id
stringlengths
6
6
text
stringlengths
20
17.2k
title
stringclasses
1 value
159521
import json import logging import os import re import tempfile import time from abc import ABC from io import StringIO from pathlib import Path from typing import ( TYPE_CHECKING, Any, Dict, Iterator, List, Mapping, Optional, Sequence, Union, ) from urllib.parse import urlparse import requests from langchain_core.documents import Document from langchain_core.utils import get_from_dict_or_env from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.blob_loaders import Blob from langchain_community.document_loaders.dedoc import DedocBaseLoader from langchain_community.document_loaders.parsers.pdf import ( AmazonTextractPDFParser, DocumentIntelligenceParser, PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, ) from langchain_community.document_loaders.unstructured import UnstructuredFileLoader if TYPE_CHECKING: from textractor.data.text_linearization_config import TextLinearizationConfig logger = logging.getLogger(__file__) class UnstructuredPDFLoader(UnstructuredFileLoader): """Load `PDF` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredPDFLoader loader = UnstructuredPDFLoader( "example.pdf", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pdf """ def _get_elements(self) -> List: from unstructured.partition.pdf import partition_pdf return partition_pdf(filename=self.file_path, **self.unstructured_kwargs) class BasePDFLoader(BaseLoader, ABC): """Base Loader class for `PDF` files. If the file is a web path, it will download it to a temporary file, use it, then clean up the temporary file after completion. """ def __init__(self, file_path: Union[str, Path], *, headers: Optional[Dict] = None): """Initialize with a file path. Args: file_path: Either a local, S3 or web path to a PDF file. headers: Headers to use for GET request to download a file from a web path. """ self.file_path = str(file_path) self.web_path = None self.headers = headers if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path or S3, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): self.temp_dir = tempfile.TemporaryDirectory() _, suffix = os.path.splitext(self.file_path) if self._is_s3_presigned_url(self.file_path): suffix = urlparse(self.file_path).path.split("/")[-1] temp_pdf = os.path.join(self.temp_dir.name, f"tmp{suffix}") self.web_path = self.file_path if not self._is_s3_url(self.file_path): r = requests.get(self.file_path, headers=self.headers) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) with open(temp_pdf, mode="wb") as f: f.write(r.content) self.file_path = str(temp_pdf) elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_dir"): self.temp_dir.cleanup() @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) @staticmethod def _is_s3_url(url: str) -> bool: """check if the url is S3""" try: result = urlparse(url) if result.scheme == "s3" and result.netloc: return True return False except ValueError: return False @staticmethod def _is_s3_presigned_url(url: str) -> bool: """Check if the url is a presigned S3 url.""" try: result = urlparse(url) return bool(re.search(r"\.s3\.amazonaws\.com$", result.netloc)) except ValueError: return False @property def source(self) -> str: return self.web_path if self.web_path is not None else self.file_path class OnlinePDFLoader(BasePDFLoader): """Load online `PDF`.""" def load(self) -> List[Document]: """Load documents.""" loader = UnstructuredPDFLoader(str(self.file_path)) return loader.load() class PyPDFLoader(BasePDFLoader): """ PyPDFLoader document loader integration Setup: Install ``langchain-community``. .. code-block:: bash pip install -U langchain-community Instantiate: .. code-block:: python from langchain_community.document_loaders import PyPDFLoader loader = PyPDFLoader( file_path = "./example_data/layout-parser-paper.pdf", password = "my-pasword", extract_images = True, # headers = None # extraction_mode = "plain", # extraction_kwargs = None, ) Lazy load: .. code-block:: python docs = [] docs_lazy = loader.lazy_load() # async variant: # docs_lazy = await loader.alazy_load() for doc in docs_lazy: docs.append(doc) print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis Zejiang Shen1( ), R {'source': './example_data/layout-parser-paper.pdf', 'page': 0} Async load: .. code-block:: python docs = await loader.aload() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis Zejiang Shen1( ), R {'source': './example_data/layout-parser-paper.pdf', 'page': 0} """ # noqa: E501 def __init__( self, file_path: str, password: Optional[Union[str, bytes]] = None, headers: Optional[Dict] = None, extract_images: bool = False, *, extraction_mode: str = "plain", extraction_kwargs: Optional[Dict] = None, ) -> None: """Initialize with a file path.""" try: import pypdf # noqa:F401 except ImportError: raise ImportError( "pypdf package not found, please install it with `pip install pypdf`" ) super().__init__(file_path, headers=headers) self.parser = PyPDFParser( password=password, extract_images=extract_images, extraction_mode=extraction_mode, extraction_kwargs=extraction_kwargs, ) def lazy_load( self, ) -> Iterator[Document]: """Lazy load given path as pages.""" if self.web_path: blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined] else: blob = Blob.from_path(self.file_path) # type: ignore[attr-defined] yield from self.parser.parse(blob) class PyPDFium2Loader(BasePDFLoader): """Load `PDF` using `pypdfium2` and chunks at character level.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, ): """Initialize with a file path.""" super().__init__(file_path, headers=headers) self.parser = PyPDFium2Parser(extract_images=extract_images) def lazy_load( self, ) -> Iterator[Document]: """Lazy load given path as pages.""" if self.web_path: blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined] else: blob = Blob.from_path(self.file_path) # type: ignore[attr-defined] yield from self.parser.parse(blob) c
159522
s PyPDFDirectoryLoader(BaseLoader): """Load a directory with `PDF` files using `pypdf` and chunks at character level. Loader also stores page numbers in metadata. """ def __init__( self, path: Union[str, Path], glob: str = "**/[!.]*.pdf", silent_errors: bool = False, load_hidden: bool = False, recursive: bool = False, extract_images: bool = False, ): self.path = path self.glob = glob self.load_hidden = load_hidden self.recursive = recursive self.silent_errors = silent_errors self.extract_images = extract_images @staticmethod def _is_visible(path: Path) -> bool: return not any(part.startswith(".") for part in path.parts) def load(self) -> List[Document]: p = Path(self.path) docs = [] items = p.rglob(self.glob) if self.recursive else p.glob(self.glob) for i in items: if i.is_file(): if self._is_visible(i.relative_to(p)) or self.load_hidden: try: loader = PyPDFLoader(str(i), extract_images=self.extract_images) sub_docs = loader.load() for doc in sub_docs: doc.metadata["source"] = str(i) docs.extend(sub_docs) except Exception as e: if self.silent_errors: logger.warning(e) else: raise e return docs class PDFMinerLoader(BasePDFLoader): """Load `PDF` files using `PDFMiner`.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, concatenate_pages: bool = True, ) -> None: """Initialize with file path. Args: extract_images: Whether to extract images from PDF. concatenate_pages: If True, concatenate all PDF pages into one a single document. Otherwise, return one document per page. """ try: from pdfminer.high_level import extract_text # noqa:F401 except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path, headers=headers) self.parser = PDFMinerParser( extract_images=extract_images, concatenate_pages=concatenate_pages ) def lazy_load( self, ) -> Iterator[Document]: """Lazily load documents.""" if self.web_path: blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined] else: blob = Blob.from_path(self.file_path) # type: ignore[attr-defined] yield from self.parser.parse(blob) class PDFMinerPDFasHTMLLoader(BasePDFLoader): """Load `PDF` files as HTML content using `PDFMiner`.""" def __init__(self, file_path: str, *, headers: Optional[Dict] = None): """Initialize with a file path.""" try: from pdfminer.high_level import extract_text_to_fp # noqa:F401 except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path, headers=headers) def lazy_load(self) -> Iterator[Document]: """Load file.""" from pdfminer.high_level import extract_text_to_fp from pdfminer.layout import LAParams from pdfminer.utils import open_filename output_string = StringIO() with open_filename(self.file_path, "rb") as fp: extract_text_to_fp( fp, output_string, codec="", laparams=LAParams(), output_type="html", ) metadata = { "source": self.file_path if self.web_path is None else self.web_path } yield Document(page_content=output_string.getvalue(), metadata=metadata) class PyMuPDFLoader(BasePDFLoader): """Load `PDF` files using `PyMuPDF`.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, **kwargs: Any, ) -> None: """Initialize with a file path.""" try: import fitz # noqa:F401 except ImportError: raise ImportError( "`PyMuPDF` package not found, please install it with " "`pip install pymupdf`" ) super().__init__(file_path, headers=headers) self.extract_images = extract_images self.text_kwargs = kwargs def _lazy_load(self, **kwargs: Any) -> Iterator[Document]: if kwargs: logger.warning( f"Received runtime arguments {kwargs}. Passing runtime args to `load`" f" is deprecated. Please pass arguments during initialization instead." ) text_kwargs = {**self.text_kwargs, **kwargs} parser = PyMuPDFParser( text_kwargs=text_kwargs, extract_images=self.extract_images ) if self.web_path: blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined] else: blob = Blob.from_path(self.file_path) # type: ignore[attr-defined] yield from parser.lazy_parse(blob) def load(self, **kwargs: Any) -> List[Document]: return list(self._lazy_load(**kwargs)) def lazy_load(self) -> Iterator[Document]: yield from self._lazy_load() # MathpixPDFLoader implementation taken largely from Daniel Gross's: # https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21 cla
159528
import csv from io import TextIOWrapper from pathlib import Path from typing import Any, Dict, Iterator, List, Optional, Sequence, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.helpers import detect_file_encodings from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class CSVLoader(BaseLoader): """Load a `CSV` file into a list of Documents. Each document represents one row of the CSV file. Every row is converted into a key/value pair and outputted to a new line in the document's page_content. The source for each document loaded from csv is set to the value of the `file_path` argument for all documents by default. You can override this by setting the `source_column` argument to the name of a column in the CSV file. The source of each document will then be set to the value of the column with the name specified in `source_column`. Output Example: .. code-block:: txt column1: value1 column2: value2 column3: value3 Instantiate: .. code-block:: python from langchain_community.document_loaders import CSVLoader loader = CSVLoader(file_path='./hw_200.csv', csv_args={ 'delimiter': ',', 'quotechar': '"', 'fieldnames': ['Index', 'Height', 'Weight'] }) Load: .. code-block:: python docs = loader.load() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Index: Index Height: Height(Inches)" Weight: "Weight(Pounds)" {'source': './hw_200.csv', 'row': 0} Async load: .. code-block:: python docs = await loader.aload() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Index: Index Height: Height(Inches)" Weight: "Weight(Pounds)" {'source': './hw_200.csv', 'row': 0} Lazy load: .. code-block:: python docs = [] docs_lazy = loader.lazy_load() # async variant: # docs_lazy = await loader.alazy_load() for doc in docs_lazy: docs.append(doc) print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Index: Index Height: Height(Inches)" Weight: "Weight(Pounds)" {'source': './hw_200.csv', 'row': 0} """ def __init__( self, file_path: Union[str, Path], source_column: Optional[str] = None, metadata_columns: Sequence[str] = (), csv_args: Optional[Dict] = None, encoding: Optional[str] = None, autodetect_encoding: bool = False, *, content_columns: Sequence[str] = (), ): """ Args: file_path: The path to the CSV file. source_column: The name of the column in the CSV file to use as the source. Optional. Defaults to None. metadata_columns: A sequence of column names to use as metadata. Optional. csv_args: A dictionary of arguments to pass to the csv.DictReader. Optional. Defaults to None. encoding: The encoding of the CSV file. Optional. Defaults to None. autodetect_encoding: Whether to try to autodetect the file encoding. content_columns: A sequence of column names to use for the document content. If not present, use all columns that are not part of the metadata. """ self.file_path = file_path self.source_column = source_column self.metadata_columns = metadata_columns self.encoding = encoding self.csv_args = csv_args or {} self.autodetect_encoding = autodetect_encoding self.content_columns = content_columns def lazy_load(self) -> Iterator[Document]: try: with open(self.file_path, newline="", encoding=self.encoding) as csvfile: yield from self.__read_file(csvfile) except UnicodeDecodeError as e: if self.autodetect_encoding: detected_encodings = detect_file_encodings(self.file_path) for encoding in detected_encodings: try: with open( self.file_path, newline="", encoding=encoding.encoding ) as csvfile: yield from self.__read_file(csvfile) break except UnicodeDecodeError: continue else: raise RuntimeError(f"Error loading {self.file_path}") from e except Exception as e: raise RuntimeError(f"Error loading {self.file_path}") from e def __read_file(self, csvfile: TextIOWrapper) -> Iterator[Document]: csv_reader = csv.DictReader(csvfile, **self.csv_args) for i, row in enumerate(csv_reader): try: source = ( row[self.source_column] if self.source_column is not None else str(self.file_path) ) except KeyError: raise ValueError( f"Source column '{self.source_column}' not found in CSV file." ) content = "\n".join( f"""{k.strip() if k is not None else k}: {v.strip() if isinstance(v, str) else ','.join(map(str.strip, v)) if isinstance(v, list) else v}""" for k, v in row.items() if ( k in self.content_columns if self.content_columns else k not in self.metadata_columns ) ) metadata = {"source": source, "row": i} for col in self.metadata_columns: try: metadata[col] = row[col] except KeyError: raise ValueError(f"Metadata column '{col}' not found in CSV file.") yield Document(page_content=content, metadata=metadata) class UnstructuredCSVLoader(UnstructuredFileLoader): """Load `CSV` files using `Unstructured`. Like other Unstructured loaders, UnstructuredCSVLoader can be used in both "single" and "elements" mode. If you use the loader in "elements" mode, the CSV file will be a single Unstructured Table element. If you use the loader in "elements" mode, an HTML representation of the table will be available in the "text_as_html" key in the document metadata. Examples -------- from langchain_community.document_loaders.csv_loader import UnstructuredCSVLoader loader = UnstructuredCSVLoader("stanley-cups.csv", mode="elements") docs = loader.load() """ def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): """ Args: file_path: The path to the CSV file. mode: The mode to use when loading the CSV file. Optional. Defaults to "single". **unstructured_kwargs: Keyword arguments to pass to unstructured. """ validate_unstructured_version(min_unstructured_version="0.6.8") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.csv import partition_csv return partition_csv(filename=self.file_path, **self.unstructured_kwargs)
159544
import os from typing import List from langchain_community.document_loaders.unstructured import UnstructuredFileLoader class UnstructuredPowerPointLoader(UnstructuredFileLoader): """Load `Microsoft PowerPoint` files using `Unstructured`. Works with both .ppt and .pptx files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader( "example.pptx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx """ def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_ppt = detect_filetype(self.file_path) == FileType.PPT except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_ppt = extension == ".ppt" if is_ppt and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. " "Partitioning .ppt files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_ppt: from unstructured.partition.ppt import partition_ppt return partition_ppt(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.pptx import partition_pptx return partition_pptx(filename=self.file_path, **self.unstructured_kwargs)
159555
import logging from pathlib import Path from typing import Iterator, Optional, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.helpers import detect_file_encodings logger = logging.getLogger(__name__) class TextLoader(BaseLoader): """Load text file. Args: file_path: Path to the file to load. encoding: File encoding to use. If `None`, the file will be loaded with the default system encoding. autodetect_encoding: Whether to try to autodetect the file encoding if the specified encoding fails. """ def __init__( self, file_path: Union[str, Path], encoding: Optional[str] = None, autodetect_encoding: bool = False, ): """Initialize with file path.""" self.file_path = file_path self.encoding = encoding self.autodetect_encoding = autodetect_encoding def lazy_load(self) -> Iterator[Document]: """Load from file path.""" text = "" try: with open(self.file_path, encoding=self.encoding) as f: text = f.read() except UnicodeDecodeError as e: if self.autodetect_encoding: detected_encodings = detect_file_encodings(self.file_path) for encoding in detected_encodings: logger.debug(f"Trying encoding: {encoding.encoding}") try: with open(self.file_path, encoding=encoding.encoding) as f: text = f.read() break except UnicodeDecodeError: continue else: raise RuntimeError(f"Error loading {self.file_path}") from e except Exception as e: raise RuntimeError(f"Error loading {self.file_path}") from e metadata = {"source": str(self.file_path)} yield Document(page_content=text, metadata=metadata)
159560
"""Loads word documents.""" import os import tempfile from abc import ABC from pathlib import Path from typing import List, Union from urllib.parse import urlparse import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.unstructured import UnstructuredFileLoader class Docx2txtLoader(BaseLoader, ABC): """Load `DOCX` file using `docx2txt` and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: Union[str, Path]): """Initialize with file path.""" self.file_path = str(file_path) if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Load `Microsoft Word` file using `Unstructured`. Works with both .docx and .doc files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader( "example.docx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-docx """ def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. " "Partitioning .doc files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs)
159577
import concurrent import logging import random from pathlib import Path from typing import Any, Callable, Iterator, List, Optional, Sequence, Tuple, Type, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.csv_loader import CSVLoader from langchain_community.document_loaders.html_bs import BSHTMLLoader from langchain_community.document_loaders.text import TextLoader from langchain_community.document_loaders.unstructured import UnstructuredFileLoader FILE_LOADER_TYPE = Union[ Type[UnstructuredFileLoader], Type[TextLoader], Type[BSHTMLLoader], Type[CSVLoader] ] logger = logging.getLogger(__name__) def _is_visible(p: Path) -> bool: parts = p.parts for _p in parts: if _p.startswith("."): return False return True class DirectoryLoader(BaseLoader): """Load from a directory.""" def __init__( self, path: str, glob: Union[List[str], Tuple[str], str] = "**/[!.]*", silent_errors: bool = False, load_hidden: bool = False, loader_cls: FILE_LOADER_TYPE = UnstructuredFileLoader, loader_kwargs: Union[dict, None] = None, recursive: bool = False, show_progress: bool = False, use_multithreading: bool = False, max_concurrency: int = 4, *, exclude: Union[Sequence[str], str] = (), sample_size: int = 0, randomize_sample: bool = False, sample_seed: Union[int, None] = None, ): """Initialize with a path to directory and how to glob over it. Args: path: Path to directory. glob: A glob pattern or list of glob patterns to use to find files. Defaults to "**/[!.]*" (all files except hidden). exclude: A pattern or list of patterns to exclude from results. Use glob syntax. silent_errors: Whether to silently ignore errors. Defaults to False. load_hidden: Whether to load hidden files. Defaults to False. loader_cls: Loader class to use for loading files. Defaults to UnstructuredFileLoader. loader_kwargs: Keyword arguments to pass to loader_cls. Defaults to None. recursive: Whether to recursively search for files. Defaults to False. show_progress: Whether to show a progress bar. Defaults to False. use_multithreading: Whether to use multithreading. Defaults to False. max_concurrency: The maximum number of threads to use. Defaults to 4. sample_size: The maximum number of files you would like to load from the directory. randomize_sample: Shuffle the files to get a random sample. sample_seed: set the seed of the random shuffle for reproducibility. Examples: .. code-block:: python from langchain_community.document_loaders import DirectoryLoader # Load all non-hidden files in a directory. loader = DirectoryLoader("/path/to/directory") # Load all text files in a directory without recursion. loader = DirectoryLoader("/path/to/directory", glob="*.txt") # Recursively load all text files in a directory. loader = DirectoryLoader( "/path/to/directory", glob="*.txt", recursive=True ) # Load all files in a directory, except for py files. loader = DirectoryLoader("/path/to/directory", exclude="*.py") # Load all files in a directory, except for py or pyc files. loader = DirectoryLoader( "/path/to/directory", exclude=["*.py", "*.pyc"] ) """ if loader_kwargs is None: loader_kwargs = {} if isinstance(exclude, str): exclude = (exclude,) self.path = path self.glob = glob self.exclude = exclude self.load_hidden = load_hidden self.loader_cls = loader_cls self.loader_kwargs = loader_kwargs self.silent_errors = silent_errors self.recursive = recursive self.show_progress = show_progress self.use_multithreading = use_multithreading self.max_concurrency = max_concurrency self.sample_size = sample_size self.randomize_sample = randomize_sample self.sample_seed = sample_seed def load(self) -> List[Document]: """Load documents.""" return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: """Load documents lazily.""" p = Path(self.path) if not p.exists(): raise FileNotFoundError(f"Directory not found: '{self.path}'") if not p.is_dir(): raise ValueError(f"Expected directory, got file: '{self.path}'") # glob multiple patterns if a list is provided, e.g., multiple file extensions if isinstance(self.glob, (list, tuple)): paths = [] for pattern in self.glob: paths.extend( list(p.rglob(pattern) if self.recursive else p.glob(pattern)) ) elif isinstance(self.glob, str): paths = list(p.rglob(self.glob) if self.recursive else p.glob(self.glob)) else: raise TypeError( f"Expected glob to be str or sequence of str, but got {type(self.glob)}" ) items = [ path for path in paths if not (self.exclude and any(path.match(glob) for glob in self.exclude)) and path.is_file() ] if self.sample_size > 0: if self.randomize_sample: randomizer = random.Random( self.sample_seed if self.sample_seed else None ) randomizer.shuffle(items) items = items[: min(len(items), self.sample_size)] pbar = None if self.show_progress: try: from tqdm import tqdm pbar = tqdm(total=len(items)) except ImportError as e: logger.warning( "To log the progress of DirectoryLoader you need to install tqdm, " "`pip install tqdm`" ) if self.silent_errors: logger.warning(e) else: raise ImportError( "To log the progress of DirectoryLoader " "you need to install tqdm, " "`pip install tqdm`" ) if self.use_multithreading: futures = [] with concurrent.futures.ThreadPoolExecutor( max_workers=self.max_concurrency ) as executor: for i in items: futures.append( executor.submit( self._lazy_load_file_to_non_generator(self._lazy_load_file), i, p, pbar, ) ) for future in concurrent.futures.as_completed(futures): for item in future.result(): yield item else: for i in items: yield from self._lazy_load_file(i, p, pbar) if pbar: pbar.close() def _lazy_load_file_to_non_generator(self, func: Callable) -> Callable: def non_generator(item: Path, path: Path, pbar: Optional[Any]) -> List: return [x for x in func(item, path, pbar)] return non_generator def _lazy_load_file( self, item: Path, path: Path, pbar: Optional[Any] ) -> Iterator[Document]: """Load a file. Args: item: File path. path: Directory path. pbar: Progress bar. Defaults to None. """ if item.is_file(): if _is_visible(item.relative_to(path)) or self.load_hidden: try: logger.debug(f"Processing file: {str(item)}") loader = self.loader_cls(str(item), **self.loader_kwargs) try: for subdoc in loader.lazy_load(): yield subdoc except NotImplementedError: for subdoc in loader.load(): yield subdoc except Exception as e: if self.silent_errors: logger.warning(f"Error loading file {str(item)}: {e}") else: logger.error(f"Error loading file {str(item)}") raise e finally: if pbar: pbar.update(1)
159586
