf.yaml") assert_llm_equality(llm, loaded_llm) def test_init_with_pipeline() -> None: """Test initialization with a HF pipeline.""" from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) llm = HuggingFacePipeline(pipeline=pipe) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_huggingface_pipeline_runtime_kwargs() -> None: """Test pipelines specifying the device map parameter.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", ) prompt = "Say foo:" output = llm.invoke(prompt, pipeline_kwargs={"max_new_tokens": 2}) assert len(output) < 10 ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} def test_huggingface_pipeline_text_generation_ov() -> None: """Test valid call to HuggingFace text generation model with openvino.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", backend="openvino", model_kwargs={"device": "CPU", "ov_config": ov_config}, pipeline_kwargs={"max_new_tokens": 64}, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_huggingface_pipeline_text2text_generation_ov() -> None: """Test valid call to HuggingFace text2text generation model with openvino.""" llm = HuggingFacePipeline.from_model_id( model_id="google/flan-t5-small", task="text2text-generation", backend="openvino", model_kwargs={"device": "CPU", "ov_config": ov_config}, pipeline_kwargs={"max_new_tokens": 64}, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def text_huggingface_pipeline_summarization_ov() -> None: """Test valid call to HuggingFace summarization model with openvino.""" llm = HuggingFacePipeline.from_model_id( model_id="facebook/bart-large-cnn", task="summarization", backend="openvino", model_kwargs={"device": "CPU", "ov_config": ov_config}, pipeline_kwargs={"max_new_tokens": 64}, ) output = llm.invoke("Say foo:") assert isinstance(output, str)
158221
def test_write_retrieve_keywords() -> None: from langchain_openai import OpenAIEmbeddings greetings = Document( id="greetings", page_content="Typical Greetings", metadata={ METADATA_LINKS_KEY: [ Link.incoming(kind="parent", tag="parent"), ], }, ) doc1 = Document( id="doc1", page_content="Hello World", metadata={ METADATA_LINKS_KEY: [ Link.outgoing(kind="parent", tag="parent"), Link.bidir(kind="kw", tag="greeting"), Link.bidir(kind="kw", tag="world"), ], }, ) doc2 = Document( id="doc2", page_content="Hello Earth", metadata={ METADATA_LINKS_KEY: [ Link.outgoing(kind="parent", tag="parent"), Link.bidir(kind="kw", tag="greeting"), Link.bidir(kind="kw", tag="earth"), ], }, ) store = _get_graph_store(OpenAIEmbeddings, [greetings, doc1, doc2]) # Doc2 is more similar, but World and Earth are similar enough that doc1 also # shows up. results: Iterable[Document] = store.similarity_search("Earth", k=2) assert _result_ids(results) == ["doc2", "doc1"] results = store.similarity_search("Earth", k=1) assert _result_ids(results) == ["doc2"] results = store.traversal_search("Earth", k=2, depth=0) assert _result_ids(results) == ["doc2", "doc1"] results = store.traversal_search("Earth", k=2, depth=1) assert _result_ids(results) == ["doc2", "doc1", "greetings"] # K=1 only pulls in doc2 (Hello Earth) results = store.traversal_search("Earth", k=1, depth=0) assert _result_ids(results) == ["doc2"] # K=1 only pulls in doc2 (Hello Earth). Depth=1 traverses to parent and via # keyword edge. results = store.traversal_search("Earth", k=1, depth=1) assert set(_result_ids(results)) == {"doc2", "doc1", "greetings"} def test_metadata() -> None: store = _get_graph_store(FakeEmbeddings) store.add_documents( [ Document( id="a", page_content="A", metadata={ METADATA_LINKS_KEY: [ Link.incoming(kind="hyperlink", tag="http://a"), Link.bidir(kind="other", tag="foo"), ], "other": "some other field", }, ) ] ) results = store.similarity_search("A") assert len(results) == 1 assert results[0].id == "a" metadata = results[0].metadata assert metadata["other"] == "some other field" assert set(metadata[METADATA_LINKS_KEY]) == { Link.incoming(kind="hyperlink", tag="http://a"), Link.bidir(kind="other", tag="foo"), }
158282
class AzureCosmosDBSemanticCache(BaseCache): """Cache that uses Cosmos DB Mongo vCore vector-store backend""" DEFAULT_DATABASE_NAME = "CosmosMongoVCoreCacheDB" DEFAULT_COLLECTION_NAME = "CosmosMongoVCoreCacheColl" def __init__( self, cosmosdb_connection_string: str, database_name: str, collection_name: str, embedding: Embeddings, *, cosmosdb_client: Optional[Any] = None, num_lists: int = 100, similarity: CosmosDBSimilarityType = CosmosDBSimilarityType.COS, kind: CosmosDBVectorSearchType = CosmosDBVectorSearchType.VECTOR_IVF, dimensions: int = 1536, m: int = 16, ef_construction: int = 64, ef_search: int = 40, score_threshold: Optional[float] = None, application_name: str = "LANGCHAIN_CACHING_PYTHON", ): """ Args: cosmosdb_connection_string: Cosmos DB Mongo vCore connection string cosmosdb_client: Cosmos DB Mongo vCore client embedding (Embedding): Embedding provider for semantic encoding and search. database_name: Database name for the CosmosDBMongoVCoreSemanticCache collection_name: Collection name for the CosmosDBMongoVCoreSemanticCache num_lists: This integer is the number of clusters that the inverted file (IVF) index uses to group the vector data. We recommend that numLists is set to documentCount/1000 for up to 1 million documents and to sqrt(documentCount) for more than 1 million documents. Using a numLists value of 1 is akin to performing brute-force search, which has limited performance dimensions: Number of dimensions for vector similarity. The maximum number of supported dimensions is 2000 similarity: Similarity metric to use with the IVF index. Possible options are: - CosmosDBSimilarityType.COS (cosine distance), - CosmosDBSimilarityType.L2 (Euclidean distance), and - CosmosDBSimilarityType.IP (inner product). kind: Type of vector index to create. Possible options are: - vector-ivf - vector-hnsw: available as a preview feature only, to enable visit https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/preview-features m: The max number of connections per layer (16 by default, minimum value is 2, maximum value is 100). Higher m is suitable for datasets with high dimensionality and/or high accuracy requirements. ef_construction: the size of the dynamic candidate list for constructing the graph (64 by default, minimum value is 4, maximum value is 1000). Higher ef_construction will result in better index quality and higher accuracy, but it will also increase the time required to build the index. ef_construction has to be at least 2 * m ef_search: The size of the dynamic candidate list for search (40 by default). A higher value provides better recall at the cost of speed. score_threshold: Maximum score used to filter the vector search documents. application_name: Application name for the client for tracking and logging """ self._validate_enum_value(similarity, CosmosDBSimilarityType) self._validate_enum_value(kind, CosmosDBVectorSearchType) if not cosmosdb_connection_string: raise ValueError(" CosmosDB connection string can be empty.") self.cosmosdb_connection_string = cosmosdb_connection_string self.cosmosdb_client = cosmosdb_client self.embedding = embedding self.database_name = database_name or self.DEFAULT_DATABASE_NAME self.collection_name = collection_name or self.DEFAULT_COLLECTION_NAME self.num_lists = num_lists self.dimensions = dimensions self.similarity = similarity self.kind = kind self.m = m self.ef_construction = ef_construction self.ef_search = ef_search self.score_threshold = score_threshold self._cache_dict: Dict[str, AzureCosmosDBVectorSearch] = {} self.application_name = application_name def _index_name(self, llm_string: str) -> str: hashed_index = _hash(llm_string) return f"cache:{hashed_index}" def _get_llm_cache(self, llm_string: str) -> AzureCosmosDBVectorSearch: index_name = self._index_name(llm_string) namespace = self.database_name + "." + self.collection_name # return vectorstore client for the specific llm string if index_name in self._cache_dict: return self._cache_dict[index_name] # create new vectorstore client for the specific llm string if self.cosmosdb_client: collection = self.cosmosdb_client[self.database_name][self.collection_name] self._cache_dict[index_name] = AzureCosmosDBVectorSearch( collection=collection, embedding=self.embedding, index_name=index_name, ) else: self._cache_dict[index_name] = ( AzureCosmosDBVectorSearch.from_connection_string( connection_string=self.cosmosdb_connection_string, namespace=namespace, embedding=self.embedding, index_name=index_name, application_name=self.application_name, ) ) # create index for the vectorstore vectorstore = self._cache_dict[index_name] if not vectorstore.index_exists(): vectorstore.create_index( self.num_lists, self.dimensions, self.similarity, self.kind, self.m, self.ef_construction, ) return vectorstore def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" llm_cache = self._get_llm_cache(llm_string) generations: List = [] # Read from a Hash results = llm_cache.similarity_search( query=prompt, k=1, kind=self.kind, ef_search=self.ef_search, score_threshold=self.score_threshold, # type: ignore[arg-type] ) if results: for document in results: try: generations.extend(loads(document.metadata["return_val"])) except Exception: logger.warning( "Retrieving a cache value that could not be deserialized " "properly. This is likely due to the cache being in an " "older format. Please recreate your cache to avoid this " "error." ) # In a previous life we stored the raw text directly # in the table, so assume it's in that format. generations.extend( _load_generations_from_json(document.metadata["return_val"]) ) return generations if generations else None def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" for gen in return_val: if not isinstance(gen, Generation): raise ValueError( "CosmosDBMongoVCoreSemanticCache only supports caching of " f"normal LLM generations, got {type(gen)}" ) llm_cache = self._get_llm_cache(llm_string) metadata = { "llm_string": llm_string, "prompt": prompt, "return_val": dumps([g for g in return_val]), } llm_cache.add_texts(texts=[prompt], metadatas=[metadata]) def clear(self, **kwargs: Any) -> None: """Clear semantic cache for a given llm_string.""" index_name = self._index_name(kwargs["llm_string"]) if index_name in self._cache_dict: self._cache_dict[index_name].get_collection().delete_many({}) # self._cache_dict[index_name].clear_collection() @staticmethod def _validate_enum_value(value: Any, enum_type: Type[Enum]) -> None: if not isinstance(value, enum_type): raise ValueError(f"Invalid enum value: {value}. Expected {enum_type}.")
158284
class SingleStoreDBSemanticCache(BaseCache): """Cache that uses SingleStore DB as a backend""" def __init__( self, embedding: Embeddings, *, cache_table_prefix: str = "cache_", search_threshold: float = 0.2, **kwargs: Any, ): """Initialize with necessary components. Args: embedding (Embeddings): A text embedding model. cache_table_prefix (str, optional): Prefix for the cache table name. Defaults to "cache_". search_threshold (float, optional): The minimum similarity score for a search result to be considered a match. Defaults to 0.2. Following arguments pertrain to the SingleStoreDB vector store: distance_strategy (DistanceStrategy, optional): Determines the strategy employed for calculating the distance between vectors in the embedding space. Defaults to DOT_PRODUCT. Available options are: - DOT_PRODUCT: Computes the scalar product of two vectors. This is the default behavior - EUCLIDEAN_DISTANCE: Computes the Euclidean distance between two vectors. This metric considers the geometric distance in the vector space, and might be more suitable for embeddings that rely on spatial relationships. This metric is not compatible with the WEIGHTED_SUM search strategy. content_field (str, optional): Specifies the field to store the content. Defaults to "content". metadata_field (str, optional): Specifies the field to store metadata. Defaults to "metadata". vector_field (str, optional): Specifies the field to store the vector. Defaults to "vector". id_field (str, optional): Specifies the field to store the id. Defaults to "id". use_vector_index (bool, optional): Toggles the use of a vector index. Works only with SingleStoreDB 8.5 or later. Defaults to False. If set to True, vector_size parameter is required to be set to a proper value. vector_index_name (str, optional): Specifies the name of the vector index. Defaults to empty. Will be ignored if use_vector_index is set to False. vector_index_options (dict, optional): Specifies the options for the vector index. Defaults to {}. Will be ignored if use_vector_index is set to False. The options are: index_type (str, optional): Specifies the type of the index. Defaults to IVF_PQFS. For more options, please refer to the SingleStoreDB documentation: https://docs.singlestore.com/cloud/reference/sql-reference/vector-functions/vector-indexing/ vector_size (int, optional): Specifies the size of the vector. Defaults to 1536. Required if use_vector_index is set to True. Should be set to the same value as the size of the vectors stored in the vector_field. Following arguments pertain to the connection pool: pool_size (int, optional): Determines the number of active connections in the pool. Defaults to 5. max_overflow (int, optional): Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10. timeout (float, optional): Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30. Following arguments pertain to the database connection: host (str, optional): Specifies the hostname, IP address, or URL for the database connection. The default scheme is "mysql". user (str, optional): Database username. password (str, optional): Database password. port (int, optional): Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections. database (str, optional): Database name. Additional optional arguments provide further customization over the database connection: pure_python (bool, optional): Toggles the connector mode. If True, operates in pure Python mode. local_infile (bool, optional): Allows local file uploads. charset (str, optional): Specifies the character set for string values. ssl_key (str, optional): Specifies the path of the file containing the SSL key. ssl_cert (str, optional): Specifies the path of the file containing the SSL certificate. ssl_ca (str, optional): Specifies the path of the file containing the SSL certificate authority. ssl_cipher (str, optional): Sets the SSL cipher list. ssl_disabled (bool, optional): Disables SSL usage. ssl_verify_cert (bool, optional): Verifies the server's certificate. Automatically enabled if ``ssl_ca`` is specified. ssl_verify_identity (bool, optional): Verifies the server's identity. conv (dict[int, Callable], optional): A dictionary of data conversion functions. credential_type (str, optional): Specifies the type of authentication to use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO. autocommit (bool, optional): Enables autocommits. results_type (str, optional): Determines the structure of the query results: tuples, namedtuples, dicts. results_format (str, optional): Deprecated. This option has been renamed to results_type. Examples: Basic Usage: .. code-block:: python import langchain from langchain.cache import SingleStoreDBSemanticCache from langchain.embeddings import OpenAIEmbeddings langchain.llm_cache = SingleStoreDBSemanticCache( embedding=OpenAIEmbeddings(), host="https://user:password@127.0.0.1:3306/database" ) Advanced Usage: .. code-block:: python import langchain from langchain.cache import SingleStoreDBSemanticCache from langchain.embeddings import OpenAIEmbeddings langchain.llm_cache = = SingleStoreDBSemanticCache( embeddings=OpenAIEmbeddings(), use_vector_index=True, host="127.0.0.1", port=3306, user="user", password="password", database="db", table_name="my_custom_table", pool_size=10, timeout=60, ) """ self._cache_dict: Dict[str, SingleStoreDB] = {} self.embedding = embedding self.cache_table_prefix = cache_table_prefix self.search_threshold = search_threshold # Pass the rest of the kwargs to the connection. self.connection_kwargs = kwargs def _index_name(self, llm_string: str) -> str: hashed_index = _hash(llm_string) return f"{self.cache_table_prefix}{hashed_index}" def _get_llm_cache(self, llm_string: str) -> SingleStoreDB: index_name = self._index_name(llm_string) # return vectorstore client for the specific llm string if index_name not in self._cache_dict: self._cache_dict[index_name] = SingleStoreDB( embedding=self.embedding, table_name=index_name, **self.connection_kwargs, ) return self._cache_dict[index_name] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" llm_cache = self._get_llm_cache(llm_string) generations: List = [] # Read from a Hash results = llm_cache.similarity_search_with_score( query=prompt, k=1, ) if results: for document_score in results: if ( document_score[1] > self.search_threshold and llm_cache.distance_strategy == DistanceStrategy.DOT_PRODUCT ) or ( document_score[1] < self.search_threshold and llm_cache.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE ): generations.extend(loads(document_score[0].metadata["return_val"])) return generations if generations else None def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" for gen in return_val: if not isinstance(gen, Generation): raise ValueError( "SingleStoreDBSemanticCache only supports caching of " f"normal LLM generations, got {type(gen)}" ) llm_cache = self._get_llm_cache(llm_string) metadata = { "llm_string": llm_string, "prompt": prompt, "return_val": dumps([g for g in return_val]), } llm_cache.add_texts(texts=[prompt], metadatas=[metadata]) def clear(self, **kwargs: Any) -> None: """Clear semantic cache for a given llm_string.""" index_name = self._index_name(kwargs["llm_string"]) if index_name in self._cache_dict: self._cache_dict[index_name].drop() del self._cache_dict[index_name]
158298
from typing import List, Optional import aiohttp import requests from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class RemoteLangChainRetriever(BaseRetriever): """`LangChain API` retriever.""" url: str """URL of the remote LangChain API.""" headers: Optional[dict] = None """Headers to use for the request.""" input_key: str = "message" """Key to use for the input in the request.""" response_key: str = "response" """Key to use for the response in the request.""" page_content_key: str = "page_content" """Key to use for the page content in the response.""" metadata_key: str = "metadata" """Key to use for the metadata in the response.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: response = requests.post( self.url, json={self.input_key: query}, headers=self.headers ) result = response.json() return [ Document( page_content=r[self.page_content_key], metadata=r[self.metadata_key] ) for r in result[self.response_key] ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.url, headers=self.headers, json={self.input_key: query} ) as response: result = await response.json() return [ Document( page_content=r[self.page_content_key], metadata=r[self.metadata_key] ) for r in result[self.response_key] ]
158301
"""Wrapper around Embedchain Retriever.""" from __future__ import annotations from typing import Any, Iterable, List, Optional from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class EmbedchainRetriever(BaseRetriever): """`Embedchain` retriever.""" client: Any """Embedchain Pipeline.""" @classmethod def create(cls, yaml_path: Optional[str] = None) -> EmbedchainRetriever: """ Create a EmbedchainRetriever from a YAML configuration file. Args: yaml_path: Path to the YAML configuration file. If not provided, a default configuration is used. Returns: An instance of EmbedchainRetriever. """ from embedchain import Pipeline # Create an Embedchain Pipeline instance if yaml_path: client = Pipeline.from_config(yaml_path=yaml_path) else: client = Pipeline() return cls(client=client) def add_texts( self, texts: Iterable[str], ) -> List[str]: """Run more texts through the embeddings and add to the retriever. Args: texts: Iterable of strings/URLs to add to the retriever. Returns: List of ids from adding the texts into the retriever. """ ids = [] for text in texts: _id = self.client.add(text) ids.append(_id) return ids def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: res = self.client.search(query) docs = [] for r in res: docs.append( Document( page_content=r["context"], metadata={ "source": r["metadata"]["url"], "document_id": r["metadata"]["doc_id"], }, ) ) return docs
158307
from typing import Any, List, Optional import aiohttp import requests from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class ChaindeskRetriever(BaseRetriever): """`Chaindesk API` retriever.""" datastore_url: str top_k: Optional[int] api_key: Optional[str] def __init__( self, datastore_url: str, top_k: Optional[int] = None, api_key: Optional[str] = None, ): self.datastore_url = datastore_url self.api_key = api_key self.top_k = top_k def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: response = requests.post( self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) data = response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) as response: data = await response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ]
158309
class WebResearchRetriever(BaseRetriever): """`Google Search API` retriever.""" # Inputs vectorstore: VectorStore = Field( ..., description="Vector store for storing web pages" ) llm_chain: LLMChain search: GoogleSearchAPIWrapper = Field(..., description="Google Search API Wrapper") num_search_results: int = Field(1, description="Number of pages per Google search") text_splitter: TextSplitter = Field( RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=50), description="Text splitter for splitting web pages into chunks", ) url_database: List[str] = Field( default_factory=list, description="List of processed URLs" ) trust_env: bool = Field( False, description="Whether to use the http_proxy/https_proxy env variables or " "check .netrc for proxy configuration", ) allow_dangerous_requests: bool = False """A flag to force users to acknowledge the risks of SSRF attacks when using this retriever. Users should set this flag to `True` if they have taken the necessary precautions to prevent SSRF attacks when using this retriever. For example, users can run the requests through a properly configured proxy and prevent the crawler from accidentally crawling internal resources. """ def __init__(self, **kwargs: Any) -> None: """Initialize the retriever.""" allow_dangerous_requests = kwargs.get("allow_dangerous_requests", False) if not allow_dangerous_requests: raise ValueError( "WebResearchRetriever crawls URLs surfaced through " "the provided search engine. It is possible that some of those URLs " "will end up pointing to machines residing on an internal network, " "leading" "to an SSRF (Server-Side Request Forgery) attack. " "To protect yourself against that risk, you can run the requests " "through a proxy and prevent the crawler from accidentally crawling " "internal resources." "If've taken the necessary precautions, you can set " "`allow_dangerous_requests` to `True`." ) super().__init__(**kwargs) @classmethod def from_llm( cls, vectorstore: VectorStore, llm: BaseLLM, search: GoogleSearchAPIWrapper, prompt: Optional[BasePromptTemplate] = None, num_search_results: int = 1, text_splitter: RecursiveCharacterTextSplitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=150 ), trust_env: bool = False, allow_dangerous_requests: bool = False, ) -> "WebResearchRetriever": """Initialize from llm using default template. Args: vectorstore: Vector store for storing web pages llm: llm for search question generation search: GoogleSearchAPIWrapper prompt: prompt to generating search questions num_search_results: Number of pages per Google search text_splitter: Text splitter for splitting web pages into chunks trust_env: Whether to use the http_proxy/https_proxy env variables or check .netrc for proxy configuration allow_dangerous_requests: A flag to force users to acknowledge the risks of SSRF attacks when using this retriever Returns: WebResearchRetriever """ if not prompt: QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=DEFAULT_SEARCH_PROMPT, conditionals=[ (lambda llm: isinstance(llm, LlamaCpp), DEFAULT_LLAMA_SEARCH_PROMPT) ], ) prompt = QUESTION_PROMPT_SELECTOR.get_prompt(llm) # Use chat model prompt llm_chain = LLMChain( llm=llm, prompt=prompt, output_parser=QuestionListOutputParser(), ) return cls( vectorstore=vectorstore, llm_chain=llm_chain, search=search, num_search_results=num_search_results, text_splitter=text_splitter, trust_env=trust_env, allow_dangerous_requests=allow_dangerous_requests, ) def clean_search_query(self, query: str) -> str: # Some search tools (e.g., Google) will # fail to return results if query has a # leading digit: 1. "LangCh..." # Check if the first character is a digit if query[0].isdigit(): # Find the position of the first quote first_quote_pos = query.find('"') if first_quote_pos != -1: # Extract the part of the string after the quote query = query[first_quote_pos + 1 :] # Remove the trailing quote if present if query.endswith('"'): query = query[:-1] return query.strip() def search_tool(self, query: str, num_search_results: int = 1) -> List[dict]: """Returns num_search_results pages per Google search.""" query_clean = self.clean_search_query(query) result = self.search.results(query_clean, num_search_results) return result def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Search Google for documents related to the query input. Args: query: user query Returns: Relevant documents from all various urls. """ # Get search questions logger.info("Generating questions for Google Search ...") result = self.llm_chain({"question": query}) logger.info(f"Questions for Google Search (raw): {result}") questions = result["text"] logger.info(f"Questions for Google Search: {questions}") # Get urls logger.info("Searching for relevant urls...") urls_to_look = [] for query in questions: # Google search search_results = self.search_tool(query, self.num_search_results) logger.info("Searching for relevant urls...") logger.info(f"Search results: {search_results}") for res in search_results: if res.get("link", None): urls_to_look.append(res["link"]) # Relevant urls urls = set(urls_to_look) # Check for any new urls that we have not processed new_urls = list(urls.difference(self.url_database)) logger.info(f"New URLs to load: {new_urls}") # Load, split, and add new urls to vectorstore if new_urls: loader = AsyncHtmlLoader( new_urls, ignore_load_errors=True, trust_env=self.trust_env ) html2text = Html2TextTransformer() logger.info("Indexing new urls...") docs = loader.load() docs = list(html2text.transform_documents(docs)) docs = self.text_splitter.split_documents(docs) self.vectorstore.add_documents(docs) self.url_database.extend(new_urls) # Search for relevant splits # TODO: make this async logger.info("Grabbing most relevant splits from urls...") docs = [] for query in questions: docs.extend(self.vectorstore.similarity_search(query)) # Get unique docs unique_documents_dict = { (doc.page_content, tuple(sorted(doc.metadata.items()))): doc for doc in docs } unique_documents = list(unique_documents_dict.values()) return unique_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> List[Document]: raise NotImplementedError
158310
from typing import Any, Dict, List, cast from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field class LlamaIndexRetriever(BaseRetriever): """`LlamaIndex` retriever. It is used for the question-answering with sources over an LlamaIndex data structure.""" index: Any = None """LlamaIndex index to query.""" query_kwargs: Dict = Field(default_factory=dict) """Keyword arguments to pass to the query method.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" try: from llama_index.core.base.response.schema import Response from llama_index.core.indices.base import BaseGPTIndex except ImportError: raise ImportError( "You need to install `pip install llama-index` to use this retriever." ) index = cast(BaseGPTIndex, self.index) response = index.query(query, **self.query_kwargs) response = cast(Response, response) # parse source nodes docs = [] for source_node in response.source_nodes: metadata = source_node.metadata or {} docs.append( Document(page_content=source_node.get_content(), metadata=metadata) ) return docs class LlamaIndexGraphRetriever(BaseRetriever): """`LlamaIndex` graph data structure retriever. It is used for question-answering with sources over an LlamaIndex graph data structure.""" graph: Any = None """LlamaIndex graph to query.""" query_configs: List[Dict] = Field(default_factory=list) """List of query configs to pass to the query method.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" try: from llama_index.core.base.response.schema import Response from llama_index.core.composability.base import ( QUERY_CONFIG_TYPE, ComposableGraph, ) except ImportError: raise ImportError( "You need to install `pip install llama-index` to use this retriever." ) graph = cast(ComposableGraph, self.graph) # for now, inject response_mode="no_text" into query configs for query_config in self.query_configs: query_config["response_mode"] = "no_text" query_configs = cast(List[QUERY_CONFIG_TYPE], self.query_configs) response = graph.query(query, query_configs=query_configs) response = cast(Response, response) # parse source nodes docs = [] for source_node in response.source_nodes: metadata = source_node.metadata or {} docs.append( Document(page_content=source_node.get_content(), metadata=metadata) ) return docs
158315
from typing import List, Optional import aiohttp import requests from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class DataberryRetriever(BaseRetriever): """`Databerry API` retriever.""" datastore_url: str top_k: Optional[int] api_key: Optional[str] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: response = requests.post( self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) data = response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) as response: data = await response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ]
158322
from typing import Any, List from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_community.utilities import YouSearchAPIWrapper class YouRetriever(BaseRetriever, YouSearchAPIWrapper): """You.com Search API retriever. It wraps results() to get_relevant_documents It uses all YouSearchAPIWrapper arguments without any change. """ def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: return self.results(query, run_manager=run_manager.get_child(), **kwargs) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: results = await self.results_async( query, run_manager=run_manager.get_child(), **kwargs ) return results
158324
import os import re from typing import Any, Dict, List, Literal, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class AskNewsRetriever(BaseRetriever): """AskNews retriever.""" k: int = 10 offset: int = 0 start_timestamp: Optional[int] = None end_timestamp: Optional[int] = None method: Literal["nl", "kw"] = "nl" categories: List[ Literal[ "All", "Business", "Crime", "Politics", "Science", "Sports", "Technology", "Military", "Health", "Entertainment", "Finance", "Culture", "Climate", "Environment", "World", ] ] = ["All"] historical: bool = False similarity_score_threshold: float = 0.5 kwargs: Optional[Dict[str, Any]] = {} client_id: Optional[str] = None client_secret: Optional[str] = None def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ try: from asknews_sdk import AskNewsSDK except ImportError: raise ImportError( "AskNews python package not found. " "Please install it with `pip install asknews`." ) an_client = AskNewsSDK( client_id=self.client_id or os.environ["ASKNEWS_CLIENT_ID"], client_secret=self.client_secret or os.environ["ASKNEWS_CLIENT_SECRET"], scopes=["news"], ) response = an_client.news.search_news( query=query, n_articles=self.k, start_timestamp=self.start_timestamp, end_timestamp=self.end_timestamp, method=self.method, categories=self.categories, historical=self.historical, similarity_score_threshold=self.similarity_score_threshold, offset=self.offset, doc_start_delimiter="<doc>", doc_end_delimiter="</doc>", return_type="both", **self.kwargs, ) return self._extract_documents(response) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: """Asynchronously get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ try: from asknews_sdk import AsyncAskNewsSDK except ImportError: raise ImportError( "AskNews python package not found. " "Please install it with `pip install asknews`." ) an_client = AsyncAskNewsSDK( client_id=self.client_id or os.environ["ASKNEWS_CLIENT_ID"], client_secret=self.client_secret or os.environ["ASKNEWS_CLIENT_SECRET"], scopes=["news"], ) response = await an_client.news.search_news( query=query, n_articles=self.k, start_timestamp=self.start_timestamp, end_timestamp=self.end_timestamp, method=self.method, categories=self.categories, historical=self.historical, similarity_score_threshold=self.similarity_score_threshold, offset=self.offset, return_type="both", doc_start_delimiter="<doc>", doc_end_delimiter="</doc>", **self.kwargs, ) return self._extract_documents(response) def _extract_documents(self, response: Any) -> List[Document]: """Extract documents from an api response.""" from asknews_sdk.dto.news import SearchResponse sr: SearchResponse = response matches = re.findall(r"<doc>(.*?)</doc>", sr.as_string, re.DOTALL) docs = [ Document( page_content=matches[i].strip(), metadata={ "title": sr.as_dicts[i].title, "source": str(sr.as_dicts[i].article_url) if sr.as_dicts[i].article_url else None, "images": sr.as_dicts[i].image_url, }, ) for i in range(len(matches)) ] return docs
158326
from __future__ import annotations import json from typing import Any, Dict, List, Optional import aiohttp import requests from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.utils import get_from_dict_or_env, get_from_env from pydantic import ConfigDict, model_validator DEFAULT_URL_SUFFIX = "search.windows.net" """Default URL Suffix for endpoint connection - commercial cloud""" class AzureAISearchRetriever(BaseRetriever): """`Azure AI Search` service retriever. Setup: See here for more detail: https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/ We will need to install the below dependencies and set the required environment variables: .. code-block:: bash pip install -U langchain-community azure-identity azure-search-documents export AZURE_AI_SEARCH_SERVICE_NAME="<YOUR_SEARCH_SERVICE_NAME>" export AZURE_AI_SEARCH_INDEX_NAME="<YOUR_SEARCH_INDEX_NAME>" export AZURE_AI_SEARCH_API_KEY="<YOUR_API_KEY>" Key init args: content_key: str top_k: int index_name: str Instantiate: .. code-block:: python from langchain_community.retrievers import AzureAISearchRetriever retriever = AzureAISearchRetriever( content_key="content", top_k=1, index_name="langchain-vector-demo" ) Usage: .. code-block:: python retriever.invoke("here is my unstructured query string") Use within a chain: .. code-block:: python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import AzureChatOpenAI prompt = ChatPromptTemplate.from_template( \"\"\"Answer the question based only on the context provided. Context: {context} Question: {question}\"\"\" ) llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo") def format_docs(docs): return "\\n\\n".join(doc.page_content for doc in docs) chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) chain.invoke("...") """ # noqa: E501 service_name: str = "" """Name of Azure AI Search service""" index_name: str = "" """Name of Index inside Azure AI Search service""" api_key: str = "" """API Key. Both Admin and Query keys work, but for reading data it's recommended to use a Query key.""" api_version: str = "2023-11-01" """API version""" aiosession: Optional[aiohttp.ClientSession] = None """ClientSession, in case we want to reuse connection for better performance.""" content_key: str = "content" """Key in a retrieved result to set as the Document page_content.""" top_k: Optional[int] = None """Number of results to retrieve. Set to None to retrieve all results.""" filter: Optional[str] = None """OData $filter expression to apply to the search query.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that service name, index name and api key exists in environment.""" values["service_name"] = get_from_dict_or_env( values, "service_name", "AZURE_AI_SEARCH_SERVICE_NAME" ) values["index_name"] = get_from_dict_or_env( values, "index_name", "AZURE_AI_SEARCH_INDEX_NAME" ) values["api_key"] = get_from_dict_or_env( values, "api_key", "AZURE_AI_SEARCH_API_KEY" ) return values def _build_search_url(self, query: str) -> str: url_suffix = get_from_env("", "AZURE_AI_SEARCH_URL_SUFFIX", DEFAULT_URL_SUFFIX) if url_suffix in self.service_name and "https://" in self.service_name: base_url = f"{self.service_name}/" elif url_suffix in self.service_name and "https://" not in self.service_name: base_url = f"https://{self.service_name}/" elif url_suffix not in self.service_name and "https://" in self.service_name: base_url = f"{self.service_name}.{url_suffix}/" elif ( url_suffix not in self.service_name and "https://" not in self.service_name ): base_url = f"https://{self.service_name}.{url_suffix}/" else: # pass to Azure to throw a specific error base_url = self.service_name endpoint_path = f"indexes/{self.index_name}/docs?api-version={self.api_version}" top_param = f"&$top={self.top_k}" if self.top_k else "" filter_param = f"&$filter={self.filter}" if self.filter else "" return base_url + endpoint_path + f"&search={query}" + top_param + filter_param @property def _headers(self) -> Dict[str, str]: return { "Content-Type": "application/json", "api-key": self.api_key, } def _search(self, query: str) -> List[dict]: search_url = self._build_search_url(query) response = requests.get(search_url, headers=self._headers) if response.status_code != 200: raise Exception(f"Error in search request: {response}") return json.loads(response.text)["value"] async def _asearch(self, query: str) -> List[dict]: search_url = self._build_search_url(query) if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.get(search_url, headers=self._headers) as response: response_json = await response.json() else: async with self.aiosession.get( search_url, headers=self._headers ) as response: response_json = await response.json() return response_json["value"] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: search_results = self._search(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: search_results = await self._asearch(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ] # For backwards compatibility class AzureCognitiveSearchRetriever(AzureAISearchRetriever): """`Azure Cognitive Search` service retriever. This version of the retriever will soon be depreciated. Please switch to AzureAISearchRetriever """
158328
# Unexpected keyword argument "extra" for "__init_subclass__" of "object" class RetrieveResult(BaseModel, extra="allow"): # type: ignore[call-arg] """`Amazon Kendra Retrieve API` search result. It is composed of: * relevant passages or text excerpts given an input query. """ QueryId: str """The ID of the query.""" ResultItems: List[RetrieveResultItem] """The result items.""" KENDRA_CONFIDENCE_MAPPING = { "NOT_AVAILABLE": 0.0, "LOW": 0.25, "MEDIUM": 0.50, "HIGH": 0.75, "VERY_HIGH": 1.0, } class AmazonKendraRetriever(BaseRetriever): """`Amazon Kendra Index` retriever. Args: index_id: Kendra index id region_name: The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. top_k: No of results to return attribute_filter: Additional filtering of results based on metadata See: https://docs.aws.amazon.com/kendra/latest/APIReference document_relevance_override_configurations: Overrides relevance tuning configurations of fields/attributes set at the index level See: https://docs.aws.amazon.com/kendra/latest/APIReference page_content_formatter: generates the Document page_content allowing access to all result item attributes. By default, it uses the item's title and excerpt. client: boto3 client for Kendra user_context: Provides information about the user context See: https://docs.aws.amazon.com/kendra/latest/APIReference Example: .. code-block:: python retriever = AmazonKendraRetriever( index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03" ) """ index_id: str region_name: Optional[str] = None credentials_profile_name: Optional[str] = None top_k: int = 3 attribute_filter: Optional[Dict] = None document_relevance_override_configurations: Optional[List[Dict]] = None page_content_formatter: Callable[[ResultItem], str] = combined_text client: Any user_context: Optional[Dict] = None min_score_confidence: Annotated[Optional[float], Field(ge=0.0, le=1.0)] @validator("top_k") def validate_top_k(cls, value: int) -> int: if value < 0: raise ValueError(f"top_k ({value}) cannot be negative.") return value @model_validator(mode="before") @classmethod def create_client(cls, values: Dict[str, Any]) -> Any: top_k = values.get("top_k") if top_k is not None and top_k < 0: raise ValueError(f"top_k ({top_k}) cannot be negative.") if values.get("client") is not None: return values try: import boto3 if values.get("credentials_profile_name"): session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values.get("region_name"): client_params["region_name"] = values["region_name"] values["client"] = session.client("kendra", **client_params) return values except ImportError: raise ImportError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e def _kendra_query(self, query: str) -> Sequence[ResultItem]: kendra_kwargs = { "IndexId": self.index_id, # truncate the query to ensure that # there is no validation exception from Kendra. "QueryText": query.strip()[0:999], "PageSize": self.top_k, } if self.attribute_filter is not None: kendra_kwargs["AttributeFilter"] = self.attribute_filter if self.document_relevance_override_configurations is not None: kendra_kwargs["DocumentRelevanceOverrideConfigurations"] = ( self.document_relevance_override_configurations ) if self.user_context is not None: kendra_kwargs["UserContext"] = self.user_context response = self.client.retrieve(**kendra_kwargs) r_result = RetrieveResult.parse_obj(response) if r_result.ResultItems: return r_result.ResultItems # Retrieve API returned 0 results, fall back to Query API response = self.client.query(**kendra_kwargs) q_result = QueryResult.parse_obj(response) return q_result.ResultItems def _get_top_k_docs(self, result_items: Sequence[ResultItem]) -> List[Document]: top_docs = [ item.to_doc(self.page_content_formatter) for item in result_items[: self.top_k] ] return top_docs def _filter_by_score_confidence(self, docs: List[Document]) -> List[Document]: """ Filter out the records that have a score confidence greater than the required threshold. """ if not self.min_score_confidence: return docs filtered_docs = [ item for item in docs if ( item.metadata.get("score") is not None and isinstance(item.metadata["score"], str) and KENDRA_CONFIDENCE_MAPPING.get(item.metadata["score"], 0.0) >= self.min_score_confidence ) ] return filtered_docs def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Run search on Kendra index and get top k documents Example: .. code-block:: python docs = retriever.invoke('This is my query') """ result_items = self._kendra_query(query) top_k_docs = self._get_top_k_docs(result_items) return self._filter_by_score_confidence(top_k_docs)
158422
# flake8: noqa QUERY_CHECKER = """ {query} Double check the {dialect} query above for common mistakes, including: - Using NOT IN with NULL values - Using UNION when UNION ALL should have been used - Using BETWEEN for exclusive ranges - Data type mismatch in predicates - Properly quoting identifiers - Using the correct number of arguments for functions - Casting to the correct data type - Using the proper columns for joins If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query. Output the final SQL query only. SQL Query: """
158610
"""HuggingFace sentence_transformer embedding models.""" from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings SentenceTransformerEmbeddings = HuggingFaceEmbeddings
158647
@deprecated( since="0.0.9", removal="1.0", alternative_import="langchain_openai.OpenAIEmbeddings", ) class OpenAIEmbeddings(BaseModel, Embeddings): """OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-05-15" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", openai_api_base="https://your-endpoint.openai.azure.com/", openai_api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model: str = "text-embedding-ada-002" # to support Azure OpenAI Service custom deployment names deployment: Optional[str] = model # TODO: Move to AzureOpenAIEmbeddings. openai_api_version: Optional[str] = Field(default=None, alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" # to support Azure OpenAI Service custom endpoints openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" # to support Azure OpenAI Service custom endpoints openai_api_type: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 """The maximum number of tokens to embed at once.""" openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 2 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float], Any]] = Field( default=None, alias="timeout" ) """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.""" headers: Any = None tiktoken_enabled: bool = True """Set this to False for non-OpenAI implementations of the embeddings API, e.g. the `--extensions openai` extension for `text-generation-webui`""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" show_progress_bar: bool = False """Whether to show a progress bar when embedding.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" skip_empty: bool = False """Whether to skip empty strings when embedding or raise an error. Defaults to not skipping.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. retry_min_seconds: int = 4 """Min number of seconds to wait between retries""" retry_max_seconds: int = 20 """Max number of seconds to wait between retries""" http_client: Union[Any, None] = None """Optional httpx.Client.""" model_config = ConfigDict( populate_by_name=True, extra="forbid", protected_namespaces=() ) @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: warnings.warn( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values
158648
@pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2023-05-15" # Azure OpenAI embedding models allow a maximum of 2048 # texts at a time in each batch # See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings values["chunk_size"] = min(values["chunk_size"], 2048) else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) else: if is_openai_v1(): if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): warnings.warn( "If you have openai>=1.0.0 installed and are using Azure, " "please use the `AzureOpenAIEmbeddings` class." ) client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).embeddings if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI( **client_params ).embeddings elif not values.get("client"): values["client"] = openai.Embedding else: pass return values @property def _invocation_params(self) -> Dict[str, Any]: if is_openai_v1(): openai_args: Dict = {"model": self.model, **self.model_kwargs} else: openai_args = { "model": self.model, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, **self.model_kwargs, } if self.openai_api_type in ("azure", "azure_ad", "azuread"): openai_args["engine"] = self.deployment # TODO: Look into proxy with openai v1. if self.openai_proxy: try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) openai.proxy = { "http": self.openai_proxy, "https": self.openai_proxy, } # type: ignore[assignment] return openai_args # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
158651
"""Azure OpenAI embeddings wrapper.""" from __future__ import annotations import os import warnings from typing import Any, Callable, Dict, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.utils import get_from_dict_or_env from pydantic import Field, model_validator from typing_extensions import Self from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.utils.openai import is_openai_v1 @deprecated( since="0.0.9", removal="1.0", alternative_import="langchain_openai.AzureOpenAIEmbeddings", ) class AzureOpenAIEmbeddings(OpenAIEmbeddings): """`Azure OpenAI` Embeddings API.""" azure_endpoint: Union[str, None] = None """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment: Optional[str] = Field(default=None, alias="azure_deployment") """A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_key: Union[str, None] = Field(default=None, alias="api_key") """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" azure_ad_token: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ azure_ad_token_provider: Union[Callable[[], str], None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ openai_api_version: Optional[str] = Field(default=None, alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" validate_base_url: bool = True @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. values["openai_api_key"] = ( values.get("openai_api_key") or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) values["openai_api_base"] = values.get("openai_api_base") or os.getenv( "OPENAI_API_BASE" ) values["openai_api_version"] = values.get("openai_api_version") or os.getenv( "OPENAI_API_VERSION", default="2023-05-15" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="azure" ) values["openai_organization"] = ( values.get("openai_organization") or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["azure_endpoint"] = values.get("azure_endpoint") or os.getenv( "AZURE_OPENAI_ENDPOINT" ) values["azure_ad_token"] = values.get("azure_ad_token") or os.getenv( "AZURE_OPENAI_AD_TOKEN" ) # Azure OpenAI embedding models allow a maximum of 2048 texts # at a time in each batch # See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings values["chunk_size"] = min(values["chunk_size"], 2048) try: import openai # noqa: F401 except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = values["openai_api_base"] if openai_api_base and values["validate_base_url"]: if "/openai" not in openai_api_base: values["openai_api_base"] += "/openai" warnings.warn( "As of openai>=1.0.0, Azure endpoints should be specified via " f"the `azure_endpoint` param not `openai_api_base` " f"(or alias `base_url`). Updating `openai_api_base` from " f"{openai_api_base} to {values['openai_api_base']}." ) if values["deployment"]: warnings.warn( "As of openai>=1.0.0, if `deployment` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment` (or alias `azure_deployment`) " "and `azure_endpoint`." ) if values["deployment"] not in values["openai_api_base"]: warnings.warn( "As of openai>=1.0.0, if `openai_api_base` " "(or alias `base_url`) is specified it is expected to be " "of the form " "https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 f"Updating {openai_api_base} to " f"{values['openai_api_base']}." ) values["openai_api_base"] += ( "/deployments/" + values["deployment"] ) values["deployment"] = None return values @model_validator(mode="after") def post_init_validator(self) -> Self: """Validate that the base url is set.""" import openai if is_openai_v1(): client_params = { "api_version": self.openai_api_version, "azure_endpoint": self.azure_endpoint, "azure_deployment": self.deployment, "api_key": self.openai_api_key, "azure_ad_token": self.azure_ad_token, "azure_ad_token_provider": self.azure_ad_token_provider, "organization": self.openai_organization, "base_url": self.openai_api_base, "timeout": self.request_timeout, "max_retries": self.max_retries, "default_headers": self.default_headers, "default_query": self.default_query, "http_client": self.http_client, } self.client = openai.AzureOpenAI(**client_params).embeddings self.async_client = openai.AsyncAzureOpenAI(**client_params).embeddings else: self.client = openai.Embedding return self @property def _llm_type(self) -> str: return "azure-openai-chat"
158655
# This file is adapted from # https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/embeddings/huggingface.py from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings from pydantic import BaseModel, ConfigDict, Field DEFAULT_BGE_MODEL = "BAAI/bge-small-en-v1.5" DEFAULT_QUERY_BGE_INSTRUCTION_EN = ( "Represent this question for searching relevant passages: " ) DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:" class IpexLLMBgeEmbeddings(BaseModel, Embeddings): """Wrapper around the BGE embedding model with IPEX-LLM optimizations on Intel CPUs and GPUs. To use, you should have the ``ipex-llm`` and ``sentence_transformers`` package installed. Refer to `here <https://python.langchain.com/v0.1/docs/integrations/text_embedding/ipex_llm/>`_ for installation on Intel CPU. Example on Intel CPU: .. code-block:: python from langchain_community.embeddings import IpexLLMBgeEmbeddings embedding_model = IpexLLMBgeEmbeddings( model_name="BAAI/bge-large-en-v1.5", model_kwargs={}, encode_kwargs={"normalize_embeddings": True}, ) Refer to `here <https://python.langchain.com/v0.1/docs/integrations/text_embedding/ipex_llm_gpu/>`_ for installation on Intel GPU. Example on Intel GPU: .. code-block:: python from langchain_community.embeddings import IpexLLMBgeEmbeddings embedding_model = IpexLLMBgeEmbeddings( model_name="BAAI/bge-large-en-v1.5", model_kwargs={"device": "xpu"}, encode_kwargs={"normalize_embeddings": True}, ) """ client: Any = None #: :meta private: model_name: str = DEFAULT_BGE_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass when calling the `encode` method of the model.""" query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN """Instruction to use for embedding query.""" embed_instruction: str = "" """Instruction to use for embedding document.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: import sentence_transformers from ipex_llm.transformers.convert import _optimize_post, _optimize_pre except ImportError as exc: base_url = ( "https://python.langchain.com/v0.1/docs/integrations/text_embedding/" ) raise ImportError( "Could not import ipex_llm or sentence_transformers. " f"Please refer to {base_url}/ipex_llm/ " "for install required packages on Intel CPU. " f"And refer to {base_url}/ipex_llm_gpu/ " "for install required packages on Intel GPU. " ) from exc # Set "cpu" as default device if "device" not in self.model_kwargs: self.model_kwargs["device"] = "cpu" if self.model_kwargs["device"] not in ["cpu", "xpu"]: raise ValueError( "IpexLLMBgeEmbeddings currently only supports device to be " f"'cpu' or 'xpu', but you have: {self.model_kwargs['device']}." ) self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) # Add ipex-llm optimizations self.client = _optimize_pre(self.client) self.client = _optimize_post(self.client) if self.model_kwargs["device"] == "xpu": self.client = self.client.half().to("xpu") if "-zh" in self.model_name: self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = [self.embed_instruction + t.replace("\n", " ") for t in texts] embeddings = self.client.encode(texts, **self.encode_kwargs) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode( self.query_instruction + text, **self.encode_kwargs ) return embedding.tolist()
158657
import warnings from typing import Any, Dict, List, Optional import requests from langchain_core._api import deprecated, warn_deprecated from langchain_core.embeddings import Embeddings from pydantic import BaseModel, ConfigDict, Field, SecretStr DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_BGE_MODEL = "BAAI/bge-large-en" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) DEFAULT_QUERY_BGE_INSTRUCTION_EN = ( "Represent this question for searching relevant passages: " ) DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:" @deprecated( since="0.2.2", removal="1.0", alternative_import="langchain_huggingface.HuggingFaceEmbeddings", ) class HuggingFaceEmbeddings(BaseModel, Embeddings): """HuggingFace sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. Example: .. code-block:: python from langchain_community.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any = None #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass to the Sentence Transformer model, such as `device`, `prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`. See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass when calling the `encode` method of the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`, `precision`, `normalize_embeddings`, and more. See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode""" multi_process: bool = False """Run encode() on multiple GPUs.""" show_progress: bool = False """Whether to show a progress bar.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) if "model_name" not in kwargs: since = "0.2.16" removal = "0.4.0" warn_deprecated( since=since, removal=removal, message=f"Default values for {self.__class__.__name__}.model_name" + f" were deprecated in LangChain {since} and will be removed in" + f" {removal}. Explicitly pass a model_name to the" + f" {self.__class__.__name__} constructor instead.", ) try: import sentence_transformers except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence-transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ import sentence_transformers texts = list(map(lambda x: x.replace("\n", " "), texts)) if self.multi_process: pool = self.client.start_multi_process_pool() embeddings = self.client.encode_multi_process(texts, pool) sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool) else: embeddings = self.client.encode( texts, show_progress_bar=self.show_progress, **self.encode_kwargs ) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0] class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` and ``InstructorEmbedding`` python packages installed. Example: .. code-block:: python from langchain_community.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any = None #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass when calling the `encode` method of the model.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" show_progress: bool = False """Whether to show a progress bar.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) if "model_name" not in kwargs: since = "0.2.16" removal = "0.4.0" warn_deprecated( since=since, removal=removal, message=f"Default values for {self.__class__.__name__}.model_name" + f" were deprecated in LangChain {since} and will be removed in" + f" {removal}. Explicitly pass a model_name to the" + f" {self.__class__.__name__} constructor instead.", ) try: from InstructorEmbedding import INSTRUCTOR self.client = INSTRUCTOR( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) except ImportError as e: raise ImportError("Dependencies for InstructorEmbedding not found.") from e if "show_progress_bar" in self.encode_kwargs: warn_deprecated( since="0.2.5", removal="1.0", name="encode_kwargs['show_progress_bar']", alternative=f"the show_progress method on {self.__class__.__name__}", ) if self.show_progress: warnings.warn( "Both encode_kwargs['show_progress_bar'] and show_progress are set;" "encode_kwargs['show_progress_bar'] takes precedence" ) self.show_progress = self.encode_kwargs.pop("show_progress_bar") model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [[self.embed_instruction, text] for text in texts] embeddings = self.client.encode( instruction_pairs, show_progress_bar=self.show_progress, **self.encode_kwargs, ) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client.encode( [instruction_pair], show_progress_bar=self.show_progress, **self.encode_kwargs, )[0] return embedding.tolist() class HuggingFaceBgeEmbeddings(Base
158658
el, Embeddings): """HuggingFace sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. To use Nomic, make sure the version of ``sentence_transformers`` >= 2.3.0. Bge Example: .. code-block:: python from langchain_community.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) Nomic Example: .. code-block:: python from langchain_community.embeddings import HuggingFaceBgeEmbeddings model_name = "nomic-ai/nomic-embed-text-v1" model_kwargs = { 'device': 'cpu', 'trust_remote_code':True } encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction = "search_query:", embed_instruction = "search_document:" ) """ client: Any = None #: :meta private: model_name: str = DEFAULT_BGE_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass when calling the `encode` method of the model.""" query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN """Instruction to use for embedding query.""" embed_instruction: str = "" """Instruction to use for embedding document.""" show_progress: bool = False """Whether to show a progress bar.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) if "model_name" not in kwargs: since = "0.2.5" removal = "0.4.0" warn_deprecated( since=since, removal=removal, message=f"Default values for {self.__class__.__name__}.model_name" + f" were deprecated in LangChain {since} and will be removed in" + f" {removal}. Explicitly pass a model_name to the" + f" {self.__class__.__name__} constructor instead.", ) try: import sentence_transformers except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence_transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) if "-zh" in self.model_name: self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH if "show_progress_bar" in self.encode_kwargs: warn_deprecated( since="0.2.5", removal="1.0", name="encode_kwargs['show_progress_bar']", alternative=f"the show_progress method on {self.__class__.__name__}", ) if self.show_progress: warnings.warn( "Both encode_kwargs['show_progress_bar'] and show_progress are set;" "encode_kwargs['show_progress_bar'] takes precedence" ) self.show_progress = self.encode_kwargs.pop("show_progress_bar") model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = [self.embed_instruction + t.replace("\n", " ") for t in texts] embeddings = self.client.encode( texts, show_progress_bar=self.show_progress, **self.encode_kwargs ) return embeddings.tolist() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode( self.query_instruction + text, show_progress_bar=self.show_progress, **self.encode_kwargs, ) return embedding.tolist() class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings): """Embed texts using the HuggingFace API. Requires a HuggingFace Inference API key and a model name. """ api_key: SecretStr """Your API key for the HuggingFace Inference API.""" model_name: str = "sentence-transformers/all-MiniLM-L6-v2" """The name of the model to use for text embeddings.""" api_url: Optional[str] = None """Custom inference endpoint url. None for using default public url.""" additional_headers: Dict[str, str] = {} """Pass additional headers to the requests library if needed.""" model_config = ConfigDict(extra="forbid", protected_namespaces=()) @property def _api_url(self) -> str: return self.api_url or self._default_api_url @property def _default_api_url(self) -> str: return ( "https://api-inference.huggingface.co" "/pipeline" "/feature-extraction" f"/{self.model_name}" ) @property def _headers(self) -> dict: return { "Authorization": f"Bearer {self.api_key.get_secret_value()}", **self.additional_headers, } def embed_documents(self, texts: List[str]) -> List[List[float]]: """Get the embeddings for a list of texts. Args: texts (Documents): A list of texts to get embeddings for. Returns: Embedded texts as List[List[float]], where each inner List[float] corresponds to a single input text. Example: .. code-block:: python from langchain_community.embeddings import ( HuggingFaceInferenceAPIEmbeddings, ) hf_embeddings = HuggingFaceInferenceAPIEmbeddings( api_key="your_api_key", model_name="sentence-transformers/all-MiniLM-l6-v2" ) texts = ["Hello, world!", "How are you?"] hf_embeddings.embed_documents(texts) """ # noqa: E501 response = requests.post( self._api_url, headers=self._headers, json={ "inputs": texts, "options": {"wait_for_model": True, "use_cache": True}, }, ) return response.json() def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]
158661
"""Wrapper around text2vec embedding models.""" from typing import Any, List, Optional from langchain_core.embeddings import Embeddings from pydantic import BaseModel class Text2vecEmbeddings(Embeddings, BaseModel): """text2vec embedding models. Install text2vec first, run 'pip install -U text2vec'. The github repository for text2vec is : https://github.com/shibing624/text2vec Example: .. code-block:: python from langchain_community.embeddings.text2vec import Text2vecEmbeddings embedding = Text2vecEmbeddings() embedding.embed_documents([ "This is a CoSENT(Cosine Sentence) model.", "It maps sentences to a 768 dimensional dense vector space.", ]) embedding.embed_query( "It can be used for text matching or semantic search." ) """ model_name_or_path: Optional[str] = None encoder_type: Any = "MEAN" max_seq_length: int = 256 device: Optional[str] = None model: Any = None def __init__( self, *, model: Any = None, model_name_or_path: Optional[str] = None, **kwargs: Any, ): try: from text2vec import SentenceModel except ImportError as e: raise ImportError( "Unable to import text2vec, please install with " "`pip install -U text2vec`." ) from e model_kwargs = {} if model_name_or_path is not None: model_kwargs["model_name_or_path"] = model_name_or_path model = model or SentenceModel(**model_kwargs, **kwargs) super().__init__(model=model, model_name_or_path=model_name_or_path, **kwargs) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using the text2vec embeddings model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ return self.model.encode(texts) def embed_query(self, text: str) -> List[float]: """Embed a query using the text2vec embeddings model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.model.encode(text)
158675
from __future__ import annotations import logging from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from pydantic import BaseModel, Field, SecretStr logger = logging.getLogger(__name__) class QianfanEmbeddingsEndpoint(BaseModel, Embeddings): """Baidu Qianfan Embeddings embedding models. Setup: To use, you should have the ``qianfan`` python package installed, and set environment variables ``QIANFAN_AK``, ``QIANFAN_SK``. .. code-block:: bash pip install qianfan export QIANFAN_AK="your-api-key" export QIANFAN_SK="your-secret_key" Instantiate: .. code-block:: python from langchain_community.embeddings import QianfanEmbeddingsEndpoint embeddings = QianfanEmbeddingsEndpoint() Embed: .. code-block:: python # embed the documents vectors = embeddings.embed_documents([text1, text2, ...]) # embed the query vectors = embeddings.embed_query(text) # embed the documents with async vectors = await embeddings.aembed_documents([text1, text2, ...]) # embed the query with async vectors = await embeddings.aembed_query(text) """ # noqa: E501 qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key") """Qianfan application apikey""" qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key") """Qianfan application secretkey""" chunk_size: int = 16 """Chunk size when multiple texts are input""" model: Optional[str] = Field(default=None) """Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu for now, we support Embedding-V1 and - Embedding-V1 (默认模型) - bge-large-en - bge-large-zh preset models are mapping to an endpoint. `model` will be ignored if `endpoint` is set """ endpoint: str = "" """Endpoint of the Qianfan Embedding, required if custom model used.""" client: Any = None """Qianfan client""" init_kwargs: Dict[str, Any] = Field(default_factory=dict) """init kwargs for qianfan client init, such as `query_per_second` which is associated with qianfan resource object to limit QPS""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra params for model invoke using with `do`.""" @pre_init def validate_environment(cls, values: Dict) -> Dict: """ Validate whether qianfan_ak and qianfan_sk in the environment variables or configuration file are available or not. init qianfan embedding client with `ak`, `sk`, `model`, `endpoint` Args: values: a dictionary containing configuration information, must include the fields of qianfan_ak and qianfan_sk Returns: a dictionary containing configuration information. If qianfan_ak and qianfan_sk are not provided in the environment variables or configuration file,the original values will be returned; otherwise, values containing qianfan_ak and qianfan_sk will be returned. Raises: ValueError: qianfan package not found, please install it with `pip install qianfan` """ values["qianfan_ak"] = convert_to_secret_str( get_from_dict_or_env( values, "qianfan_ak", "QIANFAN_AK", default="", ) ) values["qianfan_sk"] = convert_to_secret_str( get_from_dict_or_env( values, "qianfan_sk", "QIANFAN_SK", default="", ) ) try: import qianfan params = { **values.get("init_kwargs", {}), "model": values["model"], } if values["qianfan_ak"].get_secret_value() != "": params["ak"] = values["qianfan_ak"].get_secret_value() if values["qianfan_sk"].get_secret_value() != "": params["sk"] = values["qianfan_sk"].get_secret_value() if values["endpoint"] is not None and values["endpoint"] != "": params["endpoint"] = values["endpoint"] values["client"] = qianfan.Embedding(**params) except ImportError: raise ImportError( "qianfan package not found, please install it with " "`pip install qianfan`" ) return values def embed_query(self, text: str) -> List[float]: resp = self.embed_documents([text]) return resp[0] def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Embeds a list of text documents using the AutoVOT algorithm. Args: texts (List[str]): A list of text documents to embed. Returns: List[List[float]]: A list of embeddings for each document in the input list. Each embedding is represented as a list of float values. """ text_in_chunks = [ texts[i : i + self.chunk_size] for i in range(0, len(texts), self.chunk_size) ] lst = [] for chunk in text_in_chunks: resp = self.client.do(texts=chunk, **self.model_kwargs) lst.extend([res["embedding"] for res in resp["data"]]) return lst async def aembed_query(self, text: str) -> List[float]: embeddings = await self.aembed_documents([text]) return embeddings[0] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: text_in_chunks = [ texts[i : i + self.chunk_size] for i in range(0, len(texts), self.chunk_size) ] lst = [] for chunk in text_in_chunks: resp = await self.client.ado(texts=chunk, **self.model_kwargs) for res in resp["data"]: lst.extend([res["embedding"]]) return lst
158711
"""Callback Handler for LLMonitor`. #### Parameters: - `app_id`: The app id of the app you want to report to. Defaults to `None`, which means that `LLMONITOR_APP_ID` will be used. - `api_url`: The url of the LLMonitor API. Defaults to `None`, which means that either `LLMONITOR_API_URL` environment variable or `https://app.llmonitor.com` will be used. #### Raises: - `ValueError`: if `app_id` is not provided either as an argument or as an environment variable. - `ConnectionError`: if the connection to the API fails. #### Example: ```python from langchain_community.llms import OpenAI from langchain_community.callbacks import LLMonitorCallbackHandler llmonitor_callback = LLMonitorCallbackHandler() llm = OpenAI(callbacks=[llmonitor_callback], metadata={"userId": "user-123"}) llm.invoke("Hello, how are you?") ``` """ __api_url: str __app_id: str __verbose: bool __llmonitor_version: str __has_valid_config: bool def __init__( self, app_id: Union[str, None] = None, api_url: Union[str, None] = None, verbose: bool = False, ) -> None: super().__init__() self.__has_valid_config = True try: import llmonitor self.__llmonitor_version = importlib.metadata.version("llmonitor") self.__track_event = llmonitor.track_event except ImportError: logger.warning( """[LLMonitor] To use the LLMonitor callback handler you need to have the `llmonitor` Python package installed. Please install it with `pip install llmonitor`""" ) self.__has_valid_config = False return if parse(self.__llmonitor_version) < parse("0.0.32"): logger.warning( f"""[LLMonitor] The installed `llmonitor` version is {self.__llmonitor_version} but `LLMonitorCallbackHandler` requires at least version 0.0.32 upgrade `llmonitor` with `pip install --upgrade llmonitor`""" ) self.__has_valid_config = False self.__has_valid_config = True self.__api_url = api_url or os.getenv("LLMONITOR_API_URL") or DEFAULT_API_URL self.__verbose = verbose or bool(os.getenv("LLMONITOR_VERBOSE")) _app_id = app_id or os.getenv("LLMONITOR_APP_ID") if _app_id is None: logger.warning( """[LLMonitor] app_id must be provided either as an argument or as an environment variable""" ) self.__has_valid_config = False else: self.__app_id = _app_id if self.__has_valid_config is False: return None try: res = requests.get(f"{self.__api_url}/api/app/{self.__app_id}") if not res.ok: raise ConnectionError() except Exception: logger.warning( f"""[LLMonitor] Could not connect to the LLMonitor API at {self.__api_url}""" ) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Union[UUID, None] = None, tags: Union[List[str], None] = None, metadata: Union[Dict[str, Any], None] = None, **kwargs: Any, ) -> None: if self.__has_valid_config is False: return try: user_id = _get_user_id(metadata) user_props = _get_user_props(metadata) params = kwargs.get("invocation_params", {}) params.update( serialized.get("kwargs", {}) ) # Sometimes, for example with ChatAnthropic, `invocation_params` is empty name = ( params.get("model") or params.get("model_name") or params.get("model_id") ) if not name and "anthropic" in params.get("_type"): name = "claude-2" extra = { param: params.get(param) for param in PARAMS_TO_CAPTURE if params.get(param) is not None } input = _parse_input(prompts) self.__track_event( "llm", "start", user_id=user_id, run_id=str(run_id), parent_run_id=str(parent_run_id) if parent_run_id else None, name=name, input=input, tags=tags, extra=extra, metadata=metadata, user_props=user_props, app_id=self.__app_id, ) except Exception as e: warnings.warn(f"[LLMonitor] An error occurred in on_llm_start: {e}") def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Union[UUID, None] = None, tags: Union[List[str], None] = None, metadata: Union[Dict[str, Any], None] = None, **kwargs: Any, ) -> Any: if self.__has_valid_config is False: return try: user_id = _get_user_id(metadata) user_props = _get_user_props(metadata) params = kwargs.get("invocation_params", {}) params.update( serialized.get("kwargs", {}) ) # Sometimes, for example with ChatAnthropic, `invocation_params` is empty name = ( params.get("model") or params.get("model_name") or params.get("model_id") ) if not name and "anthropic" in params.get("_type"): name = "claude-2" extra = { param: params.get(param) for param in PARAMS_TO_CAPTURE if params.get(param) is not None } input = _parse_lc_messages(messages[0]) self.__track_event( "llm", "start", user_id=user_id, run_id=str(run_id), parent_run_id=str(parent_run_id) if parent_run_id else None, name=name, input=input, tags=tags, extra=extra, metadata=metadata, user_props=user_props, app_id=self.__app_id, ) except Exception as e: logger.error(f"[LLMonitor] An error occurred in on_chat_model_start: {e}") def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Union[UUID, None] = None, **kwargs: Any, ) -> None: if self.__has_valid_config is False: return try: token_usage = (response.llm_output or {}).get("token_usage", {}) parsed_output: Any = [ _parse_lc_message(generation.message) if hasattr(generation, "message") else generation.text for generation in response.generations[0] ] # if it's an array of 1, just parse the first element if len(parsed_output) == 1: parsed_output = parsed_output[0] self.__track_event( "llm", "end", run_id=str(run_id), parent_run_id=str(parent_run_id) if parent_run_id else None, output=parsed_output, token_usage={ "prompt": token_usage.get("prompt_tokens"), "completion": token_usage.get("completion_tokens"), }, app_id=self.__app_id, ) except Exception as e: logger.error(f"[LLMonitor] An error occurred in on_llm_end: {e}") def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Union[UUID, None] = None, tags: Union[List[str], None] = None, metadata: Union[Dict[str, Any], None] = None, **kwargs: Any, ) -> None: if self.__has_valid_config is False: return try: user_id = _get_user_id(metadata) user_props = _get_user_props(metadata) name = serialized.get("name") self.__track_event( "tool", "start", user_id=user_id, run_id=str(run_id), parent_run_id=str(parent_run_id) if parent_run_id else None, name=name, input=input_str, tags=tags, metadata=metadata, user_props=user_props, app_id=self.__app_id, ) except Exception as e: logger.error(f"[LLMonitor] An error occurred in on_tool_start: {e}")
158720
"""Callback handler for Context AI""" import os from typing import Any, Dict, List from uuid import UUID from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import BaseMessage from langchain_core.outputs import LLMResult from langchain_core.utils import guard_import def import_context() -> Any: """Import the `getcontext` package.""" return ( guard_import("getcontext", pip_name="python-context"), guard_import("getcontext.token", pip_name="python-context").Credential, guard_import( "getcontext.generated.models", pip_name="python-context" ).Conversation, guard_import("getcontext.generated.models", pip_name="python-context").Message, guard_import( "getcontext.generated.models", pip_name="python-context" ).MessageRole, guard_import("getcontext.generated.models", pip_name="python-context").Rating, ) class ContextCallbackHandler(BaseCallbackHandler): """Callback Handler that records transcripts to the Context service. (https://context.ai). Keyword Args: token (optional): The token with which to authenticate requests to Context. Visit https://with.context.ai/settings to generate a token. If not provided, the value of the `CONTEXT_TOKEN` environment variable will be used. Raises: ImportError: if the `context-python` package is not installed. Chat Example: >>> from langchain_community.llms import ChatOpenAI >>> from langchain_community.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> chat = ChatOpenAI( ... temperature=0, ... headers={"user_id": "123"}, ... callbacks=[context_callback], ... openai_api_key="API_KEY_HERE", ... ) >>> messages = [ ... SystemMessage(content="You translate English to French."), ... HumanMessage(content="I love programming with LangChain."), ... ] >>> chat.invoke(messages) Chain Example: >>> from langchain.chains import LLMChain >>> from langchain_community.chat_models import ChatOpenAI >>> from langchain_community.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> human_message_prompt = HumanMessagePromptTemplate( ... prompt=PromptTemplate( ... template="What is a good name for a company that makes {product}?", ... input_variables=["product"], ... ), ... ) >>> chat_prompt_template = ChatPromptTemplate.from_messages( ... [human_message_prompt] ... ) >>> callback = ContextCallbackHandler(token) >>> # Note: the same callback object must be shared between the ... LLM and the chain. >>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) >>> chain = LLMChain( ... llm=chat, ... prompt=chat_prompt_template, ... callbacks=[callback] ... ) >>> chain.run("colorful socks") """ def __init__(self, token: str = "", verbose: bool = False, **kwargs: Any) -> None: ( self.context, self.credential, self.conversation_model, self.message_model, self.message_role_model, self.rating_model, ) = import_context() token = token or os.environ.get("CONTEXT_TOKEN") or "" self.client = self.context.ContextAPI(credential=self.credential(token)) self.chain_run_id = None self.llm_model = None self.messages: List[Any] = [] self.metadata: Dict[str, str] = {} def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, **kwargs: Any, ) -> Any: """Run when the chat model is started.""" llm_model = kwargs.get("invocation_params", {}).get("model", None) if llm_model is not None: self.metadata["model"] = llm_model if len(messages) == 0: return for message in messages[0]: role = self.message_role_model.SYSTEM if message.type == "human": role = self.message_role_model.USER elif message.type == "system": role = self.message_role_model.SYSTEM elif message.type == "ai": role = self.message_role_model.ASSISTANT self.messages.append( self.message_model( message=message.content, role=role, ) ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends.""" if len(response.generations) == 0 or len(response.generations[0]) == 0: return if not self.chain_run_id: generation = response.generations[0][0] self.messages.append( self.message_model( message=generation.text, role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts.""" self.chain_run_id = kwargs.get("run_id", None) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends.""" self.messages.append( self.message_model( message=outputs["text"], role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() self.chain_run_id = None def _log_conversation(self) -> None: """Log the conversation to the context API.""" if len(self.messages) == 0: return self.client.log.conversation_upsert( body={ "conversation": self.conversation_model( messages=self.messages, metadata=self.metadata, ) } ) self.messages = [] self.metadata = {}
158723
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp: Dict[str, Any] = {} resp.update( { "action": "on_agent_action", "tool": action.tool, "tool_input": action.tool_input, "log": action.log, } ) resp.update(self.get_custom_callback_meta()) self.deck.append(self.markdown_renderer().to_html("### Agent Action")) self.deck.append( self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n" )
158787
stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: default_chunk_class = AIMessageChunk self.client.arun( [convert_message_to_dict(m) for m in messages], self.spark_user_id, self.model_kwargs, streaming=True, ) for content in self.client.subscribe(timeout=self.request_timeout): if "data" not in content: continue delta = content["data"] chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) cg_chunk = ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk) yield cg_chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: if stream or self.streaming: stream_iter = self._stream( messages=messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) self.client.arun( [convert_message_to_dict(m) for m in messages], self.spark_user_id, self.model_kwargs, False, ) completion = {} llm_output = {} for content in self.client.subscribe(timeout=self.request_timeout): if "usage" in content: llm_output["token_usage"] = content["usage"] if "data" not in content: continue completion = content["data"] message = convert_dict_to_message(completion) generations = [ChatGeneration(message=message)] return ChatResult(generations=generations, llm_output=llm_output) @property def _llm_type(self) -> str: return "spark-llm-chat" class _SparkLLMClient: """ Use websocket-client to call the SparkLLM interface provided by Xfyun, which is the iFlyTek's open platform for AI capabilities """ def __init__( self, app_id: str, api_key: str, api_secret: str, api_url: Optional[str] = None, spark_domain: Optional[str] = None, model_kwargs: Optional[dict] = None, ): try: import websocket self.websocket_client = websocket except ImportError: raise ImportError( "Could not import websocket client python package. " "Please install it with `pip install websocket-client`." ) self.api_url = SPARK_API_URL if not api_url else api_url self.app_id = app_id self.model_kwargs = model_kwargs self.spark_domain = spark_domain or SPARK_LLM_DOMAIN self.queue: Queue[Dict] = Queue() self.blocking_message = {"content": "", "role": "assistant"} self.api_key = api_key self.api_secret = api_secret @staticmethod def _create_url(api_url: str, api_key: str, api_secret: str) -> str: """ Generate a request url with an api key and an api secret. """ # generate timestamp by RFC1123 date = format_date_time(mktime(datetime.now().timetuple())) # urlparse parsed_url = urlparse(api_url) host = parsed_url.netloc path = parsed_url.path signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1" # encrypt using hmac-sha256 signature_sha = hmac.new( api_secret.encode("utf-8"), signature_origin.encode("utf-8"), digestmod=hashlib.sha256, ).digest() signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8") authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \ headers="host date request-line", signature="{signature_sha_base64}"' authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode( encoding="utf-8" ) # generate url params_dict = {"authorization": authorization, "date": date, "host": host} encoded_params = urlencode(params_dict) url = urlunparse( ( parsed_url.scheme, parsed_url.netloc, parsed_url.path, parsed_url.params, encoded_params, parsed_url.fragment, ) ) return url def run( self, messages: List[Dict], user_id: str, model_kwargs: Optional[dict] = None, streaming: bool = False, ) -> None: self.websocket_client.enableTrace(False) ws = self.websocket_client.WebSocketApp( _SparkLLMClient._create_url( self.api_url, self.api_key, self.api_secret, ), on_message=self.on_message, on_error=self.on_error, on_close=self.on_close, on_open=self.on_open, ) ws.messages = messages # type: ignore[attr-defined] ws.user_id = user_id # type: ignore[attr-defined] ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs # type: ignore[attr-defined] ws.streaming = streaming # type: ignore[attr-defined] ws.run_forever() def arun( self, messages: List[Dict], user_id: str, model_kwargs: Optional[dict] = None, streaming: bool = False, ) -> threading.Thread: ws_thread = threading.Thread( target=self.run, args=( messages, user_id, model_kwargs, streaming, ), ) ws_thread.start() return ws_thread def on_error(self, ws: Any, error: Optional[Any]) -> None: self.queue.put({"error": error}) ws.close() def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None: logger.debug( { "log": { "close_status_code": close_status_code, "close_reason": close_reason, } } ) self.queue.put({"done": True}) def on_open(self, ws: Any) -> None: self.blocking_message = {"content": "", "role": "assistant"} data = json.dumps( self.gen_params( messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs ) ) ws.send(data) def on_message(self, ws: Any, message: str) -> None: data = json.loads(message) code = data["header"]["code"] if code != 0: self.queue.put( {"error": f"Code: {code}, Error: {data['header']['message']}"} ) ws.close() else: choices = data["payload"]["choices"] status = choices["status"] content = choices["text"][0]["content"] if ws.streaming: self.queue.put({"data": choices["text"][0]}) else: self.blocking_message["content"] += content if status == 2: if not ws.streaming: self.queue.put({"data": self.blocking_message}) usage_data = ( data.get("payload", {}).get("usage", {}).get("text", {}) if data else {} ) self.queue.put({"usage": usage_data}) ws.close() def gen_params( self, messages: list, user_id: str, model_kwargs: Optional[dict] = None ) -> dict: data: Dict = { "header": {"app_id": self.app_id, "uid": user_id}, "parameter": {"chat": {"domain": self.spark_domain}}, "payload": {"message": {"text": messages}}, } if model_kwargs: data["parameter"]["chat"].update(model_kwargs) logger.debug(f"Spark Request Parameters: {data}") return data def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]: while True: try: content = self.queue.get(timeout=timeout) except queue.Empty as _: raise TimeoutError( f"SparkLLMClient wait LLM api response timeout {timeout} seconds" ) if "error" in content: raise ConnectionError(content["error"]) if "usage" in content: yield content continue if "done" in content: break if "data" not in content: break yield content
158829
"""**Chat Models** are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm **Main helpers:** .. code-block:: AIMessage, BaseMessage, HumanMessage """ # noqa: E501 import importlib from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from langchain_community.chat_models.anthropic import ( ChatAnthropic, ) from langchain_community.chat_models.anyscale import ( ChatAnyscale, ) from langchain_community.chat_models.azure_openai import ( AzureChatOpenAI, ) from langchain_community.chat_models.baichuan import ( ChatBaichuan, ) from langchain_community.chat_models.baidu_qianfan_endpoint import ( QianfanChatEndpoint, ) from langchain_community.chat_models.bedrock import ( BedrockChat, ) from langchain_community.chat_models.cohere import ( ChatCohere, ) from langchain_community.chat_models.coze import ( ChatCoze, ) from langchain_community.chat_models.databricks import ( ChatDatabricks, ) from langchain_community.chat_models.deepinfra import ( ChatDeepInfra, ) from langchain_community.chat_models.edenai import ChatEdenAI from langchain_community.chat_models.ernie import ( ErnieBotChat, ) from langchain_community.chat_models.everlyai import ( ChatEverlyAI, ) from langchain_community.chat_models.fake import ( FakeListChatModel, ) from langchain_community.chat_models.fireworks import ( ChatFireworks, ) from langchain_community.chat_models.friendli import ( ChatFriendli, ) from langchain_community.chat_models.gigachat import ( GigaChat, ) from langchain_community.chat_models.google_palm import ( ChatGooglePalm, ) from langchain_community.chat_models.gpt_router import ( GPTRouter, ) from langchain_community.chat_models.huggingface import ( ChatHuggingFace, ) from langchain_community.chat_models.human import ( HumanInputChatModel, ) from langchain_community.chat_models.hunyuan import ( ChatHunyuan, ) from langchain_community.chat_models.javelin_ai_gateway import ( ChatJavelinAIGateway, ) from langchain_community.chat_models.jinachat import ( JinaChat, ) from langchain_community.chat_models.kinetica import ( ChatKinetica, ) from langchain_community.chat_models.konko import ( ChatKonko, ) from langchain_community.chat_models.litellm import ( ChatLiteLLM, ) from langchain_community.chat_models.litellm_router import ( ChatLiteLLMRouter, ) from langchain_community.chat_models.llama_edge import ( LlamaEdgeChatService, ) from langchain_community.chat_models.llamacpp import ChatLlamaCpp from langchain_community.chat_models.maritalk import ( ChatMaritalk, ) from langchain_community.chat_models.minimax import ( MiniMaxChat, ) from langchain_community.chat_models.mlflow import ( ChatMlflow, ) from langchain_community.chat_models.mlflow_ai_gateway import ( ChatMLflowAIGateway, ) from langchain_community.chat_models.mlx import ( ChatMLX, ) from langchain_community.chat_models.moonshot import ( MoonshotChat, ) from langchain_community.chat_models.oci_data_science import ( ChatOCIModelDeployment, ChatOCIModelDeploymentTGI, ChatOCIModelDeploymentVLLM, ) from langchain_community.chat_models.oci_generative_ai import ( ChatOCIGenAI, # noqa: F401 ) from langchain_community.chat_models.octoai import ChatOctoAI from langchain_community.chat_models.ollama import ( ChatOllama, ) from langchain_community.chat_models.openai import ( ChatOpenAI, ) from langchain_community.chat_models.pai_eas_endpoint import ( PaiEasChatEndpoint, ) from langchain_community.chat_models.perplexity import ( ChatPerplexity, ) from langchain_community.chat_models.premai import ( ChatPremAI, ) from langchain_community.chat_models.promptlayer_openai import ( PromptLayerChatOpenAI, ) from langchain_community.chat_models.sambanova import ( ChatSambaNovaCloud, ChatSambaStudio, ) from langchain_community.chat_models.snowflake import ( ChatSnowflakeCortex, ) from langchain_community.chat_models.solar import ( SolarChat, ) from langchain_community.chat_models.sparkllm import ( ChatSparkLLM, ) from langchain_community.chat_models.symblai_nebula import ChatNebula from langchain_community.chat_models.tongyi import ( ChatTongyi, ) from langchain_community.chat_models.vertexai import ( ChatVertexAI, ) from langchain_community.chat_models.volcengine_maas import ( VolcEngineMaasChat, ) from langchain_community.chat_models.yandex import ( ChatYandexGPT, ) from langchain_community.chat_models.yi import ( ChatYi, ) from langchain_community.chat_models.yuan2 import ( ChatYuan2, ) from langchain_community.chat_models.zhipuai import ( ChatZhipuAI, ) __all__ = [ "AzureChatOpenAI", "BedrockChat", "ChatAnthropic", "ChatAnyscale", "ChatBaichuan", "ChatCohere", "ChatCoze", "ChatOctoAI", "ChatDatabricks", "ChatDeepInfra", "ChatEdenAI", "ChatEverlyAI", "ChatFireworks", "ChatFriendli", "ChatGooglePalm", "ChatHuggingFace", "ChatHunyuan", "ChatJavelinAIGateway", "ChatKinetica", "ChatKonko", "ChatLiteLLM", "ChatLiteLLMRouter", "ChatMLX", "ChatMLflowAIGateway", "ChatMaritalk", "ChatMlflow", "ChatNebula", "ChatOCIGenAI", "ChatOCIModelDeployment", "ChatOCIModelDeploymentVLLM", "ChatOCIModelDeploymentTGI", "ChatOllama", "ChatOpenAI", "ChatPerplexity", "ChatPremAI", "ChatSambaNovaCloud", "ChatSambaStudio", "ChatSparkLLM", "ChatSnowflakeCortex", "ChatTongyi", "ChatVertexAI", "ChatYandexGPT", "ChatYuan2", "ChatZhipuAI", "ChatLlamaCpp", "ErnieBotChat", "FakeListChatModel", "GPTRouter", "GigaChat", "HumanInputChatModel", "JinaChat", "LlamaEdgeChatService", "MiniMaxChat", "MoonshotChat", "PaiEasChatEndpoint", "PromptLayerChatOpenAI", "QianfanChatEndpoint", "SolarChat", "VolcEngineMaasChat", "ChatYi", ]
158830