import json from pathlib import Path from typing import Any, Callable, Dict, Iterator, Optional, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader class JSONLoader(BaseLoader): """ Load a `JSON` file using a `jq` schema. Setup: .. code-block:: bash pip install -U jq Instantiate: .. code-block:: python from langchain_community.document_loaders import JSONLoader import json from pathlib import Path file_path='./sample_quiz.json' data = json.loads(Path(file_path).read_text()) loader = JSONLoader( file_path=file_path, jq_schema='.quiz', text_content=False) Load: .. code-block:: python docs = loader.load() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python {"sport": {"q1": {"question": "Which one is correct team name in NBA?", "options": ["New York Bulls" {'source': '/sample_quiz .json', 'seq_num': 1} Async load: .. code-block:: python docs = await loader.aload() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python {"sport": {"q1": {"question": "Which one is correct team name in NBA?", "options": ["New York Bulls" {'source': '/sample_quizg .json', 'seq_num': 1} Lazy load: .. code-block:: python docs = [] docs_lazy = loader.lazy_load() # async variant: # docs_lazy = await loader.alazy_load() for doc in docs_lazy: docs.append(doc) print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python {"sport": {"q1": {"question": "Which one is correct team name in NBA?", "options": ["New York Bulls" {'source': '/sample_quiz .json', 'seq_num': 1} """ def __init__( self, file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, is_content_key_jq_parsable: Optional[bool] = False, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False, ): """Initialize the JSONLoader. Args: file_path (Union[str, Path]): The path to the JSON or JSON Lines file. jq_schema (str): The jq schema to use to extract the data or text from the JSON. content_key (str): The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). If is_content_key_jq_parsable is True, this has to be a jq compatible schema. If is_content_key_jq_parsable is False, this should be a simple string key. is_content_key_jq_parsable (bool): A flag to determine if content_key is parsable by jq or not. If True, content_key is treated as a jq schema and compiled accordingly. If False or if content_key is None, content_key is used as a simple string. Default is False. metadata_func (Callable[Dict, Dict]): A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool): Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool): Boolean flag to indicate whether the input is in JSON Lines format. """ try: import jq self.jq = jq except ImportError: raise ImportError( "jq package not found, please install it with `pip install jq`" ) self.file_path = Path(file_path).resolve() self._jq_schema = jq.compile(jq_schema) self._is_content_key_jq_parsable = is_content_key_jq_parsable self._content_key = content_key self._metadata_func = metadata_func self._text_content = text_content self._json_lines = json_lines def lazy_load(self) -> Iterator[Document]: """Load and return documents from the JSON file.""" index = 0 if self._json_lines: with self.file_path.open(encoding="utf-8") as f: for line in f: line = line.strip() if line: for doc in self._parse(line, index): yield doc index += 1 else: for doc in self._parse(self.file_path.read_text(encoding="utf-8"), index): yield doc index += 1 def _parse(self, content: str, index: int) -> Iterator[Document]: """Convert given content to documents.""" data = self._jq_schema.input(json.loads(content)) # Perform some validation # This is not a perfect validation, but it should catch most cases # and prevent the user from getting a cryptic error later on. if self._content_key is not None: self._validate_content_key(data) if self._metadata_func is not None: self._validate_metadata_func(data) for i, sample in enumerate(data, index + 1): text = self._get_text(sample=sample) metadata = self._get_metadata( sample=sample, source=str(self.file_path), seq_num=i ) yield Document(page_content=text, metadata=metadata) def _get_text(self, sample: Any) -> str: """Convert sample to string format""" if self._content_key is not None: if self._is_content_key_jq_parsable: compiled_content_key = self.jq.compile(self._content_key) content = compiled_content_key.input(sample).first() else: content = sample[self._content_key] else: content = sample if self._text_content and not isinstance(content, str): raise ValueError( f"Expected page_content is string, got {type(content)} instead. \ Set `text_content=False` if the desired input for \ `page_content` is not a string" ) # In case the text is None, set it to an empty string elif isinstance(content, str): return content elif isinstance(content, dict): return json.dumps(content) if content else "" else: return str(content) if content is not None else "" def _get_metadata( self, sample: Dict[str, Any], **additional_fields: Any ) -> Dict[str, Any]: """ Return a metadata dictionary base on the existence of metadata_func :param sample: single data payload :param additional_fields: key-word arguments to be added as metadata values :return: """ if self._metadata_func is not None: return self._metadata_func(sample, additional_fields) else: return additional_fields def _validate_content_key(self, data: Any) -> None: """Check if a content key is valid""" sample = data.first() if not isinstance(sample, dict): raise ValueError( f"Expected the jq schema to result in a list of objects (dict), \ so sample must be a dict but got `{type(sample)}`" ) if ( not self._is_content_key_jq_parsable and sample.get(self._content_key) is None ): raise ValueError( f"Expected the jq schema to result in a list of objects (dict) \ with the key `{self._content_key}`" ) if ( self._is_content_key_jq_parsable and self.jq.compile(self._content_key).input(sample).text() is None ): raise ValueError( f"Expected the jq schema to result in a list of objects (dict) \ with the key `{self._content_key}` which should be parsable by jq" ) def _validate_metadata_func(self, data: Any) -> None: """Check if the metadata_func output is valid""" sample = data.first() if self._metadata_func is not None: sample_metadata = self._metadata_func(sample, {}) if not isinstance(sample_metadata, dict): raise ValueError( f"Expected the metadata_func to return a dict but got \ `{type(sample_metadata)}`" )
159671
"""Use to load blobs from the local file system.""" import contextlib import mimetypes import tempfile from io import BufferedReader, BytesIO from pathlib import Path from typing import ( TYPE_CHECKING, Callable, Generator, Iterable, Iterator, Optional, Sequence, TypeVar, Union, ) from urllib.parse import urlparse if TYPE_CHECKING: from cloudpathlib import AnyPath from langchain_community.document_loaders.blob_loaders.schema import ( Blob, BlobLoader, ) T = TypeVar("T") class _CloudBlob(Blob): def as_string(self) -> str: """Read data as a string.""" from cloudpathlib import AnyPath if self.data is None and self.path: return AnyPath(self.path).read_text(encoding=self.encoding) # type: ignore elif isinstance(self.data, bytes): return self.data.decode(self.encoding) elif isinstance(self.data, str): return self.data else: raise ValueError(f"Unable to get string for blob {self}") def as_bytes(self) -> bytes: """Read data as bytes.""" from cloudpathlib import AnyPath if isinstance(self.data, bytes): return self.data elif isinstance(self.data, str): return self.data.encode(self.encoding) elif self.data is None and self.path: return AnyPath(self.path).read_bytes() # type: ignore else: raise ValueError(f"Unable to get bytes for blob {self}") @contextlib.contextmanager def as_bytes_io(self) -> Generator[Union[BytesIO, BufferedReader], None, None]: """Read data as a byte stream.""" from cloudpathlib import AnyPath if isinstance(self.data, bytes): yield BytesIO(self.data) elif self.data is None and self.path: return AnyPath(self.path).read_bytes() # type: ignore else: raise NotImplementedError(f"Unable to convert blob {self}") def _url_to_filename(url: str) -> str: """ Convert file:, s3:, az: or gs: url to localfile. If the file is not here, download it in a temporary file. """ from cloudpathlib import AnyPath url_parsed = urlparse(url) suffix = Path(url_parsed.path).suffix if url_parsed.scheme in ["s3", "az", "gs"]: with AnyPath(url).open("rb") as f: # type: ignore temp_file = tempfile.NamedTemporaryFile(suffix=suffix, delete=False) while True: buf = f.read() if not buf: break temp_file.write(buf) temp_file.close() file_path = temp_file.name elif url_parsed.scheme in ["file", ""]: file_path = url_parsed.path else: raise ValueError(f"Scheme {url_parsed.scheme} not supported") return file_path def _make_iterator( length_func: Callable[[], int], show_progress: bool = False ) -> Callable[[Iterable[T]], Iterator[T]]: """Create a function that optionally wraps an iterable in tqdm.""" if show_progress: try: from tqdm.auto import tqdm except ImportError: raise ImportError( "You must install tqdm to use show_progress=True." "You can install tqdm with `pip install tqdm`." ) # Make sure to provide `total` here so that tqdm can show # a progress bar that takes into account the total number of files. def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]: """Wrap an iterable in a tqdm progress bar.""" return tqdm(iterable, total=length_func()) iterator = _with_tqdm else: iterator = iter # type: ignore return iterator # PUBLIC API
159711
def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, allow_dangerous_tools: bool = False, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Tools allow agents to interact with various resources and services like APIs, databases, file systems, etc. Please scope the permissions of each tools to the minimum required for the application. For example, if an application only needs to read from a database, the database tool should not be given write permissions. Moreover consider scoping the permissions to only allow accessing specific tables and impose user-level quota for limiting resource usage. Please read the APIs of the individual tools to determine which configuration they support. See [Security](https://python.langchain.com/docs/security) for more information. Args: tool_names: name of tools to load. llm: An optional language model may be needed to initialize certain tools. Defaults to None. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. allow_dangerous_tools: Optional flag to allow dangerous tools. Tools that contain some level of risk. Please use with caution and read the documentation of these tools to understand the risks and how to mitigate them. Refer to https://python.langchain.com/docs/security for more information. Please note that this list may not be fully exhaustive. It is your responsibility to understand which tools you're using and the risks associated with them. Defaults to False. kwargs: Additional keyword arguments. Returns: List of tools. Raises: ValueError: If the tool name is unknown. ValueError: If the tool requires an LLM to be provided. ValueError: If the tool requires some parameters that were not provided. ValueError: If the tool is a dangerous tool and allow_dangerous_tools is False. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name in DANGEROUS_TOOLS and not allow_dangerous_tools: raise_dangerous_tools_exception(name) if name in {"requests"}: warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods if not allow_dangerous_tools: raise_dangerous_tools_exception(name) requests_method_tools = [ _tool for _tool in DANGEROUS_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in DANGEROUS_TOOLS: tools.append(DANGEROUS_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) + list(DANGEROUS_TOOLS) )
159778
"""Toolkit for interacting with an SQL database.""" from typing import List from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit from pydantic import ConfigDict, Field from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase class SQLDatabaseToolkit(BaseToolkit): """SQLDatabaseToolkit for interacting with SQL databases. Setup: Install ``langchain-community``. .. code-block:: bash pip install -U langchain-community Key init args: db: SQLDatabase The SQL database. llm: BaseLanguageModel The language model (for use with QuerySQLCheckerTool) Instantiate: .. code-block:: python from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain_community.utilities.sql_database import SQLDatabase from langchain_openai import ChatOpenAI db = SQLDatabase.from_uri("sqlite:///Chinook.db") llm = ChatOpenAI(temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) Tools: .. code-block:: python toolkit.get_tools() Use within an agent: .. code-block:: python from langchain import hub from langgraph.prebuilt import create_react_agent # Pull prompt (or define your own) prompt_template = hub.pull("langchain-ai/sql-agent-system-prompt") system_message = prompt_template.format(dialect="SQLite", top_k=5) # Create agent agent_executor = create_react_agent( llm, toolkit.get_tools(), state_modifier=system_message ) # Query agent example_query = "Which country's customers spent the most?" events = agent_executor.stream( {"messages": [("user", example_query)]}, stream_mode="values", ) for event in events: event["messages"][-1].pretty_print() """ # noqa: E501 db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of SQL dialect to use.""" return self.db.dialect model_config = ConfigDict( arbitrary_types_allowed=True, ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" list_sql_database_tool = ListSQLDatabaseTool(db=self.db) info_sql_database_tool_description = ( "Input to this tool is a comma-separated list of tables, output is the " "schema and sample rows for those tables. " "Be sure that the tables actually exist by calling " f"{list_sql_database_tool.name} first! " "Example Input: table1, table2, table3" ) info_sql_database_tool = InfoSQLDatabaseTool( db=self.db, description=info_sql_database_tool_description ) query_sql_database_tool_description = ( "Input to this tool is a detailed and correct SQL query, output is a " "result from the database. If the query is not correct, an error message " "will be returned. If an error is returned, rewrite the query, check the " "query, and try again. If you encounter an issue with Unknown column " f"'xxxx' in 'field list', use {info_sql_database_tool.name} " "to query the correct table fields." ) query_sql_database_tool = QuerySQLDataBaseTool( db=self.db, description=query_sql_database_tool_description ) query_sql_checker_tool_description = ( "Use this tool to double check if your query is correct before executing " "it. Always use this tool before executing a query with " f"{query_sql_database_tool.name}!" ) query_sql_checker_tool = QuerySQLCheckerTool( db=self.db, llm=self.llm, description=query_sql_checker_tool_description ) return [ query_sql_database_tool, info_sql_database_tool, list_sql_database_tool, query_sql_checker_tool, ] def get_context(self) -> dict: """Return db context that you may want in agent prompt.""" return self.db.get_context()
159780
# flake8: noqa SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. """ SQL_SUFFIX = """Begin! Question: {input} Thought: I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables. {agent_scratchpad}""" SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables."""
159781
"""SQL agent.""" from __future__ import annotations from typing import ( TYPE_CHECKING, Any, Dict, List, Literal, Optional, Sequence, Union, cast, ) from langchain_core.messages import AIMessage, SystemMessage from langchain_core.prompts import BasePromptTemplate, PromptTemplate from langchain_core.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain_community.agent_toolkits.sql.prompt import ( SQL_FUNCTIONS_SUFFIX, SQL_PREFIX, SQL_SUFFIX, ) from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, ) if TYPE_CHECKING: from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_community.utilities.sql_database import SQLDatabase def create_sql_agent( llm: BaseLanguageModel, toolkit: Optional[SQLDatabaseToolkit] = None, agent_type: Optional[ Union[AgentType, Literal["openai-tools", "tool-calling"]] ] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: Optional[str] = None, suffix: Optional[str] = None, format_instructions: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, extra_tools: Sequence[BaseTool] = (), *, db: Optional[SQLDatabase] = None, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> AgentExecutor: """Construct a SQL agent from an LLM and toolkit or database. Args: llm: Language model to use for the agent. If agent_type is "tool-calling" then llm is expected to support tool calling. toolkit: SQLDatabaseToolkit for the agent to use. Must provide exactly one of 'toolkit' or 'db'. Specify 'toolkit' if you want to use a different model for the agent and the toolkit. agent_type: One of "tool-calling", "openai-tools", "openai-functions", or "zero-shot-react-description". Defaults to "zero-shot-react-description". "tool-calling" is recommended over the legacy "openai-tools" and "openai-functions" types. callback_manager: DEPRECATED. Pass "callbacks" key into 'agent_executor_kwargs' instead to pass constructor callbacks to AgentExecutor. prefix: Prompt prefix string. Must contain variables "top_k" and "dialect". suffix: Prompt suffix string. Default depends on agent type. format_instructions: Formatting instructions to pass to ZeroShotAgent.create_prompt() when 'agent_type' is "zero-shot-react-description". Otherwise ignored. input_variables: DEPRECATED. top_k: Number of rows to query for by default. max_iterations: Passed to AgentExecutor init. max_execution_time: Passed to AgentExecutor init. early_stopping_method: Passed to AgentExecutor init. verbose: AgentExecutor verbosity. agent_executor_kwargs: Arbitrary additional AgentExecutor args. extra_tools: Additional tools to give to agent on top of the ones that come with SQLDatabaseToolkit. db: SQLDatabase from which to create a SQLDatabaseToolkit. Toolkit is created using 'db' and 'llm'. Must provide exactly one of 'db' or 'toolkit'. prompt: Complete agent prompt. prompt and {prefix, suffix, format_instructions, input_variables} are mutually exclusive. **kwargs: Arbitrary additional Agent args. Returns: An AgentExecutor with the specified agent_type agent. Example: .. code-block:: python from langchain_openai import ChatOpenAI from langchain_community.agent_toolkits import create_sql_agent from langchain_community.utilities import SQLDatabase db = SQLDatabase.from_uri("sqlite:///Chinook.db") llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) agent_executor = create_sql_agent(llm, db=db, agent_type="tool-calling", verbose=True) """ # noqa: E501 from langchain.agents import ( create_openai_functions_agent, create_openai_tools_agent, create_react_agent, create_tool_calling_agent, ) from langchain.agents.agent import ( AgentExecutor, RunnableAgent, RunnableMultiActionAgent, ) from langchain.agents.agent_types import AgentType if toolkit is None and db is None: raise ValueError( "Must provide exactly one of 'toolkit' or 'db'. Received neither." ) if toolkit and db: raise ValueError( "Must provide exactly one of 'toolkit' or 'db'. Received both." ) toolkit = toolkit or SQLDatabaseToolkit(llm=llm, db=db) # type: ignore[arg-type] agent_type = agent_type or AgentType.ZERO_SHOT_REACT_DESCRIPTION tools = toolkit.get_tools() + list(extra_tools) if prefix is None: prefix = SQL_PREFIX if prompt is None: prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) else: if "top_k" in prompt.input_variables: prompt = prompt.partial(top_k=str(top_k)) if "dialect" in prompt.input_variables: prompt = prompt.partial(dialect=toolkit.dialect) if any(key in prompt.input_variables for key in ["table_info", "table_names"]): db_context = toolkit.get_context() if "table_info" in prompt.input_variables: prompt = prompt.partial(table_info=db_context["table_info"]) tools = [ tool for tool in tools if not isinstance(tool, InfoSQLDatabaseTool) ] if "table_names" in prompt.input_variables: prompt = prompt.partial(table_names=db_context["table_names"]) tools = [ tool for tool in tools if not isinstance(tool, ListSQLDatabaseTool) ] if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: if prompt is None: from langchain.agents.mrkl import prompt as react_prompt format_instructions = ( format_instructions or react_prompt.FORMAT_INSTRUCTIONS ) template = "\n\n".join( [ prefix, "{tools}", format_instructions, suffix or SQL_SUFFIX, ] ) prompt = PromptTemplate.from_template(template) agent = RunnableAgent( runnable=create_react_agent(llm, tools, prompt), input_keys_arg=["input"], return_keys_arg=["output"], **kwargs, ) elif agent_type == AgentType.OPENAI_FUNCTIONS: if prompt is None: messages: List = [ SystemMessage(content=cast(str, prefix)), HumanMessagePromptTemplate.from_template("{input}"), AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX), MessagesPlaceholder(variable_name="agent_scratchpad"), ] prompt = ChatPromptTemplate.from_messages(messages) agent = RunnableAgent( runnable=create_openai_functions_agent(llm, tools, prompt), # type: ignore input_keys_arg=["input"], return_keys_arg=["output"], **kwargs, ) elif agent_type in ("openai-tools", "tool-calling"): if prompt is None: messages = [ SystemMessage(content=cast(str, prefix)), HumanMessagePromptTemplate.from_template("{input}"), AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX), MessagesPlaceholder(variable_name="agent_scratchpad"), ] prompt = ChatPromptTemplate.from_messages(messages) if agent_type == "openai-tools": runnable = create_openai_tools_agent(llm, tools, prompt) # type: ignore else: runnable = create_tool_calling_agent(llm, tools, prompt) # type: ignore agent = RunnableMultiActionAgent( # type: ignore[assignment] runnable=runnable, input_keys_arg=["input"], return_keys_arg=["output"], **kwargs, ) else: raise ValueError( f"Agent type {agent_type} not supported at the moment. Must be one of " "'tool-calling', 'openai-tools', 'openai-functions', or " "'zero-shot-react-description'." ) return AgentExecutor( name="SQL Agent Executor", agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
159784
@deprecated( since="0.0.12", removal="1.0", alternative_import="langchain_google_vertexai.VertexAI", ) class VertexAI(_VertexAICommon, BaseLLM): """Google Vertex AI large language models.""" model_name: str = "text-bison" "The name of the Vertex AI large language model." tuned_model_name: Optional[str] = None "The name of a tuned model. If provided, model_name is ignored." @classmethod def is_lc_serializable(self) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "vertexai"] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" tuned_model_name = values.get("tuned_model_name") model_name = values["model_name"] is_gemini = is_gemini_model(values["model_name"]) cls._try_init_vertexai(values) try: from vertexai.language_models import ( CodeGenerationModel, TextGenerationModel, ) from vertexai.preview.language_models import ( CodeGenerationModel as PreviewCodeGenerationModel, ) from vertexai.preview.language_models import ( TextGenerationModel as PreviewTextGenerationModel, ) if is_gemini: from vertexai.preview.generative_models import ( GenerativeModel, ) if is_codey_model(model_name): model_cls = CodeGenerationModel preview_model_cls = PreviewCodeGenerationModel elif is_gemini: model_cls = GenerativeModel preview_model_cls = GenerativeModel else: model_cls = TextGenerationModel preview_model_cls = PreviewTextGenerationModel if tuned_model_name: values["client"] = model_cls.get_tuned_model(tuned_model_name) values["client_preview"] = preview_model_cls.get_tuned_model( tuned_model_name ) else: if is_gemini: values["client"] = model_cls(model_name=model_name) values["client_preview"] = preview_model_cls(model_name=model_name) else: values["client"] = model_cls.from_pretrained(model_name) values["client_preview"] = preview_model_cls.from_pretrained( model_name ) except ImportError: raise_vertex_import_error() if values["streaming"] and values["n"] > 1: raise ValueError("Only one candidate can be generated with streaming!") return values def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text. Useful for checking if an input will fit in a model's context window. Args: text: The string input to tokenize. Returns: The integer number of tokens in the text. """ try: result = self.client_preview.count_tokens([text]) except AttributeError: raise_vertex_import_error() return result.total_tokens def _response_to_generation( self, response: TextGenerationResponse ) -> GenerationChunk: """Converts a stream response to a generation chunk.""" try: generation_info = { "is_blocked": response.is_blocked, "safety_attributes": response.safety_attributes, } except Exception: generation_info = None return GenerationChunk(text=response.text, generation_info=generation_info) def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> LLMResult: should_stream = stream if stream is not None else self.streaming params = self._prepare_params(stop=stop, stream=should_stream, **kwargs) generations: List[List[Generation]] = [] for prompt in prompts: if should_stream: generation = GenerationChunk(text="") for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): generation += chunk generations.append([generation]) else: res = completion_with_retry( # type: ignore[misc] self, [prompt], stream=should_stream, is_gemini=self._is_gemini_model, run_manager=run_manager, **params, ) generations.append( [self._response_to_generation(r) for r in res.candidates] ) return LLMResult(generations=generations) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: params = self._prepare_params(stop=stop, **kwargs) generations = [] for prompt in prompts: res = await acompletion_with_retry( self, prompt, is_gemini=self._is_gemini_model, run_manager=run_manager, **params, ) generations.append( [self._response_to_generation(r) for r in res.candidates] ) return LLMResult(generations=generations) # type: ignore[arg-type] def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params = self._prepare_params(stop=stop, stream=True, **kwargs) for stream_resp in completion_with_retry( # type: ignore[misc] self, [prompt], stream=True, is_gemini=self._is_gemini_model, run_manager=run_manager, **params, ): chunk = self._response_to_generation(stream_resp) if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, ) yield chunk
159804
from __future__ import annotations from typing import Any, Dict, Iterator, List, Optional from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LanguageModelInput from langchain_core.outputs import Generation, GenerationChunk, LLMResult from langchain_core.utils import get_from_dict_or_env, pre_init from pydantic import BaseModel, SecretStr from langchain_community.llms import BaseLLM from langchain_community.utilities.vertexai import create_retry_decorator def completion_with_retry( llm: GooglePalm, prompt: LanguageModelInput, is_gemini: bool = False, stream: bool = False, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = create_retry_decorator( llm, max_retries=llm.max_retries, run_manager=run_manager ) @retry_decorator def _completion_with_retry( prompt: LanguageModelInput, is_gemini: bool, stream: bool, **kwargs: Any ) -> Any: generation_config = kwargs.get("generation_config", {}) if is_gemini: return llm.client.generate_content( contents=prompt, stream=stream, generation_config=generation_config ) return llm.client.generate_text(prompt=prompt, **kwargs) return _completion_with_retry( prompt=prompt, is_gemini=is_gemini, stream=stream, **kwargs ) def _is_gemini_model(model_name: str) -> bool: return "gemini" in model_name def _strip_erroneous_leading_spaces(text: str) -> str: """Strip erroneous leading spaces from text. The PaLM API will sometimes erroneously return a single leading space in all lines > 1. This function strips that space. """ has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:]) if has_leading_space: return text.replace("\n ", "\n") else: return text @deprecated("0.0.12", alternative_import="langchain_google_genai.GoogleGenerativeAI") class GooglePalm(BaseLLM, BaseModel): """ DEPRECATED: Use `langchain_google_genai.GoogleGenerativeAI` instead. Google PaLM models. """ client: Any #: :meta private: google_api_key: Optional[SecretStr] model_name: str = "models/text-bison-001" """Model name to use.""" temperature: float = 0.7 """Run inference with this temperature. Must be in the closed interval [0.0, 1.0].""" top_p: Optional[float] = None """Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" top_k: Optional[int] = None """Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.""" max_output_tokens: Optional[int] = None """Maximum number of tokens to include in a candidate. Must be greater than zero. If unset, will default to 64.""" n: int = 1 """Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated.""" max_retries: int = 6 """The maximum number of retries to make when generating.""" @property def is_gemini(self) -> bool: """Returns whether a model is belongs to a Gemini family or not.""" return _is_gemini_model(self.model_name) @property def lc_secrets(self) -> Dict[str, str]: return {"google_api_key": "GOOGLE_API_KEY"} @classmethod def is_lc_serializable(self) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "google_palm"] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate api key, python package exists.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" ) model_name = values["model_name"] try: import google.generativeai as genai if isinstance(google_api_key, SecretStr): google_api_key = google_api_key.get_secret_value() genai.configure(api_key=google_api_key) if _is_gemini_model(model_name): values["client"] = genai.GenerativeModel(model_name=model_name) else: values["client"] = genai except ImportError: raise ImportError( "Could not import google-generativeai python package. " "Please install it with `pip install google-generativeai`." ) if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") if values["top_k"] is not None and values["top_k"] <= 0: raise ValueError("top_k must be positive") if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0: raise ValueError("max_output_tokens must be greater than zero") return values def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations: List[List[Generation]] = [] generation_config = { "stop_sequences": stop, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "max_output_tokens": self.max_output_tokens, "candidate_count": self.n, } for prompt in prompts: if self.is_gemini: res = completion_with_retry( self, prompt=prompt, stream=False, is_gemini=True, run_manager=run_manager, generation_config=generation_config, ) candidates = [ "".join([p.text for p in c.content.parts]) for c in res.candidates ] generations.append([Generation(text=c) for c in candidates]) else: res = completion_with_retry( self, model=self.model_name, prompt=prompt, stream=False, is_gemini=False, run_manager=run_manager, **generation_config, ) prompt_generations = [] for candidate in res.candidates: raw_text = candidate["output"] stripped_text = _strip_erroneous_leading_spaces(raw_text) prompt_generations.append(Generation(text=stripped_text)) generations.append(prompt_generations) return LLMResult(generations=generations) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: generation_config = kwargs.get("generation_config", {}) if stop: generation_config["stop_sequences"] = stop for stream_resp in completion_with_retry( self, prompt, stream=True, is_gemini=True, run_manager=run_manager, generation_config=generation_config, **kwargs, ): chunk = GenerationChunk(text=stream_resp.text) if run_manager: run_manager.on_llm_new_token( stream_resp.text, chunk=chunk, verbose=self.verbose, ) yield chunk @property def _llm_type(self) -> str: """Return type of llm.""" return "google_palm" def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text. Useful for checking if an input will fit in a model's context window. Args: text: The string input to tokenize. Returns: The integer number of tokens in the text. """ if self.is_gemini: raise ValueError("Counting tokens is not yet supported!") result = self.client.count_text_tokens(model=self.model_name, prompt=text) return result["token_count"]
159810
from __future__ import annotations import importlib.util import logging from typing import Any, Iterator, List, Mapping, Optional from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult from pydantic import ConfigDict DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ( "text2text-generation", "text-generation", "summarization", "translation", ) DEFAULT_BATCH_SIZE = 4 logger = logging.getLogger(__name__) @deprecated( since="0.0.37", removal="1.0", alternative_import="langchain_huggingface.HuggingFacePipeline", ) class HuggingFacePipeline(BaseLLM): """HuggingFace Pipeline API. To use, you should have the ``transformers`` python package installed. Only supports `text-generation`, `text2text-generation`, `summarization` and `translation` for now. Example using from_model_id: .. code-block:: python from langchain_community.llms import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) Example passing pipeline in directly: .. code-block:: python from langchain_community.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) """ pipeline: Any = None #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" pipeline_kwargs: Optional[dict] = None """Keyword arguments passed to the pipeline.""" batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" model_config = ConfigDict( extra="forbid", ) @classmethod def from_model_id( cls, model_id: str, task: str, backend: str = "default", device: Optional[int] = -1, device_map: Optional[str] = None, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, batch_size: int = DEFAULT_BATCH_SIZE, **kwargs: Any, ) -> HuggingFacePipeline: """Construct the pipeline object from model_id and task.""" try: from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers import pipeline as hf_pipeline except ImportError: raise ImportError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": if backend == "openvino": try: from optimum.intel.openvino import OVModelForCausalLM except ImportError: raise ImportError( "Could not import optimum-intel python package. " "Please install it with: " "pip install 'optimum[openvino,nncf]' " ) try: # use local model model = OVModelForCausalLM.from_pretrained( model_id, **_model_kwargs ) except Exception: # use remote model model = OVModelForCausalLM.from_pretrained( model_id, export=True, **_model_kwargs ) else: model = AutoModelForCausalLM.from_pretrained( model_id, **_model_kwargs ) elif task in ("text2text-generation", "summarization", "translation"): if backend == "openvino": try: from optimum.intel.openvino import OVModelForSeq2SeqLM except ImportError: raise ImportError( "Could not import optimum-intel python package. " "Please install it with: " "pip install 'optimum[openvino,nncf]' " ) try: # use local model model = OVModelForSeq2SeqLM.from_pretrained( model_id, **_model_kwargs ) except Exception: # use remote model model = OVModelForSeq2SeqLM.from_pretrained( model_id, export=True, **_model_kwargs ) else: model = AutoModelForSeq2SeqLM.from_pretrained( model_id, **_model_kwargs ) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ImportError( f"Could not load the {task} model due to missing dependencies." ) from e if tokenizer.pad_token is None: tokenizer.pad_token_id = model.config.eos_token_id if ( ( getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) ) and device is not None and backend == "default" ): logger.warning( f"Setting the `device` argument to None from {device} to avoid " "the error caused by attempting to move the model that was already " "loaded on the GPU using the Accelerate module to the same or " "another device." ) device = None if ( device is not None and importlib.util.find_spec("torch") is not None and backend == "default" ): import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device_map is not None and device < 0: device = None if device is not None and device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 (default) for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) if device is not None and device_map is not None and backend == "openvino": logger.warning("Please set device for OpenVINO through: `model_kwargs`") if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } _pipeline_kwargs = pipeline_kwargs or {} pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, device_map=device_map, batch_size=batch_size, model_kwargs=_model_kwargs, **_pipeline_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, pipeline_kwargs=_pipeline_kwargs, batch_size=batch_size, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, "pipeline_kwargs": self.pipeline_kwargs, } @property def _llm_type(self) -> str: return "huggingface_pipeline"
159811
def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: # List to hold all results text_generations: List[str] = [] default_pipeline_kwargs = self.pipeline_kwargs if self.pipeline_kwargs else {} pipeline_kwargs = kwargs.get("pipeline_kwargs", default_pipeline_kwargs) skip_prompt = kwargs.get("skip_prompt", False) for i in range(0, len(prompts), self.batch_size): batch_prompts = prompts[i : i + self.batch_size] # Process batch of prompts responses = self.pipeline( batch_prompts, **pipeline_kwargs, ) # Process each response in the batch for j, response in enumerate(responses): if isinstance(response, list): # if model returns multiple generations, pick the top one response = response[0] if self.pipeline.task == "text-generation": text = response["generated_text"] elif self.pipeline.task == "text2text-generation": text = response["generated_text"] elif self.pipeline.task == "summarization": text = response["summary_text"] elif self.pipeline.task in "translation": text = response["translation_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if skip_prompt: text = text[len(batch_prompts[j]) :] # Append the processed text to results text_generations.append(text) return LLMResult( generations=[[Generation(text=text)] for text in text_generations] ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: from threading import Thread import torch from transformers import ( StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) pipeline_kwargs = kwargs.get("pipeline_kwargs", {}) skip_prompt = kwargs.get("skip_prompt", True) if stop is not None: stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop) stopping_ids_list = stop or [] class StopOnTokens(StoppingCriteria): def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs: Any, ) -> bool: for stop_id in stopping_ids_list: if input_ids[0][-1] == stop_id: return True return False stopping_criteria = StoppingCriteriaList([StopOnTokens()]) inputs = self.pipeline.tokenizer(prompt, return_tensors="pt") streamer = TextIteratorStreamer( self.pipeline.tokenizer, timeout=60.0, skip_prompt=skip_prompt, skip_special_tokens=True, ) generation_kwargs = dict( inputs, streamer=streamer, stopping_criteria=stopping_criteria, **pipeline_kwargs, ) t1 = Thread(target=self.pipeline.model.generate, kwargs=generation_kwargs) t1.start() for char in streamer: chunk = GenerationChunk(text=char) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk
159825
import importlib from typing import Any, List, Mapping, Optional from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "google/flan-t5-large" DEFAULT_TASK = "text2text-generation" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") class WeightOnlyQuantPipeline(LLM): """Weight only quantized model. To use, you should have the `intel-extension-for-transformers` packabge and `transformers` package installed. intel-extension-for-transformers: https://github.com/intel/intel-extension-for-transformers Example using from_model_id: .. code-block:: python from langchain_community.llms import WeightOnlyQuantPipeline from intel_extension_for_transformers.transformers import ( WeightOnlyQuantConfig ) config = WeightOnlyQuantConfig hf = WeightOnlyQuantPipeline.from_model_id( model_id="google/flan-t5-large", task="text2text-generation" pipeline_kwargs={"max_new_tokens": 10}, quantization_config=config, ) Example passing pipeline in directly: .. code-block:: python from langchain_community.llms import WeightOnlyQuantPipeline from intel_extension_for_transformers.transformers import ( AutoModelForSeq2SeqLM ) from intel_extension_for_transformers.transformers import ( WeightOnlyQuantConfig ) from transformers import AutoTokenizer, pipeline model_id = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_id) config = WeightOnlyQuantConfig model = AutoModelForSeq2SeqLM.from_pretrained( model_id, quantization_config=config, ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10, ) hf = WeightOnlyQuantPipeline(pipeline=pipe) """ pipeline: Any = None #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name or local path to use.""" model_kwargs: Optional[dict] = None """Key word arguments passed to the model.""" pipeline_kwargs: Optional[dict] = None """Key word arguments passed to the pipeline.""" model_config = ConfigDict( extra="allow", ) @classmethod def from_model_id( cls, model_id: str, task: str, device: Optional[int] = -1, device_map: Optional[str] = None, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, load_in_4bit: Optional[bool] = False, load_in_8bit: Optional[bool] = False, quantization_config: Optional[Any] = None, **kwargs: Any, ) -> LLM: """Construct the pipeline object from model_id and task.""" if device_map is not None and (isinstance(device, int) and device > -1): raise ValueError("`Device` and `device_map` cannot be set simultaneously!") if importlib.util.find_spec("torch") is None: raise ValueError( "Weight only quantization pipeline only support PyTorch now!" ) try: from intel_extension_for_transformers.transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, ) from intel_extension_for_transformers.utils.utils import is_ipex_available from transformers import AutoTokenizer from transformers import pipeline as hf_pipeline except ImportError: raise ImportError( "Could not import transformers python package. " "Please install it with `pip install transformers` " "and `pip install intel-extension-for-transformers`." ) if isinstance(device, int) and device >= 0: if not is_ipex_available(): raise ValueError("Don't find out Intel GPU on this machine!") device_map = "xpu:" + str(device) elif isinstance(device, int) and device < 0: device = None if device is None: if device_map is None: device_map = "cpu" _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=load_in_4bit, load_in_8bit=load_in_8bit, quantization_config=quantization_config, use_llm_runtime=False, device_map=device_map, **_model_kwargs, ) elif task in ("text2text-generation", "summarization"): model = AutoModelForSeq2SeqLM.from_pretrained( model_id, load_in_4bit=load_in_4bit, load_in_8bit=load_in_8bit, quantization_config=quantization_config, use_llm_runtime=False, device_map=device_map, **_model_kwargs, ) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ImportError( f"Could not load the {task} model due to missing dependencies." ) from e if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } _pipeline_kwargs = pipeline_kwargs or {} pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, **_pipeline_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, pipeline_kwargs=_pipeline_kwargs, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, "pipeline_kwargs": self.pipeline_kwargs, } @property def _llm_type(self) -> str: """Return type of llm.""" return "weight_only_quantization" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the HuggingFace model and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain_community.llms import WeightOnlyQuantPipeline llm = WeightOnlyQuantPipeline.from_model_id( model_id="google/flan-t5-large", task="text2text-generation", ) llm.invoke("This is a prompt.") """ response = self.pipeline(prompt) if self.pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.pipeline.task == "text2text-generation": text = response[0]["generated_text"] elif self.pipeline.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
159856
recated( since="0.0.10", removal="1.0", alternative_import="langchain_openai.AzureOpenAI" ) class AzureOpenAI(BaseOpenAI): """Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_community.llms import AzureOpenAI openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct") """ azure_endpoint: Union[str, None] = None """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") """A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_version: str = Field(default="", alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" openai_api_key: Union[str, None] = Field(default=None, alias="api_key") """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" azure_ad_token: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ azure_ad_token_provider: Union[Callable[[], str], None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ openai_api_type: str = "" """Legacy, for openai<1.0.0 support.""" validate_base_url: bool = True """For backwards compatibility. If legacy val openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update accordingly. """ @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "openai"] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. values["openai_api_key"] = ( values["openai_api_key"] or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( "AZURE_OPENAI_ENDPOINT" ) values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( "AZURE_OPENAI_AD_TOKEN" ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_api_version"] = values["openai_api_version"] or os.getenv( "OPENAI_API_VERSION" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="azure" ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = values["openai_api_base"] if openai_api_base and values["validate_base_url"]: if "/openai" not in openai_api_base: values["openai_api_base"] = ( values["openai_api_base"].rstrip("/") + "/openai" ) warnings.warn( "As of openai>=1.0.0, Azure endpoints should be specified via " f"the `azure_endpoint` param not `openai_api_base` " f"(or alias `base_url`). Updating `openai_api_base` from " f"{openai_api_base} to {values['openai_api_base']}." ) if values["deployment_name"]: warnings.warn( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) if values["deployment_name"] not in values["openai_api_base"]: warnings.warn( "As of openai>=1.0.0, if `openai_api_base` " "(or alias `base_url`) is specified it is expected to be " "of the form " "https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 f"Updating {openai_api_base} to " f"{values['openai_api_base']}." ) values["openai_api_base"] += ( "/deployments/" + values["deployment_name"] ) values["deployment_name"] = None client_params = { "api_version": values["openai_api_version"], "azure_endpoint": values["azure_endpoint"], "azure_deployment": values["deployment_name"], "api_key": values["openai_api_key"], "azure_ad_token": values["azure_ad_token"], "azure_ad_token_provider": values["azure_ad_token_provider"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } values["client"] = openai.AzureOpenAI(**client_params).completions values["async_client"] = openai.AsyncAzureOpenAI( **client_params ).completions else: values["client"] = openai.Completion return values @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: if is_openai_v1(): openai_params = {"model": self.deployment_name} else: openai_params = { "engine": self.deployment_name, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_params, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" @property def lc_attributes(self) -> Dict[str, Any]: return { "openai_api_type": self.openai_api_type, "openai_api_version": self.openai_api_version, } @
159857
recated( since="0.0.1", removal="1.0", alternative_import="langchain_openai.ChatOpenAI", ) class OpenAIChat(BaseLLM): """OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_community.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = "gpt-3.5-turbo" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_proxy = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization if openai_proxy: openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain_community.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for ChatGPT api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: messages, params = self._get_chat_params([prompt], stop) params = {**params, **kwargs, "stream": True} for stream_resp in completion_with_retry( self, messages=messages, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) if run_manager: run_manager.on_llm_new_token(token, chunk=chunk) yield chunk async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: messages, params = self._get_chat_params([prompt], stop) params = {**params, **kwargs, "stream": True} async for stream_resp in await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) if run_manager: await run_manager.on_llm_new_token(token, chunk=chunk) yield chunk def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: if self.streaming: generation: Optional[GenerationChunk] = None for chunk in self._stream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None return LLMResult(generations=[[generation]]) messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} full_response = completion_with_retry( self, messages=messages, run_manager=run_manager, **params ) if not isinstance(full_response, dict): full_response = full_response.dict() llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) as
159872
def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.streaming: from transformers import TextStreamer input_ids = self.tokenizer.encode(prompt, return_tensors="pt") input_ids = input_ids.to(self.model.device) streamer = TextStreamer( self.tokenizer, skip_prompt=True, skip_special_tokens=True ) if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria # stop generation when stop words are encountered # TODO: stop generation when the following one is stop word stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, streamer=streamer, stopping_criteria=stopping_criteria, **kwargs, ) text = self.tokenizer.decode(output[0], skip_special_tokens=True) return text else: input_ids = self.tokenizer.encode(prompt, return_tensors="pt") input_ids = input_ids.to(self.model.device) if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, stopping_criteria=stopping_criteria, **kwargs ) text = self.tokenizer.decode(output[0], skip_special_tokens=True)[ len(prompt) : ] return text
159888
async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the textgen web API and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain_community.llms import TextGen llm = TextGen(model_url="http://localhost:5000") llm.invoke("Write a story about llamas.") """ if self.streaming: combined_text_output = "" async for chunk in self._astream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): combined_text_output += chunk.text result = combined_text_output else: url = f"{self.model_url}/api/v1/generate" params = self._get_parameters(stop) request = params.copy() request["prompt"] = prompt response = requests.post(url, json=request) if response.status_code == 200: result = response.json()["results"][0]["text"] else: print(f"ERROR: response: {response}") # noqa: T201 result = "" return result def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like objects containing a string token and metadata. See text-generation-webui docs and below for more. Example: .. code-block:: python from langchain_community.llms import TextGen llm = TextGen( model_url = "ws://localhost:5005" streaming=True ) for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'","\n"]): print(chunk, end='', flush=True) # noqa: T201 """ try: import websocket except ImportError: raise ImportError( "The `websocket-client` package is required for streaming." ) params = {**self._get_parameters(stop), **kwargs} url = f"{self.model_url}/api/v1/stream" request = params.copy() request["prompt"] = prompt websocket_client = websocket.WebSocket() websocket_client.connect(url) websocket_client.send(json.dumps(request)) while True: result = websocket_client.recv() result = json.loads(result) if result["event"] == "text_stream": # type: ignore[call-overload, index] chunk = GenerationChunk( text=result["text"], # type: ignore[call-overload, index] generation_info=None, ) if run_manager: run_manager.on_llm_new_token(token=chunk.text) yield chunk elif result["event"] == "stream_end": # type: ignore[call-overload, index] websocket_client.close() return async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like objects containing a string token and metadata. See text-generation-webui docs and below for more. Example: .. code-block:: python from langchain_community.llms import TextGen llm = TextGen( model_url = "ws://localhost:5005" streaming=True ) for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'","\n"]): print(chunk, end='', flush=True) # noqa: T201 """ try: import websocket except ImportError: raise ImportError( "The `websocket-client` package is required for streaming." ) params = {**self._get_parameters(stop), **kwargs} url = f"{self.model_url}/api/v1/stream" request = params.copy() request["prompt"] = prompt websocket_client = websocket.WebSocket() websocket_client.connect(url) websocket_client.send(json.dumps(request)) while True: result = websocket_client.recv() result = json.loads(result) if result["event"] == "text_stream": # type: ignore[call-overload, index] chunk = GenerationChunk( text=result["text"], # type: ignore[call-overload, index] generation_info=None, ) if run_manager: await run_manager.on_llm_new_token(token=chunk.text) yield chunk elif result["event"] == "stream_end": # type: ignore[call-overload, index] websocket_client.close() return
159898
async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: """Stream OCI Data Science Model Deployment endpoint async on given prompt. Args: prompt (str): The prompt to pass into the model. stop (List[str], Optional): List of stop words to use when generating. kwargs: requests_kwargs: Additional ``**kwargs`` to pass to requests.post Returns: An iterator of GenerationChunks. Example: .. code-block:: python async for chunk in llm.astream(("Tell me a joke."): print(chunk, end="", flush=True) """ requests_kwargs = kwargs.pop("requests_kwargs", {}) self.streaming = True params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(prompt, params) async for line in await self.acompletion_with_retry( data=body, run_manager=run_manager, stream=True, **requests_kwargs ): chunk = self._handle_sse_line(line) if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk def _construct_json_body(self, prompt: str, params: dict) -> dict: """Constructs the request body as a dictionary (JSON).""" return { "prompt": prompt, **params, } def _invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> dict: """Combines the invocation parameters with default parameters.""" params = self._default_params _model_kwargs = self.model_kwargs or {} params["stop"] = stop or params.get("stop", []) return {**params, **_model_kwargs, **kwargs} def _process_stream_response(self, response_json: dict) -> GenerationChunk: """Formats streaming response for OpenAI spec into GenerationChunk.""" try: choice = response_json["choices"][0] if not isinstance(choice, dict): raise TypeError("Endpoint response is not well formed.") except (KeyError, IndexError, TypeError) as e: raise ValueError("Error while formatting response payload.") from e return GenerationChunk(text=choice.get("text", "")) def _process_response(self, response_json: dict) -> List[Generation]: """Formats response in OpenAI spec. Args: response_json (dict): The JSON response from the chat model endpoint. Returns: ChatResult: An object containing the list of `ChatGeneration` objects and additional LLM output information. Raises: ValueError: If the response JSON is not well-formed or does not contain the expected structure. """ generations = [] try: choices = response_json["choices"] if not isinstance(choices, list): raise TypeError("Endpoint response is not well formed.") except (KeyError, TypeError) as e: raise ValueError("Error while formatting response payload.") from e for choice in choices: gen = Generation( text=choice.get("text"), generation_info=self._generate_info(choice), ) generations.append(gen) return generations def _generate_info(self, choice: dict) -> Any: """Extracts generation info from the response.""" gen_info = {} finish_reason = choice.get("finish_reason", None) logprobs = choice.get("logprobs", None) index = choice.get("index", None) if finish_reason: gen_info.update({"finish_reason": finish_reason}) if logprobs is not None: gen_info.update({"logprobs": logprobs}) if index is not None: gen_info.update({"index": index}) return gen_info or None def _handle_sse_line(self, line: str) -> GenerationChunk: try: obj = json.loads(line) return self._process_stream_response(obj) except Exception: return GenerationChunk(text="") class OCIModelDeploymentTGI(OCIModelDeploymentLLM): """OCI Data Science Model Deployment TGI Endpoint. To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict. To authenticate, `oracle-ads` has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint Example: .. code-block:: python from langchain_community.llms import OCIModelDeploymentTGI llm = OCIModelDeploymentTGI( endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict", api="/v1/completions", streaming=True, temperature=0.2, seed=42, # other model parameters ... ) """ api: Literal["/generate", "/v1/completions"] = "/v1/completions" """Api spec.""" frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency. Between 0 and 1.""" seed: Optional[int] = None """Random sampling seed""" repetition_penalty: Optional[float] = None """The parameter for repetition penalty. 1.0 means no penalty.""" suffix: Optional[str] = None """The text to append to the prompt. """ do_sample: bool = True """If set to True, this parameter enables decoding strategies such as multi-nominal sampling, beam-search multi-nominal sampling, Top-K sampling and Top-p sampling. """ watermark: bool = True """Watermarking with `A Watermark for Large Language Models <https://arxiv.org/abs/2301.10226>`_. Defaults to True.""" return_full_text: bool = False """Whether to prepend the prompt to the generated text. Defaults to False.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_deployment_tgi_endpoint" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for invoking OCI model deployment TGI endpoint.""" return ( { "model": self.model, # can be any "frequency_penalty": self.frequency_penalty, "max_tokens": self.max_tokens, "repetition_penalty": self.repetition_penalty, "temperature": self.temperature, "top_p": self.p, "seed": self.seed, "stream": self.streaming, "suffix": self.suffix, "stop": self.stop, } if self.api == "/v1/completions" else { "best_of": self.best_of, "max_new_tokens": self.max_tokens, "temperature": self.temperature, "top_k": ( self.k if self.k > 0 else None ), # `top_k` must be strictly positive' "top_p": self.p, "do_sample": self.do_sample, "return_full_text": self.return_full_text, "watermark": self.watermark, "stop": self.stop, } ) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{ "endpoint": self.endpoint, "api": self.api, "model_kwargs": _model_kwargs, }, **self._default_params, } def _construct_json_body(self, prompt: str, params: dict) -> dict: """Construct request payload.""" if self.api == "/v1/completions": return super()._construct_json_body(prompt, params) return { "inputs": prompt, "parameters": params, } def _process_response(self, response_json: dict) -> List[Generation]: """Formats response.""" if self.api == "/v1/completions": return super()._process_response(response_json) try: text = response_json["generated_text"] except KeyError as e: raise ValueError( f"Error while formatting response payload.response_json={response_json}" ) from e return [Generation(text=text)]