_module_lookup = { "AzureChatOpenAI": "langchain_community.chat_models.azure_openai", "BedrockChat": "langchain_community.chat_models.bedrock", "ChatAnthropic": "langchain_community.chat_models.anthropic", "ChatAnyscale": "langchain_community.chat_models.anyscale", "ChatBaichuan": "langchain_community.chat_models.baichuan", "ChatCohere": "langchain_community.chat_models.cohere", "ChatCoze": "langchain_community.chat_models.coze", "ChatDatabricks": "langchain_community.chat_models.databricks", "ChatDeepInfra": "langchain_community.chat_models.deepinfra", "ChatEverlyAI": "langchain_community.chat_models.everlyai", "ChatEdenAI": "langchain_community.chat_models.edenai", "ChatFireworks": "langchain_community.chat_models.fireworks", "ChatFriendli": "langchain_community.chat_models.friendli", "ChatGooglePalm": "langchain_community.chat_models.google_palm", "ChatHuggingFace": "langchain_community.chat_models.huggingface", "ChatHunyuan": "langchain_community.chat_models.hunyuan", "ChatJavelinAIGateway": "langchain_community.chat_models.javelin_ai_gateway", "ChatKinetica": "langchain_community.chat_models.kinetica", "ChatKonko": "langchain_community.chat_models.konko", "ChatLiteLLM": "langchain_community.chat_models.litellm", "ChatLiteLLMRouter": "langchain_community.chat_models.litellm_router", "ChatMLflowAIGateway": "langchain_community.chat_models.mlflow_ai_gateway", "ChatMLX": "langchain_community.chat_models.mlx", "ChatMaritalk": "langchain_community.chat_models.maritalk", "ChatMlflow": "langchain_community.chat_models.mlflow", "ChatNebula": "langchain_community.chat_models.symblai_nebula", "ChatOctoAI": "langchain_community.chat_models.octoai", "ChatOCIGenAI": "langchain_community.chat_models.oci_generative_ai", "ChatOCIModelDeployment": "langchain_community.chat_models.oci_data_science", "ChatOCIModelDeploymentVLLM": "langchain_community.chat_models.oci_data_science", "ChatOCIModelDeploymentTGI": "langchain_community.chat_models.oci_data_science", "ChatOllama": "langchain_community.chat_models.ollama", "ChatOpenAI": "langchain_community.chat_models.openai", "ChatPerplexity": "langchain_community.chat_models.perplexity", "ChatSambaNovaCloud": "langchain_community.chat_models.sambanova", "ChatSambaStudio": "langchain_community.chat_models.sambanova", "ChatSnowflakeCortex": "langchain_community.chat_models.snowflake", "ChatSparkLLM": "langchain_community.chat_models.sparkllm", "ChatTongyi": "langchain_community.chat_models.tongyi", "ChatVertexAI": "langchain_community.chat_models.vertexai", "ChatYandexGPT": "langchain_community.chat_models.yandex", "ChatYuan2": "langchain_community.chat_models.yuan2", "ChatZhipuAI": "langchain_community.chat_models.zhipuai", "ErnieBotChat": "langchain_community.chat_models.ernie", "FakeListChatModel": "langchain_community.chat_models.fake", "GPTRouter": "langchain_community.chat_models.gpt_router", "GigaChat": "langchain_community.chat_models.gigachat", "HumanInputChatModel": "langchain_community.chat_models.human", "JinaChat": "langchain_community.chat_models.jinachat", "LlamaEdgeChatService": "langchain_community.chat_models.llama_edge", "MiniMaxChat": "langchain_community.chat_models.minimax", "MoonshotChat": "langchain_community.chat_models.moonshot", "PaiEasChatEndpoint": "langchain_community.chat_models.pai_eas_endpoint", "PromptLayerChatOpenAI": "langchain_community.chat_models.promptlayer_openai", "SolarChat": "langchain_community.chat_models.solar", "QianfanChatEndpoint": "langchain_community.chat_models.baidu_qianfan_endpoint", "VolcEngineMaasChat": "langchain_community.chat_models.volcengine_maas", "ChatPremAI": "langchain_community.chat_models.premai", "ChatLlamaCpp": "langchain_community.chat_models.llamacpp", "ChatYi": "langchain_community.chat_models.yi", } def __getattr__(name: str) -> Any: if name in _module_lookup: module = importlib.import_module(_module_lookup[name]) return getattr(module, name) raise AttributeError(f"module {__name__} has no attribute {name}")
158844
class ChatOpenAI(BaseChatModel): """`OpenAI` Chat large language models API. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_community.chat_models import ChatOpenAI openai = ChatOpenAI(model="gpt-3.5-turbo") """ @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "openai"] @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.openai_organization: attributes["openai_organization"] = self.openai_organization if self.openai_api_base: attributes["openai_api_base"] = self.openai_api_base if self.openai_proxy: attributes["openai_proxy"] = self.openai_proxy return attributes @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.""" max_retries: int = Field(default=2) """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" model_config = ConfigDict( populate_by_name=True, ) @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).chat.completions if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI( **client_params ).chat.completions elif not values.get("client"): values["client"] = openai.ChatCompletion else: pass return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" params = { "model": self.model_name, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } if self.max_tokens is not None: params["max_tokens"] = self.max_tokens if self.request_timeout is not None and not is_openai_v1(): params["request_timeout"] = self.request_timeout return params def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" if is_openai_v1(): return self.client.create(**kwargs) retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs)
158850
class AzureChatOpenAI(ChatOpenAI): """`Azure OpenAI` Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``AZURE_OPENAI_API_KEY`` - ``AZURE_OPENAI_ENDPOINT`` - ``AZURE_OPENAI_AD_TOKEN`` - ``OPENAI_API_VERSION`` - ``OPENAI_PROXY`` For example, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( azure_deployment="35-turbo-dev", openai_api_version="2023-05-15", ) Be aware the API version may change. You can also specify the version of the model using ``model_version`` constructor parameter, as Azure OpenAI doesn't return model version with the response. Default is empty. When you specify the version, it will be appended to the model name in the response. Setting correct version will help you to calculate the cost properly. Model version is not validated, so make sure you set it correctly to get the correct cost. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ azure_endpoint: Union[str, None] = None """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") """A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_version: str = Field(default="", alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" openai_api_key: Union[str, None] = Field(default=None, alias="api_key") """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" azure_ad_token: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ azure_ad_token_provider: Union[Callable[[], str], None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ model_version: str = "" """Legacy, for openai<1.0.0 support.""" openai_api_type: str = "" """Legacy, for openai<1.0.0 support.""" validate_base_url: bool = True """For backwards compatibility. If legacy val openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update accordingly. """ @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "azure_openai"] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. values["openai_api_key"] = ( values["openai_api_key"] or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_api_version"] = values["openai_api_version"] or os.getenv( "OPENAI_API_VERSION" ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( "AZURE_OPENAI_ENDPOINT" ) values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( "AZURE_OPENAI_AD_TOKEN" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="azure" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="" ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = values["openai_api_base"] if openai_api_base and values["validate_base_url"]: if "/openai" not in openai_api_base: values["openai_api_base"] = ( values["openai_api_base"].rstrip("/") + "/openai" ) warnings.warn( "As of openai>=1.0.0, Azure endpoints should be specified via " f"the `azure_endpoint` param not `openai_api_base` " f"(or alias `base_url`). Updating `openai_api_base` from " f"{openai_api_base} to {values['openai_api_base']}." ) if values["deployment_name"]: warnings.warn( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) if values["deployment_name"] not in values["openai_api_base"]: warnings.warn( "As of openai>=1.0.0, if `openai_api_base` " "(or alias `base_url`) is specified it is expected to be " "of the form " "https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 f"Updating {openai_api_base} to " f"{values['openai_api_base']}." ) values["openai_api_base"] += ( "/deployments/" + values["deployment_name"] ) values["deployment_name"] = None client_params = { "api_version": values["openai_api_version"], "azure_endpoint": values["azure_endpoint"], "azure_deployment": values["deployment_name"], "api_key": values["openai_api_key"], "azure_ad_token": values["azure_ad_token"], "azure_ad_token_provider": values["azure_ad_token_provider"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } values["client"] = openai.AzureOpenAI(**client_params).chat.completions values["async_client"] = openai.AsyncAzureOpenAI( **client_params ).chat.completions else: values["client"] = openai.ChatCompletion return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" if is_openai_v1(): return super()._default_params else: return { **super()._default_params, "engine": self.deployment_name, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**self._default_params}
158894
@deprecated( since="0.3.1", removal="1.0.0", alternative_import="langchain_ollama.ChatOllama", ) class ChatOllama(BaseChatModel, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain_community.chat_models import ChatOllama ollama = ChatOllama(model="llama2") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "ollama-chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return False def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get standard params for tracing.""" params = self._get_invocation_params(stop=stop, **kwargs) ls_params = LangSmithParams( ls_provider="ollama", ls_model_name=self.model, ls_model_type="chat", ls_temperature=params.get("temperature", self.temperature), ) if ls_max_tokens := params.get("num_predict", self.num_predict): ls_params["ls_max_tokens"] = ls_max_tokens if ls_stop := stop or params.get("stop", None) or self.stop: ls_params["ls_stop"] = ls_stop return ls_params @deprecated("0.0.3", alternative="_convert_messages_to_ollama_messages") def _format_message_as_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): if isinstance(message.content, List): first_content = cast(List[Dict], message.content)[0] content_type = first_content.get("type") if content_type == "text": message_text = f"[INST] {first_content['text']} [/INST]" elif content_type == "image_url": message_text = first_content["image_url"]["url"] else: message_text = f"[INST] {message.content} [/INST]" elif isinstance(message, AIMessage): message_text = f"{message.content}" elif isinstance(message, SystemMessage): message_text = f"<<SYS>> {message.content} <</SYS>>" else: raise ValueError(f"Got unknown type {message}") return message_text def _format_messages_as_text(self, messages: List[BaseMessage]) -> str: return "\n".join( [self._format_message_as_text(message) for message in messages] ) def _convert_messages_to_ollama_messages( self, messages: List[BaseMessage] ) -> List[Dict[str, Union[str, List[str]]]]: ollama_messages: List = [] for message in messages: role = "" if isinstance(message, HumanMessage): role = "user" elif isinstance(message, AIMessage): role = "assistant" elif isinstance(message, SystemMessage): role = "system" else: raise ValueError("Received unsupported message type for Ollama.") content = "" images = [] if isinstance(message.content, str): content = message.content else: for content_part in cast(List[Dict], message.content): if content_part.get("type") == "text": content += f"\n{content_part['text']}" elif content_part.get("type") == "image_url": image_url = None temp_image_url = content_part.get("image_url") if isinstance(temp_image_url, str): image_url = content_part["image_url"] elif ( isinstance(temp_image_url, dict) and "url" in temp_image_url ): image_url = temp_image_url["url"] else: raise ValueError( "Only string image_url or dict with string 'url' " "inside content parts are supported." ) image_url_components = image_url.split(",") # Support data:image/jpeg;base64,<image> format # and base64 strings if len(image_url_components) > 1: images.append(image_url_components[1]) else: images.append(image_url_components[0]) else: raise ValueError( "Unsupported message content type. " "Must either have type 'text' or type 'image_url' " "with a string 'image_url' field." ) ollama_messages.append( { "role": role, "content": content, "images": images, } ) return ollama_messages def _create_chat_stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> Iterator[str]: payload = { "model": self.model, "messages": self._convert_messages_to_ollama_messages(messages), } yield from self._create_stream( payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs ) async def _acreate_chat_stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> AsyncIterator[str]: payload = { "model": self.model, "messages": self._convert_messages_to_ollama_messages(messages), } async for stream_resp in self._acreate_stream( payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs ): yield stream_resp def _chat_stream_with_aggregation( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, verbose: bool = False, **kwargs: Any, ) -> ChatGenerationChunk: final_chunk: Optional[ChatGenerationChunk] = None for stream_resp in self._create_chat_stream(messages, stop, **kwargs): if stream_resp: chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp) if final_chunk is None: final_chunk = chunk else: final_chunk += chunk if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=verbose, ) if final_chunk is None: raise ValueError("No data received from Ollama stream.") return final_chunk async def _achat_stream_with_aggregation( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, verbose: bool = False, **kwargs: Any, ) -> ChatGenerationChunk: final_chunk: Optional[ChatGenerationChunk] = None async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs): if stream_resp: chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp) if final_chunk is None: final_chunk = chunk else: final_chunk += chunk if run_manager: await run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=verbose, ) if final_chunk is None: raise ValueError("No data received from Ollama stream.") return final_chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Call out to Ollama's generate endpoint. Args: messages: The list of base messages to pass into the model. stop: Optional list of stop words to use when generating. Returns: Chat generations from the model Example: .. code-block:: python response = ollama([ HumanMessage(content="Tell me about the history of AI") ]) """ final_chunk = self._chat_stream_with_aggregation( messages, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs, ) chat_generation = ChatGeneration( message=AIMessage(content=final_chunk.text), generation_info=final_chunk.generation_info, ) return ChatResult(generations=[chat_generation])
158999
"""SQLAlchemy wrapper around a database.""" from __future__ import annotations from typing import Any, Dict, Iterable, List, Literal, Optional, Sequence, Union import sqlalchemy from langchain_core._api import deprecated from langchain_core.utils import get_from_env from sqlalchemy import ( MetaData, Table, create_engine, inspect, select, text, ) from sqlalchemy.engine import URL, Engine, Result from sqlalchemy.exc import ProgrammingError, SQLAlchemyError from sqlalchemy.schema import CreateTable from sqlalchemy.sql.expression import Executable from sqlalchemy.types import NullType def _format_index(index: sqlalchemy.engine.interfaces.ReflectedIndex) -> str: return ( f'Name: {index["name"]}, Unique: {index["unique"]},' f' Columns: {str(index["column_names"])}' ) def truncate_word(content: Any, *, length: int, suffix: str = "...") -> str: """ Truncate a string to a certain number of words, based on the max string length. """ if not isinstance(content, str) or length <= 0: return content if len(content) <= length: return content return content[: length - len(suffix)].rsplit(" ", 1)[0] + suffix class SQLDatabase: """SQLAlchemy wrapper around a database.""" def __init__( self, engine: Engine, schema: Optional[str] = None, metadata: Optional[MetaData] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, indexes_in_table_info: bool = False, custom_table_info: Optional[dict] = None, view_support: bool = False, max_string_length: int = 300, lazy_table_reflection: bool = False, ): """Create engine from database URI.""" self._engine = engine self._schema = schema if include_tables and ignore_tables: raise ValueError("Cannot specify both include_tables and ignore_tables") self._inspector = inspect(self._engine) # including view support by adding the views as well as tables to the all # tables list if view_support is True self._all_tables = set( self._inspector.get_table_names(schema=schema) + (self._inspector.get_view_names(schema=schema) if view_support else []) ) self._include_tables = set(include_tables) if include_tables else set() if self._include_tables: missing_tables = self._include_tables - self._all_tables if missing_tables: raise ValueError( f"include_tables {missing_tables} not found in database" ) self._ignore_tables = set(ignore_tables) if ignore_tables else set() if self._ignore_tables: missing_tables = self._ignore_tables - self._all_tables if missing_tables: raise ValueError( f"ignore_tables {missing_tables} not found in database" ) usable_tables = self.get_usable_table_names() self._usable_tables = set(usable_tables) if usable_tables else self._all_tables if not isinstance(sample_rows_in_table_info, int): raise TypeError("sample_rows_in_table_info must be an integer") self._sample_rows_in_table_info = sample_rows_in_table_info self._indexes_in_table_info = indexes_in_table_info self._custom_table_info = custom_table_info if self._custom_table_info: if not isinstance(self._custom_table_info, dict): raise TypeError( "table_info must be a dictionary with table names as keys and the " "desired table info as values" ) # only keep the tables that are also present in the database intersection = set(self._custom_table_info).intersection(self._all_tables) self._custom_table_info = dict( (table, self._custom_table_info[table]) for table in self._custom_table_info if table in intersection ) self._max_string_length = max_string_length self._view_support = view_support self._metadata = metadata or MetaData() if not lazy_table_reflection: # including view support if view_support = true self._metadata.reflect( views=view_support, bind=self._engine, only=list(self._usable_tables), schema=self._schema, ) @classmethod def from_uri( cls, database_uri: Union[str, URL], engine_args: Optional[dict] = None, **kwargs: Any, ) -> SQLDatabase: """Construct a SQLAlchemy engine from URI.""" _engine_args = engine_args or {} return cls(create_engine(database_uri, **_engine_args), **kwargs) @classmethod def from_databricks( cls, catalog: str, schema: str, host: Optional[str] = None, api_token: Optional[str] = None, warehouse_id: Optional[str] = None, cluster_id: Optional[str] = None, engine_args: Optional[dict] = None, **kwargs: Any, ) -> SQLDatabase: """ Class method to create an SQLDatabase instance from a Databricks connection. This method requires the 'databricks-sql-connector' package. If not installed, it can be added using `pip install databricks-sql-connector`. Args: catalog (str): The catalog name in the Databricks database. schema (str): The schema name in the catalog. host (Optional[str]): The Databricks workspace hostname, excluding 'https://' part. If not provided, it attempts to fetch from the environment variable 'DATABRICKS_HOST'. If still unavailable and if running in a Databricks notebook, it defaults to the current workspace hostname. Defaults to None. api_token (Optional[str]): The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. If not provided, it attempts to fetch from 'DATABRICKS_TOKEN'. If still unavailable and running in a Databricks notebook, a temporary token for the current user is generated. Defaults to None. warehouse_id (Optional[str]): The warehouse ID in the Databricks SQL. If provided, the method configures the connection to use this warehouse. Cannot be used with 'cluster_id'. Defaults to None. cluster_id (Optional[str]): The cluster ID in the Databricks Runtime. If provided, the method configures the connection to use this cluster. Cannot be used with 'warehouse_id'. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to. Defaults to None. engine_args (Optional[dict]): The arguments to be used when connecting Databricks. Defaults to None. **kwargs (Any): Additional keyword arguments for the `from_uri` method. Returns: SQLDatabase: An instance of SQLDatabase configured with the provided Databricks connection details. Raises: ValueError: If 'databricks-sql-connector' is not found, or if both 'warehouse_id' and 'cluster_id' are provided, or if neither 'warehouse_id' nor 'cluster_id' are provided and it's not executing inside a Databricks notebook. """ try: from databricks import sql # noqa: F401 except ImportError: raise ImportError( "databricks-sql-connector package not found, please install with" " `pip install databricks-sql-connector`" ) context = None try: from dbruntime.databricks_repl_context import get_context context = get_context() default_host = context.browserHostName except (ImportError, AttributeError): default_host = None if host is None: host = get_from_env("host", "DATABRICKS_HOST", default_host) default_api_token = context.apiToken if context else None if api_token is None: api_token = get_from_env("api_token", "DATABRICKS_TOKEN", default_api_token) if warehouse_id is None and cluster_id is None: if context: cluster_id = context.clusterId else: raise ValueError( "Need to provide either 'warehouse_id' or 'cluster_id'." ) if warehouse_id and cluster_id: raise ValueError("Can't have both 'warehouse_id' or 'cluster_id'.") if warehouse_id: http_path = f"/sql/1.0/warehouses/{warehouse_id}" else: http_path = f"/sql/protocolv1/o/0/{cluster_id}" uri = ( f"databricks://token:{api_token}@{host}?" f"http_path={http_path}&catalog={catalog}&schema={schema}" ) return cls.from_uri(database_uri=uri, engine_args=engine_args, **kwargs)
159019
import logging from typing import Any logger = logging.getLogger(__name__) def __getattr__(name: str) -> Any: if name in "PythonREPL": raise AssertionError( "PythonREPL has been deprecated from langchain_community due to being " "flagged by security scanners. See: " "https://github.com/langchain-ai/langchain/issues/14345 " "If you need to use it, please use the version " "from langchain_experimental. " "from langchain_experimental.utilities.python import PythonREPL." ) raise AttributeError(f"module {__name__} has no attribute {name}")
159055
async def adelete_by_metadata_filter( self, filter: dict[str, Any], *, batch_size: int = 50, ) -> int: """Delete all documents matching a certain metadata filtering condition. This operation does not use the vector embeddings in any way, it simply removes all documents whose metadata match the provided condition. Args: filter: Filter on the metadata to apply. The filter cannot be empty. batch_size: amount of deletions per each batch (until exhaustion of the matching documents). Returns: A number expressing the amount of deleted documents. """ if not filter: msg = ( "Method `delete_by_metadata_filter` does not accept an empty " "filter. Use the `clear()` method if you really want to empty " "the vector store." ) raise ValueError(msg) return await self.table.afind_and_delete_entries( metadata=filter, batch_size=batch_size, ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 16, ttl_seconds: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Texts to add to the vectorstore. metadatas: Optional list of metadatas. ids: Optional list of IDs. batch_size: Number of concurrent requests to send to the server. ttl_seconds: Optional time-to-live for the added texts. Returns: List[str]: List of IDs of the added texts. """ _texts = list(texts) ids = ids or [uuid.uuid4().hex for _ in _texts] metadatas = metadatas or [{}] * len(_texts) ttl_seconds = ttl_seconds or self.ttl_seconds embedding_vectors = self.embedding.embed_documents(_texts) for i in range(0, len(_texts), batch_size): batch_texts = _texts[i : i + batch_size] batch_embedding_vectors = embedding_vectors[i : i + batch_size] batch_ids = ids[i : i + batch_size] batch_metadatas = metadatas[i : i + batch_size] futures = [ self.table.put_async( row_id=text_id, body_blob=text, vector=embedding_vector, metadata=metadata or {}, ttl_seconds=ttl_seconds, ) for text, embedding_vector, text_id, metadata in zip( batch_texts, batch_embedding_vectors, batch_ids, batch_metadatas ) ] for future in futures: future.result() return ids async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, concurrency: int = 16, ttl_seconds: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Texts to add to the vectorstore. metadatas: Optional list of metadatas. ids: Optional list of IDs. concurrency: Number of concurrent queries to the database. Defaults to 16. ttl_seconds: Optional time-to-live for the added texts. Returns: List[str]: List of IDs of the added texts. """ _texts = list(texts) ids = ids or [uuid.uuid4().hex for _ in _texts] _metadatas: List[dict] = metadatas or [{}] * len(_texts) ttl_seconds = ttl_seconds or self.ttl_seconds embedding_vectors = await self.embedding.aembed_documents(_texts) sem = asyncio.Semaphore(concurrency) async def send_concurrently( row_id: str, text: str, embedding_vector: List[float], metadata: dict ) -> None: async with sem: await self.table.aput( row_id=row_id, body_blob=text, vector=embedding_vector, metadata=metadata or {}, ttl_seconds=ttl_seconds, ) for i in range(0, len(_texts)): tasks = [ asyncio.create_task( send_concurrently( ids[i], _texts[i], embedding_vectors[i], _metadatas[i] ) ) ] await asyncio.gather(*tasks) return ids def replace_metadata( self, id_to_metadata: dict[str, dict], *, batch_size: int = 50, ) -> None: """Replace the metadata of documents. For each document to update, identified by its ID, the new metadata dictionary completely replaces what is on the store. This includes passing empty metadata `{}` to erase the currently-stored information. Args: id_to_metadata: map from the Document IDs to modify to the new metadata for updating. Keys in this dictionary that do not correspond to an existing document will not cause an error, rather will result in new rows being written into the Cassandra table but without an associated vector: hence unreachable through vector search. batch_size: Number of concurrent requests to send to the server. Returns: None if the writes succeed (otherwise an error is raised). """ ids_and_metadatas = list(id_to_metadata.items()) for i in range(0, len(ids_and_metadatas), batch_size): batch_i_m = ids_and_metadatas[i : i + batch_size] futures = [ self.table.put_async( row_id=doc_id, metadata=doc_md, ) for doc_id, doc_md in batch_i_m ] for future in futures: future.result() return async def areplace_metadata( self, id_to_metadata: dict[str, dict], *, concurrency: int = 50, ) -> None: """Replace the metadata of documents. For each document to update, identified by its ID, the new metadata dictionary completely replaces what is on the store. This includes passing empty metadata `{}` to erase the currently-stored information. Args: id_to_metadata: map from the Document IDs to modify to the new metadata for updating. Keys in this dictionary that do not correspond to an existing document will not cause an error, rather will result in new rows being written into the Cassandra table but without an associated vector: hence unreachable through vector search. concurrency: Number of concurrent queries to the database. Defaults to 50. Returns: None if the writes succeed (otherwise an error is raised). """ ids_and_metadatas = list(id_to_metadata.items()) sem = asyncio.Semaphore(concurrency) async def send_concurrently(doc_id: str, doc_md: dict) -> None: async with sem: await self.table.aput( row_id=doc_id, metadata=doc_md, ) for doc_id, doc_md in ids_and_metadatas: tasks = [asyncio.create_task(send_concurrently(doc_id, doc_md))] await asyncio.gather(*tasks) return @staticmethod def _row_to_document(row: Dict[str, Any]) -> Document: return Document( id=row["row_id"], page_content=row["body_blob"], metadata=row["metadata"], ) def get_by_document_id(self, document_id: str) -> Document | None: """Get by document ID. Args: document_id: the document ID to get. """ row = self.table.get(row_id=document_id) if row is None: return None return self._row_to_document(row=row) async def aget_by_document_id(self, document_id: str) -> Document | None: """Get by document ID. Args: document_id: the document ID to get. """ row = await self.table.aget(row_id=document_id) if row is None: return None return self._row_to_document(row=row) def metadata_search( self, metadata: dict[str, Any] = {}, # noqa: B006 n: int = 5, ) -> Iterable[Document]: """Get documents via a metadata search. Args: metadata: the metadata to query for. """ rows = self.table.find_entries(metadata=metadata, n=n) return [self._row_to_document(row=row) for row in rows if row] async def ametadata_search( self, metadata: dict[str, Any] = {}, # noqa: B006 n: int = 5, ) -> Iterable[Document]: """Get documents via a metadata search. Args: metadata: the metadata to query for. """ rows = await self.table.afind_entries(metadata=metadata, n=n) return [self._row_to_document(row=row) for row in rows]
159065
from __future__ import annotations import asyncio import base64 import itertools import json import logging import time import uuid from typing import ( TYPE_CHECKING, Any, Callable, ClassVar, Collection, Dict, Iterable, List, Literal, Optional, Tuple, Type, Union, cast, ) import numpy as np from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.exceptions import LangChainException from langchain_core.retrievers import BaseRetriever from langchain_core.utils import get_from_env from langchain_core.vectorstores import VectorStore from pydantic import ConfigDict, model_validator from langchain_community.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger() if TYPE_CHECKING: from azure.search.documents import SearchClient, SearchItemPaged from azure.search.documents.aio import ( AsyncSearchItemPaged, ) from azure.search.documents.aio import ( SearchClient as AsyncSearchClient, ) from azure.search.documents.indexes.models import ( CorsOptions, ScoringProfile, SearchField, SemanticConfiguration, VectorSearch, ) # Allow overriding field names for Azure Search FIELDS_ID = get_from_env( key="AZURESEARCH_FIELDS_ID", env_key="AZURESEARCH_FIELDS_ID", default="id" ) FIELDS_CONTENT = get_from_env( key="AZURESEARCH_FIELDS_CONTENT", env_key="AZURESEARCH_FIELDS_CONTENT", default="content", ) FIELDS_CONTENT_VECTOR = get_from_env( key="AZURESEARCH_FIELDS_CONTENT_VECTOR", env_key="AZURESEARCH_FIELDS_CONTENT_VECTOR", default="content_vector", ) FIELDS_METADATA = get_from_env( key="AZURESEARCH_FIELDS_TAG", env_key="AZURESEARCH_FIELDS_TAG", default="metadata" ) MAX_UPLOAD_BATCH_SIZE = 1000 def _get_search_client( endpoint: str, index_name: str, key: Optional[str] = None, azure_ad_access_token: Optional[str] = None, semantic_configuration_name: Optional[str] = None, fields: Optional[List[SearchField]] = None, vector_search: Optional[VectorSearch] = None, semantic_configurations: Optional[ Union[SemanticConfiguration, List[SemanticConfiguration]] ] = None, scoring_profiles: Optional[List[ScoringProfile]] = None, default_scoring_profile: Optional[str] = None, default_fields: Optional[List[SearchField]] = None, user_agent: Optional[str] = "langchain", cors_options: Optional[CorsOptions] = None, async_: bool = False, additional_search_client_options: Optional[Dict[str, Any]] = None, ) -> Union[SearchClient, AsyncSearchClient]: from azure.core.credentials import AccessToken, AzureKeyCredential, TokenCredential from azure.core.exceptions import ResourceNotFoundError from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential from azure.search.documents import SearchClient from azure.search.documents.aio import SearchClient as AsyncSearchClient from azure.search.documents.indexes import SearchIndexClient from azure.search.documents.indexes.models import ( ExhaustiveKnnAlgorithmConfiguration, ExhaustiveKnnParameters, HnswAlgorithmConfiguration, HnswParameters, SearchIndex, SemanticConfiguration, SemanticField, SemanticPrioritizedFields, SemanticSearch, VectorSearch, VectorSearchAlgorithmKind, VectorSearchAlgorithmMetric, VectorSearchProfile, ) additional_search_client_options = additional_search_client_options or {} default_fields = default_fields or [] credential: Union[AzureKeyCredential, TokenCredential, InteractiveBrowserCredential] # Determine the appropriate credential to use if key is not None: if key.upper() == "INTERACTIVE": credential = InteractiveBrowserCredential() credential.get_token("https://search.azure.com/.default") else: credential = AzureKeyCredential(key) elif azure_ad_access_token is not None: credential = TokenCredential( lambda *scopes, **kwargs: AccessToken( azure_ad_access_token, int(time.time()) + 3600 ) ) else: credential = DefaultAzureCredential() index_client: SearchIndexClient = SearchIndexClient( endpoint=endpoint, credential=credential, user_agent=user_agent ) try: index_client.get_index(name=index_name) except ResourceNotFoundError: # Fields configuration if fields is not None: # Check mandatory fields fields_types = {f.name: f.type for f in fields} mandatory_fields = {df.name: df.type for df in default_fields} # Check for missing keys missing_fields = { key: mandatory_fields[key] for key, value in set(mandatory_fields.items()) - set(fields_types.items()) } if len(missing_fields) > 0: # Helper for formatting field information for each missing field. def fmt_err(x: str) -> str: return ( f"{x} current type: '{fields_types.get(x, 'MISSING')}'. " f"It has to be '{mandatory_fields.get(x)}' or you can point " f"to a different '{mandatory_fields.get(x)}' field name by " f"using the env variable 'AZURESEARCH_FIELDS_{x.upper()}'" ) error = "\n".join([fmt_err(x) for x in missing_fields]) raise ValueError( f"You need to specify at least the following fields " f"{missing_fields} or provide alternative field names in the env " f"variables.\n\n{error}" ) else: fields = default_fields # Vector search configuration if vector_search is None: vector_search = VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="default", kind=VectorSearchAlgorithmKind.HNSW, parameters=HnswParameters( m=4, ef_construction=400, ef_search=500, metric=VectorSearchAlgorithmMetric.COSINE, ), ), ExhaustiveKnnAlgorithmConfiguration( name="default_exhaustive_knn", kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN, parameters=ExhaustiveKnnParameters( metric=VectorSearchAlgorithmMetric.COSINE ), ), ], profiles=[ VectorSearchProfile( name="myHnswProfile", algorithm_configuration_name="default", ), VectorSearchProfile( name="myExhaustiveKnnProfile", algorithm_configuration_name="default_exhaustive_knn", ), ], ) # Create the semantic settings with the configuration if semantic_configurations: if not isinstance(semantic_configurations, list): semantic_configurations = [semantic_configurations] semantic_search = SemanticSearch( configurations=semantic_configurations, default_configuration_name=semantic_configuration_name, ) elif semantic_configuration_name: # use default semantic configuration semantic_configuration = SemanticConfiguration( name=semantic_configuration_name, prioritized_fields=SemanticPrioritizedFields( content_fields=[SemanticField(field_name=FIELDS_CONTENT)], ), ) semantic_search = SemanticSearch(configurations=[semantic_configuration]) else: # don't use semantic search semantic_search = None # Create the search index with the semantic settings and vector search index = SearchIndex( name=index_name, fields=fields, vector_search=vector_search, semantic_search=semantic_search, scoring_profiles=scoring_profiles, default_scoring_profile=default_scoring_profile, cors_options=cors_options, ) index_client.create_index(index) # Create the search client if not async_: return SearchClient( endpoint=endpoint, index_name=index_name, credential=credential, user_agent=user_agent, **additional_search_client_options, ) else: return AsyncSearchClient( endpoint=endpoint, index_name=index_name, credential=credential, user_agent=user_agent, **additional_search_client_options, )
159066
class AzureSearch(VectorStore): """`Azure Cognitive Search` vector store.""" def __init__( self, azure_search_endpoint: str, azure_search_key: str, index_name: str, embedding_function: Union[Callable, Embeddings], search_type: str = "hybrid", semantic_configuration_name: Optional[str] = None, fields: Optional[List[SearchField]] = None, vector_search: Optional[VectorSearch] = None, semantic_configurations: Optional[ Union[SemanticConfiguration, List[SemanticConfiguration]] ] = None, scoring_profiles: Optional[List[ScoringProfile]] = None, default_scoring_profile: Optional[str] = None, cors_options: Optional[CorsOptions] = None, *, vector_search_dimensions: Optional[int] = None, additional_search_client_options: Optional[Dict[str, Any]] = None, azure_ad_access_token: Optional[str] = None, **kwargs: Any, ): try: from azure.search.documents.indexes.models import ( SearchableField, SearchField, SearchFieldDataType, SimpleField, ) except ImportError as e: raise ImportError( "Unable to import azure.search.documents. Please install with " "`pip install -U azure-search-documents`." ) from e """Initialize with necessary components.""" # Initialize base class self.embedding_function = embedding_function if isinstance(self.embedding_function, Embeddings): self.embed_query = self.embedding_function.embed_query else: self.embed_query = self.embedding_function default_fields = [ SimpleField( name=FIELDS_ID, type=SearchFieldDataType.String, key=True, filterable=True, ), SearchableField( name=FIELDS_CONTENT, type=SearchFieldDataType.String, ), SearchField( name=FIELDS_CONTENT_VECTOR, type=SearchFieldDataType.Collection(SearchFieldDataType.Single), searchable=True, vector_search_dimensions=vector_search_dimensions or len(self.embed_query("Text")), vector_search_profile_name="myHnswProfile", ), SearchableField( name=FIELDS_METADATA, type=SearchFieldDataType.String, ), ] user_agent = "langchain" if "user_agent" in kwargs and kwargs["user_agent"]: user_agent += " " + kwargs["user_agent"] self.client = _get_search_client( azure_search_endpoint, index_name, azure_search_key, azure_ad_access_token, semantic_configuration_name=semantic_configuration_name, fields=fields, vector_search=vector_search, semantic_configurations=semantic_configurations, scoring_profiles=scoring_profiles, default_scoring_profile=default_scoring_profile, default_fields=default_fields, user_agent=user_agent, cors_options=cors_options, additional_search_client_options=additional_search_client_options, ) self.async_client = _get_search_client( azure_search_endpoint, index_name, azure_search_key, azure_ad_access_token, semantic_configuration_name=semantic_configuration_name, fields=fields, vector_search=vector_search, semantic_configurations=semantic_configurations, scoring_profiles=scoring_profiles, default_scoring_profile=default_scoring_profile, default_fields=default_fields, user_agent=user_agent, cors_options=cors_options, async_=True, ) self.search_type = search_type self.semantic_configuration_name = semantic_configuration_name self.fields = fields if fields else default_fields self._azure_search_endpoint = azure_search_endpoint self._azure_search_key = azure_search_key self._index_name = index_name self._semantic_configuration_name = semantic_configuration_name self._fields = fields self._vector_search = vector_search self._semantic_configurations = semantic_configurations self._scoring_profiles = scoring_profiles self._default_scoring_profile = default_scoring_profile self._default_fields = default_fields self._user_agent = user_agent self._cors_options = cors_options def __del__(self) -> None: # Close the sync client if hasattr(self, "client") and self.client: self.client.close() # Close the async client if hasattr(self, "async_client") and self.async_client: # Check if we're in an existing event loop try: loop = asyncio.get_event_loop() if loop.is_running(): # Schedule the coroutine to close the async client loop.create_task(self.async_client.close()) else: # If no event loop is running, run the coroutine directly loop.run_until_complete(self.async_client.close()) except RuntimeError: # Handle the case where there's no event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: loop.run_until_complete(self.async_client.close()) finally: loop.close() @property def embeddings(self) -> Optional[Embeddings]: # TODO: Support embedding object directly return ( self.embedding_function if isinstance(self.embedding_function, Embeddings) else None ) async def _aembed_query(self, text: str) -> List[float]: if self.embeddings: return await self.embeddings.aembed_query(text) else: return cast(Callable, self.embedding_function)(text) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, *, keys: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add texts data to an existing index.""" # batching support if embedding function is an Embeddings object if isinstance(self.embedding_function, Embeddings): try: embeddings = self.embedding_function.embed_documents(list(texts)) except NotImplementedError: embeddings = [self.embedding_function.embed_query(x) for x in texts] else: embeddings = [self.embedding_function(x) for x in texts] if len(embeddings) == 0: logger.debug("Nothing to insert, skipping.") return [] # when `keys` are not passed in and there is `ids` in kwargs, use those instead # base class expects `ids` passed in rather than `keys` # https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65 if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)): keys = kwargs["ids"] return self.add_embeddings(zip(texts, embeddings), metadatas, keys=keys) async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, *, keys: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: if isinstance(self.embedding_function, Embeddings): try: embeddings = await self.embedding_function.aembed_documents(list(texts)) except NotImplementedError: embeddings = [ await self.embedding_function.aembed_query(x) for x in texts ] else: embeddings = [self.embedding_function(x) for x in texts] if len(embeddings) == 0: logger.debug("Nothing to insert, skipping.") return [] # when `keys` are not passed in and there is `ids` in kwargs, use those instead # base class expects `ids` passed in rather than `keys` # https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65 if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)): keys = kwargs["ids"] return await self.aadd_embeddings(zip(texts, embeddings), metadatas, keys=keys)
159070
async def asemantic_hybrid_search_with_score( self, query: str, k: int = 4, score_type: Literal["score", "reranker_score"] = "score", *, score_threshold: Optional[float] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. score_type: Must either be "score" or "reranker_score". Defaulted to "score". filters: Filtering expression. Returns: List[Tuple[Document, float]]: A list of documents and their corresponding scores. """ docs_and_scores = await self.asemantic_hybrid_search_with_score_and_rerank( query, k=k, **kwargs ) if score_type == "score": return [ (doc, score) for doc, score, _ in docs_and_scores if score_threshold is None or score >= score_threshold ] elif score_type == "reranker_score": return [ (doc, reranker_score) for doc, _, reranker_score in docs_and_scores if score_threshold is None or reranker_score >= score_threshold ] def semantic_hybrid_search_with_score_and_rerank( self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float, float]]: """Return docs most similar to query with a hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filters: Filtering expression. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import VectorizedQuery results = self.client.search( search_text=query, vector_queries=[ VectorizedQuery( vector=np.array(self.embed_query(query), dtype=np.float32).tolist(), k_nearest_neighbors=k, fields=FIELDS_CONTENT_VECTOR, ) ], filter=filters, query_type="semantic", semantic_configuration_name=self.semantic_configuration_name, query_caption="extractive", query_answer="extractive", top=k, **kwargs, ) # Get Semantic Answers semantic_answers = results.get_answers() or [] semantic_answers_dict: Dict = {} for semantic_answer in semantic_answers: semantic_answers_dict[semantic_answer.key] = { "text": semantic_answer.text, "highlights": semantic_answer.highlights, } # Convert results to Document objects docs = [ ( Document( page_content=result.pop(FIELDS_CONTENT), metadata={ **( {FIELDS_ID: result.pop(FIELDS_ID)} if FIELDS_ID in result else {} ), **( json.loads(result[FIELDS_METADATA]) if FIELDS_METADATA in result else { k: v for k, v in result.items() if k != FIELDS_CONTENT_VECTOR } ), **{ "captions": ( { "text": result.get("@search.captions", [{}])[ 0 ].text, "highlights": result.get("@search.captions", [{}])[ 0 ].highlights, } if result.get("@search.captions") else {} ), "answers": semantic_answers_dict.get( result.get(FIELDS_ID, ""), "", ), }, }, ), float(result["@search.score"]), float(result["@search.reranker_score"]), ) for result in results ] return docs async def asemantic_hybrid_search_with_score_and_rerank( self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float, float]]: """Return docs most similar to query with a hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filters: Filtering expression. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import VectorizedQuery vector = await self._aembed_query(query) results = await self.async_client.search( search_text=query, vector_queries=[ VectorizedQuery( vector=np.array(vector, dtype=np.float32).tolist(), k_nearest_neighbors=k, fields=FIELDS_CONTENT_VECTOR, ) ], filter=filters, query_type="semantic", semantic_configuration_name=self.semantic_configuration_name, query_caption="extractive", query_answer="extractive", top=k, **kwargs, ) # Get Semantic Answers semantic_answers = (await results.get_answers()) or [] semantic_answers_dict: Dict = {} for semantic_answer in semantic_answers: semantic_answers_dict[semantic_answer.key] = { "text": semantic_answer.text, "highlights": semantic_answer.highlights, } # Convert results to Document objects docs = [ ( Document( page_content=result.pop(FIELDS_CONTENT), metadata={ **( {FIELDS_ID: result.pop(FIELDS_ID)} if FIELDS_ID in result else {} ), **( json.loads(result[FIELDS_METADATA]) if FIELDS_METADATA in result else { k: v for k, v in result.items() if k != FIELDS_CONTENT_VECTOR } ), **{ "captions": ( { "text": result.get("@search.captions", [{}])[ 0 ].text, "highlights": result.get("@search.captions", [{}])[ 0 ].highlights, } if result.get("@search.captions") else {} ), "answers": semantic_answers_dict.get( result.get(FIELDS_ID, ""), "", ), }, }, ), float(result["@search.score"]), float(result["@search.reranker_score"]), ) async for result in results ] return docs @classmethod def from_texts( cls: Type[AzureSearch], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = "", azure_search_key: str = "", azure_ad_access_token: Optional[str] = None, index_name: str = "langchain-index", fields: Optional[List[SearchField]] = None, **kwargs: Any, ) -> AzureSearch: # Creating a new Azure Search instance azure_search = cls( azure_search_endpoint, azure_search_key, index_name, embedding, fields=fields, azure_ad_access_token=azure_ad_access_token, **kwargs, ) azure_search.add_texts(texts, metadatas, **kwargs) return azure_search @classmethod async def afrom_texts( cls: Type[AzureSearch], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = "", azure_search_key: str = "", azure_ad_access_token: Optional[str] = None, index_name: str = "langchain-index", fields: Optional[List[SearchField]] = None, **kwargs: Any, ) -> AzureSearch: # Creating a new Azure Search instance azure_search = cls( azure_search_endpoint, azure_search_key, index_name, embedding, fields=fields, azure_ad_access_token=azure_ad_access_token, **kwargs, ) await azure_search.aadd_texts(texts, metadatas, **kwargs) return azure_search
159084
class Aerospike(VectorStore): """`Aerospike` vector store. To use, you should have the ``aerospike_vector_search`` python package installed. """ def __init__( self, client: Client, embedding: Union[Embeddings, Callable], namespace: str, index_name: Optional[str] = None, vector_key: str = "_vector", text_key: str = "_text", id_key: str = "_id", set_name: Optional[str] = None, distance_strategy: Optional[ Union[DistanceStrategy, VectorDistanceMetric] ] = DistanceStrategy.EUCLIDEAN_DISTANCE, ): """Initialize with Aerospike client. Args: client: Aerospike client. embedding: Embeddings object or Callable (deprecated) to embed text. namespace: Namespace to use for storing vectors. This should match index_name: Name of the index previously created in Aerospike. This vector_key: Key to use for vector in metadata. This should match the key used during index creation. text_key: Key to use for text in metadata. id_key: Key to use for id in metadata. set_name: Default set name to use for storing vectors. distance_strategy: Distance strategy to use for similarity search This should match the distance strategy used during index creation. """ aerospike = _import_aerospike() if not isinstance(embedding, Embeddings): warnings.warn( "Passing in `embedding` as a Callable is deprecated. Please pass in an" " Embeddings object instead." ) if not isinstance(client, aerospike): raise ValueError( f"client should be an instance of aerospike_vector_search.Client, " f"got {type(client)}" ) self._client = client self._embedding = embedding self._text_key = text_key self._vector_key = vector_key self._id_key = id_key self._index_name = index_name self._namespace = namespace self._set_name = set_name self._distance_strategy = self.convert_distance_strategy(distance_strategy) @property def embeddings(self) -> Optional[Embeddings]: """Access the query embedding object if available.""" if isinstance(self._embedding, Embeddings): return self._embedding return None def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]: """Embed search docs.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_documents(list(texts)) return [self._embedding(t) for t in texts] def _embed_query(self, text: str) -> List[float]: """Embed query text.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_query(text) return self._embedding(text) @staticmethod def convert_distance_strategy( distance_strategy: Union[VectorDistanceMetric, DistanceStrategy], ) -> DistanceStrategy: """ Convert Aerospikes distance strategy to langchains DistanceStrategy enum. This is a convenience method to allow users to pass in the same distance metric used to create the index. """ from aerospike_vector_search.types import VectorDistanceMetric if isinstance(distance_strategy, DistanceStrategy): return distance_strategy if distance_strategy == VectorDistanceMetric.COSINE: return DistanceStrategy.COSINE if distance_strategy == VectorDistanceMetric.DOT_PRODUCT: return DistanceStrategy.DOT_PRODUCT if distance_strategy == VectorDistanceMetric.SQUARED_EUCLIDEAN: return DistanceStrategy.EUCLIDEAN_DISTANCE raise ValueError( "Unknown distance strategy, must be cosine, dot_product" ", or euclidean" ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, set_name: Optional[str] = None, embedding_chunk_size: int = 1000, index_name: Optional[str] = None, wait_for_index: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. set_name: Optional aerospike set name to add the texts to. batch_size: Batch size to use when adding the texts to the vectorstore. embedding_chunk_size: Chunk size to use when embedding the texts. index_name: Optional aerospike index name used for waiting for index completion. If not provided, the default index_name will be used. wait_for_index: If True, wait for the all the texts to be indexed before returning. Requires index_name to be provided. Defaults to True. kwargs: Additional keyword arguments to pass to the client upsert call. Returns: List of ids from adding the texts into the vectorstore. """ if set_name is None: set_name = self._set_name if index_name is None: index_name = self._index_name if wait_for_index and index_name is None: raise ValueError("if wait_for_index is True, index_name must be provided") texts = list(texts) ids = ids or [str(uuid.uuid4()) for _ in texts] # We need to shallow copy so that we can add the vector and text keys if metadatas: metadatas = [m.copy() for m in metadatas] else: metadatas = metadatas or [{} for _ in texts] for i in range(0, len(texts), embedding_chunk_size): chunk_texts = texts[i : i + embedding_chunk_size] chunk_ids = ids[i : i + embedding_chunk_size] chunk_metadatas = metadatas[i : i + embedding_chunk_size] embeddings = self._embed_documents(chunk_texts) for metadata, embedding, text in zip( chunk_metadatas, embeddings, chunk_texts ): metadata[self._vector_key] = embedding metadata[self._text_key] = text for id, metadata in zip(chunk_ids, chunk_metadatas): metadata[self._id_key] = id self._client.upsert( namespace=self._namespace, key=id, set_name=set_name, record_data=metadata, **kwargs, ) if wait_for_index: self._client.wait_for_index_completion( namespace=self._namespace, name=index_name, ) return ids def delete( self, ids: Optional[List[str]] = None, set_name: Optional[str] = None, **kwargs: Any, ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments to pass to client delete call. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ from aerospike_vector_search import AVSServerError if ids: for id in ids: try: self._client.delete( namespace=self._namespace, key=id, set_name=set_name, **kwargs, ) except AVSServerError: return False return True def similarity_search_with_score( self, query: str, k: int = 4, metadata_keys: Optional[List[str]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return aerospike documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. metadata_keys: List of metadata keys to return with the documents. If None, all metadata keys will be returned. Defaults to None. index_name: Name of the index to search. Overrides the default index_name. kwargs: Additional keyword arguments to pass to the search method. Returns: List of Documents most similar to the query and associated scores. """ return self.similarity_search_by_vector_with_score( self._embed_query(query), k=k, metadata_keys=metadata_keys, index_name=index_name, **kwargs, )
159088
from __future__ import annotations import logging from typing import Any, Iterable, List, Optional, Tuple, Union from uuid import uuid4 import numpy as np from langchain_core._api.deprecation import deprecated from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) DEFAULT_MILVUS_CONNECTION = { "host": "localhost", "port": "19530", "user": "", "password": "", "secure": False, } @deprecated( since="0.2.0", removal="1.0", alternative_import="langchain_milvus.MilvusVectorStore", ) class Milvus(VectorStore): """`Milvus` vector store. You need to install `pymilvus` and run Milvus. See the following documentation for how to run a Milvus instance: https://milvus.io/docs/install_standalone-docker.md If looking for a hosted Milvus, take a look at this documentation: https://zilliz.com/cloud and make use of the Zilliz vectorstore found in this project. IF USING L2/IP metric, IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA. Args: embedding_function (Embeddings): Function used to embed the text. collection_name (str): Which Milvus collection to use. Defaults to "LangChainCollection". collection_description (str): The description of the collection. Defaults to "". collection_properties (Optional[dict[str, any]]): The collection properties. Defaults to None. If set, will override collection existing properties. For example: {"collection.ttl.seconds": 60}. connection_args (Optional[dict[str, any]]): The connection args used for this class comes in the form of a dict. consistency_level (str): The consistency level to use for a collection. Defaults to "Session". index_params (Optional[dict]): Which index params to use. Defaults to HNSW/AUTOINDEX depending on service. search_params (Optional[dict]): Which search params to use. Defaults to default of index. drop_old (Optional[bool]): Whether to drop the current collection. Defaults to False. auto_id (bool): Whether to enable auto id for primary key. Defaults to False. If False, you needs to provide text ids (string less than 65535 bytes). If True, Milvus will generate unique integers as primary keys. primary_field (str): Name of the primary key field. Defaults to "pk". text_field (str): Name of the text field. Defaults to "text". vector_field (str): Name of the vector field. Defaults to "vector". metadata_field (str): Name of the metadata field. Defaults to None. When metadata_field is specified, the document's metadata will store as json. The connection args used for this class comes in the form of a dict, here are a few of the options: address (str): The actual address of Milvus instance. Example address: "localhost:19530" uri (str): The uri of Milvus instance. Example uri: "http://randomwebsite:19530", "tcp:foobarsite:19530", "https://ok.s3.south.com:19530". host (str): The host of Milvus instance. Default at "localhost", PyMilvus will fill in the default host if only port is provided. port (str/int): The port of Milvus instance. Default at 19530, PyMilvus will fill in the default port if only host is provided. user (str): Use which user to connect to Milvus instance. If user and password are provided, we will add related header in every RPC call. password (str): Required when user is provided. The password corresponding to the user. secure (bool): Default is false. If set to true, tls will be enabled. client_key_path (str): If use tls two-way authentication, need to write the client.key path. client_pem_path (str): If use tls two-way authentication, need to write the client.pem path. ca_pem_path (str): If use tls two-way authentication, need to write the ca.pem path. server_pem_path (str): If use tls one-way authentication, need to write the server.pem path. server_name (str): If use tls, need to write the common name. Example: .. code-block:: python from langchain_community.vectorstores import Milvus from langchain_community.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() # Connect to a milvus instance on localhost milvus_store = Milvus( embedding_function = Embeddings, collection_name = "LangChainCollection", drop_old = True, auto_id = True ) Raises: ValueError: If the pymilvus python package is not installed. """
159089
def __init__( self, embedding_function: Embeddings, collection_name: str = "LangChainCollection", collection_description: str = "", collection_properties: Optional[dict[str, Any]] = None, connection_args: Optional[dict[str, Any]] = None, consistency_level: str = "Session", index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False, auto_id: bool = False, *, primary_field: str = "pk", text_field: str = "text", vector_field: str = "vector", metadata_field: Optional[str] = None, partition_key_field: Optional[str] = None, partition_names: Optional[list] = None, replica_number: int = 1, timeout: Optional[float] = None, num_shards: Optional[int] = None, ): """Initialize the Milvus vector store.""" try: from pymilvus import Collection, utility except ImportError: raise ImportError( "Could not import pymilvus python package. " "Please install it with `pip install pymilvus`." ) # Default search params when one is not provided. self.default_search_params = { "IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}}, "IVF_SQ8": {"metric_type": "L2", "params": {"nprobe": 10}}, "IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}}, "HNSW": {"metric_type": "L2", "params": {"ef": 10}}, "RHNSW_FLAT": {"metric_type": "L2", "params": {"ef": 10}}, "RHNSW_SQ": {"metric_type": "L2", "params": {"ef": 10}}, "RHNSW_PQ": {"metric_type": "L2", "params": {"ef": 10}}, "IVF_HNSW": {"metric_type": "L2", "params": {"nprobe": 10, "ef": 10}}, "ANNOY": {"metric_type": "L2", "params": {"search_k": 10}}, "SCANN": {"metric_type": "L2", "params": {"search_k": 10}}, "AUTOINDEX": {"metric_type": "L2", "params": {}}, "GPU_CAGRA": { "metric_type": "L2", "params": { "itopk_size": 128, "search_width": 4, "min_iterations": 0, "max_iterations": 0, "team_size": 0, }, }, "GPU_IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}}, "GPU_IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}}, } self.embedding_func = embedding_function self.collection_name = collection_name self.collection_description = collection_description self.collection_properties = collection_properties self.index_params = index_params self.search_params = search_params self.consistency_level = consistency_level self.auto_id = auto_id # In order for a collection to be compatible, pk needs to be varchar self._primary_field = primary_field # In order for compatibility, the text field will need to be called "text" self._text_field = text_field # In order for compatibility, the vector field needs to be called "vector" self._vector_field = vector_field self._metadata_field = metadata_field self._partition_key_field = partition_key_field self.fields: list[str] = [] self.partition_names = partition_names self.replica_number = replica_number self.timeout = timeout self.num_shards = num_shards # Create the connection to the server if connection_args is None: connection_args = DEFAULT_MILVUS_CONNECTION self.alias = self._create_connection_alias(connection_args) self.col: Optional[Collection] = None # Grab the existing collection if it exists if utility.has_collection(self.collection_name, using=self.alias): self.col = Collection( self.collection_name, using=self.alias, ) if self.collection_properties is not None: self.col.set_properties(self.collection_properties) # If need to drop old, drop it if drop_old and isinstance(self.col, Collection): self.col.drop() self.col = None # Initialize the vector store self._init( partition_names=partition_names, replica_number=replica_number, timeout=timeout, ) @property def embeddings(self) -> Embeddings: return self.embedding_func def _create_connection_alias(self, connection_args: dict) -> str: """Create the connection to the Milvus server.""" from pymilvus import MilvusException, connections # Grab the connection arguments that are used for checking existing connection host: str = connection_args.get("host", None) port: Union[str, int] = connection_args.get("port", None) address: str = connection_args.get("address", None) uri: str = connection_args.get("uri", None) user = connection_args.get("user", None) # Order of use is host/port, uri, address if host is not None and port is not None: given_address = str(host) + ":" + str(port) elif uri is not None: if uri.startswith("https://"): given_address = uri.split("https://")[1] elif uri.startswith("http://"): given_address = uri.split("http://")[1] else: logger.error("Invalid Milvus URI: %s", uri) raise ValueError("Invalid Milvus URI: %s", uri) elif address is not None: given_address = address else: given_address = None logger.debug("Missing standard address type for reuse attempt") # User defaults to empty string when getting connection info if user is not None: tmp_user = user else: tmp_user = "" # If a valid address was given, then check if a connection exists if given_address is not None: for con in connections.list_connections(): addr = connections.get_connection_addr(con[0]) if ( con[1] and ("address" in addr) and (addr["address"] == given_address) and ("user" in addr) and (addr["user"] == tmp_user) ): logger.debug("Using previous connection: %s", con[0]) return con[0] # Generate a new connection if one doesn't exist alias = uuid4().hex try: connections.connect(alias=alias, **connection_args) logger.debug("Created new connection using: %s", alias) return alias except MilvusException as e: logger.error("Failed to create new connection using: %s", alias) raise e def _init( self, embeddings: Optional[list] = None, metadatas: Optional[list[dict]] = None, partition_names: Optional[list] = None, replica_number: int = 1, timeout: Optional[float] = None, ) -> None: if embeddings is not None: self._create_collection(embeddings, metadatas) self._extract_fields() self._create_index() self._create_search_params() self._load( partition_names=partition_names, replica_number=replica_number, timeout=timeout, )
159090
def _create_collection( self, embeddings: list, metadatas: Optional[list[dict]] = None ) -> None: from pymilvus import ( Collection, CollectionSchema, DataType, FieldSchema, MilvusException, ) from pymilvus.orm.types import infer_dtype_bydata # Determine embedding dim dim = len(embeddings[0]) fields = [] if self._metadata_field is not None: fields.append(FieldSchema(self._metadata_field, DataType.JSON)) else: # Determine metadata schema if metadatas: # Create FieldSchema for each entry in metadata. for key, value in metadatas[0].items(): # Infer the corresponding datatype of the metadata dtype = infer_dtype_bydata(value) # Datatype isn't compatible if dtype == DataType.UNKNOWN or dtype == DataType.NONE: logger.error( ( "Failure to create collection, " "unrecognized dtype for key: %s" ), key, ) raise ValueError(f"Unrecognized datatype for {key}.") # Dataype is a string/varchar equivalent elif dtype == DataType.VARCHAR: fields.append( FieldSchema(key, DataType.VARCHAR, max_length=65_535) ) else: fields.append(FieldSchema(key, dtype)) # Create the text field fields.append( FieldSchema(self._text_field, DataType.VARCHAR, max_length=65_535) ) # Create the primary key field if self.auto_id: fields.append( FieldSchema( self._primary_field, DataType.INT64, is_primary=True, auto_id=True ) ) else: fields.append( FieldSchema( self._primary_field, DataType.VARCHAR, is_primary=True, auto_id=False, max_length=65_535, ) ) # Create the vector field, supports binary or float vectors fields.append( FieldSchema(self._vector_field, infer_dtype_bydata(embeddings[0]), dim=dim) ) # Create the schema for the collection schema = CollectionSchema( fields, description=self.collection_description, partition_key_field=self._partition_key_field, ) # Create the collection try: if self.num_shards is not None: # Issue with defaults: # https://github.com/milvus-io/pymilvus/blob/59bf5e811ad56e20946559317fed855330758d9c/pymilvus/client/prepare.py#L82-L85 self.col = Collection( name=self.collection_name, schema=schema, consistency_level=self.consistency_level, using=self.alias, num_shards=self.num_shards, ) else: self.col = Collection( name=self.collection_name, schema=schema, consistency_level=self.consistency_level, using=self.alias, ) # Set the collection properties if they exist if self.collection_properties is not None: self.col.set_properties(self.collection_properties) except MilvusException as e: logger.error( "Failed to create collection: %s error: %s", self.collection_name, e ) raise e def _extract_fields(self) -> None: """Grab the existing fields from the Collection""" from pymilvus import Collection if isinstance(self.col, Collection): schema = self.col.schema for x in schema.fields: self.fields.append(x.name) def _get_index(self) -> Optional[dict[str, Any]]: """Return the vector index information if it exists""" from pymilvus import Collection if isinstance(self.col, Collection): for x in self.col.indexes: if x.field_name == self._vector_field: return x.to_dict() return None def _create_index(self) -> None: """Create a index on the collection""" from pymilvus import Collection, MilvusException if isinstance(self.col, Collection) and self._get_index() is None: try: # If no index params, use a default HNSW based one if self.index_params is None: self.index_params = { "metric_type": "L2", "index_type": "HNSW", "params": {"M": 8, "efConstruction": 64}, } try: self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) # If default did not work, most likely on Zilliz Cloud except MilvusException: # Use AUTOINDEX based index self.index_params = { "metric_type": "L2", "index_type": "AUTOINDEX", "params": {}, } self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) logger.debug( "Successfully created an index on collection: %s", self.collection_name, ) except MilvusException as e: logger.error( "Failed to create an index on collection: %s", self.collection_name ) raise e def _create_search_params(self) -> None: """Generate search params based on the current index type""" from pymilvus import Collection if isinstance(self.col, Collection) and self.search_params is None: index = self._get_index() if index is not None: index_type: str = index["index_param"]["index_type"] metric_type: str = index["index_param"]["metric_type"] self.search_params = self.default_search_params[index_type] self.search_params["metric_type"] = metric_type def _load( self, partition_names: Optional[list] = None, replica_number: int = 1, timeout: Optional[float] = None, ) -> None: """Load the collection if available.""" from pymilvus import Collection, utility from pymilvus.client.types import LoadState timeout = self.timeout or timeout if ( isinstance(self.col, Collection) and self._get_index() is not None and utility.load_state(self.collection_name, using=self.alias) == LoadState.NotLoad ): self.col.load( partition_names=partition_names, replica_number=replica_number, timeout=timeout, )
159116
@deprecated( since="0.0.18", removal="1.0", alternative_import="langchain_pinecone.Pinecone" ) class Pinecone(VectorStore): """`Pinecone` vector store. To use, you should have the ``pinecone-client`` python package installed. This version of Pinecone is deprecated. Please use `langchain_pinecone.Pinecone` instead. """ def __init__( self, index: Any, embedding: Union[Embeddings, Callable], text_key: str, namespace: Optional[str] = None, distance_strategy: Optional[DistanceStrategy] = DistanceStrategy.COSINE, ): """Initialize with Pinecone client.""" pinecone = _import_pinecone() if not isinstance(embedding, Embeddings): warnings.warn( "Passing in `embedding` as a Callable is deprecated. Please pass in an" " Embeddings object instead." ) if not isinstance(index, pinecone.Index): raise ValueError( f"client should be an instance of pinecone.Index, " f"got {type(index)}" ) self._index = index self._embedding = embedding self._text_key = text_key self._namespace = namespace self.distance_strategy = distance_strategy @property def embeddings(self) -> Optional[Embeddings]: """Access the query embedding object if available.""" if isinstance(self._embedding, Embeddings): return self._embedding return None def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]: """Embed search docs.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_documents(list(texts)) return [self._embedding(t) for t in texts] def _embed_query(self, text: str) -> List[float]: """Embed query text.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_query(text) return self._embedding(text) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Upsert optimization is done by chunking the embeddings and upserting them. This is done to avoid memory issues and optimize using HTTP based embeddings. For OpenAI embeddings, use pool_threads>4 when constructing the pinecone.Index, embedding_chunk_size>1000 and batch_size~64 for best performance. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. namespace: Optional pinecone namespace to add the texts to. batch_size: Batch size to use when adding the texts to the vectorstore. embedding_chunk_size: Chunk size to use when embedding the texts. Returns: List of ids from adding the texts into the vectorstore. """ if namespace is None: namespace = self._namespace texts = list(texts) ids = ids or [str(uuid.uuid4()) for _ in texts] metadatas = metadatas or [{} for _ in texts] for metadata, text in zip(metadatas, texts): metadata[self._text_key] = text # For loops to avoid memory issues and optimize when using HTTP based embeddings # The first loop runs the embeddings, it benefits when using OpenAI embeddings # The second loops runs the pinecone upsert asynchronously. for i in range(0, len(texts), embedding_chunk_size): chunk_texts = texts[i : i + embedding_chunk_size] chunk_ids = ids[i : i + embedding_chunk_size] chunk_metadatas = metadatas[i : i + embedding_chunk_size] embeddings = self._embed_documents(chunk_texts) async_res = [ self._index.upsert( vectors=batch, namespace=namespace, async_req=True, **kwargs, ) for batch in batch_iterate( batch_size, zip(chunk_ids, embeddings, chunk_metadatas) ) ] [res.get() for res in async_res] return ids def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ return self.similarity_search_by_vector_with_score( self._embed_query(query), k=k, filter=filter, namespace=namespace ) def similarity_search_by_vector_with_score( self, embedding: List[float], *, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to embedding, along with scores.""" if namespace is None: namespace = self._namespace docs = [] results = self._index.query( vector=[embedding], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] if self._text_key in metadata: text = metadata.pop(self._text_key) score = res["score"] docs.append((Document(page_content=text, metadata=metadata), score)) else: logger.warning( f"Found document with no `{self._text_key}` key. Skipping." ) return docs def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return pinecone documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, namespace=namespace, **kwargs ) return [doc for doc, _ in docs_and_scores] def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: return self._max_inner_product_relevance_score_fn elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return self._euclidean_relevance_score_fn else: raise ValueError( "Unknown distance strategy, must be cosine, max_inner_product " "(dot product), or euclidean" ) @staticmethod def _cosine_relevance_score_fn(score: float) -> float: """Pinecone returns cosine similarity scores between [-1,1]""" return (score + 1) / 2
159118
import asyncio from typing import Any, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import maximal_marginal_relevance DEFAULT_K = 4 # Number of Documents to return.
159142
def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query, in descending order of similarity. """ results = self.similarity_search_with_score( query=query, k=k, filter=filter, **kwargs ) return [doc for doc, _ in results] def similarity_search_with_score( self, query: str, k: int, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return documents most similar to query, along with scores. Args: query: Text to look up documents similar to. size: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query and score for each """ search_params = kwargs.get("search_params") or {} if len(search_params) == 0 or search_params.get("size") is None: search_params["size"] = k return self._search(query=query, filter=filter, **kwargs) @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, **kwargs: Any, ) -> "BESVectorStore": """Construct BESVectorStore wrapper from documents. Args: documents: List of documents to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. Do not provide if using a strategy that doesn't require inference. kwargs: create index key words arguments """ vectorStore = BESVectorStore._bes_vector_store(embedding=embedding, **kwargs) # Encode the provided texts and add them to the newly created index. vectorStore.add_documents(documents) return vectorStore @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> "BESVectorStore": """Construct BESVectorStore wrapper from raw documents. Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. kwargs: create index key words arguments """ vectorStore = BESVectorStore._bes_vector_store(embedding=embedding, **kwargs) # Encode the provided texts and add them to the newly created index. vectorStore.add_texts(texts, metadatas=metadatas, **kwargs) return vectorStore def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) embeddings = [] create_index_if_not_exists = kwargs.get("create_index_if_not_exists", True) ids = kwargs.get("ids", [str(uuid.uuid4()) for _ in texts]) refresh_indices = kwargs.get("refresh_indices", True) requests = [] if self.embedding is not None: embeddings = self.embedding.embed_documents(list(texts)) dims_length = len(embeddings[0]) if create_index_if_not_exists: self._create_index_if_not_exists(dims_length=dims_length) for i, (text, vector) in enumerate(zip(texts, embeddings)): metadata = metadatas[i] if metadatas else {} requests.append( { "_op_type": "index", "_index": self.index_name, self.query_field: text, self.vector_query_field: vector, "metadata": metadata, "_id": ids[i], } ) else: if create_index_if_not_exists: self._create_index_if_not_exists() for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} requests.append( { "_op_type": "index", "_index": self.index_name, self.query_field: text, "metadata": metadata, "_id": ids[i], } ) if len(requests) > 0: try: success, failed = bulk( self.client, requests, stats_only=True, refresh=refresh_indices ) logger.debug( f"Added {success} and failed to add {failed} texts to index" ) logger.debug(f"added texts {ids} to index") return ids except BulkIndexError as e: logger.error(f"Error adding texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to add to index") return [] @staticmethod def _bes_vector_store( embedding: Optional[Embeddings] = None, **kwargs: Any ) -> "BESVectorStore": index_name = kwargs.get("index_name") if index_name is None: raise ValueError("Please provide an index_name.") bes_url = kwargs.get("bes_url") if bes_url is None: raise ValueError("Please provided a valid bes connection url") return BESVectorStore(embedding=embedding, **kwargs)
159150
def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of documents most similar to the query text and distance for each. """ return self.similarity_search_with_score_by_vector( self._embed_query(query), k, filter=filter, search_params=search_params, offset=offset, score_threshold=score_threshold, consistency=consistency, **kwargs, ) @sync_call_fallback async def asimilarity_search_with_score( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of documents most similar to the query text and distance for each. """ query_embedding = await self._aembed_query(query) return await self.asimilarity_search_with_score_by_vector( query_embedding, k, filter=filter, search_params=search_params, offset=offset, score_threshold=score_threshold, consistency=consistency, **kwargs, ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents most similar to the query. """ results = self.similarity_search_with_score_by_vector( embedding, k, filter=filter, search_params=search_params, offset=offset, score_threshold=score_threshold, consistency=consistency, **kwargs, ) return list(map(itemgetter(0), results)) @sync_call_fallback async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of Documents most similar to the query. """ results = await self.asimilarity_search_with_score_by_vector( embedding, k, filter=filter, search_params=search_params, offset=offset, score_threshold=score_threshold, consistency=consistency, **kwargs, ) return list(map(itemgetter(0), results))
159151
def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of documents most similar to the query text and distance for each. """ if filter is not None and isinstance(filter, dict): warnings.warn( "Using dict as a `filter` is deprecated. Please use qdrant-client " "filters directly: " "https://qdrant.tech/documentation/concepts/filtering/", DeprecationWarning, ) qdrant_filter = self._qdrant_filter_from_dict(filter) else: qdrant_filter = filter query_vector = embedding if self.vector_name is not None: query_vector = (self.vector_name, embedding) # type: ignore[assignment] results = self.client.search( collection_name=self.collection_name, query_vector=query_vector, query_filter=qdrant_filter, search_params=search_params, limit=k, offset=offset, with_payload=True, with_vectors=False, # Langchain does not expect vectors to be returned score_threshold=score_threshold, consistency=consistency, **kwargs, ) return [ ( self._document_from_scored_point( result, self.collection_name, self.content_payload_key, self.metadata_payload_key, ), result.score, ) for result in results ] @sync_call_fallback async def asimilarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of documents most similar to the query text and distance for each. """ from qdrant_client.local.async_qdrant_local import AsyncQdrantLocal if self.async_client is None or isinstance( self.async_client._client, AsyncQdrantLocal ): raise NotImplementedError( "QdrantLocal cannot interoperate with sync and async clients" ) if filter is not None and isinstance(filter, dict): warnings.warn( "Using dict as a `filter` is deprecated. Please use qdrant-client " "filters directly: " "https://qdrant.tech/documentation/concepts/filtering/", DeprecationWarning, ) qdrant_filter = self._qdrant_filter_from_dict(filter) else: qdrant_filter = filter query_vector = embedding if self.vector_name is not None: query_vector = (self.vector_name, embedding) # type: ignore[assignment] results = await self.async_client.search( collection_name=self.collection_name, query_vector=query_vector, query_filter=qdrant_filter, search_params=search_params, limit=k, offset=offset, with_payload=True, with_vectors=False, # Langchain does not expect vectors to be returned score_threshold=score_threshold, consistency=consistency, **kwargs, ) return [ ( self._document_from_scored_point( result, self.collection_name, self.content_payload_key, self.metadata_payload_key, ), result.score, ) for result in results ] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents selected by maximal marginal relevance. """ query_embedding = self._embed_query(query) return self.max_marginal_relevance_search_by_vector( query_embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter, search_params=search_params, score_threshold=score_threshold, consistency=consistency, **kwargs, )
159156
@classmethod def construct_instance( cls: Type[Qdrant], texts: List[str], embedding: Embeddings, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, vector_name: Optional[str] = VECTOR_NAME, shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[common_types.HnswConfigDiff] = None, optimizers_config: Optional[common_types.OptimizersConfigDiff] = None, wal_config: Optional[common_types.WalConfigDiff] = None, quantization_config: Optional[common_types.QuantizationConfig] = None, init_from: Optional[common_types.InitFrom] = None, on_disk: Optional[bool] = None, force_recreate: bool = False, **kwargs: Any, ) -> Qdrant: try: import qdrant_client # noqa except ImportError: raise ImportError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) from grpc import RpcError from qdrant_client.http import models as rest from qdrant_client.http.exceptions import UnexpectedResponse # Just do a single quick embedding to get vector size partial_embeddings = embedding.embed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) collection_name = collection_name or uuid.uuid4().hex distance_func = distance_func.upper() client, async_client = cls._generate_clients( location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, **kwargs, ) try: # Skip any validation in case of forced collection recreate. if force_recreate: raise ValueError # Get the vector configuration of the existing collection and vector, if it # was specified. If the old configuration does not match the current one, # an exception is being thrown. collection_info = client.get_collection(collection_name=collection_name) current_vector_config = collection_info.config.params.vectors if isinstance(current_vector_config, dict) and vector_name is not None: if vector_name not in current_vector_config: raise QdrantException( f"Existing Qdrant collection {collection_name} does not " f"contain vector named {vector_name}. Did you mean one of the " f"existing vectors: {', '.join(current_vector_config.keys())}? " f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) current_vector_config = current_vector_config.get(vector_name) # type: ignore[assignment] elif isinstance(current_vector_config, dict) and vector_name is None: raise QdrantException( f"Existing Qdrant collection {collection_name} uses named vectors. " f"If you want to reuse it, please set `vector_name` to any of the " f"existing named vectors: " f"{', '.join(current_vector_config.keys())}." f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) elif ( not isinstance(current_vector_config, dict) and vector_name is not None ): raise QdrantException( f"Existing Qdrant collection {collection_name} doesn't use named " f"vectors. If you want to reuse it, please set `vector_name` to " f"`None`. If you want to recreate the collection, set " f"`force_recreate` parameter to `True`." ) # Check if the vector configuration has the same dimensionality. if current_vector_config.size != vector_size: # type: ignore[union-attr] raise QdrantException( f"Existing Qdrant collection is configured for vectors with " f"{current_vector_config.size} " # type: ignore[union-attr] f"dimensions. Selected embeddings are {vector_size}-dimensional. " f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) current_distance_func = ( current_vector_config.distance.name.upper() # type: ignore[union-attr] ) if current_distance_func != distance_func: raise QdrantException( f"Existing Qdrant collection is configured for " f"{current_distance_func} similarity, but requested " f"{distance_func}. Please set `distance_func` parameter to " f"`{current_distance_func}` if you want to reuse it. " f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) except (UnexpectedResponse, RpcError, ValueError): vectors_config = rest.VectorParams( size=vector_size, distance=rest.Distance[distance_func], on_disk=on_disk, ) # If vector name was provided, we're going to use the named vectors feature # with just a single vector. if vector_name is not None: vectors_config = { # type: ignore[assignment] vector_name: vectors_config, } client.recreate_collection( collection_name=collection_name, vectors_config=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, timeout=timeout, # type: ignore[arg-type] ) qdrant = cls( client=client, collection_name=collection_name, embeddings=embedding, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, distance_strategy=distance_func, vector_name=vector_name, async_client=async_client, ) return qdrant
159157
@classmethod async def aconstruct_instance( cls: Type[Qdrant], texts: List[str], embedding: Embeddings, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, vector_name: Optional[str] = VECTOR_NAME, shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[common_types.HnswConfigDiff] = None, optimizers_config: Optional[common_types.OptimizersConfigDiff] = None, wal_config: Optional[common_types.WalConfigDiff] = None, quantization_config: Optional[common_types.QuantizationConfig] = None, init_from: Optional[common_types.InitFrom] = None, on_disk: Optional[bool] = None, force_recreate: bool = False, **kwargs: Any, ) -> Qdrant: try: import qdrant_client # noqa except ImportError: raise ImportError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) from grpc import RpcError from qdrant_client.http import models as rest from qdrant_client.http.exceptions import UnexpectedResponse # Just do a single quick embedding to get vector size partial_embeddings = await embedding.aembed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) collection_name = collection_name or uuid.uuid4().hex distance_func = distance_func.upper() client, async_client = cls._generate_clients( location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, **kwargs, ) try: # Skip any validation in case of forced collection recreate. if force_recreate: raise ValueError # Get the vector configuration of the existing collection and vector, if it # was specified. If the old configuration does not match the current one, # an exception is being thrown. collection_info = client.get_collection(collection_name=collection_name) current_vector_config = collection_info.config.params.vectors if isinstance(current_vector_config, dict) and vector_name is not None: if vector_name not in current_vector_config: raise QdrantException( f"Existing Qdrant collection {collection_name} does not " f"contain vector named {vector_name}. Did you mean one of the " f"existing vectors: {', '.join(current_vector_config.keys())}? " f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) current_vector_config = current_vector_config.get(vector_name) # type: ignore[assignment] elif isinstance(current_vector_config, dict) and vector_name is None: raise QdrantException( f"Existing Qdrant collection {collection_name} uses named vectors. " f"If you want to reuse it, please set `vector_name` to any of the " f"existing named vectors: " f"{', '.join(current_vector_config.keys())}." f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) elif ( not isinstance(current_vector_config, dict) and vector_name is not None ): raise QdrantException( f"Existing Qdrant collection {collection_name} doesn't use named " f"vectors. If you want to reuse it, please set `vector_name` to " f"`None`. If you want to recreate the collection, set " f"`force_recreate` parameter to `True`." ) # Check if the vector configuration has the same dimensionality. if current_vector_config.size != vector_size: # type: ignore[union-attr] raise QdrantException( f"Existing Qdrant collection is configured for vectors with " f"{current_vector_config.size} " # type: ignore[union-attr] f"dimensions. Selected embeddings are {vector_size}-dimensional. " f"If you want to recreate the collection, set `force_recreate` " f"parameter to `True`." ) current_distance_func = ( current_vector_config.distance.name.upper() # type: ignore[union-attr] ) if current_distance_func != distance_func: raise QdrantException( f"Existing Qdrant collection is configured for " f"{current_vector_config.distance} " # type: ignore[union-attr] f"similarity. Please set `distance_func` parameter to " f"`{distance_func}` if you want to reuse it. If you want to " f"recreate the collection, set `force_recreate` parameter to " f"`True`." ) except (UnexpectedResponse, RpcError, ValueError): vectors_config = rest.VectorParams( size=vector_size, distance=rest.Distance[distance_func], on_disk=on_disk, ) # If vector name was provided, we're going to use the named vectors feature # with just a single vector. if vector_name is not None: vectors_config = { # type: ignore[assignment] vector_name: vectors_config, } client.recreate_collection( collection_name=collection_name, vectors_config=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, timeout=timeout, # type: ignore[arg-type] ) qdrant = cls( client=client, collection_name=collection_name, embeddings=embedding, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, distance_strategy=distance_func, vector_name=vector_name, async_client=async_client, ) return qdrant @staticmethod def _cosine_relevance_score_fn(distance: float) -> float: """Normalize the distance to a score on a scale [0, 1].""" return (distance + 1.0) / 2.0 def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.distance_strategy == "COSINE": return self._cosine_relevance_score_fn elif self.distance_strategy == "DOT": return self._max_inner_product_relevance_score_fn elif self.distance_strategy == "EUCLID": return self._euclidean_relevance_score_fn else: raise ValueError( "Unknown distance strategy, must be cosine, " "max_inner_product, or euclidean" ) def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """ return self.similarity_search_with_score(query, k, **kwargs)
159181
@deprecated( since="0.0.25", removal="1.0", alternative_import="langchain_mongodb.MongoDBAtlasVectorSearch", ) class MongoDBAtlasVectorSearch(VectorStore): """`MongoDB Atlas Vector Search` vector store. To use, you should have both: - the ``pymongo`` python package installed - a connection string associated with a MongoDB Atlas Cluster having deployed an Atlas Search index Example: .. code-block:: python from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_community.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch(collection, embeddings) """ def __init__( self, collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = "default", text_key: str = "text", embedding_key: str = "embedding", relevance_score_fn: str = "cosine", ): """ Args: collection: MongoDB collection to add the texts to. embedding: Text embedding model to use. text_key: MongoDB field that will contain the text for each document. embedding_key: MongoDB field that will contain the embedding for each document. index_name: Name of the Atlas Search index. relevance_score_fn: The similarity score used for the index. Currently supported: Euclidean, cosine, and dot product. """ self._collection = collection self._embedding = embedding self._index_name = index_name self._text_key = text_key self._embedding_key = embedding_key self._relevance_score_fn = relevance_score_fn @property def embeddings(self) -> Embeddings: return self._embedding def _select_relevance_score_fn(self) -> Callable[[float], float]: if self._relevance_score_fn == "euclidean": return self._euclidean_relevance_score_fn elif self._relevance_score_fn == "dotProduct": return self._max_inner_product_relevance_score_fn elif self._relevance_score_fn == "cosine": return self._cosine_relevance_score_fn else: raise NotImplementedError( f"No relevance score function for ${self._relevance_score_fn}" ) @classmethod def from_connection_string( cls, connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any, ) -> MongoDBAtlasVectorSearch: """Construct a `MongoDB Atlas Vector Search` vector store from a MongoDB connection URI. Args: connection_string: A valid MongoDB connection URI. namespace: A valid MongoDB namespace (database and collection). embedding: The text embedding model to use for the vector store. Returns: A new MongoDBAtlasVectorSearch instance. """ try: from importlib.metadata import version from pymongo import MongoClient from pymongo.driver_info import DriverInfo except ImportError: raise ImportError( "Could not import pymongo, please install it with " "`pip install pymongo`." ) client: MongoClient = MongoClient( connection_string, driver=DriverInfo(name="Langchain", version=version("langchain")), ) db_name, collection_name = namespace.split(".") collection = client[db_name][collection_name] return cls(collection, embedding, **kwargs) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> List: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List: if not texts: return [] # Embed and create the documents embeddings = self._embedding.embed_documents(texts) to_insert = [ {self._text_key: t, self._embedding_key: embedding, **m} for t, m, embedding in zip(texts, metadatas, embeddings) ] # insert the documents in MongoDB Atlas insert_result = self._collection.insert_many(to_insert) # type: ignore return insert_result.inserted_ids def _similarity_search_with_score( self, embedding: List[float], k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, ) -> List[Tuple[Document, float]]: params = { "queryVector": embedding, "path": self._embedding_key, "numCandidates": k * 10, "limit": k, "index": self._index_name, } if pre_filter: params["filter"] = pre_filter query = {"$vectorSearch": params} pipeline = [ query, {"$set": {"score": {"$meta": "vectorSearchScore"}}}, ] if post_filter_pipeline is not None: pipeline.extend(post_filter_pipeline) cursor = self._collection.aggregate(pipeline) # type: ignore[arg-type] docs = [] for res in cursor: text = res.pop(self._text_key) score = res.pop("score") docs.append((Document(page_content=text, metadata=res), score)) return docs def similarity_search_with_score( self, query: str, k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, ) -> List[Tuple[Document, float]]: """Return MongoDB documents most similar to the given query and their scores. Uses the vectorSearch operator available in MongoDB Atlas Search. For more: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/ Args: query: Text to look up documents similar to. k: (Optional) number of documents to return. Defaults to 4. pre_filter: (Optional) dictionary of argument(s) to prefilter document fields on. post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages following the vectorSearch stage. Returns: List of documents most similar to the query and their scores. """ embedding = self._embedding.embed_query(query) docs = self._similarity_search_with_score( embedding, k=k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, ) return docs def similarity_search( self, query: str, k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any, ) -> List[Document]: """Return MongoDB documents most similar to the given query. Uses the vectorSearch operator available in MongoDB Atlas Search. For more: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/ Args: query: Text to look up documents similar to. k: (Optional) number of documents to return. Defaults to 4. pre_filter: (Optional) dictionary of argument(s) to prefilter document fields on. post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages following the vectorSearch stage. Returns: List of documents most similar to the query and their scores. """ additional = kwargs.get("additional") docs_and_scores = self.similarity_search_with_score( query, k=k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, ) if additional and "similarity_score" in additional: for doc, score in docs_and_scores: doc.metadata["score"] = score return [doc for doc, _ in docs_and_scores]