159908
import importlib.util import logging from typing import Any, Callable, List, Mapping, Optional from langchain_core.callbacks import CallbackManagerForLLMRun from pydantic import ConfigDict from langchain_community.llms.self_hosted import SelfHostedPipeline from langchain_community.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") logger = logging.getLogger(__name__) def _generate_text( pipeline: Any, prompt: str, *args: Any, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: """Inference function to send to the remote hardware. Accepts a Hugging Face pipeline (or more likely, a key pointing to such a pipeline on the cluster's object store) and returns generated text. """ response = pipeline(prompt, *args, **kwargs) if pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif pipeline.task == "text2text-generation": text = response[0]["generated_text"] elif pipeline.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: text = enforce_stop_tokens(text, stop) return text def _load_transformer( model_id: str = DEFAULT_MODEL_ID, task: str = DEFAULT_TASK, device: int = 0, model_kwargs: Optional[dict] = None, ) -> Any: """Inference function to send to the remote hardware. Accepts a huggingface model_id and returns a pipeline for the task. """ from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline as hf_pipeline _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task in ("text2text-generation", "summarization"): model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ImportError( f"Could not load the {task} model due to missing dependencies." ) from e if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return pipeline class SelfHostedHuggingFaceLLM(SelfHostedPipeline): """HuggingFace Pipeline API to run on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example using from_model_id: .. code-block:: python from langchain_community.llms import SelfHostedHuggingFaceLLM import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-large", task="text2text-generation", hardware=gpu ) Example passing fn that generates a pipeline (bc the pipeline is not serializable): .. code-block:: python from langchain_community.llms import SelfHostedHuggingFaceLLM from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def get_pipeline(): model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) return pipe hf = SelfHostedHuggingFaceLLM( model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) """ model_id: str = DEFAULT_MODEL_ID """Hugging Face model_id to load the model.""" task: str = DEFAULT_TASK """Hugging Face task ("text-generation", "text2text-generation" or "summarization").""" device: int = 0 """Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" hardware: Any = None """Remote hardware to send the inference function to.""" model_reqs: List[str] = ["./", "transformers", "torch"] """Requirements to install on hardware to inference the model.""" model_load_fn: Callable = _load_transformer """Function to load the model remotely on the server.""" inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" model_config = ConfigDict( extra="forbid", ) def __init__(self, **kwargs: Any): """Construct the pipeline remotely using an auxiliary function. The load function needs to be importable to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. """ load_fn_kwargs = { "model_id": kwargs.get("model_id", DEFAULT_MODEL_ID), "task": kwargs.get("task", DEFAULT_TASK), "device": kwargs.get("device", 0), "model_kwargs": kwargs.get("model_kwargs", None), } super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: return "selfhosted_huggingface_pipeline" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: return self.client( pipeline=self.pipeline_ref, prompt=prompt, stop=stop, **kwargs )
159924
@deprecated( since="0.3.1", removal="1.0.0", alternative_import="langchain_ollama.OllamaLLM", ) class Ollama(BaseLLM, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain_community.llms import Ollama ollama = Ollama(model="llama2") """ model_config = ConfigDict( extra="forbid", ) @property def _llm_type(self) -> str: """Return type of llm.""" return "ollama-llm" def _generate( # type: ignore[override] self, prompts: List[str], stop: Optional[List[str]] = None, images: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Ollama's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ollama("Tell me a joke.") """ # TODO: add caching here. generations = [] for prompt in prompts: final_chunk = super()._stream_with_aggregation( prompt, stop=stop, images=images, run_manager=run_manager, verbose=self.verbose, **kwargs, ) generations.append([final_chunk]) return LLMResult(generations=generations) # type: ignore[arg-type] async def _agenerate( # type: ignore[override] self, prompts: List[str], stop: Optional[List[str]] = None, images: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Ollama's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ollama("Tell me a joke.") """ # TODO: add caching here. generations = [] for prompt in prompts: final_chunk = await super()._astream_with_aggregation( prompt, stop=stop, images=images, run_manager=run_manager, # type: ignore[arg-type] verbose=self.verbose, **kwargs, ) generations.append([final_chunk]) return LLMResult(generations=generations) # type: ignore[arg-type] def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: for stream_resp in self._create_generate_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, ) yield chunk async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: async for stream_resp in self._acreate_generate_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) if run_manager: await run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, ) yield chunk
159941
import json from typing import Any, Dict, List, Mapping, Optional from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import get_from_dict_or_env, pre_init from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens # key: task # value: key in the output dictionary VALID_TASKS_DICT = { "translation": "translation_text", "summarization": "summary_text", "conversational": "generated_text", "text-generation": "generated_text", "text2text-generation": "generated_text", } @deprecated( "0.0.21", removal="1.0", alternative_import="langchain_huggingface.HuggingFaceEndpoint", ) class HuggingFaceHub(LLM): """HuggingFaceHub models. ! This class is deprecated, you should use HuggingFaceEndpoint instead. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Supports `text-generation`, `text2text-generation`, `conversational`, `translation`, and `summarization`. Example: .. code-block:: python from langchain_community.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ client: Any = None #: :meta private: repo_id: Optional[str] = None """Model name to use. If not provided, the default model for the chosen task will be used.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text`, `summary_text`, or `translation_text`.""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None model_config = ConfigDict( extra="forbid", ) @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub import HfApi, InferenceClient repo_id = values["repo_id"] client = InferenceClient( model=repo_id, token=huggingfacehub_api_token, ) if not values["task"]: if not repo_id: raise ValueError( "Must specify either `repo_id` or `task`, or both." ) # Use the recommended task for the chosen model model_info = HfApi(token=huggingfacehub_api_token).model_info( repo_id=repo_id ) values["task"] = model_info.pipeline_tag if values["task"] not in VALID_TASKS_DICT: raise ValueError( f"Got invalid task {values['task']}, " f"currently only {VALID_TASKS_DICT.keys()} are supported" ) values["client"] = client except ImportError: raise ImportError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"repo_id": self.repo_id, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_hub" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} parameters = {**_model_kwargs, **kwargs} response = self.client.post( json={"inputs": prompt, "parameters": parameters}, task=self.task ) response = json.loads(response.decode()) if "error" in response: raise ValueError(f"Error raised by inference API: {response['error']}") response_key = VALID_TASKS_DICT[self.task] # type: ignore if isinstance(response, list): text = response[0][response_key] else: text = response[response_key] if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
159945
""".. title:: Graph Vector Store Graph Vector Store ================== Sometimes embedding models don't capture all the important relationships between documents. Graph Vector Stores are an extension to both vector stores and retrievers that allow documents to be explicitly connected to each other. Graph vector store retrievers use both vector similarity and links to find documents related to an unstructured query. Graphs allow linking between documents. Each document identifies tags that link to and from it. For example, a paragraph of text may be linked to URLs based on the anchor tags in it's content and linked from the URL(s) it is published at. `Link extractors <langchain_community.graph_vectorstores.extractors.link_extractor.LinkExtractor>` can be used to extract links from documents. Example:: graph_vector_store = CassandraGraphVectorStore() link_extractor = HtmlLinkExtractor() links = link_extractor.extract_one(HtmlInput(document.page_content, "http://mysite")) add_links(document, links) graph_vector_store.add_document(document) .. seealso:: - :class:`How to use a graph vector store as a retriever <langchain_community.graph_vectorstores.base.GraphVectorStoreRetriever>` - :class:`How to create links between documents <langchain_community.graph_vectorstores.links.Link>` - :class:`How to link Documents on hyperlinks in HTML <langchain_community.graph_vectorstores.extractors.html_link_extractor.HtmlLinkExtractor>` - :class:`How to link Documents on common keywords (using KeyBERT) <langchain_community.graph_vectorstores.extractors.keybert_link_extractor.KeybertLinkExtractor>` - :class:`How to link Documents on common named entities (using GliNER) <langchain_community.graph_vectorstores.extractors.gliner_link_extractor.GLiNERLinkExtractor>` Get started ----------- We chunk the State of the Union text and split it into documents:: from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter raw_documents = TextLoader("state_of_the_union.txt").load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = text_splitter.split_documents(raw_documents) Links can be added to documents manually but it's easier to use a :class:`~langchain_community.graph_vectorstores.extractors.link_extractor.LinkExtractor`. Several common link extractors are available and you can build your own. For this guide, we'll use the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.KeybertLinkExtractor` which uses the KeyBERT model to tag documents with keywords and uses these keywords to create links between documents:: from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor from langchain_community.graph_vectorstores.links import add_links extractor = KeybertLinkExtractor() for doc in documents: add_links(doc, extractor.extract_one(doc)) Create the graph vector store and add documents ----------------------------------------------- We'll use an Apache Cassandra or Astra DB database as an example. We create a :class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore` from the documents and an :class:`~langchain_openai.embeddings.base.OpenAIEmbeddings` model:: import cassio from langchain_community.graph_vectorstores import CassandraGraphVectorStore from langchain_openai import OpenAIEmbeddings # Initialize cassio and the Cassandra session from the environment variables cassio.init(auto=True) store = CassandraGraphVectorStore.from_documents( embedding=OpenAIEmbeddings(), documents=documents, ) Similarity search ----------------- If we don't traverse the graph, a graph vector store behaves like a regular vector store. So all methods available in a vector store are also available in a graph vector store. The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.similarity_search` method returns documents similar to a query without considering the links between documents:: docs = store.similarity_search( "What did the president say about Ketanji Brown Jackson?" ) Traversal search ---------------- The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.traversal_search` method returns documents similar to a query considering the links between documents. It first does a similarity search and then traverses the graph to find linked documents:: docs = list( store.traversal_search("What did the president say about Ketanji Brown Jackson?") ) Async methods ------------- The graph vector store has async versions of the methods prefixed with ``a``:: docs = [ doc async for doc in store.atraversal_search( "What did the president say about Ketanji Brown Jackson?" ) ] Graph vector store retriever ---------------------------- The graph vector store can be converted to a retriever. It is similar to the vector store retriever but it also has traversal search methods such as ``traversal`` and ``mmr_traversal``:: retriever = store.as_retriever(search_type="mmr_traversal") docs = retriever.invoke("What did the president say about Ketanji Brown Jackson?") """ # noqa: E501 from langchain_community.graph_vectorstores.base import ( GraphVectorStore, GraphVectorStoreRetriever, Node, ) from langchain_community.graph_vectorstores.cassandra import CassandraGraphVectorStore from langchain_community.graph_vectorstores.links import ( Link, ) __all__ = [ "GraphVectorStore", "GraphVectorStoreRetriever", "Node", "Link", "CassandraGraphVectorStore", ]
159949
@abstractmethod def mmr_traversal_search( self, query: str, *, k: int = 4, depth: int = 2, fetch_k: int = 100, adjacent_k: int = 10, lambda_mult: float = 0.5, score_threshold: float = float("-inf"), **kwargs: Any, ) -> Iterable[Document]: """Retrieve documents from this graph store using MMR-traversal. This strategy first retrieves the top `fetch_k` results by similarity to the question. It then selects the top `k` results based on maximum-marginal relevance using the given `lambda_mult`. At each step, it considers the (remaining) documents from `fetch_k` as well as any documents connected by edges to a selected document retrieved based on similarity (a "root"). Args: query: The query string to search for. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch via similarity. Defaults to 100. adjacent_k: Number of adjacent Documents to fetch. Defaults to 10. depth: Maximum depth of a node (number of edges) from a node retrieved via similarity. Defaults to 2. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. score_threshold: Only documents with a score greater than or equal this threshold will be chosen. Defaults to negative infinity. """ async def ammr_traversal_search( self, query: str, *, k: int = 4, depth: int = 2, fetch_k: int = 100, adjacent_k: int = 10, lambda_mult: float = 0.5, score_threshold: float = float("-inf"), **kwargs: Any, ) -> AsyncIterable[Document]: """Retrieve documents from this graph store using MMR-traversal. This strategy first retrieves the top `fetch_k` results by similarity to the question. It then selects the top `k` results based on maximum-marginal relevance using the given `lambda_mult`. At each step, it considers the (remaining) documents from `fetch_k` as well as any documents connected by edges to a selected document retrieved based on similarity (a "root"). Args: query: The query string to search for. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch via similarity. Defaults to 100. adjacent_k: Number of adjacent Documents to fetch. Defaults to 10. depth: Maximum depth of a node (number of edges) from a node retrieved via similarity. Defaults to 2. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. score_threshold: Only documents with a score greater than or equal this threshold will be chosen. Defaults to negative infinity. """ iterator = iter( await run_in_executor( None, self.mmr_traversal_search, query, k=k, fetch_k=fetch_k, adjacent_k=adjacent_k, depth=depth, lambda_mult=lambda_mult, score_threshold=score_threshold, **kwargs, ) ) done = object() while True: doc = await run_in_executor(None, next, iterator, done) if doc is done: break yield doc # type: ignore[misc] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> list[Document]: return list(self.traversal_search(query, k=k, depth=0)) def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> list[Document]: return list( self.mmr_traversal_search( query, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, depth=0 ) ) async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> list[Document]: return [doc async for doc in self.atraversal_search(query, k=k, depth=0)] def search(self, query: str, search_type: str, **kwargs: Any) -> list[Document]: if search_type == "similarity": return self.similarity_search(query, **kwargs) elif search_type == "similarity_score_threshold": docs_and_similarities = self.similarity_search_with_relevance_scores( query, **kwargs ) return [doc for doc, _ in docs_and_similarities] elif search_type == "mmr": return self.max_marginal_relevance_search(query, **kwargs) elif search_type == "traversal": return list(self.traversal_search(query, **kwargs)) elif search_type == "mmr_traversal": return list(self.mmr_traversal_search(query, **kwargs)) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity', 'similarity_score_threshold', " "'mmr' or 'traversal'." ) async def asearch( self, query: str, search_type: str, **kwargs: Any ) -> list[Document]: if search_type == "similarity": return await self.asimilarity_search(query, **kwargs) elif search_type == "similarity_score_threshold": docs_and_similarities = await self.asimilarity_search_with_relevance_scores( query, **kwargs ) return [doc for doc, _ in docs_and_similarities] elif search_type == "mmr": return await self.amax_marginal_relevance_search(query, **kwargs) elif search_type == "traversal": return [doc async for doc in self.atraversal_search(query, **kwargs)] else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity', 'similarity_score_threshold', " "'mmr' or 'traversal'." ) def as_retriever(self, **kwargs: Any) -> GraphVectorStoreRetriever: """Return GraphVectorStoreRetriever initialized from this GraphVectorStore. Args: **kwargs: Keyword arguments to pass to the search function. Can include: - search_type (Optional[str]): Defines the type of search that the Retriever should perform. Can be ``traversal`` (default), ``similarity``, ``mmr``, or ``similarity_score_threshold``. - search_kwargs (Optional[Dict]): Keyword arguments to pass to the search function. Can include things like: - k(int): Amount of documents to return (Default: 4). - depth(int): The maximum depth of edges to traverse (Default: 1). - score_threshold(float): Minimum relevance threshold for similarity_score_threshold. - fetch_k(int): Amount of documents to pass to MMR algorithm (Default: 20). - lambda_mult(float): Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5). Returns: Retriever for this GraphVectorStore. Examples: .. code-block:: python # Retrieve documents traversing edges docsearch.as_retriever( search_type="traversal", search_kwargs={'k': 6, 'depth': 3} ) # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) """ return GraphVectorStoreRetriever(vectorstore=self, **kwargs)
159950
@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.") class GraphVectorStoreRetriever(VectorStoreRetriever): """Retriever for GraphVectorStore. A graph vector store retriever is a retriever that uses a graph vector store to retrieve documents. It is similar to a vector store retriever, except that it uses both vector similarity and graph connections to retrieve documents. It uses the search methods implemented by a graph vector store, like traversal search and MMR traversal search, to query the texts in the graph vector store. Example:: store = CassandraGraphVectorStore(...) retriever = store.as_retriever() retriever.invoke("What is ...") .. seealso:: :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>` How to use a graph vector store as a retriever ============================================== Creating a retriever from a graph vector store ---------------------------------------------- You can build a retriever from a graph vector store using its :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.as_retriever` method. First we instantiate a graph vector store. We will use a store backed by Cassandra :class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore` graph vector store:: from langchain_community.document_loaders import TextLoader from langchain_community.graph_vectorstores import CassandraGraphVectorStore from langchain_community.graph_vectorstores.extractors import ( KeybertLinkExtractor, LinkExtractorTransformer, ) from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) pipeline = LinkExtractorTransformer([KeybertLinkExtractor()]) pipeline.transform_documents(texts) embeddings = OpenAIEmbeddings() graph_vectorstore = CassandraGraphVectorStore.from_documents(texts, embeddings) We can then instantiate a retriever:: retriever = graph_vectorstore.as_retriever() This creates a retriever (specifically a ``GraphVectorStoreRetriever``), which we can use in the usual way:: docs = retriever.invoke("what did the president say about ketanji brown jackson?") Maximum marginal relevance traversal retrieval ---------------------------------------------- By default, the graph vector store retriever uses similarity search, then expands the retrieved set by following a fixed number of graph edges. If the underlying graph vector store supports maximum marginal relevance traversal, you can specify that as the search type. MMR-traversal is a retrieval method combining MMR and graph traversal. The strategy first retrieves the top fetch_k results by similarity to the question. It then iteratively expands the set of fetched documents by following adjacent_k graph edges and selects the top k results based on maximum-marginal relevance using the given ``lambda_mult``:: retriever = graph_vectorstore.as_retriever(search_type="mmr_traversal") Passing search parameters ------------------------- We can pass parameters to the underlying graph vectorstore's search methods using ``search_kwargs``. Specifying graph traversal depth ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For example, we can set the graph traversal depth to only return documents reachable through a given number of graph edges:: retriever = graph_vectorstore.as_retriever(search_kwargs={"depth": 3}) Specifying MMR parameters ^^^^^^^^^^^^^^^^^^^^^^^^^ When using search type ``mmr_traversal``, several parameters of the MMR algorithm can be configured. The ``fetch_k`` parameter determines how many documents are fetched using vector similarity and ``adjacent_k`` parameter determines how many documents are fetched using graph edges. The ``lambda_mult`` parameter controls how the MMR re-ranking weights similarity to the query string vs diversity among the retrieved documents as fetched documents are selected for the set of ``k`` final results:: retriever = graph_vectorstore.as_retriever( search_type="mmr", search_kwargs={"fetch_k": 20, "adjacent_k": 20, "lambda_mult": 0.25}, ) Specifying top k ^^^^^^^^^^^^^^^^ We can also limit the number of documents ``k`` returned by the retriever. Note that if ``depth`` is greater than zero, the retriever may return more documents than is specified by ``k``, since both the original ``k`` documents retrieved using vector similarity and any documents connected via graph edges will be returned:: retriever = graph_vectorstore.as_retriever(search_kwargs={"k": 1}) Similarity score threshold retrieval ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For example, we can set a similarity score threshold and only return documents with a score above that threshold:: retriever = graph_vectorstore.as_retriever(search_kwargs={"score_threshold": 0.5}) """ # noqa: E501 vectorstore: GraphVectorStore """GraphVectorStore to use for retrieval.""" search_type: str = "traversal" """Type of search to perform. Defaults to "traversal".""" allowed_search_types: ClassVar[Collection[str]] = ( "similarity", "similarity_score_threshold", "mmr", "traversal", "mmr_traversal", ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: if self.search_type == "traversal": return list(self.vectorstore.traversal_search(query, **self.search_kwargs)) elif self.search_type == "mmr_traversal": return list( self.vectorstore.mmr_traversal_search(query, **self.search_kwargs) ) else: return super()._get_relevant_documents(query, run_manager=run_manager) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> list[Document]: if self.search_type == "traversal": return [ doc async for doc in self.vectorstore.atraversal_search( query, **self.search_kwargs ) ] elif self.search_type == "mmr_traversal": return [ doc async for doc in self.vectorstore.ammr_traversal_search( query, **self.search_kwargs ) ] else: return await super()._aget_relevant_documents( query, run_manager=run_manager )
159976