159204
def _search_with_score_and_embeddings_by_vector( self, embedding: List[float], k: int = DEFAULT_TOP_K, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, ) -> List[Tuple[Document, List[float], float]]: from google.cloud import bigquery # Create an index if no index exists. if not self._have_index and not self._creating_index: self._initialize_vector_index() # Prepare filter filter_expr = "TRUE" if filter: filter_expressions = [] for i in filter.items(): if isinstance(i[1], float): expr = ( "ABS(CAST(JSON_VALUE(" f"base.`{self.metadata_field}`,'$.{i[0]}') " f"AS FLOAT64) - {i[1]}) " f"<= {sys.float_info.epsilon}" ) else: val = str(i[1]).replace('"', '\\"') expr = ( f"JSON_VALUE(base.`{self.metadata_field}`,'$.{i[0]}')" f' = "{val}"' ) filter_expressions.append(expr) filter_expression_str = " AND ".join(filter_expressions) filter_expr += f" AND ({filter_expression_str})" # Configure and run a query job. job_config = bigquery.QueryJobConfig( query_parameters=[ bigquery.ArrayQueryParameter("v", "FLOAT64", embedding), ], use_query_cache=False, priority=bigquery.QueryPriority.BATCH, ) if self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: distance_type = "EUCLIDEAN" elif self.distance_strategy == DistanceStrategy.COSINE: distance_type = "COSINE" # Default to EUCLIDEAN_DISTANCE else: distance_type = "EUCLIDEAN" if brute_force: options_string = ",options => '{\"use_brute_force\":true}'" elif fraction_lists_to_search: if fraction_lists_to_search == 0 or fraction_lists_to_search >= 1.0: raise ValueError( "`fraction_lists_to_search` must be between " "0.0 and 1.0" ) options_string = ( ',options => \'{"fraction_lists_to_search":' f"{fraction_lists_to_search}}}'" ) else: options_string = "" query = f""" SELECT base.*, distance AS _vector_search_distance FROM VECTOR_SEARCH( TABLE `{self.full_table_id}`, "{self.text_embedding_field}", (SELECT @v AS {self.text_embedding_field}), distance_type => "{distance_type}", top_k => {k} {options_string} ) WHERE {filter_expr} LIMIT {k} """ document_tuples: List[Tuple[Document, List[float], float]] = [] # TODO(vladkol): Use jobCreationMode=JOB_CREATION_OPTIONAL when available. job = self.bq_client.query( query, job_config=job_config, api_method=bigquery.enums.QueryApiMethod.QUERY ) # Process job results. for row in job: metadata = row[self.metadata_field] if metadata: if not isinstance(metadata, dict): metadata = json.loads(metadata) else: metadata = {} metadata["__id"] = row[self.doc_id_field] metadata["__job_id"] = job.job_id doc = Document(page_content=row[self.content_field], metadata=metadata) document_tuples.append( (doc, row[self.text_embedding_field], row["_vector_search_distance"]) ) return document_tuples def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = DEFAULT_TOP_K, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter on metadata properties, e.g. { "str_property": "foo", "int_property": 123 } brute_force: Whether to use brute force search. Defaults to False. fraction_lists_to_search: Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service's default which is 0.05. Returns: List of Documents most similar to the query vector with distance. """ del kwargs document_tuples = self._search_with_score_and_embeddings_by_vector( embedding, k, filter, brute_force, fraction_lists_to_search ) return [(doc, distance) for doc, _, distance in document_tuples] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_TOP_K, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter on metadata properties, e.g. { "str_property": "foo", "int_property": 123 } brute_force: Whether to use brute force search. Defaults to False. fraction_lists_to_search: Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service's default which is 0.05. Returns: List of Documents most similar to the query vector. """ tuples = self.similarity_search_with_score_by_vector( embedding, k, filter, brute_force, fraction_lists_to_search, **kwargs ) return [i[0] for i in tuples] def similarity_search_with_score( self, query: str, k: int = DEFAULT_TOP_K, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with score. Args: query: search query text. k: Number of Documents to return. Defaults to 4. filter: Filter on metadata properties, e.g. { "str_property": "foo", "int_property": 123 } brute_force: Whether to use brute force search. Defaults to False. fraction_lists_to_search: Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service's default which is 0.05. Returns: List of Documents most similar to the query vector, with similarity scores. """ emb = self.embedding_model.embed_query(query) # type: ignore return self.similarity_search_with_score_by_vector( emb, k, filter, brute_force, fraction_lists_to_search, **kwargs ) def similarity_search( self, query: str, k: int = DEFAULT_TOP_K, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search. Args: query: search query text. k: Number of Documents to return. Defaults to 4. filter: Filter on metadata properties, e.g. { "str_property": "foo", "int_property": 123 } brute_force: Whether to use brute force search. Defaults to False. fraction_lists_to_search: Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service's default which is 0.05. Returns: List of Documents most similar to the query vector. """ tuples = self.similarity_search_with_score( query, k, filter, brute_force, fraction_lists_to_search, **kwargs ) return [i[0] for i in tuples] def _select_relevance_score_fn(self) -> Callable[[float], float]: if self.distance_strategy == DistanceStrategy.COSINE: return BigQueryVectorSearch._cosine_relevance_score_fn else: raise ValueError( "Relevance score is not supported " f"for `{self.distance_strategy}` distance." )
159208
def _construct_documents_from_results_without_score( self, results: Dict[str, List[Dict[str, str]]] ) -> List[Document]: """Helper to convert Marqo results into documents. Args: results (List[dict]): A marqo results object with the 'hits'. include_scores (bool, optional): Include scores alongside documents. Defaults to False. Returns: Union[List[Document], List[Tuple[Document, float]]]: The documents or document score pairs if `include_scores` is true. """ documents: List[Document] = [] for res in results["hits"]: if self.page_content_builder is None: text = res["text"] else: text = self.page_content_builder(res) metadata = json.loads(res.get("metadata", "{}")) documents.append(Document(page_content=text, metadata=metadata)) return documents def marqo_similarity_search( self, query: Union[str, Dict[str, float]], k: int = 4, ) -> Dict[str, List[Dict[str, str]]]: """Return documents from Marqo exposing Marqo's output directly Args: query (str): The query to search with. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Dict[str, Any]]: This hits from marqo. """ results = self._client.index(self._index_name).search( q=query, searchable_attributes=self._searchable_attributes, limit=k ) return results def marqo_bulk_similarity_search( self, queries: Iterable[Union[str, Dict[str, float]]], k: int = 4 ) -> Dict[str, List[Dict[str, List[Dict[str, str]]]]]: """Return documents from Marqo using a bulk search, exposes Marqo's output directly Args: queries (Iterable[Union[str, Dict[str, float]]]): A list of queries. k (int, optional): The number of documents to return for each query. Defaults to 4. Returns: Dict[str, Dict[List[Dict[str, Dict[str, Any]]]]]: A bulk search results object """ bulk_results = { "result": [ self._client.index(self._index_name).search( q=query, searchable_attributes=self._searchable_attributes, limit=k ) for query in queries ] } return bulk_results @classmethod def from_documents( cls: Type[Marqo], documents: List[Document], embedding: Union[Embeddings, None] = None, **kwargs: Any, ) -> Marqo: """Return VectorStore initialized from documents. Note that Marqo does not need embeddings, we retain the parameter to adhere to the Liskov substitution principle. Args: documents (List[Document]): Input documents embedding (Any, optional): Embeddings (not required). Defaults to None. Returns: VectorStore: A Marqo vectorstore """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts(texts, metadatas=metadatas, **kwargs) @classmethod def from_texts( cls, texts: List[str], embedding: Any = None, metadatas: Optional[List[dict]] = None, index_name: str = "", url: str = "http://localhost:8882", api_key: str = "", add_documents_settings: Optional[Dict[str, Any]] = None, searchable_attributes: Optional[List[str]] = None, page_content_builder: Optional[Callable[[Dict[str, str]], str]] = None, index_settings: Optional[Dict[str, Any]] = None, verbose: bool = True, **kwargs: Any, ) -> Marqo: """Return Marqo initialized from texts. Note that Marqo does not need embeddings, we retain the parameter to adhere to the Liskov substitution principle. This is a quick way to get started with marqo - simply provide your texts and metadatas and this will create an instance of the data store and index the provided data. To know the ids of your documents with this approach you will need to include them in under the key "_id" in your metadatas for each text Example: .. code-block:: python from langchain_community.vectorstores import Marqo datastore = Marqo(texts=['text'], index_name='my-first-index', url='http://localhost:8882') Args: texts (List[str]): A list of texts to index into marqo upon creation. embedding (Any, optional): Embeddings (not required). Defaults to None. index_name (str, optional): The name of the index to use, if none is provided then one will be created with a UUID. Defaults to None. url (str, optional): The URL for Marqo. Defaults to "http://localhost:8882". api_key (str, optional): The API key for Marqo. Defaults to "". metadatas (Optional[List[dict]], optional): A list of metadatas, to accompany the texts. Defaults to None. this is only used when a new index is being created. Defaults to "cpu". Can be "cpu" or "cuda". add_documents_settings (Optional[Dict[str, Any]], optional): Settings for adding documents, see https://docs.marqo.ai/0.0.16/API-Reference/documents/#query-parameters. Defaults to {}. index_settings (Optional[Dict[str, Any]], optional): Index settings if the index doesn't exist, see https://docs.marqo.ai/0.0.16/API-Reference/indexes/#index-defaults-object. Defaults to {}. Returns: Marqo: An instance of the Marqo vector store """ try: import marqo except ImportError: raise ImportError( "Could not import marqo python package. " "Please install it with `pip install marqo`." ) if not index_name: index_name = str(uuid.uuid4()) client = marqo.Client(url=url, api_key=api_key) try: client.create_index(index_name, settings_dict=index_settings or {}) if verbose: print(f"Created {index_name} successfully.") # noqa: T201 except Exception: if verbose: print(f"Index {index_name} exists.") # noqa: T201 instance: Marqo = cls( client, index_name, searchable_attributes=searchable_attributes, add_documents_settings=add_documents_settings or {}, page_content_builder=page_content_builder, ) instance.add_texts(texts, metadatas) return instance def get_indexes(self) -> List[Dict[str, str]]: """Helper to see your available indexes in marqo, useful if the from_texts method was used without an index name specified Returns: List[Dict[str, str]]: The list of indexes """ return self._client.get_indexes()["results"] def get_number_of_documents(self) -> int: """Helper to see the number of documents in the index Returns: int: The number of documents """ return self._client.index(self._index_name).get_stats()["numberOfDocuments"]
159212
class DocumentDBVectorSearch(VectorStore): """`Amazon DocumentDB (with MongoDB compatibility)` vector store. Please refer to the official Vector Search documentation for more details: https://docs.aws.amazon.com/documentdb/latest/developerguide/vector-search.html To use, you should have both: - the ``pymongo`` python package installed - a connection string and credentials associated with a DocumentDB cluster Example: . code-block:: python from langchain_community.vectorstores import DocumentDBVectorSearch from langchain_community.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = DocumentDBVectorSearch(collection, embeddings) """ def __init__( self, collection: Collection[DocumentDBDocumentType], embedding: Embeddings, *, index_name: str = "vectorSearchIndex", text_key: str = "textContent", embedding_key: str = "vectorContent", ): """Constructor for DocumentDBVectorSearch Args: collection: MongoDB collection to add the texts to. embedding: Text embedding model to use. index_name: Name of the Vector Search index. text_key: MongoDB field that will contain the text for each document. embedding_key: MongoDB field that will contain the embedding for each document. """ self._collection = collection self._embedding = embedding self._index_name = index_name self._text_key = text_key self._embedding_key = embedding_key self._similarity_type = DocumentDBSimilarityType.COS @property def embeddings(self) -> Embeddings: return self._embedding def get_index_name(self) -> str: """Returns the index name Returns: Returns the index name """ return self._index_name @classmethod def from_connection_string( cls, connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any, ) -> DocumentDBVectorSearch: """Creates an Instance of DocumentDBVectorSearch from a Connection String Args: connection_string: The DocumentDB cluster endpoint connection string namespace: The namespace (database.collection) embedding: The embedding utility **kwargs: Dynamic keyword arguments Returns: an instance of the vector store """ try: from pymongo import MongoClient except ImportError: raise ImportError( "Could not import pymongo, please install it with " "`pip install pymongo`." ) client: MongoClient = MongoClient(connection_string) db_name, collection_name = namespace.split(".") collection = client[db_name][collection_name] return cls(collection, embedding, **kwargs) def index_exists(self) -> bool: """Verifies if the specified index name during instance construction exists on the collection Returns: Returns True on success and False if no such index exists on the collection """ cursor = self._collection.list_indexes() index_name = self._index_name for res in cursor: current_index_name = res.pop("name") if current_index_name == index_name: return True return False def delete_index(self) -> None: """Deletes the index specified during instance construction if it exists""" if self.index_exists(): self._collection.drop_index(self._index_name) # Raises OperationFailure on an error (e.g. trying to drop # an index that does not exist) def create_index( self, dimensions: int = 1536, similarity: DocumentDBSimilarityType = DocumentDBSimilarityType.COS, m: int = 16, ef_construction: int = 64, ) -> dict[str, Any]: """Creates an index using the index name specified at instance construction Args: dimensions: Number of dimensions for vector similarity. The maximum number of supported dimensions is 2000 similarity: Similarity algorithm to use with the HNSW index. Possible options are: - DocumentDBSimilarityType.COS (cosine distance), - DocumentDBSimilarityType.EUC (Euclidean distance), and - DocumentDBSimilarityType.DOT (dot product). m: Specifies the max number of connections for an HNSW index. Large impact on memory consumption. ef_construction: Specifies the size of the dynamic candidate list for constructing the graph for HNSW index. Higher values lead to more accurate results but slower indexing speed. Returns: An object describing the created index """ self._similarity_type = similarity # prepare the command create_index_commands = { "createIndexes": self._collection.name, "indexes": [ { "name": self._index_name, "key": {self._embedding_key: "vector"}, "vectorOptions": { "type": "hnsw", "similarity": similarity, "dimensions": dimensions, "m": m, "efConstruction": ef_construction, }, } ], } # retrieve the database object current_database = self._collection.database # invoke the command from the database object create_index_responses: dict[str, Any] = current_database.command( create_index_commands ) return create_index_responses def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> List: batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List: """Used to Load Documents into the collection Args: texts: The list of documents strings to load metadatas: The list of metadata objects associated with each document Returns: """ # If the text is empty, then exit early if not texts: return [] # Embed and create the documents embeddings = self._embedding.embed_documents(texts) to_insert = [ {self._text_key: t, self._embedding_key: embedding, **m} for t, m, embedding in zip(texts, metadatas, embeddings) ] # insert the documents in DocumentDB insert_result = self._collection.insert_many(to_insert) # type: ignore return insert_result.inserted_ids @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[Collection[DocumentDBDocumentType]] = None, **kwargs: Any, ) -> DocumentDBVectorSearch: if collection is None: raise ValueError("Must provide 'collection' named parameter.") vectorstore = cls(collection, embedding, **kwargs) vectorstore.add_texts(texts, metadatas=metadatas) return vectorstore def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: if ids is None: raise ValueError("No document ids provided to delete.") for document_id in ids: self.delete_document_by_id(document_id) return True def delete_document_by_id(self, document_id: Optional[str] = None) -> None: """Removes a Specific Document by Id Args: document_id: The document identifier """ try: from bson.objectid import ObjectId except ImportError as e: raise ImportError( "Unable to import bson, please install with `pip install bson`." ) from e if document_id is None: raise ValueError("No document id provided to delete.") self._collection.delete_one({"_id": ObjectId(document_id)})
159213
def _similarity_search_without_score( self, embeddings: List[float], k: int = 4, ef_search: int = 40, filter: Optional[Dict[str, Any]] = None, ) -> List[Document]: """Returns a list of documents. Args: embeddings: The query vector k: the number of documents to return ef_search: Specifies the size of the dynamic candidate list that HNSW index uses during search. A higher value of efSearch provides better recall at cost of speed. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: A list of documents closest to the query vector """ # $match can't be null, so intializes to {} when None to avoid # "the match filter must be an expression in an object" if not filter: filter = {} pipeline: List[dict[str, Any]] = [ {"$match": filter}, { "$search": { "vectorSearch": { "vector": embeddings, "path": self._embedding_key, "similarity": self._similarity_type, "k": k, "efSearch": ef_search, } }, }, ] cursor = self._collection.aggregate(pipeline) docs = [] for res in cursor: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def similarity_search( self, query: str, k: int = 4, ef_search: int = 40, *, filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: embeddings = self._embedding.embed_query(query) docs = self._similarity_search_without_score( embeddings=embeddings, k=k, ef_search=ef_search, filter=filter ) return [doc for doc in docs]
159216
def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" documents = self.similarity_search_with_score(query=query, k=k) return [doc for doc, _ in documents] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results with score. Args: query (str): The text being searched. k (int, optional): The amount of results to return. Defaults to 4. Returns: List[Tuple[Document, float]] """ embed = self._embedding.embed_query(query) # type: ignore documents = self.similarity_search_with_score_by_vector(embedding=embed, k=k) return documents def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: res = self.similarity_search_with_score_by_vector(embedding, k) return [doc for doc, _ in res] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of pair (Documents, score) most similar to the query vector. """ if self._output_fields is None: query_str = ( "select v, score(v) from " + self._entity_name + " v where v." + self._vectorfield + " <-> " + json.dumps(embedding) + "~" + str(k) ) else: query_proj = "select " for field in self._output_fields[:-1]: query_proj = query_proj + "v." + field + "," query_proj = query_proj + "v." + self._output_fields[-1] query_str = ( query_proj + ", score(v) from " + self._entity_name + " v where v." + self._vectorfield + " <-> " + json.dumps(embedding) + "~" + str(k) ) query_res = self.ispn.req_query(query_str, self._cache_name) result = json.loads(query_res.text) return self._query_result_to_docs(result) def _query_result_to_docs( self, result: dict[str, Any] ) -> List[Tuple[Document, float]]: documents = [] for row in result["hits"]: hit = row["hit"] or {} if self._output_fields is None: entity = hit["*"] else: entity = {key: hit.get(key) for key in self._output_fields} doc = Document( page_content=self._to_content(entity), metadata=self._to_metadata(entity), ) documents.append((doc, hit["score()"])) return documents def configure(self, metadata: dict, dimension: int) -> None: schema = self.schema_builder(metadata, dimension) output = self.schema_create(schema) assert ( output.status_code == self.ispn.Codes.OK ), "Unable to create schema. Already exists? " "Consider using clear_old=True" assert json.loads(output.text)["error"] is None if not self.cache_exists(): output = self.cache_create() assert ( output.status_code == self.ispn.Codes.OK ), "Unable to create cache. Already exists? " "Consider using clear_old=True" # Ensure index is clean self.cache_index_clear() def config_clear(self) -> None: self.schema_delete() self.cache_delete() @classmethod def from_texts( cls: Type[InfinispanVS], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, clear_old: Optional[bool] = True, auto_config: Optional[bool] = True, **kwargs: Any, ) -> InfinispanVS: """Return VectorStore initialized from texts and embeddings. In addition to parameters described by the super method, this implementation provides other configuration params if different configuration from default is needed. Parameters ---------- ids : List[str] Additional list of keys associated to the embedding. If not provided UUIDs will be generated clear_old : bool Whether old data must be deleted. Default True auto_config: bool Whether to do a complete server setup (caches, protobuf definition...). Default True kwargs: Any Rest of arguments passed to InfinispanVS. See docs""" infinispanvs = cls(embedding=embedding, ids=ids, **kwargs) if auto_config and len(metadatas or []) > 0: if clear_old: infinispanvs.config_clear() vec = embedding.embed_query(texts[len(texts) - 1]) metadatas = cast(List[dict], metadatas) infinispanvs.configure(metadatas[0], len(vec)) else: if clear_old: infinispanvs.cache_clear() vec = embedding.embed_query(texts[len(texts) - 1]) if texts: infinispanvs.add_texts(texts, metadatas, vector=vec) return infinispanvs REST_TIMEOUT = 10
159227
add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) embeddings = self._embed_documents(texts) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids) async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore asynchronously. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) embeddings = await self._aembed_documents(texts) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids) def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add the given texts and embeddings to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ # Embed and create the documents. texts, embeddings = zip(*text_embeddings) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids) def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Union[Callable, Dict[str, Any]]]): Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. **kwargs: kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity. """ faiss = dependable_faiss_import() vector = np.array([embedding], dtype=np.float32) if self._normalize_L2: faiss.normalize_L2(vector) scores, indices = self.index.search(vector, k if filter is None else fetch_k) docs = [] if filter is not None: filter_func = self._create_filter_func(filter) for j, i in enumerate(indices[0]): if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") if filter is not None: if filter_func(doc.metadata): docs.append((doc, scores[0][j])) else: docs.append((doc, scores[0][j])) score_threshold = kwargs.get("score_threshold") if score_threshold is not None: cmp = ( operator.ge if self.distance_strategy in (DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.JACCARD) else operator.le ) docs = [ (doc, similarity) for doc, similarity in docs if cmp(similarity, score_threshold) ] return docs[:k] async def asimilarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query asynchronously. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, Any]]): Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. **kwargs: kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity. """ # This is a temporary workaround to make the similarity search asynchronous. return await run_in_executor( None, self.similarity_search_with_score_by_vector, embedding, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. """ embedding = self._embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return docs async def asimilarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query asynchronously. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. """ embedding = await self._aembed_query(query) docs = await self.asimilarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return docs
159231
_select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided in # vectorstore constructor if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: return self._max_inner_product_relevance_score_fn elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: # Default behavior is to use euclidean distance relevancy return self._euclidean_relevance_score_fn elif self.distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn else: raise ValueError( "Unknown distance strategy, must be cosine, max_inner_product," " or euclidean" ) def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores on a scale from 0 to 1.""" # Pop score threshold so that only relevancy scores, not raw scores, are # filtered. relevance_score_fn = self._select_relevance_score_fn() if relevance_score_fn is None: raise ValueError( "relevance_score_fn must be provided to" " FAISS constructor to normalize scores" ) docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) docs_and_rel_scores = [ (doc, relevance_score_fn(score)) for doc, score in docs_and_scores ] return docs_and_rel_scores async def _asimilarity_search_with_relevance_scores( self, query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores on a scale from 0 to 1.""" # Pop score threshold so that only relevancy scores, not raw scores, are # filtered. relevance_score_fn = self._select_relevance_score_fn() if relevance_score_fn is None: raise ValueError( "relevance_score_fn must be provided to" " FAISS constructor to normalize scores" ) docs_and_scores = await self.asimilarity_search_with_score( query, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) docs_and_rel_scores = [ (doc, relevance_score_fn(score)) for doc, score in docs_and_scores ] return docs_and_rel_scores @staticmethod def _create_filter_func( filter: Optional[Union[Callable, Dict[str, Any]]], ) -> Callable[[Dict[str, Any]], bool]: """ Create a filter function based on the provided filter. Args: filter: A callable or a dictionary representing the filter conditions for documents. Returns: Callable[[Dict[str, Any]], bool]: A function that takes Document's metadata and returns True if it satisfies the filter conditions, otherwise False. """ if callable(filter): return filter if not isinstance(filter, dict): raise ValueError( f"filter must be a dict of metadata or a callable, not {type(filter)}" ) def filter_func(metadata: Dict[str, Any]) -> bool: return all( metadata.get(key) in value if isinstance(value, list) else metadata.get(key) == value for key, value in filter.items() # type: ignore ) return filter_func
159246
def similarity_search( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, *, query_type: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filters to apply to the query. Defaults to None. query_type: The type of this query. Supported values are "ANN" and "HYBRID". Returns: List of Documents most similar to the embedding. """ docs_with_score = self.similarity_search_with_score( query=query, k=k, filter=filter, query_type=query_type, **kwargs, ) return [doc for doc, _ in docs_with_score] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, *, query_type: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filters to apply to the query. Defaults to None. query_type: The type of this query. Supported values are "ANN" and "HYBRID". Returns: List of Documents most similar to the embedding and score for each. """ if self._is_databricks_managed_embeddings(): query_text = query query_vector = None else: assert self.embeddings is not None, "embedding model is required." # The value for `query_text` needs to be specified only for hybrid search. if query_type is not None and query_type.upper() == "HYBRID": query_text = query else: query_text = None query_vector = self.embeddings.embed_query(query) search_resp = self.index.similarity_search( columns=self.columns, query_text=query_text, query_vector=query_vector, filters=filter or _alias_filters(kwargs), num_results=k, query_type=query_type, ) return self._parse_search_response(search_resp) @staticmethod def _identity_fn(score: float) -> float: return score def _select_relevance_score_fn(self) -> Callable[[float], float]: """ Databricks Vector search uses a normalized score 1/(1+d) where d is the L2 distance. Hence, we simply return the identity function. """ return self._identity_fn def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, *, query_type: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filters to apply to the query. Defaults to None. query_type: The type of this query. Supported values are "ANN" and "HYBRID". Returns: List of Documents selected by maximal marginal relevance. """ if not self._is_databricks_managed_embeddings(): assert self.embeddings is not None, "embedding model is required." query_vector = self.embeddings.embed_query(query) else: raise ValueError( "`max_marginal_relevance_search` is not supported for index with " "Databricks-managed embeddings." ) docs = self.max_marginal_relevance_search_by_vector( query_vector, k, fetch_k, lambda_mult=lambda_mult, filter=filter or _alias_filters(kwargs), query_type=query_type, ) return docs def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Any] = None, *, query_type: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filters to apply to the query. Defaults to None. query_type: The type of this query. Supported values are "ANN" and "HYBRID". Returns: List of Documents selected by maximal marginal relevance. """ if not self._is_databricks_managed_embeddings(): embedding_column = self._embedding_vector_column_name() else: raise ValueError( "`max_marginal_relevance_search` is not supported for index with " "Databricks-managed embeddings." ) search_resp = self.index.similarity_search( columns=list(set(self.columns + [embedding_column])), query_text=None, query_vector=embedding, filters=filter or _alias_filters(kwargs), num_results=fetch_k, query_type=query_type, ) embeddings_result_index = ( search_resp.get("manifest").get("columns").index({"name": embedding_column}) ) embeddings = [ doc[embeddings_result_index] for doc in search_resp.get("result").get("data_array") ] mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), embeddings, k=k, lambda_mult=lambda_mult, ) ignore_cols: List = ( [embedding_column] if embedding_column not in self.columns else [] ) candidates = self._parse_search_response(search_resp, ignore_cols=ignore_cols) selected_results = [r[0] for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Any] = None, *, query_type: Optional[str] = None, query: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filters to apply to the query. Defaults to None. query_type: The type of this query. Supported values are "ANN" and "HYBRID". Returns: List of Documents most similar to the embedding. """ docs_with_score = self.similarity_search_by_vector_with_score( embedding=embedding, k=k, filter=filter, query_type=query_type, query=query, **kwargs, ) return [doc for doc, _ in docs_with_score]
159270
class Weaviate(VectorStore): """`Weaviate` vector store. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain_community.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) """ def __init__( self, client: Any, index_name: str, text_key: str, embedding: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, by_text: bool = True, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._embedding = embedding self._text_key = text_key self._query_attrs = [self._text_key] self.relevance_score_fn = relevance_score_fn self._by_text = by_text if attributes is not None: self._query_attrs.extend(attributes) @property def embeddings(self) -> Optional[Embeddings]: return self._embedding def _select_relevance_score_fn(self) -> Callable[[float], float]: return ( self.relevance_score_fn if self.relevance_score_fn else _default_score_normalizer ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid ids = [] embeddings: Optional[List[List[float]]] = None if self._embedding: if not isinstance(texts, list): texts = list(texts) embeddings = self._embedding.embed_documents(texts) with self._client.batch as batch: for i, text in enumerate(texts): data_properties = {self._text_key: text} if metadatas is not None: for key, val in metadatas[i].items(): data_properties[key] = _json_serializable(val) # Allow for ids (consistent w/ other methods) # # Or uuids (backwards compatible w/ existing arg) # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. _id = get_valid_uuid(uuid4()) if "uuids" in kwargs: _id = kwargs["uuids"][i] elif "ids" in kwargs: _id = kwargs["ids"][i] batch.add_data_object( data_object=data_properties, class_name=self._index_name, uuid=_id, vector=embeddings[i] if embeddings else None, tenant=kwargs.get("tenant"), ) ids.append(_id) return ids def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ if self._by_text: return self.similarity_search_by_text(query, k, **kwargs) else: if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search when " "_by_text=False" ) embedding = self._embedding.embed_query(query) return self.similarity_search_by_vector(embedding, k, **kwargs) def similarity_search_by_text( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_text(content).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_vector(vector).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding is not None: embedding = self._embedding.embed_query(query) else: raise ValueError( "max_marginal_relevance_search requires a suitable Embeddings object" ) return self.max_marginal_relevance_search_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs )
159271
def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) results = ( query_obj.with_additional("vector") .with_near_vector(vector) .with_limit(fetch_k) .do() ) payload = results["data"]["Get"][self._index_name] embeddings = [result["_additional"]["vector"] for result in payload] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) docs = [] for idx in mmr_selected: text = payload[idx].pop(self._text_key) payload[idx].pop("_additional") meta = payload[idx] docs.append(Document(page_content=text, metadata=meta)) return docs def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search_with_score" ) content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) embedded_query = self._embedding.embed_query(query) if not self._by_text: vector = {"vector": embedded_query} result = ( query_obj.with_near_vector(vector) .with_limit(k) .with_additional("vector") .do() ) else: result = ( query_obj.with_near_text(content) .with_limit(k) .with_additional("vector") .do() ) if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs_and_scores = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) score = np.dot(res["_additional"]["vector"], embedded_query) docs_and_scores.append((Document(page_content=text, metadata=res), score)) return docs_and_scores @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, *, client: Optional[weaviate.Client] = None, weaviate_url: Optional[str] = None, weaviate_api_key: Optional[str] = None, batch_size: Optional[int] = None, index_name: Optional[str] = None, text_key: str = "text", by_text: bool = False, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, **kwargs: Any, ) -> Weaviate: """Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Weaviate instance. 3. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Args: texts: Texts to add to vector store. embedding: Text embedding model to use. metadatas: Metadata associated with each text. client: weaviate.Client to use. weaviate_url: The Weaviate URL. If using Weaviate Cloud Services get it from the ``Details`` tab. Can be passed in as a named param or by setting the environment variable ``WEAVIATE_URL``. Should not be specified if client is provided. weaviate_api_key: The Weaviate API key. If enabled and using Weaviate Cloud Services, get it from ``Details`` tab. Can be passed in as a named param or by setting the environment variable ``WEAVIATE_API_KEY``. Should not be specified if client is provided. batch_size: Size of batch operations. index_name: Index name. text_key: Key to use for uploading/retrieving text to/from vectorstore. by_text: Whether to search by text or by embedding. relevance_score_fn: Function for converting whatever distance function the vector store uses to a relevance score, which is a normalized similarity score (0 means dissimilar, 1 means similar). kwargs: Additional named parameters to pass to ``Weaviate.__init__()``. Example: .. code-block:: python from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Weaviate embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) """ try: from weaviate.util import get_valid_uuid except ImportError as e: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`" ) from e client = client or _create_weaviate_client( url=weaviate_url, api_key=weaviate_api_key, ) if batch_size: client.batch.configure(batch_size=batch_size) index_name = index_name or f"LangChain_{uuid4().hex}" schema = _default_schema(index_name, text_key) # check whether the index already exists if not client.schema.exists(index_name): client.schema.create_class(schema) embeddings = embedding.embed_documents(texts) if embedding else None attributes = list(metadatas[0].keys()) if metadatas else None # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. if "uuids" in kwargs: uuids = kwargs.pop("uuids") else: uuids = [get_valid_uuid(uuid4()) for _ in range(len(texts))] with client.batch as batch: for i, text in enumerate(texts): data_properties = { text_key: text, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = uuids[i] # if an embedding strategy is not provided, we let # weaviate create the embedding. Note that this will only # work if weaviate has been installed with a vectorizer module # like text2vec-contextionary for example params = { "uuid": _id, "data_object": data_properties, "class_name": index_name, } if embeddings is not None: params["vector"] = embeddings[i] batch.add_data_object(**params) batch.flush() return cls( client, index_name, text_key, embedding=embedding, attributes=attributes, relevance_score_fn=relevance_score_fn, by_text=by_text, **kwargs, ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") # TODO: Check if this can be done in bulk for id in ids: self._client.data_object.delete(uuid=id)
159286
from __future__ import annotations import logging from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np try: import deeplake from deeplake import VectorStore as DeepLakeVectorStore from deeplake.core.fast_forwarding import version_compare from deeplake.util.exceptions import SampleExtendError _DEEPLAKE_INSTALLED = True except ImportError: _DEEPLAKE_INSTALLED = False from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) class DeepLake(VectorStore): """`Activeloop Deep Lake` vector store. We integrated deeplake's similarity search and filtering for fast prototyping. Now, it supports Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? - Not only stores embeddings, but also the original data with version control. - Serverless, doesn't require another service and can be used with major cloud providers (S3, GCS, etc.) - More than just a multi-modal vector store. You can use the dataset to fine-tune your own LLM models. To use, you should have the ``deeplake`` python package installed. Example: .. code-block:: python from langchain_community.vectorstores import DeepLake from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_DEEPLAKE_PATH: str = "./deeplake/" _valid_search_kwargs = ["lambda_mult"] def __init__( self, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, token: Optional[str] = None, embedding: Optional[Embeddings] = None, embedding_function: Optional[Embeddings] = None, read_only: bool = False, ingestion_batch_size: int = 1024, num_workers: int = 0, verbose: bool = True, exec_option: Optional[str] = None, runtime: Optional[Dict] = None, index_params: Optional[Dict[str, Union[int, str]]] = None, **kwargs: Any, ) -> None: """Creates an empty DeepLakeVectorStore or loads an existing one. The DeepLakeVectorStore is located at the specified ``path``. Examples: >>> # Create a vector store with default tensors >>> deeplake_vectorstore = DeepLake( ... path = <path_for_storing_Data>, ... ) >>> >>> # Create a vector store in the Deep Lake Managed Tensor Database >>> data = DeepLake( ... path = "hub://org_id/dataset_name", ... runtime = {"tensor_db": True}, ... ) Args: dataset_path (str): The full path for storing to the Deep Lake Vector Store. It can be: - a Deep Lake cloud path of the form ``hub://org_id/dataset_name``. Requires registration with Deep Lake. - an s3 path of the form ``s3://bucketname/path/to/dataset``. Credentials are required in either the environment or passed to the creds argument. - a local file system path of the form ``./path/to/dataset`` or ``~/path/to/dataset`` or ``path/to/dataset``. - a memory path of the form ``mem://path/to/dataset`` which doesn't save the dataset but keeps it in memory instead. Should be used only for testing as it does not persist. Defaults to _LANGCHAIN_DEFAULT_DEEPLAKE_PATH. token (str, optional): Activeloop token, for fetching credentials to the dataset at path if it is a Deep Lake dataset. Tokens are normally autogenerated. Optional. embedding (Embeddings, optional): Function to convert either documents or query. Optional. embedding_function (Embeddings, optional): Function to convert either documents or query. Optional. Deprecated: keeping this parameter for backwards compatibility. read_only (bool): Open dataset in read-only mode. Default is False. ingestion_batch_size (int): During data ingestion, data is divided into batches. Batch size is the size of each batch. Default is 1024. num_workers (int): Number of workers to use during data ingestion. Default is 0. verbose (bool): Print dataset summary after each operation. Default is True. exec_option (str, optional): Default method for search execution. It could be either ``"auto"``, ``"python"``, ``"compute_engine"`` or ``"tensor_db"``. Defaults to ``"auto"``. If None, it's set to "auto". - ``auto``- Selects the best execution method based on the storage location of the Vector Store. It is the default option. - ``python`` - Pure-python implementation that runs on the client and can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged because it can lead to memory issues. - ``compute_engine`` - Performant C++ implementation of the Deep Lake Compute Engine that runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. - ``tensor_db`` - Performant and fully-hosted Managed Tensor Database that is responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. Store datasets in this database by specifying runtime = {"tensor_db": True} during dataset creation. runtime (Dict, optional): Parameters for creating the Vector Store in Deep Lake's Managed Tensor Database. Not applicable when loading an existing Vector Store. To create a Vector Store in the Managed Tensor Database, set `runtime = {"tensor_db": True}`. index_params (Optional[Dict[str, Union[int, str]]], optional): Dictionary containing information about vector index that will be created. Defaults to None, which will utilize ``DEFAULT_VECTORSTORE_INDEX_PARAMS`` from ``deeplake.constants``. The specified key-values override the default ones. - threshold: The threshold for the dataset size above which an index will be created for the embedding tensor. When the threshold value is set to -1, index creation is turned off. Defaults to -1, which turns off the index. - distance_metric: This key specifies the method of calculating the distance between vectors when creating the vector database (VDB) index. It can either be a string that corresponds to a member of the DistanceType enumeration, or the string value itself. - If no value is provided, it defaults to "L2". - "L2" corresponds to DistanceType.L2_NORM. - "COS" corresponds to DistanceType.COSINE_SIMILARITY. - additional_params: Additional parameters for fine-tuning the index. **kwargs: Other optional keyword arguments. Raises: ValueError: If some condition is not met. """ self.ingestion_batch_size = ingestion_batch_size self.num_workers = num_workers self.verbose = verbose if _DEEPLAKE_INSTALLED is False: raise ImportError( "Could not import deeplake python package. " "Please install it with `pip install deeplake[enterprise]`." ) if ( runtime == {"tensor_db": True} and version_compare(deeplake.__version__, "3.6.7") == -1 ): raise ImportError( "To use tensor_db option you need to update deeplake to `3.6.7` or " "higher. " f"Currently installed deeplake version is {deeplake.__version__}. " ) self.dataset_path = dataset_path if embedding_function: logger.warning( "Using embedding function is deprecated and will be removed " "in the future. Please use embedding instead." ) self.vectorstore = DeepLakeVectorStore( path=self.dataset_path, embedding_function=embedding_function or embedding, read_only=read_only, token=token, exec_option=exec_option, verbose=verbose, runtime=runtime, index_params=index_params, **kwargs, ) self._embedding_function = embedding_function or embedding self._id_tensor_name = "ids" if "ids" in self.vectorstore.tensors() else "id" @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function
159287
def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Examples: >>> ids = deeplake_vectorstore.add_texts( ... texts = <list_of_texts>, ... metadatas = <list_of_metadata_jsons>, ... ids = <list_of_ids>, ... ) Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. embedding_function (Optional[Embeddings], optional): Embedding function to use to convert the text into embeddings. **kwargs (Any): Any additional keyword arguments passed is not supported by this method. Returns: List[str]: List of IDs of the added texts. """ self._validate_kwargs(kwargs, "add_texts") kwargs = {} if ids: if self._id_tensor_name == "ids": # for backwards compatibility kwargs["ids"] = ids else: kwargs["id"] = ids if metadatas is None: metadatas = [{}] * len(list(texts)) if not isinstance(texts, list): texts = list(texts) if texts is None: raise ValueError("`texts` parameter shouldn't be None.") elif len(texts) == 0: raise ValueError("`texts` parameter shouldn't be empty.") try: return self.vectorstore.add( text=texts, metadata=metadatas, embedding_data=texts, embedding_tensor="embedding", embedding_function=self._embedding_function.embed_documents, # type: ignore return_ids=True, **kwargs, ) except SampleExtendError as e: if "Failed to append a sample to the tensor 'metadata'" in str(e): msg = ( "**Hint: You might be using invalid type of argument in " "document loader (e.g. 'pathlib.PosixPath' instead of 'str')" ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e def _search_tql( self, tql: Optional[str], exec_option: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Function for performing tql_search. Args: tql (str): TQL Query string for direct evaluation. Available only for `compute_engine` and `tensor_db`. exec_option (str, optional): Supports 3 ways to search. Could be "python", "compute_engine" or "tensor_db". Default is "python". - ``python`` - Pure-python implementation for the client. WARNING: not recommended for big datasets due to potential memory issues. - ``compute_engine`` - C++ implementation of Deep Lake Compute Engine for the client. Not for in-memory or local datasets. - ``tensor_db`` - Hosted Managed Tensor Database for storage and query execution. Only for data in Deep Lake Managed Database. Use runtime = {"db_engine": True} during dataset creation. return_score (bool): Return score with document. Default is False. Returns: Tuple[List[Document], List[Tuple[Document, float]]] - A tuple of two lists. The first list contains Documents, and the second list contains tuples of Document and float score. Raises: ValueError: If return_score is True but some condition is not met. """ result = self.vectorstore.search( query=tql, exec_option=exec_option, ) metadatas = result["metadata"] texts = result["text"] docs = [ Document( page_content=text, metadata=metadata, ) for text, metadata in zip(texts, metadatas) ] if kwargs: unsupported_argument = next(iter(kwargs)) if kwargs[unsupported_argument] is not False: raise ValueError( f"specifying {unsupported_argument} is " "not supported with tql search." ) return docs
159288
def _search( self, query: Optional[str] = None, embedding: Optional[Union[List[float], np.ndarray]] = None, embedding_function: Optional[Callable] = None, k: int = 4, distance_metric: Optional[str] = None, use_maximal_marginal_relevance: bool = False, fetch_k: Optional[int] = 20, filter: Optional[Union[Dict, Callable]] = None, return_score: bool = False, exec_option: Optional[str] = None, deep_memory: bool = False, **kwargs: Any, ) -> Any[List[Document], List[Tuple[Document, float]]]: """ Return docs similar to query. Args: query (str, optional): Text to look up similar docs. embedding (Union[List[float], np.ndarray], optional): Query's embedding. embedding_function (Callable, optional): Function to convert `query` into embedding. k (int): Number of Documents to return. distance_metric (Optional[str], optional): `L2` for Euclidean, `L1` for Nuclear, `max` for L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. filter (Union[Dict, Callable], optional): Additional filter prior to the embedding search. - ``Dict`` - Key-value search on tensors of htype json, on an AND basis (a sample must satisfy all key-value filters to be True) Dict = {"tensor_name_1": {"key": value}, "tensor_name_2": {"key": value}} - ``Function`` - Any function compatible with `deeplake.filter`. use_maximal_marginal_relevance (bool): Use maximal marginal relevance. fetch_k (int): Number of Documents for MMR algorithm. return_score (bool): Return the score. exec_option (str, optional): Supports 3 ways to perform searching. Could be "python", "compute_engine" or "tensor_db". - ``python`` - Pure-python implementation for the client. WARNING: not recommended for big datasets. - ``compute_engine`` - C++ implementation of Deep Lake Compute Engine for the client. Not for in-memory or local datasets. - ``tensor_db`` - Hosted Managed Tensor Database for storage and query execution. Only for data in Deep Lake Managed Database. Use runtime = {"db_engine": True} during dataset creation. deep_memory (bool): Whether to use the Deep Memory model for improving search results. Defaults to False if deep_memory is not specified in the Vector Store initialization. If True, the distance metric is set to "deepmemory_distance", which represents the metric with which the model was trained. The search is performed using the Deep Memory model. If False, the distance metric is set to "COS" or whatever distance metric user specifies. kwargs: Additional keyword arguments. Returns: List of Documents by the specified distance metric, if return_score True, return a tuple of (Document, score) Raises: ValueError: if both `embedding` and `embedding_function` are not specified. """ if kwargs.get("tql_query"): logger.warning("`tql_query` is deprecated. Please use `tql` instead.") kwargs["tql"] = kwargs.pop("tql_query") if kwargs.get("tql"): return self._search_tql( tql=kwargs["tql"], exec_option=exec_option, return_score=return_score, embedding=embedding, embedding_function=embedding_function, distance_metric=distance_metric, use_maximal_marginal_relevance=use_maximal_marginal_relevance, filter=filter, ) self._validate_kwargs(kwargs, "search") if embedding_function: if isinstance(embedding_function, Embeddings): _embedding_function = embedding_function.embed_query else: _embedding_function = embedding_function elif self._embedding_function: _embedding_function = self._embedding_function.embed_query else: _embedding_function = None if embedding is None: if _embedding_function is None: raise ValueError( "Either `embedding` or `embedding_function` needs to be" " specified." ) embedding = _embedding_function(query) if query else None if isinstance(embedding, list): embedding = np.array(embedding, dtype=np.float32) if len(embedding.shape) > 1: embedding = embedding[0] result = self.vectorstore.search( embedding=embedding, k=fetch_k if use_maximal_marginal_relevance else k, distance_metric=distance_metric, filter=filter, exec_option=exec_option, return_tensors=["embedding", "metadata", "text", self._id_tensor_name], deep_memory=deep_memory, ) scores = result["score"] embeddings = result["embedding"] metadatas = result["metadata"] texts = result["text"] if use_maximal_marginal_relevance: lambda_mult = kwargs.get("lambda_mult", 0.5) indices = maximal_marginal_relevance( # type: ignore embedding, # type: ignore embeddings, k=min(k, len(texts)), lambda_mult=lambda_mult, ) scores = [scores[i] for i in indices] texts = [texts[i] for i in indices] metadatas = [metadatas[i] for i in indices] docs = [ Document( page_content=text, metadata=metadata, ) for text, metadata in zip(texts, metadatas) ] if return_score: if not isinstance(scores, list): scores = [scores] return [(doc, score) for doc, score in zip(docs, scores)] return docs def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """ Return docs most similar to query. Examples: >>> # Search using an embedding >>> data = vector_store.similarity_search( ... query=<your_query>, ... k=<num_items>, ... exec_option=<preferred_exec_option>, ... ) >>> # Run tql search: >>> data = vector_store.similarity_search( ... query=None, ... tql="SELECT * WHERE id == <id>", ... exec_option="compute_engine", ... ) Args: k (int): Number of Documents to return. Defaults to 4. query (str): Text to look up similar documents. kwargs: Additional keyword arguments include: embedding (Callable): Embedding function to use. Defaults to None. distance_metric (str): 'L2' for Euclidean, 'L1' for Nuclear, 'max' for L-infinity, 'cos' for cosine, 'dot' for dot product. Defaults to 'L2'. filter (Union[Dict, Callable], optional): Additional filter before embedding search. - Dict: Key-value search on tensors of htype json, (sample must satisfy all key-value filters) Dict = {"tensor_1": {"key": value}, "tensor_2": {"key": value}} - Function: Compatible with `deeplake.filter`. Defaults to None. exec_option (str): Supports 3 ways to perform searching. 'python', 'compute_engine', or 'tensor_db'. Defaults to 'python'. - 'python': Pure-python implementation for the client. WARNING: not recommended for big datasets. - 'compute_engine': C++ implementation of the Compute Engine for the client. Not for in-memory or local datasets. - 'tensor_db': Managed Tensor Database for storage and query. Only for data in Deep Lake Managed Database. Use `runtime = {"db_engine": True}` during dataset creation. deep_memory (bool): Whether to use the Deep Memory model for improving search results. Defaults to False if deep_memory is not specified in the Vector Store initialization. If True, the distance metric is set to "deepmemory_distance", which represents the metric with which the model was trained. The search is performed using the Deep Memory model. If False, the distance metric is set to "COS" or whatever distance metric user specifies. Returns: List[Document]: List of Documents most similar to the query vector. """ return self._search( query=query, k=k, use_maximal_marginal_relevance=False, return_score=False, **kwargs, )
159289
def similarity_search_by_vector( self, embedding: Union[List[float], np.ndarray], k: int = 4, **kwargs: Any, ) -> List[Document]: """ Return docs most similar to embedding vector. Examples: >>> # Search using an embedding >>> data = vector_store.similarity_search_by_vector( ... embedding=<your_embedding>, ... k=<num_items_to_return>, ... exec_option=<preferred_exec_option>, ... ) Args: embedding (Union[List[float], np.ndarray]): Embedding to find similar docs. k (int): Number of Documents to return. Defaults to 4. kwargs: Additional keyword arguments including: filter (Union[Dict, Callable], optional): Additional filter before embedding search. - ``Dict`` - Key-value search on tensors of htype json. True if all key-value filters are satisfied. Dict = {"tensor_name_1": {"key": value}, "tensor_name_2": {"key": value}} - ``Function`` - Any function compatible with `deeplake.filter`. Defaults to None. exec_option (str): Options for search execution include "python", "compute_engine", or "tensor_db". Defaults to "python". - "python" - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. - "compute_engine" - Performant C++ implementation of the Deep Lake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. - "tensor_db" - Performant, fully-hosted Managed Tensor Database. Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify `runtime = {"db_engine": True}` during dataset creation. distance_metric (str): `L2` for Euclidean, `L1` for Nuclear, `max` for L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. deep_memory (bool): Whether to use the Deep Memory model for improving search results. Defaults to False if deep_memory is not specified in the Vector Store initialization. If True, the distance metric is set to "deepmemory_distance", which represents the metric with which the model was trained. The search is performed using the Deep Memory model. If False, the distance metric is set to "COS" or whatever distance metric user specifies. Returns: List[Document]: List of Documents most similar to the query vector. """ return self._search( embedding=embedding, k=k, use_maximal_marginal_relevance=False, return_score=False, **kwargs, ) def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Run similarity search with Deep Lake with distance returned. Examples: >>> data = vector_store.similarity_search_with_score( ... query=<your_query>, ... embedding=<your_embedding_function> ... k=<number_of_items_to_return>, ... exec_option=<preferred_exec_option>, ... ) Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. kwargs: Additional keyword arguments. Some of these arguments are: distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. embedding_function (Callable): Embedding function to use. Defaults to None. exec_option (str): DeepLakeVectorStore supports 3 ways to perform searching. It could be either "python", "compute_engine" or "tensor_db". Defaults to "python". - "python" - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. - "compute_engine" - Performant C++ implementation of the Deep Lake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. - "tensor_db" - Performant, fully-hosted Managed Tensor Database. Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify `runtime = {"db_engine": True}` during dataset creation. deep_memory (bool): Whether to use the Deep Memory model for improving search results. Defaults to False if deep_memory is not specified in the Vector Store initialization. If True, the distance metric is set to "deepmemory_distance", which represents the metric with which the model was trained. The search is performed using the Deep Memory model. If False, the distance metric is set to "COS" or whatever distance metric user specifies. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float.""" return self._search( query=query, k=k, return_score=True, **kwargs, ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, exec_option: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected docs. Examples: >>> data = vector_store.max_marginal_relevance_search_by_vector( ... embedding=<your_embedding>, ... fetch_k=<elements_to_fetch_before_mmr_search>, ... k=<number_of_items_to_return>, ... exec_option=<preferred_exec_option>, ... ) Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch for MMR algorithm. lambda_mult: Number between 0 and 1 determining the degree of diversity. 0 corresponds to max diversity and 1 to min diversity. Defaults to 0.5. exec_option (str): DeepLakeVectorStore supports 3 ways for searching. Could be "python", "compute_engine" or "tensor_db". Defaults to "python". - "python" - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. - "compute_engine" - Performant C++ implementation of the Deep Lake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. - "tensor_db" - Performant, fully-hosted Managed Tensor Database. Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify `runtime = {"db_engine": True}` during dataset creation. deep_memory (bool): Whether to use the Deep Memory model for improving search results. Defaults to False if deep_memory is not specified in the Vector Store initialization. If True, the distance metric is set to "deepmemory_distance", which represents the metric with which the model was trained. The search is performed using the Deep Memory model. If False, the distance metric is set to "COS" or whatever distance metric user specifies. kwargs: Additional keyword arguments. Returns: List[Documents] - A list of documents. """ return self._search( embedding=embedding, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True, lambda_mult=lambda_mult, exec_option=exec_option, **kwargs, )
159300
def _similarity_search_with_score( self, embeddings: List[float], k: int = 4, pre_filter: Optional[Dict] = None, with_embedding: bool = False, ) -> List[Tuple[Document, float]]: query = "SELECT " # If limit_offset_clause is not specified, add TOP clause if pre_filter is None or pre_filter.get("limit_offset_clause") is None: query += "TOP @limit " query += ( "c.id, c.{}, c.text, c.metadata, " "VectorDistance(c.@embeddingKey, @embeddings) AS SimilarityScore FROM c" ) # Add where_clause if specified if pre_filter is not None and pre_filter.get("where_clause") is not None: query += " {}".format(pre_filter["where_clause"]) query += " ORDER BY VectorDistance(c.@embeddingKey, @embeddings)" # Add limit_offset_clause if specified if pre_filter is not None and pre_filter.get("limit_offset_clause") is not None: query += " {}".format(pre_filter["limit_offset_clause"]) parameters = [ {"name": "@limit", "value": k}, {"name": "@embeddingKey", "value": self._embedding_key}, {"name": "@embeddings", "value": embeddings}, ] docs_and_scores = [] items = list( self._container.query_items( query=query, parameters=parameters, enable_cross_partition_query=True ) ) for item in items: text = item["text"] metadata = item["metadata"] score = item["SimilarityScore"] if with_embedding: metadata[self._embedding_key] = item[self._embedding_key] docs_and_scores.append( (Document(page_content=text, metadata=metadata), score) ) return docs_and_scores def similarity_search_with_score( self, query: str, k: int = 4, pre_filter: Optional[Dict] = None, with_embedding: bool = False, ) -> List[Tuple[Document, float]]: embeddings = self._embedding.embed_query(query) docs_and_scores = self._similarity_search_with_score( embeddings=embeddings, k=k, pre_filter=pre_filter, with_embedding=with_embedding, ) return docs_and_scores def similarity_search( self, query: str, k: int = 4, pre_filter: Optional[Dict] = None, with_embedding: bool = False, **kwargs: Any, ) -> List[Document]: docs_and_scores = self.similarity_search_with_score( query, k=k, pre_filter=pre_filter, with_embedding=with_embedding, ) return [doc for doc, _ in docs_and_scores] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: # Retrieves the docs with similarity scores pre_filter = {} with_embedding = False if kwargs["pre_filter"]: pre_filter = kwargs["pre_filter"] if kwargs["with_embedding"]: with_embedding = kwargs["with_embedding"] docs = self._similarity_search_with_score( embeddings=embedding, k=fetch_k, pre_filter=pre_filter, with_embedding=with_embedding, ) # Re-ranks the docs using MMR mmr_doc_indexes = maximal_marginal_relevance( np.array(embedding), [doc.metadata[self._embedding_key] for doc, _ in docs], k=k, lambda_mult=lambda_mult, ) mmr_docs = [docs[i][0] for i in mmr_doc_indexes] return mmr_docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: # compute the embeddings vector from the query string pre_filter = {} with_embedding = False if kwargs["pre_filter"]: pre_filter = kwargs["pre_filter"] if kwargs["with_embedding"]: with_embedding = kwargs["with_embedding"] embeddings = self._embedding.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embeddings, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, pre_filter=pre_filter, with_embedding=with_embedding, ) return docs
159309
@override def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Returns the k most similar documents to the given embedding vector Args: embedding: The embedding vector to search for k: The number of similar documents to return Returns: List of Document objects ordered by decreasing similarity to the query. """ from aperturedb.Descriptors import Descriptors descriptors = Descriptors(self.connection) start_time = time.time() descriptors.find_similar( set=self.descriptor_set, vector=embedding, k_neighbors=k ) self.logger.info( f"ApertureDB similarity search took {time.time() - start_time} seconds" ) return [self._descriptor_to_document(d) for d in descriptors] @override def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Returns similar documents to the query that also have diversity This algorithm balances relevance and diversity in the search results. Args: query: Query string to search for. k: Number of results to return. fetch_k: Number of results to fetch. lambda_mult: Lambda multiplier for MMR. Returns: List of Document objects ordered by decreasing similarity/diversty. """ self.logger.info(f"Max Marginal Relevance search for query: {query}") embedding = self.embedding_function.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult, **kwargs ) @override def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Returns similar documents to the vector that also have diversity This algorithm balances relevance and diversity in the search results. Args: embedding: Embedding vector to search for. k: Number of results to return. fetch_k: Number of results to fetch. lambda_mult: Lambda multiplier for MMR. Returns: List of Document objects ordered by decreasing similarity/diversty. """ from aperturedb.Descriptors import Descriptors descriptors = Descriptors(self.connection) start_time = time.time() descriptors.find_similar_mmr( set=self.descriptor_set, vector=embedding, k_neighbors=k, fetch_k=fetch_k, lambda_mult=lambda_mult, ) self.logger.info( f"ApertureDB similarity search mmr took {time.time() - start_time} seconds" ) return [self._descriptor_to_document(d) for d in descriptors] @classmethod @override def from_texts( cls: Type[ApertureDB], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> ApertureDB: """Creates a new vectorstore from a list of texts Args: texts: List of text strings embedding: Embeddings object as for constructing the vectorstore metadatas: Optional list of metadatas associated with the texts. kwargs: Additional arguments to pass to the constructor """ store = cls(embeddings=embedding, **kwargs) store.add_texts(texts, metadatas) return store @classmethod @override def from_documents( cls: Type[ApertureDB], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> ApertureDB: """Creates a new vectorstore from a list of documents Args: documents: List of Document objects embedding: Embeddings object as for constructing the vectorstore metadatas: Optional list of metadatas associated with the texts. kwargs: Additional arguments to pass to the constructor """ store = cls(embeddings=embedding, **kwargs) store.add_documents(documents) return store @classmethod def delete_vectorstore(class_, descriptor_set: str) -> None: """Deletes a vectorstore and all its data from the database Args: descriptor_set: The name of the descriptor set to delete """ from aperturedb.Utils import Utils, create_connector db = create_connector() utils = Utils(db) utils.remove_descriptorset(descriptor_set) @classmethod def list_vectorstores(class_) -> None: """Returns a list of all vectorstores in the database Returns: List of descriptor sets with properties """ from aperturedb.Utils import create_connector db = create_connector() query = [ { "FindDescriptorSet": { # Return all properties "results": {"all_properties": True}, "engines": True, "metrics": True, "dimensions": True, } } ] response, _ = db.query(query) assert db.last_query_ok(), response return response[0]["FindDescriptorSet"]["entities"] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add or update documents in the vectorstore. Args: documents: Documents to add to the vectorstore. kwargs: Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence. Returns: List of IDs of the added texts. Raises: ValueError: If the number of ids does not match the number of documents. """ if "ids" in kwargs: ids = kwargs.pop("ids") if ids and len(ids) != len(documents): raise ValueError( "The number of ids must match the number of documents. " "Got {len(ids)} ids and {len(documents)} documents." ) documents_ = [] for id_, document in zip(ids, documents): doc_with_id = Document( page_content=document.page_content, metadata=document.metadata, id=id_, ) documents_.append(doc_with_id) else: documents_ = documents # If upsert has been implemented, we can use it to add documents return self.upsert(documents_, **kwargs)["succeeded"] def upsert(self, items: Sequence[Document], /, **kwargs: Any) -> UpsertResponse: """Insert or update items Updating documents is dependent on the documents' `id` attribute. Args: items: List of Document objects to upsert Returns: UpsertResponse object with succeeded and failed """ # For now, simply delete and add # We could do something more efficient to update metadata, # but we don't support changing the embedding of a descriptor. from aperturedb.ParallelLoader import ParallelLoader ids_to_delete: List[str] = [ item.id for item in items if hasattr(item, "id") and item.id is not None ] if ids_to_delete: self.delete(ids_to_delete) texts = [doc.page_content for doc in items] metadatas = [ doc.metadata if getattr(doc, "metadata", None) is not None else {} for doc in items ] embeddings = self.embedding_function.embed_documents(texts) ids: List[str] = [ doc.id if hasattr(doc, "id") and doc.id is not None else str(uuid.uuid4()) for doc in items ] data = [] for text, embedding, metadata, unique_id in zip( texts, embeddings, metadatas, ids ): properties = {PROPERTY_PREFIX + k: v for k, v in metadata.items()} properties[TEXT_PROPERTY] = text properties[UNIQUEID_PROPERTY] = unique_id command = { "AddDescriptor": { "set": self.descriptor_set, "properties": properties, } } query = [command] blobs = [np.array(embedding, dtype=np.float32).tobytes()] data.append((query, blobs)) loader = ParallelLoader(self.connection) loader.ingest(data, batchsize=BATCHSIZE) return UpsertResponse(succeeded=ids, failed=[])
159313
@classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, token: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of texts. Args: user_id (str): User ID. app_id (str): App ID. texts (List[str]): List of texts to add. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. pat (Optional[str], optional): Personal access token. Defaults to None. token (Optional[str], optional): Session token. Defaults to None. metadatas (Optional[List[dict]]): Optional list of metadatas. Defaults to None. kwargs: Additional keyword arguments to be passed to the Search. Returns: Clarifai: Clarifai vectorstore. """ clarifai_vector_db = cls( user_id=user_id, app_id=app_id, number_of_docs=number_of_docs, pat=pat, token=token, **kwargs, ) clarifai_vector_db.add_texts(texts=texts, metadatas=metadatas) return clarifai_vector_db @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, token: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of documents. Args: user_id (str): User ID. app_id (str): App ID. documents (List[Document]): List of documents to add. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. pat (Optional[str], optional): Personal access token. Defaults to None. token (Optional[str], optional): Session token. Defaults to None. kwargs: Additional keyword arguments to be passed to the Search. Returns: Clarifai: Clarifai vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( user_id=user_id, app_id=app_id, texts=texts, number_of_docs=number_of_docs, pat=pat, metadatas=metadatas, token=token, **kwargs, )
159318
from __future__ import annotations import base64 import logging import uuid from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) import numpy as np from langchain_core._api import deprecated from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.utils import xor_args from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config from chromadb.api.types import ID, OneOrMany, Where, WhereDocument logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] @deprecated(since="0.2.9", removal="1.0", alternative_import="langchain_chroma.Chroma") class Chroma(VectorStore): """`ChromaDB` vector store. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain_community.vectorstores import Chroma from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME: str = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: """Initialize with a Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ImportError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client_settings = client_settings self._client = client self._persist_directory = persist_directory else: if client_settings: # If client_settings is provided with persist_directory specified, # then it is "in-memory and persisting to disk" mode. client_settings.persist_directory = ( persist_directory or client_settings.persist_directory ) if client_settings.persist_directory is not None: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: client_settings.chroma_db_impl = "duckdb+parquet" _client_settings = client_settings elif persist_directory: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: _client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", ) else: _client_settings = chromadb.config.Settings(is_persistent=True) _client_settings.persist_directory = persist_directory else: _client_settings = chromadb.config.Settings() self._client_settings = _client_settings self._client = chromadb.Client(_client_settings) self._persist_directory = ( _client_settings.persist_directory or persist_directory ) self._embedding_function = embedding_function self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=None, metadata=collection_metadata, ) self.override_relevance_score_fn = relevance_score_fn @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function @xor_args(("query_texts", "query_embeddings")) def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the chroma collection.""" try: import chromadb # noqa: F401 except ImportError: raise ImportError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=n_results, where=where, where_document=where_document, **kwargs, ) def encode_image(self, uri: str) -> str: """Get base64 string from image URI.""" with open(uri, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def add_images( self, uris: List[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more images through the embeddings and add to the vectorstore. Args: uris List[str]: File path to the image. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added images. """ # Map from uris to b64 encoded strings b64_texts = [self.encode_image(uri=uri) for uri in uris] # Populate IDs if ids is None: ids = [str(uuid.uuid4()) for _ in uris] embeddings = None # Set embeddings if self._embedding_function is not None and hasattr( self._embedding_function, "embed_image" ): embeddings = self._embedding_function.embed_image(uris=uris) if metadatas: # fill metadatas with empty dicts if somebody # did not specify metadata for all images length_diff = len(uris) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, m in enumerate(metadatas): if m: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] images_with_metadatas = [b64_texts[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] try: self._collection.upsert( metadatas=metadatas, embeddings=embeddings_with_metadatas, documents=images_with_metadatas, ids=ids_with_metadata, ) except ValueError as e: if "Expected metadata value to be" in str(e): msg = ( "Try filtering complex metadata using " "langchain_community.vectorstores.utils.filter_complex_metadata." ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e if empty_ids: images_without_metadatas = [b64_texts[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._collection.upsert( embeddings=embeddings_without_metadatas, documents=images_without_metadatas, ids=ids_without_metadatas, ) else: self._collection.upsert( embeddings=embeddings, documents=b64_texts, ids=ids, ) return ids
159319
def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid4()) for _ in texts] embeddings = None texts = list(texts) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(texts) if metadatas: # fill metadatas with empty dicts if somebody # did not specify metadata for all texts length_diff = len(texts) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, m in enumerate(metadatas): if m: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] texts_with_metadatas = [texts[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] try: self._collection.upsert( metadatas=metadatas, embeddings=embeddings_with_metadatas, documents=texts_with_metadatas, ids=ids_with_metadata, ) except ValueError as e: if "Expected metadata value to be" in str(e): msg = ( "Try filtering complex metadata from the document using " "langchain_community.vectorstores.utils.filter_complex_metadata." ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e if empty_ids: texts_without_metadatas = [texts[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._collection.upsert( embeddings=embeddings_without_metadatas, documents=texts_without_metadatas, ids=ids_without_metadatas, ) else: self._collection.upsert( embeddings=embeddings, documents=texts, ids=ids, ) return ids def similarity_search( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score( query, k, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, **kwargs, ) return _results_to_docs(results) def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Return docs most similar to embedding vector and similarity score. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, **kwargs, ) return _results_to_docs_and_scores(results) def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter, where_document=where_document, **kwargs, ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection( query_embeddings=[query_embedding], n_results=k, where=filter, where_document=where_document, **kwargs, ) return _results_to_docs_and_scores(results) def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn: return self.override_relevance_score_fn distance = "l2" distance_key = "hnsw:space" metadata = self._collection.metadata if metadata and distance_key in metadata: distance = metadata[distance_key] if distance == "cosine": return self._cosine_relevance_score_fn elif distance == "l2": return self._euclidean_relevance_score_fn elif distance == "ip": return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance metric of type: {distance}." "Consider providing relevance_score_fn to Chroma constructor." )
159320
def similarity_search_by_image( self, uri: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Search for similar images based on the given image URI. Args: uri (str): URI of the image to search for. k (int, optional): Number of results to return. Defaults to DEFAULT_K. filter (Optional[Dict[str, str]], optional): Filter by metadata. **kwargs (Any): Additional arguments to pass to function. Returns: List of Images most similar to the provided image. Each element in list is a Langchain Document Object. The page content is b64 encoded image, metadata is default or as defined by user. Raises: ValueError: If the embedding function does not support image embeddings. """ if self._embedding_function is None or not hasattr( self._embedding_function, "embed_image" ): raise ValueError("The embedding function must support image embedding.") # Obtain image embedding # Assuming embed_image returns a single embedding image_embedding = self._embedding_function.embed_image(uris=[uri]) # Perform similarity search based on the obtained embedding results = self.similarity_search_by_vector( embedding=image_embedding, k=k, filter=filter, **kwargs, ) return results def similarity_search_by_image_with_relevance_score( self, uri: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Search for similar images based on the given image URI. Args: uri (str): URI of the image to search for. k (int, optional): Number of results to return. Defaults to DEFAULT_K. filter (Optional[Dict[str, str]], optional): Filter by metadata. **kwargs (Any): Additional arguments to pass to function. Returns: List[Tuple[Document, float]]: List of tuples containing documents similar to the query image and their similarity scores. 0th element in each tuple is a Langchain Document Object. The page content is b64 encoded img, metadata is default or defined by user. Raises: ValueError: If the embedding function does not support image embeddings. """ if self._embedding_function is None or not hasattr( self._embedding_function, "embed_image" ): raise ValueError("The embedding function must support image embedding.") # Obtain image embedding # Assuming embed_image returns a single embedding image_embedding = self._embedding_function.embed_image(uris=[uri]) # Perform similarity search based on the obtained embedding results = self.similarity_search_by_vector_with_relevance_scores( embedding=image_embedding, k=k, filter=filter, **kwargs, ) return results def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, where_document=where_document, include=["metadatas", "documents", "distances", "embeddings"], **kwargs, ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult=lambda_mult, filter=filter, where_document=where_document, ) return docs def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None, ) -> Dict[str, Any]: """Gets the collection. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. `{"color" : "red", "price": 4.20}`. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: "hello"}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. """ kwargs = { "ids": ids, "where": where, "limit": limit, "offset": offset, "where_document": where_document, } if include is not None: kwargs["include"] = include return self._collection.get(**kwargs) @deprecated( since="0.1.17", message=( "Since Chroma 0.4.x the manual persistence method is no longer " "supported as docs are automatically persisted." ), removal="1.0", ) def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. Since Chroma 0.4.x the manual persistence method is no longer supported as docs are automatically persisted. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) import chromadb # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: self._client.persist()
159321
def update_document(self, document_id: str, document: Document) -> None: """Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ return self.update_documents([document_id], [document]) def update_documents(self, ids: List[str], documents: List[Document]) -> None: """Update a document in the collection. Args: ids (List[str]): List of ids of the document to update. documents (List[Document]): List of documents to update. """ text = [document.page_content for document in documents] metadata = [document.metadata for document in documents] if self._embedding_function is None: raise ValueError( "For update, you must specify an embedding function on creation." ) embeddings = self._embedding_function.embed_documents(text) if hasattr( self._collection._client, "max_batch_size" ): # for Chroma 0.4.10 and above from chromadb.utils.batch_utils import create_batches for batch in create_batches( api=self._collection._client, ids=ids, metadatas=metadata, documents=text, embeddings=embeddings, ): self._collection.update( ids=batch[0], embeddings=batch[1], documents=batch[3], metadatas=batch[2], ) else: self._collection.update( ids=ids, embeddings=embeddings, documents=text, metadatas=metadata, ) @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) if ids is None: ids = [str(uuid.uuid4()) for _ in texts] if hasattr( chroma_collection._client, "max_batch_size" ): # for Chroma 0.4.10 and above from chromadb.utils.batch_utils import create_batches for batch in create_batches( api=chroma_collection._client, ids=ids, metadatas=metadatas, documents=texts, ): chroma_collection.add_texts( texts=batch[3] if batch[3] else [], metadatas=batch[2] if batch[2] else None, ids=batch[0], ) else: chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, # Add this line collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ self._collection.delete(ids=ids, **kwargs) def __len__(self) -> int: """Count the number of documents in the collection.""" return self._collection.count()
159327
def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return self.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) def similarity_search( self, query: str, k: int = 4, params: Dict[str, Any] = {}, filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Neo4jVector. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. params (Dict[str, Any]): The search params for the index type. Defaults to empty dict. filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to filter on metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, query=query, params=params, filter=filter, **kwargs, ) def similarity_search_with_score( self, query: str, k: int = 4, params: Dict[str, Any] = {}, filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. params (Dict[str, Any]): The search params for the index type. Defaults to empty dict. filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to filter on metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, query=query, params=params, filter=filter, **kwargs, ) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, params: Dict[str, Any] = {}, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Perform a similarity search in the Neo4j database using a given vector and return the top k similar documents with their scores. This method uses a Cypher query to find the top k documents that are most similar to a given embedding. The similarity is measured using a vector index in the Neo4j database. The results are returned as a list of tuples, each containing a Document object and its similarity score. Args: embedding (List[float]): The embedding vector to compare against. k (int, optional): The number of top similar documents to retrieve. filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to filter on metadata. Defaults to None. params (Dict[str, Any]): The search params for the index type. Defaults to empty dict. Returns: List[Tuple[Document, float]]: A list of tuples, each containing a Document object and its similarity score. """ if filter: # Verify that 5.18 or later is used if not self.support_metadata_filter: raise ValueError( "Metadata filtering is only supported in " "Neo4j version 5.18 or greater" ) # Metadata filtering and hybrid doesn't work if self.search_type == SearchType.HYBRID: raise ValueError( "Metadata filtering can't be use in combination with " "a hybrid search approach" ) parallel_query = ( "CYPHER runtime = parallel parallelRuntimeSupport=all " if self._is_enterprise else "" ) base_index_query = parallel_query + ( f"MATCH (n:`{self.node_label}`) WHERE " f"n.`{self.embedding_node_property}` IS NOT NULL AND " f"size(n.`{self.embedding_node_property}`) = " f"toInteger({self.embedding_dimension}) AND " ) base_cosine_query = ( " WITH n as node, vector.similarity.cosine(" f"n.`{self.embedding_node_property}`, " "$embedding) AS score ORDER BY score DESC LIMIT toInteger($k) " ) filter_snippets, filter_params = construct_metadata_filter(filter) index_query = base_index_query + filter_snippets + base_cosine_query else: index_query = _get_search_index_query(self.search_type, self._index_type) filter_params = {} if self._index_type == IndexType.RELATIONSHIP: if kwargs.get("return_embeddings"): default_retrieval = ( f"RETURN relationship.`{self.text_node_property}` AS text, score, " f"relationship {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null, " f"_embedding_: relationship.`{self.embedding_node_property}`}} " "AS metadata" ) else: default_retrieval = ( f"RETURN relationship.`{self.text_node_property}` AS text, score, " f"relationship {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null }} AS metadata" ) else: if kwargs.get("return_embeddings"): default_retrieval = ( f"RETURN node.`{self.text_node_property}` AS text, score, " f"node {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null, " f"_embedding_: node.`{self.embedding_node_property}`}} AS metadata" ) else: default_retrieval = ( f"RETURN node.`{self.text_node_property}` AS text, score, " f"node {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null }} AS metadata" ) retrieval_query = ( self.retrieval_query if self.retrieval_query else default_retrieval ) read_query = index_query + retrieval_query parameters = { "index": self.index_name, "k": k, "embedding": embedding, "keyword_index": self.keyword_index_name, "query": remove_lucene_chars(kwargs["query"]), **params, **filter_params, } results = self.query(read_query, params=parameters) if any(result["text"] is None for result in results): if not self.retrieval_query: raise ValueError( f"Make sure that none of the `{self.text_node_property}` " f"properties on nodes with label `{self.node_label}` " "are missing or empty" ) else: raise ValueError( "Inspect the `retrieval_query` and ensure it doesn't " "return None for the `text` column" ) if kwargs.get("return_embeddings") and any( result["metadata"]["_embedding_"] is None for result in results ): if not self.retrieval_query: raise ValueError( f"Make sure that none of the `{self.embedding_node_property}` " f"properties on nodes with label `{self.node_label}` " "are missing or empty" ) else: raise ValueError( "Inspect the `retrieval_query` and ensure it doesn't " "return None for the `_embedding_` metadata column" ) docs = [ ( Document( page_content=dict_to_yaml_str(result["text"]) if isinstance(result["text"], dict) else result["text"], metadata={ k: v for k, v in result["metadata"].items() if v is not None }, ), result["score"], ) for result in results ] return docs
159333
import json import logging import numbers from hashlib import sha1 from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore logger = logging.getLogger() class AlibabaCloudOpenSearchSettings: """Alibaba Cloud Opensearch` client configuration. Attribute: endpoint (str) : The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. instance_id (str) : The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. username (str) : The username specified when purchasing the instance. password (str) : The password specified when purchasing the instance, After the instance is created, you can modify it on the console. tablename (str): The table name specified during instance configuration. field_name_mapping (Dict) : Using field name mapping between opensearch vector store and opensearch instance configuration table field names: { 'id': 'The id field name map of index document.', 'document': 'The text field name map of index document.', 'embedding': 'In the embedding field of the opensearch instance, the values must be in float type and separated by separator, default is comma.', 'metadata_field_x': 'Metadata field mapping includes the mapped field name and operator in the mapping value, separated by a comma between the mapped field name and the operator.', } protocol (str): Communication Protocol between SDK and Server, default is http. namespace (str) : The instance data will be partitioned based on the "namespace" field,If the namespace is enabled, you need to specify the namespace field name during initialization, Otherwise, the queries cannot be executed correctly. embedding_field_separator(str): Delimiter specified for writing vector field data, default is comma. output_fields: Specify the field list returned when invoking OpenSearch, by default it is the value list of the field mapping field. """ def __init__( self, endpoint: str, instance_id: str, username: str, password: str, table_name: str, field_name_mapping: Dict[str, str], protocol: str = "http", namespace: str = "", embedding_field_separator: str = ",", output_fields: Optional[List[str]] = None, ) -> None: self.endpoint = endpoint self.instance_id = instance_id self.protocol = protocol self.username = username self.password = password self.namespace = namespace self.table_name = table_name self.opt_table_name = "_".join([self.instance_id, self.table_name]) self.field_name_mapping = field_name_mapping self.embedding_field_separator = embedding_field_separator if output_fields is None: self.output_fields = [ field.split(",")[0] for field in self.field_name_mapping.values() ] self.inverse_field_name_mapping: Dict[str, str] = {} for key, value in self.field_name_mapping.items(): self.inverse_field_name_mapping[value.split(",")[0]] = key def __getitem__(self, item: str) -> Any: return getattr(self, item) def create_metadata(fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[key] = value return metadata