# flake8: noqa from langchain_core.prompts.prompt import PromptTemplate _DEFAULT_ENTITY_EXTRACTION_TEMPLATE = """Extract all entities from the following text. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places. Return the output as a single comma-separated list, or NONE if there is nothing of note to return. EXAMPLE i'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. Output: Langchain END OF EXAMPLE EXAMPLE i'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I'm working with Sam. Output: Langchain, Sam END OF EXAMPLE Begin! {input} Output:""" ENTITY_EXTRACTION_PROMPT = PromptTemplate( input_variables=["input"], template=_DEFAULT_ENTITY_EXTRACTION_TEMPLATE ) _DEFAULT_GRAPH_QA_TEMPLATE = """Use the following knowledge triplets to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} Helpful Answer:""" GRAPH_QA_PROMPT = PromptTemplate( template=_DEFAULT_GRAPH_QA_TEMPLATE, input_variables=["context", "question"] ) CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database. Instructions: Use only the provided relationship types and properties in the schema. Do not use any other relationship types or properties that are not provided. Schema: {schema} Note: Do not include any explanations or apologies in your responses. Do not respond to any questions that might ask anything else than for you to construct a Cypher statement. Do not include any text except the generated Cypher statement. The question is: {question}""" CYPHER_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE ) NEBULAGRAPH_EXTRA_INSTRUCTIONS = """ Instructions: First, generate cypher then convert it to NebulaGraph Cypher dialect(rather than standard): 1. it requires explicit label specification only when referring to node properties: v.`Foo`.name 2. note explicit label specification is not needed for edge properties, so it's e.name instead of e.`Bar`.name 3. it uses double equals sign for comparison: `==` rather than `=` For instance: ```diff < MATCH (p:person)-[e:directed]->(m:movie) WHERE m.name = 'The Godfather II' < RETURN p.name, e.year, m.name; --- > MATCH (p:`person`)-[e:directed]->(m:`movie`) WHERE m.`movie`.`name` == 'The Godfather II' > RETURN p.`person`.`name`, e.year, m.`movie`.`name`; ```\n""" NGQL_GENERATION_TEMPLATE = CYPHER_GENERATION_TEMPLATE.replace( "Generate Cypher", "Generate NebulaGraph Cypher" ).replace("Instructions:", NEBULAGRAPH_EXTRA_INSTRUCTIONS) NGQL_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=NGQL_GENERATION_TEMPLATE ) KUZU_EXTRA_INSTRUCTIONS = """ Instructions: Generate the Kùzu dialect of Cypher with the following rules in mind: 1. Do not omit the relationship pattern. Always use `()-[]->()` instead of `()->()`. 2. Do not include triple backticks ``` in your response. Return only Cypher. 3. Do not return any notes or comments in your response. \n""" KUZU_GENERATION_TEMPLATE = CYPHER_GENERATION_TEMPLATE.replace( "Generate Cypher", "Generate Kùzu Cypher" ).replace("Instructions:", KUZU_EXTRA_INSTRUCTIONS) KUZU_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=KUZU_GENERATION_TEMPLATE ) GREMLIN_GENERATION_TEMPLATE = CYPHER_GENERATION_TEMPLATE.replace("Cypher", "Gremlin") GREMLIN_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=GREMLIN_GENERATION_TEMPLATE ) CYPHER_QA_TEMPLATE = """You are an assistant that helps to form nice and human understandable answers. The information part contains the provided information that you must use to construct an answer. The provided information is authoritative, you must never doubt it or try to use your internal knowledge to correct it. Make the answer sound as a response to the question. Do not mention that you based the result on the given information. Here is an example: Question: Which managers own Neo4j stocks? Context:[manager:CTL LLC, manager:JANE STREET GROUP LLC] Helpful Answer: CTL LLC, JANE STREET GROUP LLC owns Neo4j stocks. Follow this example when generating answers. If the provided information is empty, say that you don't know the answer. Information: {context} Question: {question} Helpful Answer:""" CYPHER_QA_PROMPT = PromptTemplate( input_variables=["context", "question"], template=CYPHER_QA_TEMPLATE ) SPARQL_INTENT_TEMPLATE = """Task: Identify the intent of a prompt and return the appropriate SPARQL query type. You are an assistant that distinguishes different types of prompts and returns the corresponding SPARQL query types. Consider only the following query types: * SELECT: this query type corresponds to questions * UPDATE: this query type corresponds to all requests for deleting, inserting, or changing triples Note: Be as concise as possible. Do not include any explanations or apologies in your responses. Do not respond to any questions that ask for anything else than for you to identify a SPARQL query type. Do not include any unnecessary whitespaces or any text except the query type, i.e., either return 'SELECT' or 'UPDATE'. The prompt is: {prompt} Helpful Answer:""" SPARQL_INTENT_PROMPT = PromptTemplate( input_variables=["prompt"], template=SPARQL_INTENT_TEMPLATE ) SPARQL_GENERATION_SELECT_TEMPLATE = """Task: Generate a SPARQL SELECT statement for querying a graph database. For instance, to find all email addresses of John Doe, the following query in backticks would be suitable: ``` PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?email WHERE {{ ?person foaf:name "John Doe" . ?person foaf:mbox ?email . }} ``` Instructions: Use only the node types and properties provided in the schema. Do not use any node types and properties that are not explicitly provided. Include all necessary prefixes. Schema: {schema} Note: Be as concise as possible. Do not include any explanations or apologies in your responses. Do not respond to any questions that ask for anything else than for you to construct a SPARQL query. Do not include any text except the SPARQL query generated. The question is: {prompt}""" SPARQL_GENERATION_SELECT_PROMPT = PromptTemplate( input_variables=["schema", "prompt"], template=SPARQL_GENERATION_SELECT_TEMPLATE ) SPARQL_GENERATION_UPDATE_TEMPLATE = """Task: Generate a SPARQL UPDATE statement for updating a graph database. For instance, to add 'jane.doe@foo.bar' as a new email address for Jane Doe, the following query in backticks would be suitable: ``` PREFIX foaf: <http://xmlns.com/foaf/0.1/> INSERT {{ ?person foaf:mbox <mailto:jane.doe@foo.bar> . }} WHERE {{ ?person foaf:name "Jane Doe" . }} ``` Instructions: Make the query as short as possible and avoid adding unnecessary triples. Use only the node types and properties provided in the schema. Do not use any node types and properties that are not explicitly provided. Include all necessary prefixes. Schema: {schema} Note: Be as concise as possible. Do not include any explanations or apologies in your responses. Do not respond to any questions that ask for anything else than for you to construct a SPARQL query. Return only the generated SPARQL query, nothing else. The information to be inserted is: {prompt}""" SPARQL_GENERATION_UPDATE_PROMPT = PromptTemplate( input_variables=["schema", "prompt"], template=SPARQL_GENERATION_UPDATE_TEMPLATE ) SPARQL_QA_TEMPLATE = """Task: Generate a natural language response from the results of a SPARQL query. You are an assistant that creates well-written and human understandable answers. The information part contains the information provided, which you can use to construct an answer. The information provided is authoritative, you must never doubt it or try to use your internal knowledge to correct it. Make your response sound like the information is coming from an AI assistant, but don't add any information. Information: {context} Question: {prompt} Helpful Answer:""" SPARQL_QA_PROMPT = PromptTemplate( input_variables=["context", "prompt"], template=SPARQL_QA_TEMPLATE )
159998
class PebbloRetrievalQA(Chain): """ Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. """ combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents or not.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStore to use for retrieval.""" auth_context_key: str = "auth_context" #: :meta private: """Authentication context for identity enforcement.""" semantic_context_key: str = "semantic_context" #: :meta private: """Semantic context for semantic enforcement.""" app_name: str #: :meta private: """App name.""" owner: str #: :meta private: """Owner of app.""" description: str #: :meta private: """Description of app.""" api_key: Optional[str] = None #: :meta private: """Pebblo cloud API key for app.""" classifier_url: Optional[str] = None #: :meta private: """Classifier endpoint.""" classifier_location: str = "local" #: :meta private: """Classifier location. It could be either of 'local' or 'pebblo-cloud'.""" _discover_sent: bool = False #: :meta private: """Flag to check if discover payload has been sent.""" enable_prompt_gov: bool = True #: :meta private: """Flag to check if prompt governance is enabled or not""" pb_client: PebbloRetrievalAPIWrapper = Field( default_factory=PebbloRetrievalAPIWrapper ) """Pebblo Retrieval API client""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ prompt_time = datetime.datetime.now().isoformat() _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key) semantic_context = inputs.get(self.semantic_context_key) _, prompt_entities = self.pb_client.check_prompt_validity(question) accepts_run_manager = ( "run_manager" in inspect.signature(self._get_docs).parameters ) if accepts_run_manager: docs = self._get_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = self._get_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) self.pb_client.send_prompt( self.app_name, self.retriever, question, answer, auth_context, docs, prompt_entities, prompt_time, self.enable_prompt_gov, ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ prompt_time = datetime.datetime.now().isoformat() _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key) semantic_context = inputs.get(self.semantic_context_key) accepts_run_manager = ( "run_manager" in inspect.signature(self._aget_docs).parameters ) _, prompt_entities = await self.pb_client.acheck_prompt_validity(question) if accepts_run_manager: docs = await self._aget_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = await self._aget_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) await self.pb_client.asend_prompt( self.app_name, self.retriever, question, answer, auth_context, docs, prompt_entities, prompt_time, self.enable_prompt_gov, ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} model_config = ConfigDict( populate_by_name=True, arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Input keys. :meta private: """ return [self.input_key, self.auth_context_key, self.semantic_context_key] @property def output_keys(self) -> List[str]: """Output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys += ["source_documents"] return _output_keys @property def _chain_type(self) -> str: """Return the chain type.""" return "pebblo_retrieval_qa" @classmethod def from_chain_type( cls, llm: BaseLanguageModel, app_name: str, description: str, owner: str, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, api_key: Optional[str] = None, classifier_url: Optional[str] = None, classifier_location: str = "local", **kwargs: Any, ) -> "PebbloRetrievalQA": """Load chain from chain type.""" from langchain.chains.question_answering import load_qa_chain _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) # generate app app: App = PebbloRetrievalQA._get_app_details( app_name=app_name, description=description, owner=owner, llm=llm, **kwargs, ) # initialize Pebblo API client pb_client = PebbloRetrievalAPIWrapper( api_key=api_key, classifier_location=classifier_location, classifier_url=classifier_url, ) # send app discovery request pb_client.send_app_discover(app) return cls( combine_documents_chain=combine_documents_chain, app_name=app_name, owner=owner, description=description, api_key=api_key, classifier_url=classifier_url, classifier_location=classifier_location, pb_client=pb_client, **kwargs, ) @validator("retriever", pre=True, always=True) def validate_vectorstore( cls, retriever: VectorStoreRetriever ) -> VectorStoreRetriever: """ Validate that the vectorstore of the retriever is supported vectorstores. """ if retriever.vectorstore.__class__.__name__ not in SUPPORTED_VECTORSTORES: raise ValueError( f"Vectorstore must be an instance of one of the supported " f"vectorstores: {SUPPORTED_VECTORSTORES}. " f"Got '{retriever.vectorstore.__class__.__name__}' instead." ) return retriever def _get_docs( self, question: str, auth_context: Optional[AuthContext], semantic_context: Optional[SemanticContext], *, run_manager: CallbackManagerForChainRun, ) -> List[Document]: """Get docs.""" set_enforcement_filters(self.retriever, auth_context, semantic_context) return self.retriever.get_relevant_documents( question, callbacks=run_manager.get_child() )
160013
from typing import List from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import BaseMessage class StreamlitChatMessageHistory(BaseChatMessageHistory): """ Chat message history that stores messages in Streamlit session state. Args: key: The key to use in Streamlit session state for storing messages. """ def __init__(self, key: str = "langchain_messages"): try: import streamlit as st except ImportError as e: raise ImportError( "Unable to import streamlit, please run `pip install streamlit`." ) from e if key not in st.session_state: st.session_state[key] = [] self._messages = st.session_state[key] self._key = key @property def messages(self) -> List[BaseMessage]: """Retrieve the current list of messages""" return self._messages @messages.setter def messages(self, value: List[BaseMessage]) -> None: """Set the messages list with a new value""" import streamlit as st st.session_state[self._key] = value self._messages = st.session_state[self._key] def add_message(self, message: BaseMessage) -> None: """Add a message to the session memory""" self.messages.append(message) def clear(self) -> None: """Clear session memory""" self.messages.clear()
160099
import json from pathlib import Path from langchain_chroma import Chroma from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter # Load output from gpt crawler path_to_gptcrawler = Path(__file__).parent.parent / "output.json" data = json.loads(Path(path_to_gptcrawler).read_text()) docs = [ Document( page_content=dict_["html"], metadata={"title": dict_["title"], "url": dict_["url"]}, ) for dict_ in data ] # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) all_splits = text_splitter.split_documents(docs) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-gpt-builder", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160101
import os from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_chroma import Chroma from langchain_community.document_loaders import UnstructuredFileLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_core.documents import Document def ingest_documents(): """ Ingest PDF to Redis from the data/ directory that contains Edgar 10k filings data for Nike. """ # Load list of pdfs data_path = "data/" doc = [os.path.join(data_path, file) for file in os.listdir(data_path)][0] print("Parsing 10k filing doc for NIKE", doc) text_splitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=100, add_start_index=True ) loader = UnstructuredFileLoader(doc, mode="single", strategy="fast") chunks = loader.load_and_split(text_splitter) print("Done preprocessing. Created", len(chunks), "chunks of the original pdf") # Create vectorstore embedder = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) documents = [] for chunk in chunks: doc = Document(page_content=chunk.page_content, metadata=chunk.metadata) documents.append(doc) # Add to vectorDB _ = Chroma.from_documents( documents=documents, collection_name="xeon-rag", embedding=embedder, persist_directory="/tmp/xeon_rag_db", ) if __name__ == "__main__": ingest_documents()
160169
from langchain.callbacks import streaming_stdout from langchain_chroma import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_core.vectorstores import VectorStoreRetriever # Make this look better in the docs. class Question(BaseModel): __root__: str # Init Embeddings embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") knowledge_base = Chroma( persist_directory="/tmp/xeon_rag_db", embedding_function=embedder, collection_name="xeon-rag", ) query = "What was Nike's revenue in 2023?" docs = knowledge_base.similarity_search(query) print(docs[0].page_content) retriever = VectorStoreRetriever( vectorstore=knowledge_base, search_type="mmr", search_kwargs={"k": 1, "fetch_k": 5} ) # Define our prompt template = """ Use the following pieces of context from retrieved dataset to answer the question. Do not make up an answer if there is no context provided to help answer it. Context: --------- {context} --------- Question: {question} --------- Answer: """ prompt = ChatPromptTemplate.from_template(template) ENDPOINT_URL = "http://localhost:8080" callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()] model = HuggingFaceEndpoint( endpoint_url=ENDPOINT_URL, max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, streaming=True, ) # RAG Chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ).with_types(input_type=Question)
160173
# RAG - Unstructured - semi-structured This template performs RAG on `semi-structured data`, such as a PDF with text and tables. It uses the `unstructured` parser to extract the text and tables from the PDF and then uses the LLM to generate queries based on the user input. See [this cookbook](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb) as a reference. ## Environment Setup Set the `OPENAI_API_KEY` environment variable to access the OpenAI models. This uses [Unstructured](https://unstructured-io.github.io/unstructured/) for PDF parsing, which requires some system-level package installations. On Mac, you can install the necessary packages with the following: ```shell brew install tesseract poppler ``` ## Usage To use this package, you should first have the LangChain CLI installed: ```shell pip install -U langchain-cli ``` To create a new LangChain project and install this as the only package, you can do: ```shell langchain app new my-app --package rag-semi-structured ``` If you want to add this to an existing project, you can just run: ```shell langchain app add rag-semi-structured ``` And add the following code to your `server.py` file: ```python from rag_semi_structured import chain as rag_semi_structured_chain add_routes(app, rag_semi_structured_chain, path="/rag-semi-structured") ``` (Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith [here](https://smith.langchain.com/). If you don't have access, you can skip this section ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY=<your-api-key> export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can access the playground at [http://127.0.0.1:8000/rag-semi-structured/playground](http://127.0.0.1:8000/rag-semi-structured/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/rag-semi-structured") ``` For more details on how to connect to the template, refer to the Jupyter notebook `rag_semi_structured`.
160189
# Load import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_chroma import Chroma from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnablePassthrough from unstructured.partition.pdf import partition_pdf # Path to docs path = "docs" raw_pdf_elements = partition_pdf( filename=path + "/LLaVA.pdf", # Unstructured first finds embedded image blocks extract_images_in_pdf=False, # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles # Titles are any sub-section of the document infer_table_structure=True, # Post processing to aggregate text once we have the title chunking_strategy="by_title", # Chunking params to aggregate text blocks # Attempt to create a new chunk 3800 chars # Attempt to keep chunks > 2000 chars max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) # Categorize by type tables = [] texts = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): tables.append(str(element)) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): texts.append(str(element)) # Summarize prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOpenAI(temperature=0, model="gpt-4") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() # Apply table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) # To save time / cost, only do text summaries if chunk sizes are large # text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5}) # We can just assign text_summaries to the raw texts text_summaries = texts # Use multi vector retriever # The vectorstore to use to index the child chunks vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings()) # The storage layer for the parent documents store = InMemoryStore() id_key = "doc_id" # The retriever (empty to start) retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) # Add texts doc_ids = [str(uuid.uuid4()) for _ in texts] summary_texts = [ Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries) ] retriever.vectorstore.add_documents(summary_texts) retriever.docstore.mset(list(zip(doc_ids, texts))) # Add tables table_ids = [str(uuid.uuid4()) for _ in tables] summary_tables = [ Document(page_content=s, metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries) ] retriever.vectorstore.add_documents(summary_tables) retriever.docstore.mset(list(zip(table_ids, tables))) # RAG # Prompt template template = """Answer the question based only on the following context, which can include text and tables: {context} Question: {question} """ # noqa: E501 prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI(temperature=0, model="gpt-4") # RAG pipeline chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160191
import os from pathlib import Path import pypdfium2 as pdfium from langchain_chroma import Chroma from langchain_experimental.open_clip import OpenCLIPEmbeddings def get_images_from_pdf(pdf_path, img_dump_path): """ Extract images from each page of a PDF document and save as JPEG files. :param pdf_path: A string representing the path to the PDF file. :param img_dump_path: A string representing the path to dummp images. """ pdf = pdfium.PdfDocument(pdf_path) n_pages = len(pdf) for page_number in range(n_pages): page = pdf.get_page(page_number) bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0)) pil_image = bitmap.to_pil() pil_image.save(f"{img_dump_path}/img_{page_number + 1}.jpg", format="JPEG") # Load PDF doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf" img_dump_path = Path(__file__).parent / "docs/" rel_doc_path = doc_path.relative_to(Path.cwd()) rel_img_dump_path = img_dump_path.relative_to(Path.cwd()) print("pdf index") pil_images = get_images_from_pdf(rel_doc_path, rel_img_dump_path) print("done") vectorstore = Path(__file__).parent / "chroma_db_multi_modal" re_vectorstore_path = vectorstore.relative_to(Path.cwd()) # Load embedding function print("Loading embedding function") embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k") # Create chroma vectorstore_mmembd = Chroma( collection_name="multi-modal-rag", persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"), embedding_function=embedding, ) # Get image URIs image_uris = sorted( [ os.path.join(rel_img_dump_path, image_name) for image_name in os.listdir(rel_img_dump_path) if image_name.endswith(".jpg") ] ) # Add images print("Embedding images") vectorstore_mmembd.add_images(uris=image_uris)
160229
retrieval_prompt = """{retriever_description} Before beginning to research the user's question, first think for a moment inside <scratchpad> tags about what information is necessary for a well-informed answer. If the user's question is complex, you may need to decompose the query into multiple subqueries and execute them individually. Sometimes the search engine will return empty search results, or the search results may not contain the information you need. In such cases, feel free to try again with a different query. After each call to the Search Engine Tool, reflect briefly inside <search_quality></search_quality> tags about whether you now have enough information to answer, or whether more information is needed. If you have all the relevant information, write it in <information></information> tags, WITHOUT actually answering the question. Otherwise, issue a new search. Here is the user's question: <question>{query}</question> Remind yourself to make short queries in your scratchpad as you plan out your strategy.""" # noqa: E501 answer_prompt = "Here is a user query: <query>{query}</query>. Here is some relevant information: <information>{information}</information>. Please answer the question using the relevant information." # noqa: E501
160231
import os import uuid from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_text_splitters import RecursiveCharacterTextSplitter from pymongo import MongoClient PARENT_DOC_ID_KEY = "parent_doc_id" def parent_child_splitter(data, id_key=PARENT_DOC_ID_KEY): parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000) # This text splitter is used to create the child documents # It should create documents smaller than the parent child_splitter = RecursiveCharacterTextSplitter(chunk_size=400) documents = parent_splitter.split_documents(data) doc_ids = [str(uuid.uuid4()) for _ in documents] docs = [] for i, doc in enumerate(documents): _id = doc_ids[i] sub_docs = child_splitter.split_documents([doc]) for _doc in sub_docs: _doc.metadata[id_key] = _id _doc.metadata["doc_level"] = "child" docs.extend(sub_docs) doc.metadata[id_key] = _id doc.metadata["doc_level"] = "parent" return documents, docs MONGO_URI = os.environ["MONGO_URI"] # Note that if you change this, you also need to change it in `rag_mongo/chain.py` DB_NAME = "langchain-test-2" COLLECTION_NAME = "test" ATLAS_VECTOR_SEARCH_INDEX_NAME = "default" EMBEDDING_FIELD_NAME = "embedding" client = MongoClient(MONGO_URI) db = client[DB_NAME] MONGODB_COLLECTION = db[COLLECTION_NAME] if __name__ == "__main__": # Load docs loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf") data = loader.load() # Split docs parent_docs, child_docs = parent_child_splitter(data) # Insert the documents in MongoDB Atlas Vector Search _ = MongoDBAtlasVectorSearch.from_documents( documents=parent_docs + child_docs, embedding=OpenAIEmbeddings(disallowed_special=()), collection=MONGODB_COLLECTION, index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, )
160235
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from pymongo import MongoClient MONGO_URI = os.environ["MONGO_URI"] PARENT_DOC_ID_KEY = "parent_doc_id" # Note that if you change this, you also need to change it in `rag_mongo/chain.py` DB_NAME = "langchain-test-2" COLLECTION_NAME = "test" ATLAS_VECTOR_SEARCH_INDEX_NAME = "default" EMBEDDING_FIELD_NAME = "embedding" client = MongoClient(MONGO_URI) db = client[DB_NAME] MONGODB_COLLECTION = db[COLLECTION_NAME] vector_search = MongoDBAtlasVectorSearch.from_connection_string( MONGO_URI, DB_NAME + "." + COLLECTION_NAME, OpenAIEmbeddings(disallowed_special=()), index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) def retrieve(query: str): results = vector_search.similarity_search( query, k=4, pre_filter={"doc_level": {"$eq": "child"}}, post_filter_pipeline=[ {"$project": {"embedding": 0}}, { "$lookup": { "from": COLLECTION_NAME, "localField": PARENT_DOC_ID_KEY, "foreignField": PARENT_DOC_ID_KEY, "as": "parent_context", "pipeline": [ {"$match": {"doc_level": "parent"}}, {"$limit": 1}, {"$project": {"embedding": 0}}, ], } }, ], ) parent_docs = [] parent_doc_ids = set() for result in results: res = result.metadata["parent_context"][0] text = res.pop("text") # This causes serialization issues. res.pop("_id") parent_doc = Document(page_content=text, metadata=res) if parent_doc.metadata[PARENT_DOC_ID_KEY] not in parent_doc_ids: parent_doc_ids.add(parent_doc.metadata[PARENT_DOC_ID_KEY]) parent_docs.append(parent_doc) return parent_docs # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retrieve, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160242
from pathlib import Path import pandas as pd from langchain.agents import AgentExecutor, OpenAIFunctionsAgent from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools.retriever import create_retriever_tool from langchain_experimental.tools import PythonAstREPLTool MAIN_DIR = Path(__file__).parents[1] pd.set_option("display.max_rows", 20) pd.set_option("display.max_columns", 20) embedding_model = OpenAIEmbeddings() vectorstore = FAISS.load_local(MAIN_DIR / "titanic_data", embedding_model) retriever_tool = create_retriever_tool( vectorstore.as_retriever(), "person_name_search", "Search for a person by name" ) TEMPLATE = """You are working with a pandas dataframe in Python. The name of the dataframe is `df`. It is important to understand the attributes of the dataframe before working with it. This is the result of running `df.head().to_markdown()` <df> {dhead} </df> You are not meant to use only these rows to answer questions - they are meant as a way of telling you about the shape and schema of the dataframe. You also do not have use only the information here to answer questions - you can run intermediate queries to do exporatory data analysis to give you more information as needed. You have a tool called `person_name_search` through which you can lookup a person by name and find the records corresponding to people with similar name as the query. You should only really use this if your search term contains a persons name. Otherwise, try to solve it with code. For example: <question>How old is Jane?</question> <logic>Use `person_name_search` since you can use the query `Jane`</logic> <question>Who has id 320</question> <logic>Use `python_repl` since even though the question is about a person, you don't know their name so you can't include it.</logic> """ # noqa: E501 class PythonInputs(BaseModel): query: str = Field(description="code snippet to run") df = pd.read_csv(MAIN_DIR / "titanic.csv") template = TEMPLATE.format(dhead=df.head().to_markdown()) prompt = ChatPromptTemplate.from_messages( [ ("system", template), MessagesPlaceholder(variable_name="agent_scratchpad"), ("human", "{input}"), ] ) repl = PythonAstREPLTool( locals={"df": df}, name="python_repl", description="Runs code and returns the output of the final line", args_schema=PythonInputs, ) tools = [repl, retriever_tool] agent = OpenAIFunctionsAgent( llm=ChatOpenAI(temperature=0, model="gpt-4"), prompt=prompt, tools=tools ) agent_executor = AgentExecutor( agent=agent, tools=tools, max_iterations=5, early_stopping_method="generate" ) | (lambda x: x["output"]) # Typing for playground inputs class AgentInputs(BaseModel): input: str agent_executor = agent_executor.with_types(input_type=AgentInputs)
160247