159342
def __init__( self, embedding: Embeddings, *, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, table_name: str = "embeddings", content_field: str = "content", metadata_field: str = "metadata", vector_field: str = "vector", id_field: str = "id", use_vector_index: bool = False, vector_index_name: str = "", vector_index_options: Optional[dict] = None, vector_size: int = 1536, use_full_text_search: bool = False, pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any, ): """Initialize with necessary components. Args: embedding (Embeddings): A text embedding model. distance_strategy (DistanceStrategy, optional): Determines the strategy employed for calculating the distance between vectors in the embedding space. Defaults to DOT_PRODUCT. Available options are: - DOT_PRODUCT: Computes the scalar product of two vectors. This is the default behavior - EUCLIDEAN_DISTANCE: Computes the Euclidean distance between two vectors. This metric considers the geometric distance in the vector space, and might be more suitable for embeddings that rely on spatial relationships. This metric is not compatible with the WEIGHTED_SUM search strategy. table_name (str, optional): Specifies the name of the table in use. Defaults to "embeddings". content_field (str, optional): Specifies the field to store the content. Defaults to "content". metadata_field (str, optional): Specifies the field to store metadata. Defaults to "metadata". vector_field (str, optional): Specifies the field to store the vector. Defaults to "vector". id_field (str, optional): Specifies the field to store the id. Defaults to "id". use_vector_index (bool, optional): Toggles the use of a vector index. Works only with SingleStoreDB 8.5 or later. Defaults to False. If set to True, vector_size parameter is required to be set to a proper value. vector_index_name (str, optional): Specifies the name of the vector index. Defaults to empty. Will be ignored if use_vector_index is set to False. vector_index_options (dict, optional): Specifies the options for the vector index. Defaults to {}. Will be ignored if use_vector_index is set to False. The options are: index_type (str, optional): Specifies the type of the index. Defaults to IVF_PQFS. For more options, please refer to the SingleStoreDB documentation: https://docs.singlestore.com/cloud/reference/sql-reference/vector-functions/vector-indexing/ vector_size (int, optional): Specifies the size of the vector. Defaults to 1536. Required if use_vector_index is set to True. Should be set to the same value as the size of the vectors stored in the vector_field. use_full_text_search (bool, optional): Toggles the use a full-text index on the document content. Defaults to False. If set to True, the table will be created with a full-text index on the content field, and the simularity_search method will all using TEXT_ONLY, FILTER_BY_TEXT, FILTER_BY_VECTOR, and WIGHTED_SUM search strategies. If set to False, the simularity_search method will only allow VECTOR_ONLY search strategy. Following arguments pertain to the connection pool: pool_size (int, optional): Determines the number of active connections in the pool. Defaults to 5. max_overflow (int, optional): Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10. timeout (float, optional): Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30. Following arguments pertain to the database connection: host (str, optional): Specifies the hostname, IP address, or URL for the database connection. The default scheme is "mysql". user (str, optional): Database username. password (str, optional): Database password. port (int, optional): Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections. database (str, optional): Database name. Additional optional arguments provide further customization over the database connection: pure_python (bool, optional): Toggles the connector mode. If True, operates in pure Python mode. local_infile (bool, optional): Allows local file uploads. charset (str, optional): Specifies the character set for string values. ssl_key (str, optional): Specifies the path of the file containing the SSL key. ssl_cert (str, optional): Specifies the path of the file containing the SSL certificate. ssl_ca (str, optional): Specifies the path of the file containing the SSL certificate authority. ssl_cipher (str, optional): Sets the SSL cipher list. ssl_disabled (bool, optional): Disables SSL usage. ssl_verify_cert (bool, optional): Verifies the server's certificate. Automatically enabled if ``ssl_ca`` is specified. ssl_verify_identity (bool, optional): Verifies the server's identity. conv (dict[int, Callable], optional): A dictionary of data conversion functions. credential_type (str, optional): Specifies the type of authentication to use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO. autocommit (bool, optional): Enables autocommits. results_type (str, optional): Determines the structure of the query results: tuples, namedtuples, dicts. results_format (str, optional): Deprecated. This option has been renamed to results_type. Examples: Basic Usage: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB vectorstore = SingleStoreDB( OpenAIEmbeddings(), host="https://user:password@127.0.0.1:3306/database" ) Advanced Usage: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB vectorstore = SingleStoreDB( OpenAIEmbeddings(), distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, host="127.0.0.1", port=3306, user="user", password="password", database="db", table_name="my_custom_table", pool_size=10, timeout=60, ) Using environment variables: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db' vectorstore = SingleStoreDB(OpenAIEmbeddings()) Using vector index: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db' vectorstore = SingleStoreDB( OpenAIEmbeddings(), use_vector_index=True, ) Using full-text index: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db' vectorstore = SingleStoreDB( OpenAIEmbeddings(), use_full_text_search=True, ) """ self.embedding = embedding self.distance_strategy = distance_strategy self.table_name = self._sanitize_input(table_name) self.content_field = self._sanitize_input(content_field) self.metadata_field = self._sanitize_input(metadata_field) self.vector_field = self._sanitize_input(vector_field) self.id_field = self._sanitize_input(id_field) self.use_vector_index = bool(use_vector_index) self.vector_index_name = self._sanitize_input(vector_index_name) self.vector_index_options = dict(vector_index_options or {}) self.vector_index_options["metric_type"] = self.distance_strategy self.vector_size = int(vector_size) self.use_full_text_search = bool(use_full_text_search) # Pass the rest of the kwargs to the connection. self.connection_kwargs = kwargs # Add program name and version to connection attributes. if "conn_attrs" not in self.connection_kwargs: self.connection_kwargs["conn_attrs"] = dict() self.connection_kwargs["conn_attrs"]["_connector_name"] = "langchain python sdk" self.connection_kwargs["conn_attrs"]["_connector_version"] = "2.1.0" # Create connection pool. self.connection_pool = QueuePool( self._get_connection, max_overflow=max_overflow, pool_size=pool_size, timeout=timeout, ) self._create_table()
159344
def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, search_strategy: SearchStrategy = SearchStrategy.VECTOR_ONLY, filter_threshold: float = 0, text_weight: float = 0.5, vector_weight: float = 0.5, vector_select_count_multiplier: int = 10, **kwargs: Any, ) -> List[Document]: """Returns the most similar indexed documents to the query text. Uses cosine similarity. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. filter (dict): A dictionary of metadata fields and values to filter by. Default is None. search_strategy (SearchStrategy): The search strategy to use. Default is SearchStrategy.VECTOR_ONLY. Available options are: - SearchStrategy.VECTOR_ONLY: Searches only by vector similarity. - SearchStrategy.TEXT_ONLY: Searches only by text similarity. This option is only available if use_full_text_search is True. - SearchStrategy.FILTER_BY_TEXT: Filters by text similarity and searches by vector similarity. This option is only available if use_full_text_search is True. - SearchStrategy.FILTER_BY_VECTOR: Filters by vector similarity and searches by text similarity. This option is only available if use_full_text_search is True. - SearchStrategy.WEIGHTED_SUM: Searches by a weighted sum of text and vector similarity. This option is only available if use_full_text_search is True and distance_strategy is DOT_PRODUCT. filter_threshold (float): The threshold for filtering by text or vector similarity. Default is 0. This option has effect only if search_strategy is SearchStrategy.FILTER_BY_TEXT or SearchStrategy.FILTER_BY_VECTOR. text_weight (float): The weight of text similarity in the weighted sum search strategy. Default is 0.5. This option has effect only if search_strategy is SearchStrategy.WEIGHTED_SUM. vector_weight (float): The weight of vector similarity in the weighted sum search strategy. Default is 0.5. This option has effect only if search_strategy is SearchStrategy.WEIGHTED_SUM. vector_select_count_multiplier (int): The multiplier for the number of vectors to select when using the vector index. Default is 10. This parameter has effect only if use_vector_index is True and search_strategy is SearchStrategy.WEIGHTED_SUM or SearchStrategy.FILTER_BY_TEXT. The number of vectors selected will be k * vector_select_count_multiplier. This is needed due to the limitations of the vector index. Returns: List[Document]: A list of documents that are most similar to the query text. Examples: Basic Usage: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database" ) results = s2.similarity_search("query text", 1, {"metadata_field": "metadata_value"}) Different Search Strategies: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database", use_full_text_search=True, use_vector_index=True, ) results = s2.similarity_search("query text", 1, search_strategy=SingleStoreDB.SearchStrategy.FILTER_BY_TEXT, filter_threshold=0.5) Weighted Sum Search Strategy: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database", use_full_text_search=True, use_vector_index=True, ) results = s2.similarity_search("query text", 1, search_strategy=SingleStoreDB.SearchStrategy.WEIGHTED_SUM, text_weight=0.3, vector_weight=0.7) """ docs_and_scores = self.similarity_search_with_score( query=query, k=k, filter=filter, search_strategy=search_strategy, filter_threshold=filter_threshold, text_weight=text_weight, vector_weight=vector_weight, vector_select_count_multiplier=vector_select_count_multiplier, **kwargs, ) return [doc for doc, _ in docs_and_scores]
159345
def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, search_strategy: SearchStrategy = SearchStrategy.VECTOR_ONLY, filter_threshold: float = 1, text_weight: float = 0.5, vector_weight: float = 0.5, vector_select_count_multiplier: int = 10, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Uses cosine similarity. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: A dictionary of metadata fields and values to filter by. Defaults to None. search_strategy (SearchStrategy): The search strategy to use. Default is SearchStrategy.VECTOR_ONLY. Available options are: - SearchStrategy.VECTOR_ONLY: Searches only by vector similarity. - SearchStrategy.TEXT_ONLY: Searches only by text similarity. This option is only available if use_full_text_search is True. - SearchStrategy.FILTER_BY_TEXT: Filters by text similarity and searches by vector similarity. This option is only available if use_full_text_search is True. - SearchStrategy.FILTER_BY_VECTOR: Filters by vector similarity and searches by text similarity. This option is only available if use_full_text_search is True. - SearchStrategy.WEIGHTED_SUM: Searches by a weighted sum of text and vector similarity. This option is only available if use_full_text_search is True and distance_strategy is DOT_PRODUCT. filter_threshold (float): The threshold for filtering by text or vector similarity. Default is 0. This option has effect only if search_strategy is SearchStrategy.FILTER_BY_TEXT or SearchStrategy.FILTER_BY_VECTOR. text_weight (float): The weight of text similarity in the weighted sum search strategy. Default is 0.5. This option has effect only if search_strategy is SearchStrategy.WEIGHTED_SUM. vector_weight (float): The weight of vector similarity in the weighted sum search strategy. Default is 0.5. This option has effect only if search_strategy is SearchStrategy.WEIGHTED_SUM. vector_select_count_multiplier (int): The multiplier for the number of vectors to select when using the vector index. Default is 10. This parameter has effect only if use_vector_index is True and search_strategy is SearchStrategy.WEIGHTED_SUM or SearchStrategy.FILTER_BY_TEXT. The number of vectors selected will be k * vector_select_count_multiplier. This is needed due to the limitations of the vector index. Returns: List of Documents most similar to the query and score for each document. Raises: ValueError: If the search strategy is not supported with the distance strategy. Examples: Basic Usage: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database" ) results = s2.similarity_search_with_score("query text", 1, {"metadata_field": "metadata_value"}) Different Search Strategies: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database", use_full_text_search=True, use_vector_index=True, ) results = s2.similarity_search_with_score("query text", 1, search_strategy=SingleStoreDB.SearchStrategy.FILTER_BY_VECTOR, filter_threshold=0.5) Weighted Sum Search Strategy: .. code-block:: python from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings s2 = SingleStoreDB.from_documents( docs, OpenAIEmbeddings(), host="username:password@localhost:3306/database", use_full_text_search=True, use_vector_index=True, ) results = s2.similarity_search_with_score("query text", 1, search_strategy=SingleStoreDB.SearchStrategy.WEIGHTED_SUM, text_weight=0.3, vector_weight=0.7) """ if ( search_strategy != SingleStoreDB.SearchStrategy.VECTOR_ONLY and not self.use_full_text_search ): raise ValueError( """Search strategy {} is not supported when use_full_text_search is False""".format(search_strategy) ) if ( search_strategy == SingleStoreDB.SearchStrategy.WEIGHTED_SUM and self.distance_strategy != DistanceStrategy.DOT_PRODUCT ): raise ValueError( "Search strategy {} is not supported with distance strategy {}".format( search_strategy, self.distance_strategy ) ) # Creates embedding vector from user query embedding = [] if search_strategy != SingleStoreDB.SearchStrategy.TEXT_ONLY: embedding = self.embedding.embed_query(query) self.embedding.embed_query(query) conn = self.connection_pool.connect() result = [] where_clause: str = "" where_clause_values: List[Any] = [] if filter or search_strategy in [ SingleStoreDB.SearchStrategy.FILTER_BY_TEXT, SingleStoreDB.SearchStrategy.FILTER_BY_VECTOR, ]: where_clause = "WHERE " arguments = [] if search_strategy == SingleStoreDB.SearchStrategy.FILTER_BY_TEXT: arguments.append( "MATCH ({}) AGAINST (%s) > %s".format(self.content_field) ) where_clause_values.append(query) where_clause_values.append(float(filter_threshold)) if search_strategy == SingleStoreDB.SearchStrategy.FILTER_BY_VECTOR: condition = "{}({}, JSON_ARRAY_PACK(%s)) ".format( self.distance_strategy.name if isinstance(self.distance_strategy, DistanceStrategy) else self.distance_strategy, self.vector_field, ) if self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: condition += "< %s" else: condition += "> %s" arguments.append(condition) where_clause_values.append("[{}]".format(",".join(map(str, embedding)))) where_clause_values.append(float(filter_threshold)) def build_where_clause( where_clause_values: List[Any], sub_filter: dict, prefix_args: Optional[List[str]] = None, ) -> None: prefix_args = prefix_args or [] for key in sub_filter.keys(): if isinstance(sub_filter[key], dict): build_where_clause( where_clause_values, sub_filter[key], prefix_args + [key] ) else: arguments.append( "JSON_EXTRACT_JSON({}, {}) = %s".format( self.metadata_field, ", ".join(["%s"] * (len(prefix_args) + 1)), ) ) where_clause_values += prefix_args + [key] where_clause_values.append(json.dumps(sub_filter[key])) if filter: build_where_clause(where_clause_values, filter) where_clause += " AND ".join(arguments)
159354
from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union, cast import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.utils.iter import batch_iterate from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import ( maximal_marginal_relevance, ) if TYPE_CHECKING: from upstash_vector import AsyncIndex, Index from upstash_vector.types import InfoResult logger = logging.getLogger(__name__) class UpstashVectorStore(VectorStore): """Upstash Vector vector store To use, the ``upstash-vector`` python package must be installed. Also an Upstash Vector index is required. First create a new Upstash Vector index and copy the `index_url` and `index_token` variables. Then either pass them through the constructor or set the environment variables `UPSTASH_VECTOR_REST_URL` and `UPSTASH_VECTOR_REST_TOKEN`. Example: .. code-block:: python from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import UpstashVectorStore embeddings = OpenAIEmbeddings(model="text-embedding-3-large") vectorstore = UpstashVectorStore( embedding=embeddings, index_url="...", index_token="..." ) # or import os os.environ["UPSTASH_VECTOR_REST_URL"] = "..." os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "..." vectorstore = UpstashVectorStore( embedding=embeddings ) """ def __init__( self, text_key: str = "text", index: Optional[Index] = None, async_index: Optional[AsyncIndex] = None, index_url: Optional[str] = None, index_token: Optional[str] = None, embedding: Optional[Union[Embeddings, bool]] = None, *, namespace: str = "", ): """ Constructor for UpstashVectorStore. If index or index_url and index_token are not provided, the constructor will attempt to create an index using the environment variables `UPSTASH_VECTOR_REST_URL`and `UPSTASH_VECTOR_REST_TOKEN`. Args: text_key: Key to store the text in metadata. index: UpstashVector Index object. async_index: UpstashVector AsyncIndex object, provide only if async functions are needed index_url: URL of the UpstashVector index. index_token: Token of the UpstashVector index. embedding: Embeddings object or a boolean. When false, no embedding is applied. If true, Upstash embeddings are used. When Upstash embeddings are used, text is sent directly to Upstash and embedding is applied there instead of embedding in Langchain. namespace: Namespace to use from the index. Example: .. code-block:: python from langchain_community.vectorstores.upstash import UpstashVectorStore from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = UpstashVectorStore( embedding=embeddings, index_url="...", index_token="...", namespace="..." ) # With an existing index from upstash_vector import Index index = Index(url="...", token="...") vectorstore = UpstashVectorStore( embedding=embeddings, index=index, namespace="..." ) """ try: from upstash_vector import AsyncIndex, Index except ImportError: raise ImportError( "Could not import upstash_vector python package. " "Please install it with `pip install upstash_vector`." ) if index: if not isinstance(index, Index): raise ValueError( "Passed index object should be an " "instance of upstash_vector.Index, " f"got {type(index)}" ) self._index = index logger.info("Using the index passed as parameter") if async_index: if not isinstance(async_index, AsyncIndex): raise ValueError( "Passed index object should be an " "instance of upstash_vector.AsyncIndex, " f"got {type(async_index)}" ) self._async_index = async_index logger.info("Using the async index passed as parameter") if index_url and index_token: self._index = Index(url=index_url, token=index_token) self._async_index = AsyncIndex(url=index_url, token=index_token) logger.info("Created index from the index_url and index_token parameters") elif not index and not async_index: self._index = Index.from_env() self._async_index = AsyncIndex.from_env() logger.info("Created index using environment variables") self._embeddings = embedding self._text_key = text_key self._namespace = namespace @property def embeddings(self) -> Optional[Union[Embeddings, bool]]: # type: ignore """Access the query embedding object if available.""" return self._embeddings def _embed_documents( self, texts: Iterable[str] ) -> Union[List[List[float]], List[str]]: """Embed strings using the embeddings object""" if not self._embeddings: raise ValueError( "No embeddings object provided. " "Pass an embeddings object to the constructor." ) if isinstance(self._embeddings, Embeddings): return self._embeddings.embed_documents(list(texts)) # using self._embeddings is True, Upstash embeddings will be used. # returning list of text as List[str] return list(texts) def _embed_query(self, text: str) -> Union[List[float], str]: """Embed query text using the embeddings object.""" if not self._embeddings: raise ValueError( "No embeddings object provided. " "Pass an embeddings object to the constructor." ) if isinstance(self._embeddings, Embeddings): return self._embeddings.embed_query(text) # using self._embeddings is True, Upstash embeddings will be used. # returning query as it is return text def add_documents( self, documents: List[Document], ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any, ) -> List[str]: """ Get the embeddings for the documents and add them to the vectorstore. Documents are sent to the embeddings object in batches of size `embedding_chunk_size`. The embeddings are then upserted into the vectorstore in batches of size `batch_size`. Args: documents: Iterable of Documents to add to the vectorstore. batch_size: Batch size to use when upserting the embeddings. Upstash supports at max 1000 vectors per request. embedding_batch_size: Chunk size to use when embedding the texts. namespace: Namespace to use from the index. Returns: List of ids from adding the texts into the vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts( texts, metadatas=metadatas, batch_size=batch_size, ids=ids, embedding_chunk_size=embedding_chunk_size, namespace=namespace, **kwargs, ) async def aadd_documents( self, documents: Iterable[Document], ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any, ) -> List[str]: """ Get the embeddings for the documents and add them to the vectorstore. Documents are sent to the embeddings object in batches of size `embedding_chunk_size`. The embeddings are then upserted into the vectorstore in batches of size `batch_size`. Args: documents: Iterable of Documents to add to the vectorstore. batch_size: Batch size to use when upserting the embeddings. Upstash supports at max 1000 vectors per request. embedding_batch_size: Chunk size to use when embedding the texts. namespace: Namespace to use from the index. Returns: List of ids from adding the texts into the vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return await self.aadd_texts( texts, metadatas=metadatas, ids=ids, batch_size=batch_size, embedding_chunk_size=embedding_chunk_size, namespace=namespace, **kwargs, )
159362
from __future__ import annotations import logging from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings from langchain_community.vectorstores.milvus import Milvus logger = logging.getLogger(__name__) class Zilliz(Milvus): """`Zilliz` vector store. You need to have `pymilvus` installed and a running Zilliz database. See the following documentation for how to run a Zilliz instance: https://docs.zilliz.com/docs/create-cluster IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA. Args: embedding_function (Embeddings): Function used to embed the text. collection_name (str): Which Zilliz collection to use. Defaults to "LangChainCollection". connection_args (Optional[dict[str, any]]): The connection args used for this class comes in the form of a dict. consistency_level (str): The consistency level to use for a collection. Defaults to "Session". index_params (Optional[dict]): Which index params to use. Defaults to HNSW/AUTOINDEX depending on service. search_params (Optional[dict]): Which search params to use. Defaults to default of index. drop_old (Optional[bool]): Whether to drop the current collection. Defaults to False. auto_id (bool): Whether to enable auto id for primary key. Defaults to False. If False, you needs to provide text ids (string less than 65535 bytes). If True, Milvus will generate unique integers as primary keys. The connection args used for this class comes in the form of a dict, here are a few of the options: address (str): The actual address of Zilliz instance. Example address: "localhost:19530" uri (str): The uri of Zilliz instance. Example uri: "https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com", host (str): The host of Zilliz instance. Default at "localhost", PyMilvus will fill in the default host if only port is provided. port (str/int): The port of Zilliz instance. Default at 19530, PyMilvus will fill in the default port if only host is provided. user (str): Use which user to connect to Zilliz instance. If user and password are provided, we will add related header in every RPC call. password (str): Required when user is provided. The password corresponding to the user. token (str): API key, for serverless clusters which can be used as replacements for user and password. secure (bool): Default is false. If set to true, tls will be enabled. client_key_path (str): If use tls two-way authentication, need to write the client.key path. client_pem_path (str): If use tls two-way authentication, need to write the client.pem path. ca_pem_path (str): If use tls two-way authentication, need to write the ca.pem path. server_pem_path (str): If use tls one-way authentication, need to write the server.pem path. server_name (str): If use tls, need to write the common name. Example: .. code-block:: python from langchain_community.vectorstores import Zilliz from langchain_community.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() # Connect to a Zilliz instance milvus_store = Milvus( embedding_function = embedding, collection_name = "LangChainCollection", connection_args = { "uri": "https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com", "user": "temp", "password": "temp", "token": "temp", # API key as replacements for user and password "secure": True } drop_old: True, ) Raises: ValueError: If the pymilvus python package is not installed. """ def _create_index(self) -> None: """Create a index on the collection""" from pymilvus import Collection, MilvusException if isinstance(self.col, Collection) and self._get_index() is None: try: # If no index params, use a default AutoIndex based one if self.index_params is None: self.index_params = { "metric_type": "L2", "index_type": "AUTOINDEX", "params": {}, } try: self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) # If default did not work, most likely Milvus self-hosted except MilvusException: # Use HNSW based index self.index_params = { "metric_type": "L2", "index_type": "HNSW", "params": {"M": 8, "efConstruction": 64}, } self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) logger.debug( "Successfully created an index on collection: %s", self.collection_name, ) except MilvusException as e: logger.error( "Failed to create an index on collection: %s", self.collection_name ) raise e @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = "LangChainCollection", connection_args: Optional[Dict[str, Any]] = None, consistency_level: str = "Session", index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, *, ids: Optional[List[str]] = None, auto_id: bool = False, **kwargs: Any, ) -> Zilliz: """Create a Zilliz collection, indexes it with HNSW, and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[dict]]): Metadata for each text if it exists. Defaults to None. collection_name (str, optional): Collection name to use. Defaults to "LangChainCollection". connection_args (dict[str, Any], optional): Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional): Which consistency level to use. Defaults to "Session". index_params (Optional[dict], optional): Which index_params to use. Defaults to None. search_params (Optional[dict], optional): Which search params to use. Defaults to None. drop_old (Optional[bool], optional): Whether to drop the collection with that name if it exists. Defaults to False. ids (Optional[List[str]]): List of text ids. auto_id (bool): Whether to enable auto id for primary key. Defaults to False. If False, you needs to provide text ids (string less than 65535 bytes). If True, Milvus will generate unique integers as primary keys. Returns: Zilliz: Zilliz Vector Store """ vector_db = cls( embedding_function=embedding, collection_name=collection_name, connection_args=connection_args or {}, consistency_level=consistency_level, index_params=index_params, search_params=search_params, drop_old=drop_old, auto_id=auto_id, **kwargs, ) vector_db.add_texts(texts=texts, metadatas=metadatas, ids=ids) return vector_db
159372
def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, ids: Optional[List[str]] = None, batch_size: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Run texts through the embeddings and persist in vectorstore. If the document IDs are passed, the existing documents (if any) will be overwritten with the new ones. Args: texts (Iterable[str]): Iterable of strings to add to the vectorstore. metadatas (Optional[List[Dict]]): Optional list of metadatas associated with the texts. ids (Optional[List[str]]): Optional list of ids associated with the texts. IDs have to be unique strings across the collection. If it is not specified uuids are generated and used as ids. batch_size (Optional[int]): Optional batch size for bulk insertions. Default is 100. Returns: List[str]:List of ids from adding the texts into the vectorstore. """ from couchbase.exceptions import DocumentExistsException if not batch_size: batch_size = self.DEFAULT_BATCH_SIZE doc_ids: List[str] = [] if ids is None: ids = [uuid.uuid4().hex for _ in texts] if metadatas is None: metadatas = [{} for _ in texts] embedded_texts = self._embedding_function.embed_documents(list(texts)) documents_to_insert = [ { id: { self._text_key: text, self._embedding_key: vector, self._metadata_key: metadata, } for id, text, vector, metadata in zip( ids, texts, embedded_texts, metadatas ) } ] # Insert in batches for i in range(0, len(documents_to_insert), batch_size): batch = documents_to_insert[i : i + batch_size] try: result = self._collection.upsert_multi(batch[0]) if result.all_ok: doc_ids.extend(batch[0].keys()) except DocumentExistsException as e: raise ValueError(f"Document already exists: {e}") return doc_ids def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete documents from the vector store by ids. Args: ids (List[str]): List of IDs of the documents to delete. batch_size (Optional[int]): Optional batch size for bulk deletions. Returns: bool: True if all the documents were deleted successfully, False otherwise. """ from couchbase.exceptions import DocumentNotFoundException if ids is None: raise ValueError("No document ids provided to delete.") batch_size = kwargs.get("batch_size", self.DEFAULT_BATCH_SIZE) deletion_status = True # Delete in batches for i in range(0, len(ids), batch_size): batch = ids[i : i + batch_size] try: result = self._collection.remove_multi(batch) except DocumentNotFoundException as e: deletion_status = False raise ValueError(f"Document not found: {e}") deletion_status &= result.all_ok return deletion_status @property def embeddings(self) -> Embeddings: """Return the query embedding object.""" return self._embedding_function def _format_metadata(self, row_fields: Dict[str, Any]) -> Dict[str, Any]: """Helper method to format the metadata from the Couchbase Search API. Args: row_fields (Dict[str, Any]): The fields to format. Returns: Dict[str, Any]: The formatted metadata. """ metadata = {} for key, value in row_fields.items(): # Couchbase Search returns the metadata key with a prefix # `metadata.` We remove it to get the original metadata key if key.startswith(self._metadata_key): new_key = key.split(self._metadata_key + ".")[-1] metadata[new_key] = value else: metadata[key] = value return metadata def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector with their scores. Args: embedding (List[float]): Embedding vector to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. search_options (Optional[Dict[str, Any]]): Optional search options that are passed to Couchbase search. Defaults to empty dictionary. fields (Optional[List[str]]): Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index. Returns: List of (Document, score) that are the most similar to the query vector. """ import couchbase.search as search from couchbase.options import SearchOptions from couchbase.vector_search import VectorQuery, VectorSearch fields = kwargs.get("fields", ["*"]) # Document text field needs to be returned from the search if fields != ["*"] and self._text_key not in fields: fields.append(self._text_key) search_req = search.SearchRequest.create( VectorSearch.from_vector_query( VectorQuery( self._embedding_key, embedding, k, ) ) ) try: if self._scoped_index: search_iter = self._scope.search( self._index_name, search_req, SearchOptions( limit=k, fields=fields, raw=search_options, ), ) else: search_iter = self._cluster.search( index=self._index_name, request=search_req, options=SearchOptions(limit=k, fields=fields, raw=search_options), ) docs_with_score = [] # Parse the results for row in search_iter.rows(): text = row.fields.pop(self._text_key, "") # Format the metadata from Couchbase metadata = self._format_metadata(row.fields) score = row.score doc = Document(page_content=text, metadata=metadata) docs_with_score.append((doc, score)) except Exception as e: raise ValueError(f"Search failed with error: {e}") return docs_with_score def similarity_search( self, query: str, k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any, ) -> List[Document]: """Return documents most similar to embedding vector with their scores. Args: query (str): Query to look up for similar documents k (int): Number of Documents to return. Defaults to 4. search_options (Optional[Dict[str, Any]]): Optional search options that are passed to Couchbase search. Defaults to empty dictionary fields (Optional[List[str]]): Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index. Returns: List of Documents most similar to the query. """ query_embedding = self.embeddings.embed_query(query) docs_with_scores = self.similarity_search_with_score_by_vector( query_embedding, k, search_options, **kwargs ) return [doc for doc, _ in docs_with_scores] def similarity_search_with_score( self, query: str, k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return documents that are most similar to the query with their scores. Args: query (str): Query to look up for similar documents k (int): Number of Documents to return. Defaults to 4. search_options (Optional[Dict[str, Any]]): Optional search options that are passed to Couchbase search. Defaults to empty dictionary. fields (Optional[List[str]]): Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to text and metadata fields. Returns: List of (Document, score) that are most similar to the query. """ query_embedding = self.embeddings.embed_query(query) docs_with_score = self.similarity_search_with_score_by_vector( query_embedding, k, search_options, **kwargs ) return docs_with_score
159375
@deprecated( "0.0.27", alternative="Use ElasticsearchStore class in langchain-elasticsearch package", pending=True, ) class ElasticVectorSearch(VectorStore): """ ElasticVectorSearch uses the brute force method of searching on vectors. Recommended to use ElasticsearchStore instead, which gives you the option to uses the approx HNSW algorithm which performs better on large datasets. ElasticsearchStore also supports metadata filtering, customising the query retriever and much more! You can read more on ElasticsearchStore: https://python.langchain.com/docs/integrations/vectorstores/elasticsearch To connect to an `Elasticsearch` instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example: .. code-block:: python from langchain_community.vectorstores import ElasticVectorSearch from langchain_community.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the "Deployments" page. To obtain your Elastic Cloud password for the default "elastic" user: 1. Log in to the Elastic Cloud console at https://cloud.elastic.co 2. Go to "Security" > "Users" 3. Locate the "elastic" user and click "Edit" 4. Click "Reset password" 5. Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example: .. code-block:: python from langchain_community.vectorstores import ElasticVectorSearch from langchain_community.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Args: elasticsearch_url (str): The URL for the Elasticsearch instance. index_name (str): The name of the Elasticsearch index for the embeddings. embedding (Embeddings): An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises: ValueError: If the elasticsearch python package is not installed. """ def __init__( self, elasticsearch_url: str, index_name: str, embedding: Embeddings, *, ssl_verify: Optional[Dict[str, Any]] = None, ): """Initialize with necessary components.""" warnings.warn( "ElasticVectorSearch will be removed in a future release. See" "Elasticsearch integration docs on how to upgrade." ) try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) self.embedding = embedding self.index_name = index_name _ssl_verify = ssl_verify or {} try: self.client = elasticsearch.Elasticsearch( elasticsearch_url, **_ssl_verify, headers={"user-agent": self.get_user_agent()}, ) except ValueError as e: raise ValueError( f"Your elasticsearch client string is mis-formatted. Got error: {e} " ) @staticmethod def get_user_agent() -> str: from langchain_community import __version__ return f"langchain-py-dvs/{__version__}" @property def embeddings(self) -> Embeddings: return self.embedding def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. refresh_indices: bool to refresh ElasticSearch indices Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) requests = [] ids = ids or [str(uuid.uuid4()) for _ in texts] embeddings = self.embedding.embed_documents(list(texts)) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # check to see if the index already exists try: self.client.indices.get(index=self.index_name) except NotFoundError: # TODO would be nice to create index before embedding, # just to save expensive steps for last self.create_index(self.client, self.index_name, mapping) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": self.index_name, "vector": embeddings[i], "text": text, "metadata": metadata, "_id": ids[i], } requests.append(request) bulk(self.client, requests) if refresh_indices: self.client.indices.refresh(index=self.index_name) return ids def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) documents = [d[0] for d in docs_and_scores] return documents def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(query) script_query = _default_script_query(embedding, filter) response = self.client_search( self.client, self.index_name, script_query, size=k ) hits = [hit for hit in response["hits"]["hits"]] docs_and_scores = [ ( Document( page_content=hit["_source"]["text"], metadata=hit["_source"]["metadata"], ), hit["_score"], ) for hit in hits ] return docs_and_scores
159376
@classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, index_name: Optional[str] = None, refresh_indices: bool = True, **kwargs: Any, ) -> ElasticVectorSearch: """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_community.vectorstores import ElasticVectorSearch from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = get_from_dict_or_env( kwargs, "elasticsearch_url", "ELASTICSEARCH_URL" ) if "elasticsearch_url" in kwargs: del kwargs["elasticsearch_url"] index_name = index_name or uuid.uuid4().hex vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs) vectorsearch.add_texts( texts, metadatas=metadatas, ids=ids, refresh_indices=refresh_indices ) return vectorsearch def create_index(self, client: Any, index_name: str, mapping: Dict) -> None: version_num = client.info()["version"]["number"][0] version_num = int(version_num) if version_num >= 8: client.indices.create(index=index_name, mappings=mapping) else: client.indices.create(index=index_name, body={"mappings": mapping}) def client_search( self, client: Any, index_name: str, script_query: Dict, size: int ) -> Any: version_num = client.info()["version"]["number"][0] version_num = int(version_num) if version_num >= 8: response = client.search(index=index_name, query=script_query, size=size) else: response = client.search( index=index_name, body={"query": script_query, "size": size} ) return response def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") # TODO: Check if this can be done in bulk for id in ids: self.client.delete(index=self.index_name, id=id)
159388
class Redis(VectorStore): """Redis vector database. Deployment Options: Below, we will use a local deployment as an example. However, Redis can be deployed in all of the following ways: - [Redis Cloud](https://redis.com/redis-enterprise-cloud/overview/) - [Docker (Redis Stack)](https://hub.docker.com/r/redis/redis-stack) - Cloud marketplaces: [AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-e6y7ork67pjwg?sr=0-2&ref_=beagle&applicationId=AWSMPContessa), [Google Marketplace](https://console.cloud.google.com/marketplace/details/redislabs-public/redis-enterprise?pli=1), or [Azure Marketplace](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/garantiadata.redis_enterprise_1sp_public_preview?tab=Overview) - On-premise: [Redis Enterprise Software](https://redis.com/redis-enterprise-software/overview/) - Kubernetes: [Redis Enterprise Software on Kubernetes](https://docs.redis.com/latest/kubernetes/) Setup: Install ``redis``, ``redisvl``, and ``langchain-community`` and run Redis locally. .. code-block:: bash pip install -qU redis redisvl langchain-community docker run -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest Key init args — indexing params: index_name: str Name of the index. index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] Schema of the index and the vector schema. Can be a dict, or path to yaml file. embedding: Embeddings Embedding function to use. Key init args — client params: redis_url: str Redis connection url. Instantiate: .. code-block:: python from langchain_community.vectorstores.redis import Redis from langchain_openai import OpenAIEmbeddings vector_store = Redis( redis_url="redis://localhost:6379", embedding=OpenAIEmbeddings(), index_name="users", ) Add Documents: .. code-block:: python from langchain_core.documents import Document document_1 = Document(page_content="foo", metadata={"baz": "bar"}) document_2 = Document(page_content="thud", metadata={"bar": "baz"}) document_3 = Document(page_content="i will be deleted :(") documents = [document_1, document_2, document_3] ids = ["1", "2", "3"] vector_store.add_documents(documents=documents, ids=ids) Delete Documents: .. code-block:: python vector_store.delete(ids=["3"]) Search: .. code-block:: python results = vector_store.similarity_search(query="thud",k=1) for doc in results: print(f"* {doc.page_content} [{doc.metadata}]") .. code-block:: python * thud [{'id': 'doc:users:2'}] Search with filter: .. code-block:: python from langchain_community.vectorstores.redis import RedisTag results = vector_store.similarity_search(query="thud",k=1,filter=(RedisTag("baz") != "bar")) for doc in results: print(f"* {doc.page_content} [{doc.metadata}]") .. code-block:: python * thud [{'id': 'doc:users:2'}] Search with score: .. code-block:: python results = vector_store.similarity_search_with_score(query="qux",k=1) for doc, score in results: print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") .. code-block:: python * [SIM=0.167700] foo [{'id': 'doc:users:1'}] Async: .. code-block:: python # add documents # await vector_store.aadd_documents(documents=documents, ids=ids) # delete documents # await vector_store.adelete(ids=["3"]) # search # results = vector_store.asimilarity_search(query="thud",k=1) # search with score results = await vector_store.asimilarity_search_with_score(query="qux",k=1) for doc,score in results: print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") .. code-block:: python * [SIM=0.167700] foo [{'id': 'doc:users:1'}] Use as Retriever: .. code-block:: python retriever = vector_store.as_retriever( search_type="mmr", search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5}, ) retriever.invoke("thud") .. code-block:: python [Document(metadata={'id': 'doc:users:2'}, page_content='thud')] **Advanced examples:** Custom vector schema can be supplied to change the way that Redis creates the underlying vector schema. This is useful for production use cases where you want to optimize the vector schema for your use case. ex. using HNSW instead of FLAT (knn) which is the default .. code-block:: python vector_schema = { "algorithm": "HNSW" } rds = Redis.from_texts( texts, # a list of strings metadata, # a list of metadata dicts embeddings, # an Embeddings object vector_schema=vector_schema, redis_url="redis://localhost:6379", ) Custom index schema can be supplied to change the way that the metadata is indexed. This is useful for you would like to use the hybrid querying (filtering) capability of Redis. By default, this implementation will automatically generate the index schema according to the following rules: - All strings are indexed as text fields - All numbers are indexed as numeric fields - All lists of strings are indexed as tag fields (joined by langchain_community.vectorstores.redis.constants.REDIS_TAG_SEPARATOR) - All None values are not indexed but still stored in Redis these are not retrievable through the interface here, but the raw Redis client can be used to retrieve them. - All other types are not indexed To override these rules, you can pass in a custom index schema like the following .. code-block:: yaml tag: - name: credit_score text: - name: user - name: job Typically, the ``credit_score`` field would be a text field since it's a string, however, we can override this behavior by specifying the field type as shown with the yaml config (can also be a dictionary) above and the code below. .. code-block:: python rds = Redis.from_texts( texts, # a list of strings metadata, # a list of metadata dicts embeddings, # an Embeddings object index_schema="path/to/index_schema.yaml", # can also be a dictionary redis_url="redis://localhost:6379", ) When connecting to an existing index where a custom schema has been applied, it's important to pass in the same schema to the ``from_existing_index`` method. Otherwise, the schema for newly added samples will be incorrect and metadata will not be returned. """ # noqa: E501 DEFAULT_VECTOR_SCHEMA = { "name": "content_vector", "algorithm": "FLAT", "dims": 1536, "distance_metric": "COSINE", "datatype": "FLOAT32", }
159390
ssmethod def from_texts( cls: Type[Redis], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] = None, vector_schema: Optional[Dict[str, Union[str, int]]] = None, **kwargs: Any, ) -> Redis: """Create a Redis vectorstore from a list of texts. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new Redis index if it doesn't already exist 3. Adds the documents to the newly created Redis index. This method will generate schema based on the metadata passed in if the `index_schema` is not defined. If the `index_schema` is defined, it will compare against the generated schema and warn if there are differences. If you are purposefully defining the schema for the metadata, then you can ignore that warning. To examine the schema options, initialize an instance of this class and print out the schema using the `Redis.schema`` property. This will include the content and content_vector classes which are always present in the langchain schema. Example: .. code-block:: python from langchain_community.vectorstores import Redis from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) Args: texts (List[str]): List of texts to add to the vectorstore. embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings) for embedding queries. metadatas (Optional[List[dict]], optional): Optional list of metadata dicts to add to the vectorstore. Defaults to None. index_name (Optional[str], optional): Optional name of the index to create or add to. Defaults to None. index_schema (Optional[Union[Dict[str, ListOfDict], str, os.PathLike]], optional): Optional fields to index within the metadata. Overrides generated schema. Defaults to None. vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional vector schema to use. Defaults to None. **kwargs (Any): Additional keyword arguments to pass to the Redis client. Returns: Redis: Redis VectorStore instance. Raises: ValueError: If the number of metadatas does not match the number of texts. ImportError: If the redis python package is not installed. """ instance, _ = cls.from_texts_return_keys( texts, embedding, metadatas=metadatas, index_name=index_name, index_schema=index_schema, vector_schema=vector_schema, **kwargs, ) return instance @classmethod def from_existing_index( cls, embedding: Embeddings, index_name: str, schema: Union[Dict[str, ListOfDict], str, os.PathLike, Dict[str, ListOfDict]], key_prefix: Optional[str] = None, **kwargs: Any, ) -> Redis: """Connect to an existing Redis index. Example: .. code-block:: python from langchain_community.vectorstores import Redis from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() # must pass in schema and key_prefix from another index existing_rds = Redis.from_existing_index( embeddings, index_name="my-index", schema=rds.schema, # schema dumped from another index key_prefix=rds.key_prefix, # key prefix from another index redis_url="redis://username:password@localhost:6379", ) Args: embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings) for embedding queries. index_name (str): Name of the index to connect to. schema (Union[Dict[str, str], str, os.PathLike, Dict[str, ListOfDict]]): Schema of the index and the vector schema. Can be a dict, or path to yaml file. key_prefix (Optional[str]): Prefix to use for all keys in Redis associated with this index. **kwargs (Any): Additional keyword arguments to pass to the Redis client. Returns: Redis: Redis VectorStore instance. Raises: ValueError: If the index does not exist. ImportError: If the redis python package is not installed. """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. if "redis_url" in kwargs: kwargs.pop("redis_url") # Create instance # init the class -- if Redis is unavailable, will throw exception instance = cls( redis_url, index_name, embedding, index_schema=schema, key_prefix=key_prefix, **kwargs, ) # Check for existence of the declared index if not check_index_exists(instance.client, index_name): # Will only raise if the running Redis server does not # have a record of this particular index raise ValueError( f"Redis failed to connect: Index {index_name} does not exist." ) return instance @property def schema(self) -> Dict[str, List[Any]]: """Return the schema of the index.""" return self._schema.as_dict() def write_schema(self, path: Union[str, os.PathLike]) -> None: """Write the schema to a yaml file.""" with open(path, "w+") as f: yaml.dump(self.schema, f) def delete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> bool: """ Delete a Redis entry. Args: ids: List of ids (keys in redis) to delete. redis_url: Redis connection url. This should be passed in the kwargs or set as an environment variable: REDIS_URL. Returns: bool: Whether or not the deletions were successful. Raises: ValueError: If the redis python package is not installed. ValueError: If the ids (keys in redis) are not provided """ client = self.client # Check if index exists try: if ids: client.delete(*ids) logger.info("Entries deleted") return True except: # noqa: E722 # ids does not exist return False @staticmethod def drop_index( index_name: str, delete_documents: bool, **kwargs: Any, ) -> bool: """ Drop a Redis search index. Args: index_name (str): Name of the index to drop. delete_documents (bool): Whether to drop the associated documents. Returns: bool: Whether or not the drop was successful. """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis # noqa: F401 except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. if "redis_url" in kwargs: kwargs.pop("redis_url") client = get_client(redis_url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # Check if index exists try: client.ft(index_name).dropindex(delete_documents) logger.info("Drop index") return True except: # noqa: E722 # Index not exist return False
159392
similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[RedisFilterExpression] = None, return_metadata: bool = True, distance_threshold: Optional[float] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search between a query vector and the indexed vectors. Args: embedding (List[float]): The query vector for which to find similar documents. k (int): The number of documents to return. Default is 4. filter (RedisFilterExpression, optional): Optional metadata filter. Defaults to None. return_metadata (bool, optional): Whether to return metadata. Defaults to True. distance_threshold (Optional[float], optional): Maximum vector distance between selected documents and the query vector. Defaults to None. Returns: List[Document]: A list of documents that are most similar to the query text. """ try: import redis except ImportError as e: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) from e if "score_threshold" in kwargs: logger.warning( "score_threshold is deprecated. Use distance_threshold instead." + "score_threshold should only be used in " + "similarity_search_with_relevance_scores." + "score_threshold will be removed in a future release.", ) redis_query, params_dict = self._prepare_query( embedding, k=k, filter=filter, distance_threshold=distance_threshold, with_metadata=return_metadata, with_distance=False, ) # Perform vector search # ignore type because redis-py is wrong about bytes try: results = self.client.ft(self.index_name).search(redis_query, params_dict) # type: ignore except redis.exceptions.ResponseError as e: # split error message and see if it starts with "Syntax" if str(e).split(" ")[0] == "Syntax": raise ValueError( "Query failed with syntax error. " + "This is likely due to malformation of " + "filter, vector, or query argument" ) from e raise e # Prepare document results docs = [] for result in results.docs: metadata = {} if return_metadata: metadata = {"id": result.id} metadata.update(self._collect_metadata(result)) content_key = self._schema.content_key docs.append( Document(page_content=getattr(result, content_key), metadata=metadata) ) return docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[RedisFilterExpression] = None, return_metadata: bool = True, distance_threshold: Optional[float] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query (str): Text to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. fetch_k (int): Number of Documents to fetch to pass to MMR algorithm. lambda_mult (float): Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (RedisFilterExpression, optional): Optional metadata filter. Defaults to None. return_metadata (bool, optional): Whether to return metadata. Defaults to True. distance_threshold (Optional[float], optional): Maximum vector distance between selected documents and the query vector. Defaults to None. Returns: List[Document]: A list of Documents selected by maximal marginal relevance. """ # Embed the query query_embedding = self._embeddings.embed_query(query) # Fetch the initial documents prefetch_docs = self.similarity_search_by_vector( query_embedding, k=fetch_k, filter=filter, return_metadata=return_metadata, distance_threshold=distance_threshold, **kwargs, ) prefetch_ids = [doc.metadata["id"] for doc in prefetch_docs] # Get the embeddings for the fetched documents prefetch_embeddings = [ _buffer_to_array( cast( bytes, self.client.hget(prefetch_id, self._schema.content_vector_key), ), dtype=self._schema.vector_dtype, ) for prefetch_id in prefetch_ids ] # Select documents using maximal marginal relevance selected_indices = maximal_marginal_relevance( np.array(query_embedding), prefetch_embeddings, lambda_mult=lambda_mult, k=k ) selected_docs = [prefetch_docs[i] for i in selected_indices] return selected_docs def _collect_metadata(self, result: "Document") -> Dict[str, Any]: """Collect metadata from Redis. Method ensures that there isn't a mismatch between the metadata and the index schema passed to this class by the user or generated by this class. Args: result (Document): redis.commands.search.Document object returned from Redis. Returns: Dict[str, Any]: Collected metadata. """ # new metadata dict as modified by this method meta = {} for key in self._schema.metadata_keys: try: meta[key] = getattr(result, key) except AttributeError: # warning about attribute missing logger.warning( f"Metadata key {key} not found in metadata. " + "Setting to None. \n" + "Metadata fields defined for this instance: " + f"{self._schema.metadata_keys}" ) meta[key] = None return meta def _prepare_query( self, query_embedding: List[float], k: int = 4, filter: Optional[RedisFilterExpression] = None, distance_threshold: Optional[float] = None, with_metadata: bool = True, with_distance: bool = False, ) -> Tuple["Query", Dict[str, Any]]: # Creates Redis query params_dict: Dict[str, Union[str, bytes, float]] = { "vector": _array_to_buffer(query_embedding, self._schema.vector_dtype), } # prepare return fields including score return_fields = [self._schema.content_key] if with_distance: return_fields.append("distance") if with_metadata: return_fields.extend(self._schema.metadata_keys) if distance_threshold: params_dict["distance_threshold"] = distance_threshold return ( self._prepare_range_query( k, filter=filter, return_fields=return_fields ), params_dict, ) return ( self._prepare_vector_query(k, filter=filter, return_fields=return_fields), params_dict, ) def _prepare_range_query( self, k: int, filter: Optional[RedisFilterExpression] = None, return_fields: Optional[List[str]] = None, ) -> "Query": try: from redis.commands.search.query import Query except ImportError as e: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) from e return_fields = return_fields or [] vector_key = self._schema.content_vector_key base_query = f"@{vector_key}:[VECTOR_RANGE $distance_threshold $vector]" if filter: base_query = str(filter) + " " + base_query query_string = base_query + "=>{$yield_distance_as: distance}" return ( Query(query_string) .return_fields(*return_fields) .sort_by("distance") .paging(0, k) .dialect(2) ) def _prepare_vector_query( self, k: int, filter: Optional[RedisFilterExpression] = None, return_fields: Optional[List[str]] = None, ) -> "Query": """Prepare query for vector search. Args: k: Number of results to return. filter: Optional metadata filter. Returns: query: Query object. """ try: from redis.commands.search.query import Query except ImportError as e: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) from e return_fields = return_fields or [] query_prefix = "*" if filter: query_prefix = f"{str(filter)}" vector_key = self._schema.content_vector_key base_query = f"({query_prefix})=>[KNN {k} @{vector_key} $vector AS distance]" query = ( Query(base_query) .return_fields(*return_fields) .sort_by("distance") .paging(0, k) .dialect(2) ) return query
159394
s RedisVectorStoreRetriever(VectorStoreRetriever): """Retriever for Redis VectorStore.""" vectorstore: Redis """Redis VectorStore.""" search_type: str = "similarity" """Type of search to perform. Can be either 'similarity', 'similarity_distance_threshold', 'similarity_score_threshold' """ search_kwargs: Dict[str, Any] = { "k": 4, "score_threshold": 0.9, # set to None to avoid distance used in score_threshold search "distance_threshold": None, } """Default search kwargs.""" allowed_search_types = [ "similarity", "similarity_distance_threshold", "similarity_score_threshold", "mmr", ] """Allowed search types.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "similarity_distance_threshold": if self.search_kwargs["distance_threshold"] is None: raise ValueError( "distance_threshold must be provided for " + "similarity_distance_threshold retriever" ) docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "similarity_distance_threshold": if self.search_kwargs["distance_threshold"] is None: raise ValueError( "distance_threshold must be provided for " + "similarity_distance_threshold retriever" ) docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" return await self.vectorstore.aadd_documents(documents, **kwargs)
159402
from abc import ABC from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from pydantic import Field from langchain_community.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex def _check_docarray_import() -> None: try: import docarray da_version = docarray.__version__.split(".") if int(da_version[0]) == 0 and int(da_version[1]) <= 31: raise ImportError( f"To use the DocArrayHnswSearch VectorStore the docarray " f"version >=0.32.0 is expected, received: {docarray.__version__}." f"To upgrade, please run: `pip install -U docarray`." ) except ImportError: raise ImportError( "Could not import docarray python package. " "Please install it with `pip install docarray`." ) class DocArrayIndex(VectorStore, ABC): """Base class for `DocArray` based vector stores.""" def __init__( self, doc_index: "BaseDocIndex", embedding: Embeddings, ): """Initialize a vector store from DocArray's DocIndex.""" self.doc_index = doc_index self.embedding = embedding @staticmethod def _get_doc_cls(**embeddings_params: Any) -> Type["BaseDoc"]: """Get docarray Document class describing the schema of DocIndex.""" from docarray import BaseDoc from docarray.typing import NdArray class DocArrayDoc(BaseDoc): text: Optional[str] = Field(default=None) embedding: Optional[NdArray] = Field(**embeddings_params) metadata: Optional[dict] = Field(default=None) return DocArrayDoc @property def doc_cls(self) -> Type["BaseDoc"]: if self.doc_index._schema is None: raise ValueError("doc_index expected to have non-null _schema attribute.") return self.doc_index._schema def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Embed texts and add to the vector store. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ ids: List[str] = [] embeddings = self.embedding.embed_documents(list(texts)) for i, (t, e) in enumerate(zip(texts, embeddings)): m = metadatas[i] if metadatas else {} doc = self.doc_cls(text=t, embedding=e, metadata=m) self.doc_index.index([doc]) ids.append(str(doc.id)) return ids def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ query_embedding = self.embedding.embed_query(query) query_doc = self.doc_cls(embedding=query_embedding) # type: ignore docs, scores = self.doc_index.find(query_doc, search_field="embedding", limit=k) result = [ (Document(page_content=doc.text, metadata=doc.metadata), score) for doc, score in zip(docs, scores) ] return result def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ results = self.similarity_search_with_score(query, k=k, **kwargs) return [doc for doc, _ in results] def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ raise NotImplementedError() def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ query_doc = self.doc_cls(embedding=embedding) # type: ignore docs = self.doc_index.find( query_doc, search_field="embedding", limit=k ).documents result = [ Document(page_content=doc.text, metadata=doc.metadata) for doc in docs ] return result def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ query_embedding = self.embedding.embed_query(query) query_doc = self.doc_cls(embedding=query_embedding) # type: ignore docs = self.doc_index.find( query_doc, search_field="embedding", limit=fetch_k ).documents mmr_selected = maximal_marginal_relevance( np.array(query_embedding), docs.embedding, k=k ) results = [ Document(page_content=docs[idx].text, metadata=docs[idx].metadata) for idx in mmr_selected ] return results
159461
class ConfluenceLoader(BaseLoader): """Load `Confluence` pages. Port of https://llamahub.ai/l/confluence This currently supports username/api_key, Oauth2 login or personal access token authentication. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceLoader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Confluence API supports difference format of page content. The storage format is the raw XML representation for storage. The view format is the HTML representation for viewing with macros are rendered as though it is viewed by users. You can pass a enum `content_format` argument to specify the content format, this is set to `ContentFormat.STORAGE` by default, the supported values are: `ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`, `ContentFormat.ANONYMOUS_EXPORT_VIEW`, `ContentFormat.STORAGE`, and `ContentFormat.VIEW`. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example: .. code-block:: python from langchain_community.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345", space_key="SPACE", limit=50, ) documents = loader.load() # Server on perm loader = ConfluenceLoader( url="https://confluence.yoursite.com/", username="me", api_key="your_password", cloud=False, space_key="SPACE", limit=50, ) documents = loader.load() :param url: _description_ :type url: str :param api_key: _description_, defaults to None :type api_key: str, optional :param username: _description_, defaults to None :type username: str, optional :param oauth2: _description_, defaults to {} :type oauth2: dict, optional :param token: _description_, defaults to None :type token: str, optional :param cloud: _description_, defaults to True :type cloud: bool, optional :param number_of_retries: How many times to retry, defaults to 3 :type number_of_retries: Optional[int], optional :param min_retry_seconds: defaults to 2 :type min_retry_seconds: Optional[int], optional :param max_retry_seconds: defaults to 10 :type max_retry_seconds: Optional[int], optional :param confluence_kwargs: additional kwargs to initialize confluence with :type confluence_kwargs: dict, optional :param space_key: Space key retrieved from a confluence URL, defaults to None :type space_key: Optional[str], optional :param page_ids: List of specific page IDs to load, defaults to None :type page_ids: Optional[List[str]], optional :param label: Get all pages with this label, defaults to None :type label: Optional[str], optional :param cql: CQL Expression, defaults to None :type cql: Optional[str], optional :param include_restricted_content: defaults to False :type include_restricted_content: bool, optional :param include_archived_content: Whether to include archived content, defaults to False :type include_archived_content: bool, optional :param include_attachments: defaults to False :type include_attachments: bool, optional :param include_comments: defaults to False :type include_comments: bool, optional :param content_format: Specify content format, defaults to ContentFormat.STORAGE, the supported values are: `ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`, `ContentFormat.ANONYMOUS_EXPORT_VIEW`, `ContentFormat.STORAGE`, and `ContentFormat.VIEW`. :type content_format: ContentFormat :param limit: Maximum number of pages to retrieve per request, defaults to 50 :type limit: int, optional :param max_pages: Maximum number of pages to retrieve in total, defaults 1000 :type max_pages: int, optional :param ocr_languages: The languages to use for the Tesseract agent. To use a language, you'll first need to install the appropriate Tesseract language pack. :type ocr_languages: str, optional :param keep_markdown_format: Whether to keep the markdown format, defaults to False :type keep_markdown_format: bool :param keep_newlines: Whether to keep the newlines format, defaults to False :type keep_newlines: bool :raises ValueError: Errors while validating input :raises ImportError: Required dependencies not installed. """ def __init__( self, url: str, api_key: Optional[str] = None, username: Optional[str] = None, session: Optional[requests.Session] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None, *, space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, content_format: ContentFormat = ContentFormat.STORAGE, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None, keep_markdown_format: bool = False, keep_newlines: bool = False, ): self.space_key = space_key self.page_ids = page_ids self.label = label self.cql = cql self.include_restricted_content = include_restricted_content self.include_archived_content = include_archived_content self.include_attachments = include_attachments self.include_comments = include_comments self.content_format = content_format self.limit = limit self.max_pages = max_pages self.ocr_languages = ocr_languages self.keep_markdown_format = keep_markdown_format self.keep_newlines = keep_newlines confluence_kwargs = confluence_kwargs or {} errors = ConfluenceLoader.validate_init_args( url=url, api_key=api_key, username=username, session=session, oauth2=oauth2, token=token, ) if errors: raise ValueError(f"Error(s) while validating input: {errors}") try: from atlassian import Confluence except ImportError: raise ImportError( "`atlassian` package not found, please run " "`pip install atlassian-python-api`" ) self.base_url = url self.number_of_retries = number_of_retries self.min_retry_seconds = min_retry_seconds self.max_retry_seconds = max_retry_seconds if session: self.confluence = Confluence(url=url, session=session, **confluence_kwargs) elif oauth2: self.confluence = Confluence( url=url, oauth2=oauth2, cloud=cloud, **confluence_kwargs ) elif token: self.confluence = Confluence( url=url, token=token, cloud=cloud, **confluence_kwargs ) else: self.confluence = Confluence( url=url, username=username, password=api_key, cloud=cloud, **confluence_kwargs, )
159493
from __future__ import annotations from pathlib import Path from typing import ( TYPE_CHECKING, Any, Iterator, List, Literal, Optional, Sequence, Union, ) from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseBlobParser, BaseLoader from langchain_community.document_loaders.blob_loaders import ( BlobLoader, FileSystemBlobLoader, ) from langchain_community.document_loaders.parsers.registry import get_parser if TYPE_CHECKING: from langchain_text_splitters import TextSplitter _PathLike = Union[str, Path] DEFAULT = Literal["default"] class GenericLoader(BaseLoader): """Generic Document Loader. A generic document loader that allows combining an arbitrary blob loader with a blob parser. Examples: Parse a specific PDF file: .. code-block:: python from langchain_community.document_loaders import GenericLoader from langchain_community.document_loaders.parsers.pdf import PyPDFParser # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem( "my_lovely_pdf.pdf", parser=PyPDFParser() ) .. code-block:: python from langchain_community.document_loaders import GenericLoader from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader loader = GenericLoader.from_filesystem( path="path/to/directory", glob="**/[!.]*", suffixes=[".pdf"], show_progress=True, ) docs = loader.lazy_load() next(docs) Example instantiations to change which files are loaded: .. code-block:: python # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/*.txt") # Recursively load all non-hidden files in a directory. loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/[!.]*") # Load all files in a directory without recursion. loader = GenericLoader.from_filesystem("/path/to/dir", glob="*") Example instantiations to change which parser is used: .. code-block:: python from langchain_community.document_loaders.parsers.pdf import PyPDFParser # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem( "/path/to/dir", glob="**/*.pdf", parser=PyPDFParser() ) """ # noqa: E501 def __init__( self, blob_loader: BlobLoader, # type: ignore[valid-type] blob_parser: BaseBlobParser, ) -> None: """A generic document loader. Args: blob_loader: A blob loader which knows how to yield blobs blob_parser: A blob parser which knows how to parse blobs into documents """ self.blob_loader = blob_loader self.blob_parser = blob_parser def lazy_load( self, ) -> Iterator[Document]: """Load documents lazily. Use this when working at a large scale.""" for blob in self.blob_loader.yield_blobs(): # type: ignore[attr-defined] yield from self.blob_parser.lazy_parse(blob) def load_and_split( self, text_splitter: Optional[TextSplitter] = None ) -> List[Document]: """Load all documents and split them into sentences.""" raise NotImplementedError( "Loading and splitting is not yet implemented for generic loaders. " "When they will be implemented they will be added via the initializer. " "This method should not be used going forward." ) @classmethod def from_filesystem( cls, path: _PathLike, *, glob: str = "**/[!.]*", exclude: Sequence[str] = (), suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[DEFAULT, BaseBlobParser] = "default", parser_kwargs: Optional[dict] = None, ) -> GenericLoader: """Create a generic document loader using a filesystem blob loader. Args: path: The path to the directory to load documents from OR the path to a single file to load. If this is a file, glob, exclude, suffixes will be ignored. glob: The glob pattern to use to find documents. suffixes: The suffixes to use to filter documents. If None, all files matching the glob will be loaded. exclude: A list of patterns to exclude from the loader. show_progress: Whether to show a progress bar or not (requires tqdm). Proxies to the file system loader. parser: A blob parser which knows how to parse blobs into documents, will instantiate a default parser if not provided. The default can be overridden by either passing a parser or setting the class attribute `blob_parser` (the latter should be used with inheritance). parser_kwargs: Keyword arguments to pass to the parser. Returns: A generic document loader. """ blob_loader = FileSystemBlobLoader( # type: ignore[attr-defined, misc] path, glob=glob, exclude=exclude, suffixes=suffixes, show_progress=show_progress, ) if isinstance(parser, str): if parser == "default": try: # If there is an implementation of get_parser on the class, use it. blob_parser = cls.get_parser(**(parser_kwargs or {})) except NotImplementedError: # if not then use the global registry. blob_parser = get_parser(parser) else: blob_parser = get_parser(parser) else: blob_parser = parser return cls(blob_loader, blob_parser) @staticmethod def get_parser(**kwargs: Any) -> BaseBlobParser: """Override this method to associate a default parser with the class.""" raise NotImplementedError()
159501
"""Loader that uses unstructured to load files.""" from __future__ import annotations import logging import os from abc import ABC, abstractmethod from pathlib import Path from typing import IO, Any, Callable, Iterator, List, Optional, Sequence, Union from langchain_core._api.deprecation import deprecated from langchain_core.documents import Document from typing_extensions import TypeAlias from langchain_community.document_loaders.base import BaseLoader Element: TypeAlias = Any logger = logging.getLogger(__file__) def satisfies_min_unstructured_version(min_version: str) -> bool: """Check if the installed `Unstructured` version exceeds the minimum version for the feature in question.""" from unstructured.__version__ import __version__ as __unstructured_version__ min_version_tuple = tuple([int(x) for x in min_version.split(".")]) # NOTE(MthwRobinson) - enables the loader to work when you're using pre-release # versions of unstructured like 0.4.17-dev1 _unstructured_version = __unstructured_version__.split("-")[0] unstructured_version_tuple = tuple( [int(x) for x in _unstructured_version.split(".")] ) return unstructured_version_tuple >= min_version_tuple def validate_unstructured_version(min_unstructured_version: str) -> None: """Raise an error if the `Unstructured` version does not exceed the specified minimum.""" if not satisfies_min_unstructured_version(min_unstructured_version): raise ValueError( f"unstructured>={min_unstructured_version} is required in this loader." ) class UnstructuredBaseLoader(BaseLoader, ABC): """Base Loader that uses `Unstructured`.""" def __init__( self, mode: str = "single", # deprecated post_processors: Optional[List[Callable[[str], str]]] = None, **unstructured_kwargs: Any, ): """Initialize with file path.""" try: import unstructured # noqa:F401 except ImportError: raise ImportError( "unstructured package not found, please install it with " "`pip install unstructured`" ) # `single` - elements are combined into one (default) # `elements` - maintain individual elements # `paged` - elements are combined by page _valid_modes = {"single", "elements", "paged"} if mode not in _valid_modes: raise ValueError( f"Got {mode} for `mode`, but should be one of `{_valid_modes}`" ) if not satisfies_min_unstructured_version("0.5.4"): if "strategy" in unstructured_kwargs: unstructured_kwargs.pop("strategy") self._check_if_both_mode_and_chunking_strategy_are_by_page( mode, unstructured_kwargs ) self.mode = mode self.unstructured_kwargs = unstructured_kwargs self.post_processors = post_processors or [] @abstractmethod def _get_elements(self) -> List[Element]: """Get elements.""" @abstractmethod def _get_metadata(self) -> dict[str, Any]: """Get file_path metadata if available.""" def _post_process_elements(self, elements: List[Element]) -> List[Element]: """Apply post processing functions to extracted unstructured elements. Post processing functions are str -> str callables passed in using the post_processors kwarg when the loader is instantiated. """ for element in elements: for post_processor in self.post_processors: element.apply(post_processor) return elements def lazy_load(self) -> Iterator[Document]: """Load file.""" elements = self._get_elements() self._post_process_elements(elements) if self.mode == "elements": for element in elements: metadata = self._get_metadata() # NOTE(MthwRobinson) - the attribute check is for backward compatibility # with unstructured<0.4.9. The metadata attributed was added in 0.4.9. if hasattr(element, "metadata"): metadata.update(element.metadata.to_dict()) if hasattr(element, "category"): metadata["category"] = element.category if element.to_dict().get("element_id"): metadata["element_id"] = element.to_dict().get("element_id") yield Document(page_content=str(element), metadata=metadata) elif self.mode == "paged": logger.warning( "`mode='paged'` is deprecated in favor of the 'by_page' chunking" " strategy. Learn more about chunking here:" " https://docs.unstructured.io/open-source/core-functionality/chunking" ) text_dict: dict[int, str] = {} meta_dict: dict[int, dict[str, Any]] = {} for element in elements: metadata = self._get_metadata() if hasattr(element, "metadata"): metadata.update(element.metadata.to_dict()) page_number = metadata.get("page_number", 1) # Check if this page_number already exists in text_dict if page_number not in text_dict: # If not, create new entry with initial text and metadata text_dict[page_number] = str(element) + "\n\n" meta_dict[page_number] = metadata else: # If exists, append to text and update the metadata text_dict[page_number] += str(element) + "\n\n" meta_dict[page_number].update(metadata) # Convert the dict to a list of Document objects for key in text_dict.keys(): yield Document(page_content=text_dict[key], metadata=meta_dict[key]) elif self.mode == "single": metadata = self._get_metadata() text = "\n\n".join([str(el) for el in elements]) yield Document(page_content=text, metadata=metadata) else: raise ValueError(f"mode of {self.mode} not supported.") def _check_if_both_mode_and_chunking_strategy_are_by_page( self, mode: str, unstructured_kwargs: dict[str, Any] ) -> None: if ( mode == "paged" and unstructured_kwargs.get("chunking_strategy") == "by_page" ): raise ValueError( "Only one of `chunking_strategy='by_page'` or `mode='paged'` may be" " set. `chunking_strategy` is preferred." ) @deprecated( since="0.2.8", removal="1.0", alternative_import="langchain_unstructured.UnstructuredLoader", ) class UnstructuredFileLoader(UnstructuredBaseLoader): """Load files using `Unstructured`. The file loader uses the unstructured partition function and will automatically detect the file type. You can run the loader in different modes: "single", "elements", and "paged". The default "single" mode will return a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText and return those as individual langchain Document objects. In addition to these post-processing modes (which are specific to the LangChain Loaders), Unstructured has its own "chunking" parameters for post-processing elements into more useful chunks for uses cases such as Retrieval Augmented Generation (RAG). You can pass in additional unstructured kwargs to configure different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader( "example.pdf", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://docs.unstructured.io/open-source/core-functionality/partitioning https://docs.unstructured.io/open-source/core-functionality/chunking """ def __init__( self, file_path: Union[str, List[str], Path, List[Path]], *, mode: str = "single", **unstructured_kwargs: Any, ): """Initialize with file path.""" self.file_path = file_path super().__init__(mode=mode, **unstructured_kwargs) def _get_elements(self) -> List[Element]: from unstructured.partition.auto import partition if isinstance(self.file_path, list): elements: List[Element] = [] for file in self.file_path: if isinstance(file, Path): file = str(file) elements.extend(partition(filename=file, **self.unstructured_kwargs)) return elements else: if isinstance(self.file_path, Path): self.file_path = str(self.file_path) return partition(filename=self.file_path, **self.unstructured_kwargs) def _get_metadata(self) -> dict[str, Any]: return {"source": self.file_path}
159504
import json import logging import time from typing import Iterator, List import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) class CubeSemanticLoader(BaseLoader): """Load `Cube semantic layer` metadata. Args: cube_api_url: REST API endpoint. Use the REST API of your Cube's deployment. Please find out more information here: https://cube.dev/docs/http-api/rest#configuration-base-path cube_api_token: Cube API token. Authentication tokens are generated based on your Cube's API secret. Please find out more information here: https://cube.dev/docs/security#generating-json-web-tokens-jwt load_dimension_values: Whether to load dimension values for every string dimension or not. dimension_values_limit: Maximum number of dimension values to load. dimension_values_max_retries: Maximum number of retries to load dimension values. dimension_values_retry_delay: Delay between retries to load dimension values. """ def __init__( self, cube_api_url: str, cube_api_token: str, load_dimension_values: bool = True, dimension_values_limit: int = 10_000, dimension_values_max_retries: int = 10, dimension_values_retry_delay: int = 3, ): self.cube_api_url = cube_api_url self.cube_api_token = cube_api_token self.load_dimension_values = load_dimension_values self.dimension_values_limit = dimension_values_limit self.dimension_values_max_retries = dimension_values_max_retries self.dimension_values_retry_delay = dimension_values_retry_delay def _get_dimension_values(self, dimension_name: str) -> List[str]: """Makes a call to Cube's REST API load endpoint to retrieve values for dimensions. These values can be used to achieve a more accurate filtering. """ logger.info("Loading dimension values for: {dimension_name}...") headers = { "Content-Type": "application/json", "Authorization": self.cube_api_token, } query = { "query": { "dimensions": [dimension_name], "limit": self.dimension_values_limit, } } retries = 0 while retries < self.dimension_values_max_retries: response = requests.request( "POST", f"{self.cube_api_url}/load", headers=headers, data=json.dumps(query), ) if response.status_code == 200: response_data = response.json() if ( "error" in response_data and response_data["error"] == "Continue wait" ): logger.info("Retrying...") retries += 1 time.sleep(self.dimension_values_retry_delay) continue else: dimension_values = [ item[dimension_name] for item in response_data["data"] ] return dimension_values else: logger.error("Request failed with status code:", response.status_code) break if retries == self.dimension_values_max_retries: logger.info("Maximum retries reached.") return [] def lazy_load(self) -> Iterator[Document]: """Makes a call to Cube's REST API metadata endpoint. Returns: A list of documents with attributes: - page_content=column_title + column_description - metadata - table_name - column_name - column_data_type - column_member_type - column_title - column_description - column_values - cube_data_obj_type """ headers = { "Content-Type": "application/json", "Authorization": self.cube_api_token, } logger.info(f"Loading metadata from {self.cube_api_url}...") response = requests.get(f"{self.cube_api_url}/meta", headers=headers) response.raise_for_status() raw_meta_json = response.json() cube_data_objects = raw_meta_json.get("cubes", []) logger.info(f"Found {len(cube_data_objects)} cube data objects in metadata.") if not cube_data_objects: raise ValueError("No cubes found in metadata.") for cube_data_obj in cube_data_objects: cube_data_obj_name = cube_data_obj.get("name") cube_data_obj_type = cube_data_obj.get("type") cube_data_obj_is_public = cube_data_obj.get("public") measures = cube_data_obj.get("measures", []) dimensions = cube_data_obj.get("dimensions", []) logger.info(f"Processing {cube_data_obj_name}...") if not cube_data_obj_is_public: logger.info(f"Skipping {cube_data_obj_name} because it is not public.") continue for item in measures + dimensions: column_member_type = "measure" if item in measures else "dimension" dimension_values = [] item_name = str(item.get("name")) item_type = str(item.get("type")) if ( self.load_dimension_values and column_member_type == "dimension" and item_type == "string" ): dimension_values = self._get_dimension_values(item_name) metadata = dict( table_name=str(cube_data_obj_name), column_name=item_name, column_data_type=item_type, column_title=str(item.get("title")), column_description=str(item.get("description")), column_member_type=column_member_type, column_values=dimension_values, cube_data_obj_type=cube_data_obj_type, ) page_content = f"{str(item.get('title'))}, " page_content += f"{str(item.get('description'))}" yield Document(page_content=page_content, metadata=metadata)
159511
from langchain_community.document_loaders.notiondb import ( NotionDBLoader, ) from langchain_community.document_loaders.obs_directory import ( OBSDirectoryLoader, ) from langchain_community.document_loaders.obs_file import ( OBSFileLoader, ) from langchain_community.document_loaders.obsidian import ( ObsidianLoader, ) from langchain_community.document_loaders.odt import ( UnstructuredODTLoader, ) from langchain_community.document_loaders.onedrive import ( OneDriveLoader, ) from langchain_community.document_loaders.onedrive_file import ( OneDriveFileLoader, ) from langchain_community.document_loaders.open_city_data import ( OpenCityDataLoader, ) from langchain_community.document_loaders.oracleadb_loader import ( OracleAutonomousDatabaseLoader, ) from langchain_community.document_loaders.oracleai import ( OracleDocLoader, OracleTextSplitter, ) from langchain_community.document_loaders.org_mode import ( UnstructuredOrgModeLoader, ) from langchain_community.document_loaders.pdf import ( AmazonTextractPDFLoader, DedocPDFLoader, MathpixPDFLoader, OnlinePDFLoader, PagedPDFSplitter, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, PyPDFLoader, UnstructuredPDFLoader, ) from langchain_community.document_loaders.pebblo import ( PebbloSafeLoader, PebbloTextLoader, ) from langchain_community.document_loaders.polars_dataframe import ( PolarsDataFrameLoader, ) from langchain_community.document_loaders.powerpoint import ( UnstructuredPowerPointLoader, ) from langchain_community.document_loaders.psychic import ( PsychicLoader, ) from langchain_community.document_loaders.pubmed import ( PubMedLoader, ) from langchain_community.document_loaders.pyspark_dataframe import ( PySparkDataFrameLoader, ) from langchain_community.document_loaders.python import ( PythonLoader, ) from langchain_community.document_loaders.readthedocs import ( ReadTheDocsLoader, ) from langchain_community.document_loaders.recursive_url_loader import ( RecursiveUrlLoader, ) from langchain_community.document_loaders.reddit import ( RedditPostsLoader, ) from langchain_community.document_loaders.roam import ( RoamLoader, ) from langchain_community.document_loaders.rocksetdb import ( RocksetLoader, ) from langchain_community.document_loaders.rss import ( RSSFeedLoader, ) from langchain_community.document_loaders.rst import ( UnstructuredRSTLoader, ) from langchain_community.document_loaders.rtf import ( UnstructuredRTFLoader, ) from langchain_community.document_loaders.s3_directory import ( S3DirectoryLoader, ) from langchain_community.document_loaders.s3_file import ( S3FileLoader, ) from langchain_community.document_loaders.scrapfly import ( ScrapflyLoader, ) from langchain_community.document_loaders.scrapingant import ( ScrapingAntLoader, ) from langchain_community.document_loaders.sharepoint import ( SharePointLoader, ) from langchain_community.document_loaders.sitemap import ( SitemapLoader, ) from langchain_community.document_loaders.slack_directory import ( SlackDirectoryLoader, ) from langchain_community.document_loaders.snowflake_loader import ( SnowflakeLoader, ) from langchain_community.document_loaders.spider import ( SpiderLoader, ) from langchain_community.document_loaders.spreedly import ( SpreedlyLoader, ) from langchain_community.document_loaders.sql_database import ( SQLDatabaseLoader, ) from langchain_community.document_loaders.srt import ( SRTLoader, ) from langchain_community.document_loaders.stripe import ( StripeLoader, ) from langchain_community.document_loaders.surrealdb import ( SurrealDBLoader, ) from langchain_community.document_loaders.telegram import ( TelegramChatApiLoader, TelegramChatFileLoader, TelegramChatLoader, ) from langchain_community.document_loaders.tencent_cos_directory import ( TencentCOSDirectoryLoader, ) from langchain_community.document_loaders.tencent_cos_file import ( TencentCOSFileLoader, ) from langchain_community.document_loaders.tensorflow_datasets import ( TensorflowDatasetLoader, ) from langchain_community.document_loaders.text import ( TextLoader, ) from langchain_community.document_loaders.tidb import ( TiDBLoader, ) from langchain_community.document_loaders.tomarkdown import ( ToMarkdownLoader, ) from langchain_community.document_loaders.toml import ( TomlLoader, ) from langchain_community.document_loaders.trello import ( TrelloLoader, ) from langchain_community.document_loaders.tsv import ( UnstructuredTSVLoader, ) from langchain_community.document_loaders.twitter import ( TwitterTweetLoader, ) from langchain_community.document_loaders.unstructured import ( UnstructuredAPIFileIOLoader, UnstructuredAPIFileLoader, UnstructuredFileIOLoader, UnstructuredFileLoader, ) from langchain_community.document_loaders.url import ( UnstructuredURLLoader, ) from langchain_community.document_loaders.url_playwright import ( PlaywrightURLLoader, ) from langchain_community.document_loaders.url_selenium import ( SeleniumURLLoader, ) from langchain_community.document_loaders.vsdx import ( VsdxLoader, ) from langchain_community.document_loaders.weather import ( WeatherDataLoader, ) from langchain_community.document_loaders.web_base import ( WebBaseLoader, ) from langchain_community.document_loaders.whatsapp_chat import ( WhatsAppChatLoader, ) from langchain_community.document_loaders.wikipedia import ( WikipediaLoader, ) from langchain_community.document_loaders.word_document import ( Docx2txtLoader, UnstructuredWordDocumentLoader, ) from langchain_community.document_loaders.xml import ( UnstructuredXMLLoader, ) from langchain_community.document_loaders.xorbits import ( XorbitsLoader, ) from langchain_community.document_loaders.youtube import ( GoogleApiClient, GoogleApiYoutubeLoader, YoutubeLoader, ) from langchain_community.document_loaders.yuque import ( YuqueLoader, ) _module_lookup =
159518
import os import tempfile from typing import List from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.unstructured import UnstructuredFileLoader class AzureBlobStorageFileLoader(BaseLoader): """Load from `Azure Blob Storage` files.""" def __init__(self, conn_str: str, container: str, blob_name: str): """Initialize with connection string, container and blob name.""" self.conn_str = conn_str """Connection string for Azure Blob Storage.""" self.container = container """Container name.""" self.blob = blob_name """Blob name.""" def load(self) -> List[Document]: """Load documents.""" try: from azure.storage.blob import BlobClient except ImportError as exc: raise ImportError( "Could not import azure storage blob python package. " "Please install it with `pip install azure-storage-blob`." ) from exc client = BlobClient.from_connection_string( conn_str=self.conn_str, container_name=self.container, blob_name=self.blob ) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.container}/{self.blob}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(f"{file_path}", "wb") as file: blob_data = client.download_blob() blob_data.readinto(file) loader = UnstructuredFileLoader(file_path) return loader.load()