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_pinecone import PineconeVectorStore if os.environ.get("PINECONE_API_KEY", None) is None: raise Exception("Missing `PINECONE_API_KEY` environment variable.") if os.environ.get("PINECONE_ENVIRONMENT", None) is None: raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.") PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # Load # from langchain_community.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain_text_splitters import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = PineconeVectorStore.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() vectorstore = PineconeVectorStore.from_existing_index( PINECONE_INDEX_NAME, OpenAIEmbeddings() ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160255
import os from openai import OpenAI from opensearchpy import OpenSearch OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") OPENSEARCH_URL = os.getenv("OPENSEARCH_URL", "https://localhost:9200") OPENSEARCH_USERNAME = os.getenv("OPENSEARCH_USERNAME", "admin") OPENSEARCH_PASSWORD = os.getenv("OPENSEARCH_PASSWORD", "admin") OPENSEARCH_INDEX_NAME = os.getenv("OPENSEARCH_INDEX_NAME", "langchain-test") with open("dummy_data.txt") as f: docs = [line.strip() for line in f.readlines()] client_oai = OpenAI(api_key=OPENAI_API_KEY) client = OpenSearch( hosts=[OPENSEARCH_URL], http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD), use_ssl=True, verify_certs=False, ) # Define the index settings and mappings index_settings = { "settings": { "index": {"knn": True, "number_of_shards": 1, "number_of_replicas": 0} }, "mappings": { "properties": { "vector_field": { "type": "knn_vector", "dimension": 1536, "method": {"name": "hnsw", "space_type": "l2", "engine": "faiss"}, } } }, } response = client.indices.create(index=OPENSEARCH_INDEX_NAME, body=index_settings) print(response) # Insert docs for each in docs: res = client_oai.embeddings.create(input=each, model="text-embedding-ada-002") document = { "vector_field": res.data[0].embedding, "text": each, } response = client.index(index=OPENSEARCH_INDEX_NAME, body=document, refresh=True) print(response)
160260
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores.opensearch_vector_search import ( OpenSearchVectorSearch, ) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") OPENSEARCH_URL = os.getenv("OPENSEARCH_URL", "https://localhost:9200") OPENSEARCH_USERNAME = os.getenv("OPENSEARCH_USERNAME", "admin") OPENSEARCH_PASSWORD = os.getenv("OPENSEARCH_PASSWORD", "admin") OPENSEARCH_INDEX_NAME = os.getenv("OPENSEARCH_INDEX_NAME", "langchain-test") embedding_function = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) vector_store = OpenSearchVectorSearch( opensearch_url=OPENSEARCH_URL, http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD), index_name=OPENSEARCH_INDEX_NAME, embedding_function=embedding_function, verify_certs=False, ) retriever = vector_store.as_retriever() def format_docs(docs): return "\n\n".join([d.page_content for d in docs]) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI(openai_api_key=OPENAI_API_KEY) chain = ( RunnableParallel( {"context": retriever | format_docs, "question": RunnablePassthrough()} ) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160267
import os from langchain_community.embeddings import BedrockEmbeddings from langchain_community.llms.bedrock import Bedrock from langchain_community.vectorstores import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough # Get region and profile from env region = os.environ.get("AWS_DEFAULT_REGION", "us-east-1") profile = os.environ.get("AWS_PROFILE", "default") # Set LLM and embeddings model = Bedrock( model_id="anthropic.claude-v2", region_name=region, credentials_profile_name=profile, model_kwargs={"max_tokens_to_sample": 200}, ) bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1") # Add to vectorDB vectorstore = FAISS.from_texts( ["harrison worked at kensho"], embedding=bedrock_embeddings ) retriever = vectorstore.as_retriever() # Get retriever from vectorstore retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160269
import os from langchain_community.document_loaders import UnstructuredFileLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Redis from langchain_text_splitters import RecursiveCharacterTextSplitter from rag_redis.config import EMBED_MODEL, INDEX_NAME, INDEX_SCHEMA, REDIS_URL def ingest_documents(): """ Ingest PDF to Redis from the data/ directory that contains Edgar 10k filings data for Nike. """ # Load list of pdfs company_name = "Nike" data_path = "data/" doc = [os.path.join(data_path, file) for file in os.listdir(data_path)][0] print("Parsing 10k filing doc for NIKE", doc) text_splitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=100, add_start_index=True ) loader = UnstructuredFileLoader(doc, mode="single", strategy="fast") chunks = loader.load_and_split(text_splitter) print("Done preprocessing. Created", len(chunks), "chunks of the original pdf") # Create vectorstore embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL) _ = Redis.from_texts( # appending this little bit can sometimes help with semantic retrieval # especially with multiple companies texts=[f"Company: {company_name}. " + chunk.page_content for chunk in chunks], metadatas=[chunk.metadata for chunk in chunks], embedding=embedder, index_name=INDEX_NAME, index_schema=INDEX_SCHEMA, redis_url=REDIS_URL, ) if __name__ == "__main__": ingest_documents()
160351
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import SingleStoreDB from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough if os.environ.get("SINGLESTOREDB_URL", None) is None: raise Exception("Missing `SINGLESTOREDB_URL` environment variable.") # SINGLESTOREDB_URL takes the form of: "admin:password@host:port/db_name" ## Ingest code - you may need to run this the first time # # Load # from langchain_community.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain_text_splitters import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = SingleStoreDB.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings() # ) # retriever = vectorstore.as_retriever() vectorstore = SingleStoreDB(embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160356
from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_milvus.vectorstores import Milvus from langchain_openai import ChatOpenAI, OpenAIEmbeddings # Example for document loading (from url), splitting, and creating vectorstore # Setting the URI as a local file, e.g.`./milvus.db`, is the most convenient method, # as it automatically utilizes Milvus Lite to store all data in this file. # # If you have large scale of data such as more than a million docs, # we recommend setting up a more performant Milvus server on docker or kubernetes. # (https://milvus.io/docs/quickstart.md) # When using this setup, please use the server URI, # e.g.`http://localhost:19530`, as your URI. URI = "./milvus.db" """ # Load from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Milvus.from_documents(documents=all_splits, collection_name="rag_milvus", embedding=OpenAIEmbeddings(), drop_old=True, connection_args={"uri": URI}, ) retriever = vectorstore.as_retriever() """ # Embed a single document as a test vectorstore = Milvus.from_texts( ["harrison worked at kensho"], collection_name="rag_milvus", embedding=OpenAIEmbeddings(), drop_old=True, connection_args={"uri": URI}, ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160365
from langchain_chroma import Chroma from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel from hyde.prompts import hyde_prompt # Example for document loading (from url), splitting, and creating vectostore """ # Load from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents(documents=all_splits, collection_name="rag-chroma", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() """ # Embed a single document as a test vectorstore = Chroma.from_texts( ["harrison worked at kensho"], collection_name="rag-chroma", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # Query transformation chain # This transforms the query into the hypothetical document hyde_chain = hyde_prompt | model | StrOutputParser() # RAG chain chain = ( RunnableParallel( { # Generate a hypothetical document and then pass it to the retriever "context": hyde_chain | retriever, "question": lambda x: x["question"], } ) | prompt | model | StrOutputParser() ) # Add input types for playground class ChainInput(BaseModel): question: str chain = chain.with_types(input_type=ChainInput)
160398
from langchain_community.chat_models import ChatOpenAI from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnablePassthrough template = """Answer the users question based only on the following context: <context> {context} </context> Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI(temperature=0) search = DuckDuckGoSearchAPIWrapper() def retriever(query): return search.run(query) template = """Provide a better search query for \ web search engine to answer the given question, end \ the queries with ’**’. Question: \ {x} Answer:""" rewrite_prompt = ChatPromptTemplate.from_template(template) # Parser to remove the `**` def _parse(text): return text.strip("**") rewriter = rewrite_prompt | ChatOpenAI(temperature=0) | StrOutputParser() | _parse chain = ( { "context": {"x": RunnablePassthrough()} | rewriter | retriever, "question": RunnablePassthrough(), } | prompt | model | StrOutputParser() ) # Add input type for playground class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160414
from operator import itemgetter from typing import List, Optional, Tuple from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_core.messages import BaseMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import format_document from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_elasticsearch import ElasticsearchStore from .connection import es_connection_details from .prompts import CONDENSE_QUESTION_PROMPT, DOCUMENT_PROMPT, LLM_CONTEXT_PROMPT # Setup connecting to Elasticsearch vectorstore = ElasticsearchStore( **es_connection_details, embedding=HuggingFaceEmbeddings( model_name="all-MiniLM-L6-v2", model_kwargs={"device": "cpu"} ), index_name="workplace-search-example", ) retriever = vectorstore.as_retriever() # Set up LLM to user llm = ChatOpenAI(temperature=0) def _combine_documents( docs, document_prompt=DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc, document_prompt) for doc in docs] return document_separator.join(doc_strings) def _format_chat_history(chat_history: List[Tuple]) -> str: buffer = "" for dialogue_turn in chat_history: human = "Human: " + dialogue_turn[0] ai = "Assistant: " + dialogue_turn[1] buffer += "\n" + "\n".join([human, ai]) return buffer class ChainInput(BaseModel): chat_history: Optional[List[BaseMessage]] = Field( description="Previous chat messages." ) question: str = Field(..., description="The question to answer.") _inputs = RunnableParallel( standalone_question=RunnablePassthrough.assign( chat_history=lambda x: _format_chat_history(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | llm | StrOutputParser(), ) _context = { "context": itemgetter("standalone_question") | retriever | _combine_documents, "question": lambda x: x["standalone_question"], } chain = _inputs | _context | LLM_CONTEXT_PROMPT | llm | StrOutputParser() chain = chain.with_types(input_type=ChainInput)
160446
from typing import List, Tuple from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_to_openai_function_messages from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.render import format_tool_to_openai_function from langchain_community.chat_models import ChatOpenAI from langchain_core.messages import AIMessage, HumanMessage from neo4j_semantic_layer.information_tool import InformationTool from neo4j_semantic_layer.memory_tool import MemoryTool from neo4j_semantic_layer.recommendation_tool import RecommenderTool llm = ChatOpenAI(temperature=0, model="gpt-4") tools = [InformationTool(), RecommenderTool(), MemoryTool()] llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools]) prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a helpful assistant that finds information about movies " " and recommends them. If tools require follow up questions, " "make sure to ask the user for clarification. Make sure to include any " "available options that need to be clarified in the follow up questions", ), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) def _format_chat_history(chat_history: List[Tuple[str, str]]): buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer agent = ( { "input": lambda x: x["input"], "chat_history": lambda x: ( _format_chat_history(x["chat_history"]) if x.get("chat_history") else [] ), "agent_scratchpad": lambda x: format_to_openai_function_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser() ) # Add typing for input class AgentInput(BaseModel): input: str chat_history: List[Tuple[str, str]] = Field( ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} ) agent_executor = AgentExecutor(agent=agent, tools=tools).with_types( input_type=AgentInput )
160454
[tool.poetry] name = "rag-azure-search" version = "0.0.1" description = "" authors = [] readme = "README.md" [tool.poetry.dependencies] python = ">=3.8.1,<4.0" langchain-core = ">=0.1.5" langchain-openai = ">=0.0.1" azure-search-documents = ">=11.4.0" [tool.poetry.group.dev.dependencies] langchain-cli = ">=0.0.4" fastapi = "^0.104.0" sse-starlette = "^1.6.5" [tool.langserve] export_module = "rag_azure_search" export_attr = "chain" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
160462
from typing import Dict, List, Tuple from langchain.agents import ( AgentExecutor, ) from langchain.agents.format_scratchpad import format_to_openai_functions from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.tools.convert_to_openai import format_tool_to_openai_function from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper from langchain_community.vectorstores import FAISS from langchain_core.documents import Document from langchain_core.messages import AIMessage, HumanMessage from langchain_core.prompts import ( ChatPromptTemplate, MessagesPlaceholder, ) from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable, RunnableLambda, RunnableParallel from langchain_core.tools import BaseTool, Tool # Create the tools search = TavilySearchAPIWrapper() description = """"Useful for when you need to answer questions \ about current events or about recent information.""" tavily_tool = TavilySearchResults(api_wrapper=search, description=description) def fake_func(inp: str) -> str: return "foo" fake_tools = [ Tool( name=f"foo-{i}", func=fake_func, description=("a silly function that gets info " f"about the number {i}"), ) for i in range(99) ] ALL_TOOLS: List[BaseTool] = [tavily_tool] + fake_tools # turn tools into documents for indexing docs = [ Document(page_content=t.description, metadata={"index": i}) for i, t in enumerate(ALL_TOOLS) ] vector_store = FAISS.from_documents(docs, OpenAIEmbeddings()) retriever = vector_store.as_retriever() def get_tools(query: str) -> List[Tool]: docs = retriever.invoke(query) return [ALL_TOOLS[d.metadata["index"]] for d in docs] assistant_system_message = """You are a helpful assistant. \ Use tools (only if necessary) to best answer the users questions.""" assistant_system_message = """You are a helpful assistant. \ Use tools (only if necessary) to best answer the users questions.""" prompt = ChatPromptTemplate.from_messages( [ ("system", assistant_system_message), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) def llm_with_tools(input: Dict) -> Runnable: return RunnableLambda(lambda x: x["input"]) | ChatOpenAI(temperature=0).bind( functions=input["functions"] ) def _format_chat_history(chat_history: List[Tuple[str, str]]): buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer agent = ( RunnableParallel( { "input": lambda x: x["input"], "chat_history": lambda x: _format_chat_history(x["chat_history"]), "agent_scratchpad": lambda x: format_to_openai_functions( x["intermediate_steps"] ), "functions": lambda x: [ format_tool_to_openai_function(tool) for tool in get_tools(x["input"]) ], } ) | { "input": prompt, "functions": lambda x: x["functions"], } | llm_with_tools | OpenAIFunctionsAgentOutputParser() ) # LLM chain consisting of the LLM and a prompt class AgentInput(BaseModel): input: str chat_history: List[Tuple[str, str]] = Field( ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} ) agent_executor = AgentExecutor(agent=agent, tools=ALL_TOOLS).with_types( input_type=AgentInput )
160472
import os from operator import itemgetter from typing import List, Tuple from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.messages import AIMessage, HumanMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ( ChatPromptTemplate, MessagesPlaceholder, format_document, ) from langchain_core.prompts.prompt import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import ( RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_pinecone import PineconeVectorStore if os.environ.get("PINECONE_API_KEY", None) is None: raise Exception("Missing `PINECONE_API_KEY` environment variable.") if os.environ.get("PINECONE_ENVIRONMENT", None) is None: raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.") PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # # Load # from langchain_community.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain_text_splitters import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = PineconeVectorStore.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() vectorstore = PineconeVectorStore.from_existing_index( PINECONE_INDEX_NAME, OpenAIEmbeddings() ) retriever = vectorstore.as_retriever() # Condense a chat history and follow-up question into a standalone question _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" # noqa: E501 CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) # RAG answer synthesis prompt template = """Answer the question based only on the following context: <context> {context} </context>""" ANSWER_PROMPT = ChatPromptTemplate.from_messages( [ ("system", template), MessagesPlaceholder(variable_name="chat_history"), ("user", "{question}"), ] ) # Conversational Retrieval Chain DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def _combine_documents( docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc, document_prompt) for doc in docs] return document_separator.join(doc_strings) def _format_chat_history(chat_history: List[Tuple[str, str]]) -> List: buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer # User input class ChatHistory(BaseModel): chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}}) question: str _search_query = RunnableBranch( # If input includes chat_history, we condense it with the follow-up question ( RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( run_name="HasChatHistoryCheck" ), # Condense follow-up question and chat into a standalone_question RunnablePassthrough.assign( chat_history=lambda x: _format_chat_history(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0) | StrOutputParser(), ), # Else, we have no chat history, so just pass through the question RunnableLambda(itemgetter("question")), ) _inputs = RunnableParallel( { "question": lambda x: x["question"], "chat_history": lambda x: _format_chat_history(x["chat_history"]), "context": _search_query | retriever | _combine_documents, } ).with_types(input_type=ChatHistory) chain = _inputs | ANSWER_PROMPT | ChatOpenAI() | StrOutputParser()
160484
import getpass import os from langchain_community.document_loaders import PyPDFLoader from langchain_community.vectorstores import Milvus from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_nvidia_aiplay import ChatNVIDIA, NVIDIAEmbeddings from langchain_text_splitters.character import CharacterTextSplitter EMBEDDING_MODEL = "nvolveqa_40k" CHAT_MODEL = "llama2_13b" HOST = "127.0.0.1" PORT = "19530" COLLECTION_NAME = "test" INGESTION_CHUNK_SIZE = 500 INGESTION_CHUNK_OVERLAP = 0 if os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): print("Valid NVIDIA_API_KEY already in environment. Delete to reset") else: nvapi_key = getpass.getpass("NVAPI Key (starts with nvapi-): ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key # Read from Milvus Vector Store embeddings = NVIDIAEmbeddings(model=EMBEDDING_MODEL) vectorstore = Milvus( connection_args={"host": HOST, "port": PORT}, collection_name=COLLECTION_NAME, embedding_function=embeddings, ) retriever = vectorstore.as_retriever() # RAG prompt template = """<s>[INST] <<SYS>> Use the following context to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer. <</SYS>> <s>[INST] Context: {context} Question: {question} Only return the helpful answer below and nothing else. Helpful answer:[/INST]" """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatNVIDIA(model=CHAT_MODEL) chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question) def _ingest(url: str) -> dict: """Load and ingest the PDF file from the URL""" loader = PyPDFLoader(url) data = loader.load() # Split docs text_splitter = CharacterTextSplitter( chunk_size=INGESTION_CHUNK_SIZE, chunk_overlap=INGESTION_CHUNK_OVERLAP ) docs = text_splitter.split_documents(data) # Insert the documents in Milvus Vector Store _ = Milvus.from_documents( documents=docs, embedding=embeddings, collection_name=COLLECTION_NAME, connection_args={"host": HOST, "port": PORT}, ) return {} ingest = RunnableLambda(_ingest)
160489
from typing import List from langchain import hub from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain_community.chat_models.fireworks import ChatFireworks from langchain_community.utilities.arxiv import ArxivAPIWrapper from langchain_core.documents import Document from langchain_core.pydantic_v1 import BaseModel from langchain_core.retrievers import BaseRetriever from langchain_core.tools.render import render_text_description from langchain_core.tools.retriever import create_retriever_tool MODEL_ID = "accounts/fireworks/models/mixtral-8x7b-instruct" class ArxivRetriever(BaseRetriever, ArxivAPIWrapper): """`Arxiv` retriever. It wraps load() to get_relevant_documents(). It uses all ArxivAPIWrapper arguments without any change. """ get_full_documents: bool = False def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: try: if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query.split(), max_results=self.top_k_results, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return [Document(page_content=f"Arxiv exception: {ex}")] docs = [ Document( page_content=result.summary, metadata={ "Published": result.updated.date(), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), }, ) for result in results ] return docs # Set up tool(s) description = ( "A wrapper around Arxiv.org " "Useful for when you need to answer questions about Physics, Mathematics, " "Computer Science, Quantitative Biology, Quantitative Finance, Statistics, " "Electrical Engineering, and Economics " "from scientific articles on arxiv.org. " "Input should be a search query." ) arxiv_tool = create_retriever_tool(ArxivRetriever(), "arxiv", description) tools = [arxiv_tool] # Set up LLM llm = ChatFireworks( model=MODEL_ID, model_kwargs={ "temperature": 0, "max_tokens": 2048, "top_p": 1, }, cache=True, ) # setup ReAct style prompt prompt = hub.pull("hwchase17/react-json") prompt = prompt.partial( tools=render_text_description(tools), tool_names=", ".join([t.name for t in tools]), ) # define the agent model_with_stop = llm.bind(stop=["\nObservation"]) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), } | prompt | model_with_stop | ReActJsonSingleInputOutputParser() ) class InputType(BaseModel): input: str # instantiate AgentExecutor agent_executor = AgentExecutor( agent=agent, tools=tools, verbose=True, handle_parsing_errors=True, ).with_types(input_type=InputType)
160511
import os from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CohereRerank from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_pinecone import PineconeVectorStore if os.environ.get("PINECONE_API_KEY", None) is None: raise Exception("Missing `PINECONE_API_KEY` environment variable.") if os.environ.get("PINECONE_ENVIRONMENT", None) is None: raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.") PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # # Load # from langchain_community.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain_text_splitters import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = PineconeVectorStore.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() vectorstore = PineconeVectorStore.from_existing_index( PINECONE_INDEX_NAME, OpenAIEmbeddings() ) # Get k=10 docs retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) # Re-rank compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel( {"context": compression_retriever, "question": RunnablePassthrough()} ) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160519
from langchain_community.chat_models import ChatOpenAI from langchain_core.load import load from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnablePassthrough from propositional_retrieval.constants import DOCSTORE_ID_KEY from propositional_retrieval.storage import get_multi_vector_retriever def format_docs(docs: list) -> str: loaded_docs = [load(doc) for doc in docs] return "\n".join( [ f"<Document id={i}>\n{doc.page_content}\n</Document>" for i, doc in enumerate(loaded_docs) ] ) def rag_chain(retriever): """ The RAG chain :param retriever: A function that retrieves the necessary context for the model. :return: A chain of functions representing the multi-modal RAG process. """ model = ChatOpenAI(temperature=0, model="gpt-4-1106-preview", max_tokens=1024) prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an AI assistant. Answer based on the retrieved documents:" "\n<Documents>\n{context}\n</Documents>", ), ("user", "{question}?"), ] ) # Define the RAG pipeline chain = ( { "context": retriever | format_docs, "question": RunnablePassthrough(), } | prompt | model | StrOutputParser() ) return chain # Create the multi-vector retriever retriever = get_multi_vector_retriever(DOCSTORE_ID_KEY) # Create RAG chain chain = rag_chain(retriever) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160523
import base64 import io import os import uuid from io import BytesIO from pathlib import Path import pypdfium2 as pdfium from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import LocalFileStore, UpstashRedisByteStore from langchain_chroma import Chroma from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.documents import Document from langchain_core.messages import HumanMessage from PIL import Image def image_summarize(img_base64, prompt): """ Make image summary :param img_base64: Base64 encoded string for image :param prompt: Text prompt for summarizatiomn :return: Image summarization prompt """ chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024) msg = chat.invoke( [ HumanMessage( content=[ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": {"url": f""}, }, ] ) ] ) return msg.content def generate_img_summaries(img_base64_list): """ Generate summaries for images :param img_base64_list: Base64 encoded images :return: List of image summaries and processed images """ # Store image summaries image_summaries = [] processed_images = [] # Prompt prompt = """You are an assistant tasked with summarizing images for retrieval. \ These summaries will be embedded and used to retrieve the raw image. \ Give a concise summary of the image that is well optimized for retrieval.""" # Apply summarization to images for i, base64_image in enumerate(img_base64_list): try: image_summaries.append(image_summarize(base64_image, prompt)) processed_images.append(base64_image) except Exception as e: print(f"Error with image {i+1}: {e}") return image_summaries, processed_images def get_images_from_pdf(pdf_path): """ Extract images from each page of a PDF document and save as JPEG files. :param pdf_path: A string representing the path to the PDF file. """ pdf = pdfium.PdfDocument(pdf_path) n_pages = len(pdf) pil_images = [] for page_number in range(n_pages): page = pdf.get_page(page_number) bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0)) pil_image = bitmap.to_pil() pil_images.append(pil_image) return pil_images def resize_base64_image(base64_string, size=(128, 128)): """ Resize an image encoded as a Base64 string :param base64_string: Base64 string :param size: Image size :return: Re-sized Base64 string """ # Decode the Base64 string img_data = base64.b64decode(base64_string) img = Image.open(io.BytesIO(img_data)) # Resize the image resized_img = img.resize(size, Image.LANCZOS) # Save the resized image to a bytes buffer buffered = io.BytesIO() resized_img.save(buffered, format=img.format) # Encode the resized image to Base64 return base64.b64encode(buffered.getvalue()).decode("utf-8") def convert_to_base64(pil_image): """ Convert PIL images to Base64 encoded strings :param pil_image: PIL image :return: Re-sized Base64 string """ buffered = BytesIO() pil_image.save(buffered, format="JPEG") # You can change the format if needed img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") img_str = resize_base64_image(img_str, size=(960, 540)) return img_str def create_multi_vector_retriever( vectorstore, image_summaries, images, local_file_store ): """ Create retriever that indexes summaries, but returns raw images or texts :param vectorstore: Vectorstore to store embedded image sumamries :param image_summaries: Image summaries :param images: Base64 encoded images :param local_file_store: Use local file storage :return: Retriever """ # File storage option if local_file_store: store = LocalFileStore( str(Path(__file__).parent / "multi_vector_retriever_metadata") ) else: # Initialize the storage layer for images using Redis UPSTASH_URL = os.getenv("UPSTASH_URL") UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN") store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN) # Doc ID id_key = "doc_id" # Create the multi-vector retriever retriever = MultiVectorRetriever( vectorstore=vectorstore, byte_store=store, id_key=id_key, ) # Helper function to add documents to the vectorstore and docstore def add_documents(retriever, doc_summaries, doc_contents): doc_ids = [str(uuid.uuid4()) for _ in doc_contents] summary_docs = [ Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(doc_summaries) ] retriever.vectorstore.add_documents(summary_docs) retriever.docstore.mset(list(zip(doc_ids, doc_contents))) add_documents(retriever, image_summaries, images) return retriever # Load PDF doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf" rel_doc_path = doc_path.relative_to(Path.cwd()) print("Extract slides as images") pil_images = get_images_from_pdf(rel_doc_path) # Convert to b64 images_base_64 = [convert_to_base64(i) for i in pil_images] # Image summaries print("Generate image summaries") image_summaries, images_base_64_processed = generate_img_summaries(images_base_64) # The vectorstore to use to index the images summaries vectorstore_mvr = Chroma( collection_name="image_summaries", persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"), embedding_function=OpenAIEmbeddings(), ) # Create documents images_base_64_processed_documents = [ Document(page_content=i) for i in images_base_64_processed ] # Create retriever retriever_multi_vector_img = create_multi_vector_retriever( vectorstore_mvr, image_summaries, images_base_64_processed_documents, local_file_store=True, )
160534
# Self-query - Qdrant This template performs [self-querying](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query/) ``using `Qdrant` and OpenAI. By default, it uses an artificial dataset of 10 documents, but you can replace it with your own dataset. `` ## Environment Setup Set the `OPENAI_API_KEY` environment variable to access the OpenAI models. Set the `QDRANT_URL` to the URL of your Qdrant instance. If you use [Qdrant Cloud](https://cloud.qdrant.io) you have to set the `QDRANT_API_KEY` environment variable as well. If you do not set any of them, the template will try to connect a local Qdrant instance at `http://localhost:6333`. ```shell export QDRANT_URL= export QDRANT_API_KEY= export OPENAI_API_KEY= ``` ## Usage To use this package, install the LangChain CLI first: ```shell pip install -U "langchain-cli[serve]" ``` Create a new LangChain project and install this package as the only one: ```shell langchain app new my-app --package self-query-qdrant ``` To add this to an existing project, run: ```shell langchain app add self-query-qdrant ``` ### Defaults Before you launch the server, you need to create a Qdrant collection and index the documents. It can be done by running the following command: ```python from self_query_qdrant.chain import initialize initialize() ``` Add the following code to your `app/server.py` file: ```python from self_query_qdrant.chain import chain add_routes(app, chain, path="/self-query-qdrant") ``` The default dataset consists 10 documents about dishes, along with their price and restaurant information. You can find the documents in the `packages/self-query-qdrant/self_query_qdrant/defaults.py` file. Here is one of the documents: ```python from langchain_core.documents import Document Document( page_content="Spaghetti with meatballs and tomato sauce", metadata={ "price": 12.99, "restaurant": { "name": "Olive Garden", "location": ["New York", "Chicago", "Los Angeles"], }, }, ) ``` The self-querying allows performing semantic search over the documents, with some additional filtering based on the metadata. For example, you can search for the dishes that cost less than $15 and are served in New York. ### Customization All the examples above assume that you want to launch the template with just the defaults. If you want to customize the template, you can do it by passing the parameters to the `create_chain` function in the `app/server.py` file: ```python from langchain_community.llms import Cohere from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.chains.query_constructor.schema import AttributeInfo from self_query_qdrant.chain import create_chain model_name = "sentence-transformers/all-mpnet-base-v2" chain = create_chain( llm=Cohere(), embeddings=HuggingFaceEmbeddings(model_name=model_name), document_contents="Descriptions of cats, along with their names and breeds.", metadata_field_info=[ AttributeInfo(name="name", description="Name of the cat", type="string"), AttributeInfo(name="breed", description="Cat's breed", type="string"), ], collection_name="cats", ) ``` The same goes for the `initialize` function that creates a Qdrant collection and indexes the documents: ```python from langchain_core.documents import Document from langchain_community.embeddings import HuggingFaceEmbeddings from self_query_qdrant.chain import initialize model_name = "sentence-transformers/all-mpnet-base-v2" initialize( embeddings=HuggingFaceEmbeddings(model_name=model_name), collection_name="cats", documents=[ Document( page_content="A mean lazy old cat who destroys furniture and eats lasagna", metadata={"name": "Garfield", "breed": "Tabby"}, ), ... ] ) ``` The template is flexible and might be used for different sets of documents easily. ### LangSmith (Optional) If you have access to LangSmith, configure it to help trace, monitor and debug LangChain applications. If you don't have access, skip this section. ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY=<your-api-key> export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` ### Local Server This will start the FastAPI app with a server running locally at [http://localhost:8000](http://localhost:8000) You can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) Access the playground at [http://127.0.0.1:8000/self-query-qdrant/playground](http://127.0.0.1:8000/self-query-qdrant/playground) Access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/self-query-qdrant") ```
160535
import os from typing import List, Optional from langchain.chains.query_constructor.schema import AttributeInfo from langchain.retrievers import SelfQueryRetriever from langchain_community.llms import BaseLLM from langchain_community.vectorstores.qdrant import Qdrant from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.output_parsers.string import StrOutputParser from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_openai import OpenAI, OpenAIEmbeddings from qdrant_client import QdrantClient from self_query_qdrant import defaults, helper, prompts class Query(BaseModel): __root__: str def create_chain( llm: Optional[BaseLLM] = None, embeddings: Optional[Embeddings] = None, document_contents: str = defaults.DEFAULT_DOCUMENT_CONTENTS, metadata_field_info: List[AttributeInfo] = defaults.DEFAULT_METADATA_FIELD_INFO, collection_name: str = defaults.DEFAULT_COLLECTION_NAME, ): """ Create a chain that can be used to query a Qdrant vector store with a self-querying capability. By default, this chain will use the OpenAI LLM and OpenAIEmbeddings, and work with the default document contents and metadata field info. You can override these defaults by passing in your own values. :param llm: an LLM to use for generating text :param embeddings: an Embeddings to use for generating queries :param document_contents: a description of the document set :param metadata_field_info: list of metadata attributes :param collection_name: name of the Qdrant collection to use :return: """ llm = llm or OpenAI() embeddings = embeddings or OpenAIEmbeddings() # Set up a vector store to store your vectors and metadata client = QdrantClient( url=os.environ.get("QDRANT_URL", "http://localhost:6333"), api_key=os.environ.get("QDRANT_API_KEY"), ) vectorstore = Qdrant( client=client, collection_name=collection_name, embeddings=embeddings, ) # Set up a retriever to query your vector store with self-querying capabilities retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_contents, metadata_field_info, verbose=True ) context = RunnableParallel( context=retriever | helper.combine_documents, query=RunnablePassthrough(), ) pipeline = context | prompts.LLM_CONTEXT_PROMPT | llm | StrOutputParser() return pipeline.with_types(input_type=Query) def initialize( embeddings: Optional[Embeddings] = None, collection_name: str = defaults.DEFAULT_COLLECTION_NAME, documents: List[Document] = defaults.DEFAULT_DOCUMENTS, ): """ Initialize a vector store with a set of documents. By default, the documents will be compatible with the default metadata field info. You can override these defaults by passing in your own values. :param embeddings: an Embeddings to use for generating queries :param collection_name: name of the Qdrant collection to use :param documents: a list of documents to initialize the vector store with :return: """ embeddings = embeddings or OpenAIEmbeddings() # Set up a vector store to store your vectors and metadata Qdrant.from_documents( documents, embedding=embeddings, collection_name=collection_name, url=os.environ.get("QDRANT_URL", "http://localhost:6333"), api_key=os.environ.get("QDRANT_API_KEY"), ) # Create the default chain chain = create_chain()
160537
from langchain_core.prompts import PromptTemplate llm_context_prompt_template = """ Answer the user query using provided passages. Each passage has metadata given as a nested JSON object you can also use. When answering, cite source name of the passages you are answering from below the answer in a unique bullet point list. If you don't know the answer, just say that you don't know, don't try to make up an answer. ---- {context} ---- Query: {query} """ # noqa: E501 LLM_CONTEXT_PROMPT = PromptTemplate.from_template(llm_context_prompt_template)
160538
from string import Formatter from typing import List from langchain_core.documents import Document document_template = """ PASSAGE: {page_content} METADATA: {metadata} """ def combine_documents(documents: List[Document]) -> str: """ Combine a list of documents into a single string that might be passed further down to a language model. :param documents: list of documents to combine :return: """ formatter = Formatter() return "\n\n".join( formatter.format( document_template, page_content=document.page_content, metadata=document.metadata, ) for document in documents )
160540
from pathlib import Path from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Neo4jVector from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import TokenTextSplitter txt_path = Path(__file__).parent / "dune.txt" # Load the text file loader = TextLoader(str(txt_path)) raw_documents = loader.load() # Define chunking strategy splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24) documents = splitter.split_documents(raw_documents) # Calculate embedding values and store them in the graph Neo4jVector.from_documents( documents, OpenAIEmbeddings(), index_name="dune", )
160552
from neo4j_vector_memory.chain import chain if __name__ == "__main__": user_id = "user_id_1" session_id = "session_id_1" original_query = "What is the plot of the Dune?" print( chain.invoke( {"question": original_query, "user_id": user_id, "session_id": session_id} ) ) follow_up_query = "Tell me more about Leto" print( chain.invoke( {"question": follow_up_query, "user_id": user_id, "session_id": session_id} ) )
160553
from operator import itemgetter from langchain_community.vectorstores import Neo4jVector from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ( ChatPromptTemplate, MessagesPlaceholder, PromptTemplate, ) from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings from neo4j_vector_memory.history import get_history, save_history # Define vector retrieval retrieval_query = "RETURN node.text AS text, score, {id:elementId(node)} AS metadata" vectorstore = Neo4jVector.from_existing_index( OpenAIEmbeddings(), index_name="dune", retrieval_query=retrieval_query ) retriever = vectorstore.as_retriever() # Define LLM llm = ChatOpenAI() # Condense a chat history and follow-up question into a standalone question condense_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Make sure to include all the relevant information. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" # noqa: E501 CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template) # RAG answer synthesis prompt answer_template = """Answer the question based only on the following context: <context> {context} </context>""" ANSWER_PROMPT = ChatPromptTemplate.from_messages( [ ("system", answer_template), MessagesPlaceholder(variable_name="chat_history"), ("user", "{question}"), ] ) chain = ( RunnablePassthrough.assign(chat_history=get_history) | RunnablePassthrough.assign( rephrased_question=CONDENSE_QUESTION_PROMPT | llm | StrOutputParser() ) | RunnablePassthrough.assign( context=itemgetter("rephrased_question") | retriever, ) | RunnablePassthrough.assign( output=ANSWER_PROMPT | llm | StrOutputParser(), ) | save_history ) # Add typing for input class Question(BaseModel): question: str user_id: str session_id: str chain = chain.with_types(input_type=Question)
160560
import os import re import subprocess # nosec import tempfile from langchain.agents import AgentType, initialize_agent from langchain.pydantic_v1 import BaseModel, Field, ValidationError, validator from langchain_community.chat_models import ChatOpenAI from langchain_core.language_models import BaseLLM from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import ConfigurableField, Runnable from langchain_core.tools import Tool def strip_python_markdown_tags(text: str) -> str: pat = re.compile(r"```python\n(.*)```", re.DOTALL) code = pat.match(text) if code: return code.group(1) else: return text def format_black(filepath: str): """Format a file with black.""" subprocess.run( # nosec f"black {filepath}", stderr=subprocess.STDOUT, text=True, shell=True, timeout=3, check=False, ) def format_ruff(filepath: str): """Run ruff format on a file.""" subprocess.run( # nosec f"ruff check --fix {filepath}", shell=True, text=True, timeout=3, universal_newlines=True, check=False, ) subprocess.run( # nosec f"ruff format {filepath}", stderr=subprocess.STDOUT, shell=True, timeout=3, text=True, check=False, ) def check_ruff(filepath: str): """Run ruff check on a file.""" subprocess.check_output( # nosec f"ruff check {filepath}", stderr=subprocess.STDOUT, shell=True, timeout=3, text=True, ) def check_mypy(filepath: str, strict: bool = True, follow_imports: str = "skip"): """Run mypy on a file.""" cmd = ( f"mypy {'--strict' if strict else ''} " f"--follow-imports={follow_imports} {filepath}" ) subprocess.check_output( # nosec cmd, stderr=subprocess.STDOUT, shell=True, text=True, timeout=3, ) class PythonCode(BaseModel): code: str = Field( description="Python code conforming to " "ruff, black, and *strict* mypy standards.", ) @validator("code") @classmethod def check_code(cls, v: str) -> str: v = strip_python_markdown_tags(v).strip() try: with tempfile.NamedTemporaryFile(mode="w", delete=False) as temp_file: temp_file.write(v) temp_file_path = temp_file.name try: # format with black and ruff format_black(temp_file_path) format_ruff(temp_file_path) except subprocess.CalledProcessError: pass # update `v` with formatted code with open(temp_file_path, "r") as temp_file: v = temp_file.read() # check complaints = dict(ruff=None, mypy=None) try: check_ruff(temp_file_path) except subprocess.CalledProcessError as e: complaints["ruff"] = e.output try: check_mypy(temp_file_path) except subprocess.CalledProcessError as e: complaints["mypy"] = e.output # raise ValueError if ruff or mypy had complaints if any(complaints.values()): code_str = f"```{temp_file_path}\n{v}```" error_messages = [ f"```{key}\n{value}```" for key, value in complaints.items() if value ] raise ValueError("\n\n".join([code_str] + error_messages)) finally: os.remove(temp_file_path) return v def check_code(code: str) -> str: try: code_obj = PythonCode(code=code) return ( f"# LGTM\n" f"# use the `submit` tool to submit this code:\n\n" f"```python\n{code_obj.code}\n```" ) except ValidationError as e: return e.errors()[0]["msg"] prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a world class Python coder who uses " "black, ruff, and *strict* mypy for all of your code. " "Provide complete, end-to-end Python code " "to meet the user's description/requirements. " "Always `check` your code. When you're done, " "you must ALWAYS use the `submit` tool.", ), ( "human", ": {input}", ), ], ) check_code_tool = Tool.from_function( check_code, name="check-code", description="Always check your code before submitting it!", ) submit_code_tool = Tool.from_function( strip_python_markdown_tags, name="submit-code", description="THIS TOOL is the most important. " "use it to submit your code to the user who requested it... " "but be sure to `check` it first!", return_direct=True, ) tools = [check_code_tool, submit_code_tool] def get_agent_executor( llm: BaseLLM, agent_type: AgentType = AgentType.OPENAI_FUNCTIONS, ) -> Runnable: _agent_executor = initialize_agent( tools, llm, agent=agent_type, verbose=True, handle_parsing_errors=True, prompt=prompt, ) return _agent_executor | (lambda output: output["output"]) class Instruction(BaseModel): __root__: str agent_executor = ( get_agent_executor(ChatOpenAI(model="gpt-4-1106-preview", temperature=0.0)) .configurable_alternatives( ConfigurableField("model_name"), default_key="gpt4turbo", gpt4=get_agent_executor(ChatOpenAI(model="gpt-4", temperature=0.0)), gpt35t=get_agent_executor( ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0), ), ) .with_types(input_type=Instruction, output_type=str) )
160582
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent from langchain_core.messages import SystemMessage from langchain_core.pydantic_v1 import BaseModel from langchain_openai import ChatOpenAI from langchain_robocorp import ActionServerToolkit # Initialize LLM chat model llm = ChatOpenAI(model="gpt-4", temperature=0) # Initialize Action Server Toolkit toolkit = ActionServerToolkit(url="http://localhost:8080") tools = toolkit.get_tools() # Initialize Agent system_message = SystemMessage(content="You are a helpful assistant") prompt = OpenAIFunctionsAgent.create_prompt(system_message) agent = OpenAIFunctionsAgent( llm=llm, prompt=prompt, tools=tools, ) # Initialize Agent executor agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) # Typings for Langserve playground class Input(BaseModel): input: str class Output(BaseModel): output: str agent_executor = agent_executor.with_types(input_type=Input, output_type=Output) # type: ignore[arg-type, assignment]
160586
from langchain_community.vectorstores import LanceDB from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings # Example for document loading (from url), splitting, and creating vectostore """ # Load from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = LanceDB.from_documents(documents=all_splits, embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() """ # Embed a single document for test vectorstore = LanceDB.from_texts( ["harrison worked at kensho"], embedding=OpenAIEmbeddings() ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160610
from operator import itemgetter from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import ConfigurableField, RunnableParallel from langchain_openai import ChatOpenAI from neo4j_advanced_rag.retrievers import ( hypothetic_question_vectorstore, parent_vectorstore, summary_vectorstore, typical_rag, ) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() retriever = typical_rag.as_retriever().configurable_alternatives( ConfigurableField(id="strategy"), default_key="typical_rag", parent_strategy=parent_vectorstore.as_retriever(), hypothetical_questions=hypothetic_question_vectorstore.as_retriever(), summary_strategy=summary_vectorstore.as_retriever(), ) chain = ( RunnableParallel( { "context": itemgetter("question") | retriever | format_docs, "question": itemgetter("question"), } ) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): question: str chain = chain.with_types(input_type=Question)
160615
# Chatbot feedback This template shows how to evaluate your chatbot without explicit user feedback. It defines a simple chatbot in [chain.py](https://github.com/langchain-ai/langchain/blob/master/templates/chat-bot-feedback/chat_bot_feedback/chain.py) and custom evaluator that scores bot response effectiveness based on the subsequent user response. You can apply this run evaluator to your own chat bot by calling `with_config` on the chat bot before serving. You can also directly deploy your chat app using this template. [Chatbots](https://python.langchain.com/docs/use_cases/chatbots) are one of the most common interfaces for deploying LLMs. The quality of chat bots varies, making continuous development important. But users are wont to leave explicit feedback through mechanisms like thumbs-up or thumbs-down buttons. Furthermore, traditional analytics such as "session length" or "conversation length" often lack clarity. However, multi-turn conversations with a chat bot can provide a wealth of information, which we can transform into metrics for fine-tuning, evaluation, and product analytics. Taking [Chat Langchain](https://chat.langchain.com/) as a case study, only about 0.04% of all queries receive explicit feedback. Yet, approximately 70% of the queries are follow-ups to previous questions. A significant portion of these follow-up queries continue useful information we can use to infer the quality of the previous AI response. This template helps solve this "feedback scarcity" problem. Below is an example invocation of this chat bot: ![Screenshot of a chat bot interaction where the AI responds in a pirate accent to a user asking where their keys are.](./static/chat_interaction.png)["Chat Bot Interaction Example"](https://smith.langchain.com/public/3378daea-133c-4fe8-b4da-0a3044c5dbe8/r?runtab=1) When the user responds to this ([link](https://smith.langchain.com/public/a7e2df54-4194-455d-9978-cecd8be0df1e/r)), the response evaluator is invoked, resulting in the following evaluation run: ![Screenshot of an evaluator run showing the AI's response effectiveness score based on the user's follow-up message expressing frustration.](./static/evaluator.png) ["Chat Bot Evaluator Run"](https://smith.langchain.com/public/534184ee-db8f-4831-a386-3f578145114c/r) As shown, the evaluator sees that the user is increasingly frustrated, indicating that the prior response was not effective ## LangSmith Feedback [LangSmith](https://smith.langchain.com/) is a platform for building production-grade LLM applications. Beyond its debugging and offline evaluation features, LangSmith helps you capture both user and model-assisted feedback to refine your LLM application. This template uses an LLM to generate feedback for your application, which you can use to continuously improve your service. For more examples on collecting feedback using LangSmith, consult the [documentation](https://docs.smith.langchain.com/cookbook/feedback-examples). ## Evaluator Implementation The user feedback is inferred by custom `RunEvaluator`. This evaluator is called using the `EvaluatorCallbackHandler`, which run it in a separate thread to avoid interfering with the chat bot's runtime. You can use this custom evaluator on any compatible chat bot by calling the following function on your LangChain object: ```python my_chain.with_config( callbacks=[ EvaluatorCallbackHandler( evaluators=[ ResponseEffectivenessEvaluator(evaluate_response_effectiveness) ] ) ], ) ``` The evaluator instructs an LLM, specifically `gpt-3.5-turbo`, to evaluate the AI's most recent chat message based on the user's followup response. It generates a score and accompanying reasoning that is converted to feedback in LangSmith, applied to the value provided as the `last_run_id`. The prompt used within the LLM [is available on the hub](https://smith.langchain.com/hub/wfh/response-effectiveness). Feel free to customize it with things like additional app context (such as the goal of the app or the types of questions it should respond to) or "symptoms" you'd like the LLM to focus on. This evaluator also utilizes OpenAI's function-calling API to ensure a more consistent, structured output for the grade. ## Environment Variables Ensure that `OPENAI_API_KEY` is set to use OpenAI models. Also, configure LangSmith by setting your `LANGSMITH_API_KEY`. ```bash export OPENAI_API_KEY=sk-... export LANGSMITH_API_KEY=... export LANGCHAIN_TRACING_V2=true export LANGCHAIN_PROJECT=my-project # Set to the project you want to save to ``` ## Usage If deploying via `LangServe`, we recommend configuring the server to return callback events as well. This will ensure the backend traces are included in whatever traces you generate using the `RemoteRunnable`. ```python from chat_bot_feedback.chain import chain add_routes(app, chain, path="/chat-bot-feedback", include_callback_events=True) ``` With the server running, you can use the following code snippet to stream the chat bot responses for a 2 turn conversation. ```python from functools import partial from typing import Dict, Optional, Callable, List from langserve import RemoteRunnable from langchain.callbacks.manager import tracing_v2_enabled from langchain_core.messages import BaseMessage, AIMessage, HumanMessage # Update with the URL provided by your LangServe server chain = RemoteRunnable("http://127.0.0.1:8031/chat-bot-feedback") def stream_content( text: str, chat_history: Optional[List[BaseMessage]] = None, last_run_id: Optional[str] = None, on_chunk: Callable = None, ): results = [] with tracing_v2_enabled() as cb: for chunk in chain.stream( {"text": text, "chat_history": chat_history, "last_run_id": last_run_id}, ): on_chunk(chunk) results.append(chunk) last_run_id = cb.latest_run.id if cb.latest_run else None return last_run_id, "".join(results) chat_history = [] text = "Where are my keys?" last_run_id, response_message = stream_content(text, on_chunk=partial(print, end="")) print() chat_history.extend([HumanMessage(content=text), AIMessage(content=response_message)]) text = "I CAN'T FIND THEM ANYWHERE" # The previous response will likely receive a low score, # as the user's frustration appears to be escalating. last_run_id, response_message = stream_content( text, chat_history=chat_history, last_run_id=str(last_run_id), on_chunk=partial(print, end=""), ) print() chat_history.extend([HumanMessage(content=text), AIMessage(content=response_message)]) ``` This uses the `tracing_v2_enabled` callback manager to get the run ID of the call, which we provide in subsequent calls in the same chat thread, so the evaluator can assign feedback to the appropriate trace. ## Conclusion This template provides a simple chat bot definition you can directly deploy using LangServe. It defines a custom evaluator to log evaluation feedback for the bot without any explicit user ratings. This is an effective way to augment your analytics and to better select data points for fine-tuning and evaluation.
160634
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.document_loaders import WebBaseLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Weaviate from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter if os.environ.get("WEAVIATE_API_KEY", None) is None: raise Exception("Missing `WEAVIATE_API_KEY` environment variable.") if os.environ.get("WEAVIATE_ENVIRONMENT", None) is None: raise Exception("Missing `WEAVIATE_ENVIRONMENT` environment variable.") WEAVIATE_INDEX_NAME = os.environ.get("WEAVIATE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # Load loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = Weaviate.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=WEAVIATE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() vectorstore = Weaviate.from_existing_index(WEAVIATE_INDEX_NAME, OpenAIEmbeddings()) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160647
[tool.poetry] name = "sql-pgvector" version = "0.0.1" description = "Use pgvector for combining postgreSQL with semantic search / RAG" authors = [] readme = "README.md" [tool.poetry.dependencies] python = ">=3.8.1,<4.0" langchain = "^0.1" openai = "<2" psycopg2 = "^2.9.9" tiktoken = "^0.5.1" [tool.poetry.group.dev.dependencies] langchain-cli = ">=0.0.21" fastapi = ">=0.104.0,<1" sse-starlette = "^1.6.5" [tool.langserve] export_module = "sql_pgvector" export_attr = "chain" [tool.templates-hub] use-case = "sql" author = "LangChain" integrations = ["OpenAI"] tags = ["sql"] [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
160649
import os import re from langchain.sql_database import SQLDatabase from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableLambda, RunnablePassthrough from sql_pgvector.prompt_templates import final_template, postgresql_template """ IMPORTANT: For using this template, you will need to follow the setup steps in the readme file """ if os.environ.get("OPENAI_API_KEY", None) is None: raise Exception("Missing `OPENAI_API_KEY` environment variable") postgres_user = os.environ.get("POSTGRES_USER", "postgres") postgres_password = os.environ.get("POSTGRES_PASSWORD", "test") postgres_db = os.environ.get("POSTGRES_DB", "vectordb") postgres_host = os.environ.get("POSTGRES_HOST", "localhost") postgres_port = os.environ.get("POSTGRES_PORT", "5432") # Connect to DB # Replace with your own CONNECTION_STRING = ( f"postgresql+psycopg2://{postgres_user}:{postgres_password}" f"@{postgres_host}:{postgres_port}/{postgres_db}" ) db = SQLDatabase.from_uri(CONNECTION_STRING) # Choose LLM and embeddings model llm = ChatOpenAI(temperature=0) embeddings_model = OpenAIEmbeddings() # # Ingest code - you will need to run this the first time # # Insert your query e.g. "SELECT Name FROM Track" # column_to_embed = db.run('replace-with-your-own-select-query') # column_values = [s[0] for s in eval(column_to_embed)] # embeddings = embeddings_model.embed_documents(column_values) # for i in range(len(embeddings)): # value = column_values[i].replace("'", "''") # embedding = embeddings[i] # # Replace with your own SQL command for your column and table. # sql_command = ( # f'UPDATE "Track" SET "embeddings" = ARRAY{embedding} WHERE "Name" =' # + f"'{value}'" # ) # db.run(sql_command) # ----------------- # Define functions # ----------------- def get_schema(_): return db.get_table_info() def run_query(query): return db.run(query) def replace_brackets(match): words_inside_brackets = match.group(1).split(", ") embedded_words = [ str(embeddings_model.embed_query(word)) for word in words_inside_brackets ] return "', '".join(embedded_words) def get_query(query): sql_query = re.sub(r"\[([\w\s,]+)\]", replace_brackets, query) return sql_query # ----------------------- # Now we create the chain # ----------------------- query_generation_prompt = ChatPromptTemplate.from_messages( [("system", postgresql_template), ("human", "{question}")] ) sql_query_chain = ( RunnablePassthrough.assign(schema=get_schema) | query_generation_prompt | llm.bind(stop=["\nSQLResult:"]) | StrOutputParser() ) final_prompt = ChatPromptTemplate.from_messages( [("system", final_template), ("human", "{question}")] ) full_chain = ( RunnablePassthrough.assign(query=sql_query_chain) | RunnablePassthrough.assign( schema=get_schema, response=RunnableLambda(lambda x: db.run(get_query(x["query"]))), ) | final_prompt | llm ) class InputType(BaseModel): question: str chain = full_chain.with_types(input_type=InputType)
160654
# RAG - Chroma, Ollama, Gpt4all - private This template performs RAG with no reliance on external APIs. It utilizes `Ollama` the LLM, `GPT4All` for embeddings, and `Chroma` for the vectorstore. The vectorstore is created in `chain.py` and by default indexes a [popular blog posts on Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) for question-answering. ## Environment Setup To set up the environment, you need to download Ollama. Follow the instructions [here](https://python.langchain.com/docs/integrations/chat/ollama). You can choose the desired LLM with Ollama. This template uses `llama2:7b-chat`, which can be accessed using `ollama pull llama2:7b-chat`. There are many other options available [here](https://ollama.ai/library). This package also uses [GPT4All](https://python.langchain.com/docs/integrations/text_embedding/gpt4all) embeddings. ## Usage To use this package, you should first have the LangChain CLI installed: ```shell pip install -U langchain-cli ``` To create a new LangChain project and install this as the only package, you can do: ```shell langchain app new my-app --package rag-chroma-private ``` If you want to add this to an existing project, you can just run: ```shell langchain app add rag-chroma-private ``` And add the following code to your `server.py` file: ```python from rag_chroma_private import chain as rag_chroma_private_chain add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private") ``` (Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith [here](https://smith.langchain.com/). If you don't have access, you can skip this section ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY=<your-api-key> export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can access the playground at [http://127.0.0.1:8000/rag-chroma-private/playground](http://127.0.0.1:8000/rag-chroma-private/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private") ``` The package will create and add documents to the vector database in `chain.py`. By default, it will load a popular blog post on agents. However, you can choose from a large number of document loaders [here](https://python.langchain.com/docs/integrations/document_loaders).
160656
# Load from langchain_chroma import Chroma from langchain_community.chat_models import ChatOllama from langchain_community.document_loaders import WebBaseLoader from langchain_community.embeddings import GPT4AllEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-private", embedding=GPT4AllEmbeddings(), ) retriever = vectorstore.as_retriever() # Prompt # Optionally, pull from the Hub # from langchain import hub # prompt = hub.pull("rlm/rag-prompt") # Or, define your own: template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM # Select the LLM that you downloaded ollama_llm = "llama2:7b-chat" model = ChatOllama(model=ollama_llm) # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160676
from langchain.retrievers.multi_query import MultiQueryRetriever from langchain_chroma import Chroma from langchain_community.chat_models import ChatOllama, ChatOpenAI from langchain_community.document_loaders import WebBaseLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate, PromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter # Load loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-private", embedding=OpenAIEmbeddings(), ) QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to generate five different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""", ) # Add the LLM downloaded from Ollama ollama_llm = "zephyr" llm = ChatOllama(model=ollama_llm) # Run retriever = MultiQueryRetriever.from_llm( vectorstore.as_retriever(), llm, prompt=QUERY_PROMPT ) # "lines" is the key (attribute name) of the parsed output # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160687
# RAG - Ollama, Chroma - multi-modal, multi-vector, local Visual search is a familiar application to many with iPhones or Android devices. It allows user to search photos using natural language. With the release of open source, multi-modal LLMs it's possible to build this kind of application for yourself for your own private photo collection. This template demonstrates how to perform private visual search and question-answering over a collection of your photos. It uses an open source multi-modal LLM of your choice to create image summaries for each photos, embeds the summaries, and stores them in Chroma. Given a question, relevant photos are retrieved and passed to the multi-modal LLM for answer synthesis. ![Diagram illustrating the visual search process with food pictures, captioning, a database, a question input, and the synthesis of an answer using a multi-modal LLM.](https://github.com/langchain-ai/langchain/assets/122662504/cd9b3d82-9b06-4a39-8490-7482466baf43) "Visual Search Process Diagram" ## Input Supply a set of photos in the `/docs` directory. By default, this template has a toy collection of 3 food pictures. The app will look up and summarize photos based upon provided keywords or questions: ``` What kind of ice cream did I have? ``` In practice, a larger corpus of images can be tested. To create an index of the images, run: ``` poetry install python ingest.py ``` ## Storage Here is the process the template will use to create an index of the slides (see [blog](https://blog.langchain.dev/multi-modal-rag-template/)): * Given a set of images * It uses a local multi-modal LLM ([bakllava](https://ollama.ai/library/bakllava)) to summarize each image * Embeds the image summaries with a link to the original images * Given a user question, it will relevant image(s) based on similarity between the image summary and user input (using Ollama embeddings) * It will pass those images to bakllava for answer synthesis By default, this will use [LocalFileStore](https://python.langchain.com/docs/integrations/stores/file_system) to store images and Chroma to store summaries. ## LLM and Embedding Models We will use [Ollama](https://python.langchain.com/docs/integrations/chat/ollama#multi-modal) for generating image summaries, embeddings, and the final image QA. Download the latest version of Ollama: https://ollama.ai/ Pull an open source multi-modal LLM: e.g., https://ollama.ai/library/bakllava Pull an open source embedding model: e.g., https://ollama.ai/library/llama2:7b ``` ollama pull bakllava ollama pull llama2:7b ``` The app is by default configured for `bakllava`. But you can change this in `chain.py` and `ingest.py` for different downloaded models. The app will retrieve images based on similarity between the text input and the image summary, and pass the images to `bakllava`. ## Usage To use this package, you should first have the LangChain CLI installed: ```shell pip install -U langchain-cli ``` To create a new LangChain project and install this as the only package, you can do: ```shell langchain app new my-app --package rag-multi-modal-mv-local ``` If you want to add this to an existing project, you can just run: ```shell langchain app add rag-multi-modal-mv-local ``` And add the following code to your `server.py` file: ```python from rag_multi_modal_mv_local import chain as rag_multi_modal_mv_local_chain add_routes(app, rag_multi_modal_mv_local_chain, path="/rag-multi-modal-mv-local") ``` (Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith [here](https://smith.langchain.com/). If you don't have access, you can skip this section ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY=<your-api-key> export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can access the playground at [http://127.0.0.1:8000/rag-multi-modal-mv-local/playground](http://127.0.0.1:8000/rag-multi-modal-mv-local/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/rag-multi-modal-mv-local") ```
160708
import os import weaviate from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever from langchain_community.chat_models import ChatOpenAI from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough # Check env vars if os.environ.get("WEAVIATE_API_KEY", None) is None: raise Exception("Missing `WEAVIATE_API_KEY` environment variable.") if os.environ.get("WEAVIATE_ENVIRONMENT", None) is None: raise Exception("Missing `WEAVIATE_ENVIRONMENT` environment variable.") if os.environ.get("WEAVIATE_URL", None) is None: raise Exception("Missing `WEAVIATE_URL` environment variable.") if os.environ.get("OPENAI_API_KEY", None) is None: raise Exception("Missing `OPENAI_API_KEY` environment variable.") # Initialize the retriever WEAVIATE_INDEX_NAME = os.environ.get("WEAVIATE_INDEX", "langchain-test") WEAVIATE_URL = os.getenv("WEAVIATE_URL") auth_client_secret = (weaviate.AuthApiKey(api_key=os.getenv("WEAVIATE_API_KEY")),) client = weaviate.Client( url=WEAVIATE_URL, additional_headers={ "X-Openai-Api-Key": os.getenv("OPENAI_API_KEY"), }, ) retriever = WeaviateHybridSearchRetriever( client=client, index_name=WEAVIATE_INDEX_NAME, text_key="text", attributes=[], create_schema_if_missing=True, ) # # Ingest code - you may need to run this the first time # # Load # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # # Split # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # # Add to vectorDB # retriever.add_documents(all_splits) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() )
160712
from stepback_qa_prompting.chain import chain if __name__ == "__main__": chain.invoke({"question": "was chatgpt around while trump was president?"})
160718
from langchain_core.agents import AgentAction, AgentFinish def parse_output(message: str): FINAL_ANSWER_ACTION = "<final_answer>" includes_answer = FINAL_ANSWER_ACTION in message if includes_answer: answer = message.split(FINAL_ANSWER_ACTION)[1].strip() if "</final_answer>" in answer: answer = answer.split("</final_answer>")[0].strip() return AgentFinish(return_values={"output": answer}, log=message) elif "</tool>" in message: tool, tool_input = message.split("</tool>") _tool = tool.split("<tool>")[1] _tool_input = tool_input.split("<tool_input>")[1] if "</tool_input>" in _tool_input: _tool_input = _tool_input.split("</tool_input>")[0] return AgentAction(tool=_tool, tool_input=_tool_input, log=message)
160723
from neo4j_cypher_ft.chain import chain if __name__ == "__main__": original_query = "Did tom cruis act in top gun?" print(chain.invoke({"question": original_query}))
160736
import os from langchain.retrievers.multi_query import MultiQueryRetriever from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_pinecone import PineconeVectorStore if os.environ.get("PINECONE_API_KEY", None) is None: raise Exception("Missing `PINECONE_API_KEY` environment variable.") if os.environ.get("PINECONE_ENVIRONMENT", None) is None: raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.") PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # Load # from langchain_community.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain_text_splitters import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = PineconeVectorStore.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() # Set up index with multi query retriever vectorstore = PineconeVectorStore.from_existing_index( PINECONE_INDEX_NAME, OpenAIEmbeddings() ) model = ChatOpenAI(temperature=0) retriever = MultiQueryRetriever.from_llm( retriever=vectorstore.as_retriever(), llm=model ) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160769
from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Lantern from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough CONNECTION_STRING = "postgresql://postgres:postgres@localhost:5432" COLLECTION_NAME = "documents" DB_NAME = "postgres" embeddings = OpenAIEmbeddings() vectorstore = Lantern( collection_name=COLLECTION_NAME, connection_string=CONNECTION_STRING, embedding_function=embeddings, ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160798
from langchain_community.chat_models import ChatAnthropic, ChatCohere, ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import ConfigurableField _prompt = ChatPromptTemplate.from_messages( [ ( "system", "Translate user input into pirate speak", ), ("human", "{text}"), ] ) _model = ChatOpenAI().configurable_alternatives( ConfigurableField(id="llm_provider"), default_key="openai", anthropic=ChatAnthropic, cohere=ChatCohere, ) # if you update this, you MUST also update ../pyproject.toml # with the new `tool.langserve.export_attr` chain = _prompt | _model
160806
from langchain_community.llms import Replicate from langchain_core.prompts import ChatPromptTemplate # LLM replicate_id = "andreasjansson/llama-2-13b-chat-gguf:60ec5dda9ff9ee0b6f786c9d1157842e6ab3cc931139ad98fe99e08a35c5d4d4" # noqa: E501 model = Replicate( model=replicate_id, model_kwargs={"temperature": 0.8, "max_length": 500, "top_p": 0.95}, ) # Prompt with output schema specification template = """You are an AI language model assistant. Your task is to generate 3 different versions of the given user / question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user / question, your goal is to help the user overcome some of the limitations of distance-based similarity search. / Respond with json that adheres to the following jsonschema: {{ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": {{ "question_1": {{ "type": "string", "description": "First version of the user question." }}, "question_2": {{ "type": "string", "description": "Second version of the user question." }}, "question_3": {{ "type": "string", "description": "Third version of the user question." }} }}, "required": ["question_1","question_2","question_3"], "additionalProperties": false }}""" # noqa: E501 prompt = ChatPromptTemplate.from_messages( [("system", template), ("human", "{question}")] ) # Chain chain = prompt | model
160829
text: - name: content tag: - name: doc_id vector: - name: content_vector algorithm: FLAT datatype: FLOAT32 dims: 1536 distance_metric: COSINE
160856
from langchain_community.vectorstores import Neo4jVector from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings retrieval_query = """ MATCH (node)-[:HAS_PARENT]->(parent) WITH parent, max(score) AS score // deduplicate parents RETURN parent.text AS text, score, {} AS metadata """ def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) vectorstore = Neo4jVector.from_existing_index( OpenAIEmbeddings(), index_name="retrieval", node_label="Child", embedding_node_property="embedding", retrieval_query=retrieval_query, ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( RunnableParallel( {"context": retriever | format_docs, "question": RunnablePassthrough()} ) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160858
import os from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_text_splitters import RecursiveCharacterTextSplitter from pymongo import MongoClient MONGO_URI = os.environ["MONGO_URI"] # Note that if you change this, you also need to change it in `rag_mongo/chain.py` DB_NAME = "langchain-test-2" COLLECTION_NAME = "test" ATLAS_VECTOR_SEARCH_INDEX_NAME = "default" EMBEDDING_FIELD_NAME = "embedding" client = MongoClient(MONGO_URI) db = client[DB_NAME] MONGODB_COLLECTION = db[COLLECTION_NAME] if __name__ == "__main__": # Load docs loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf") data = loader.load() # Split docs text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) docs = text_splitter.split_documents(data) # Insert the documents in MongoDB Atlas Vector Search _ = MongoDBAtlasVectorSearch.from_documents( documents=docs, embedding=OpenAIEmbeddings(disallowed_special=()), collection=MONGODB_COLLECTION, index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, )
160863
import os from langchain_community.chat_models import ChatOpenAI from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_text_splitters import RecursiveCharacterTextSplitter from pymongo import MongoClient # Set DB if os.environ.get("MONGO_URI", None) is None: raise Exception("Missing `MONGO_URI` environment variable.") MONGO_URI = os.environ["MONGO_URI"] DB_NAME = "langchain-test-2" COLLECTION_NAME = "test" ATLAS_VECTOR_SEARCH_INDEX_NAME = "default" client = MongoClient(MONGO_URI) db = client[DB_NAME] MONGODB_COLLECTION = db[COLLECTION_NAME] # Read from MongoDB Atlas Vector Search vectorstore = MongoDBAtlasVectorSearch.from_connection_string( MONGO_URI, DB_NAME + "." + COLLECTION_NAME, OpenAIEmbeddings(disallowed_special=()), index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question) def _ingest(url: str) -> dict: loader = PyPDFLoader(url) data = loader.load() # Split docs text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) docs = text_splitter.split_documents(data) # Insert the documents in MongoDB Atlas Vector Search _ = MongoDBAtlasVectorSearch.from_documents( documents=docs, embedding=OpenAIEmbeddings(disallowed_special=()), collection=MONGODB_COLLECTION, index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) return {} ingest = RunnableLambda(_ingest)
160872
import os from pathlib import Path import pypdfium2 as pdfium from langchain_chroma import Chroma from langchain_experimental.open_clip import OpenCLIPEmbeddings def get_images_from_pdf(pdf_path, img_dump_path): """ Extract images from each page of a PDF document and save as JPEG files. :param pdf_path: A string representing the path to the PDF file. :param img_dump_path: A string representing the path to dummp images. """ pdf = pdfium.PdfDocument(pdf_path) n_pages = len(pdf) for page_number in range(n_pages): page = pdf.get_page(page_number) bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0)) pil_image = bitmap.to_pil() pil_image.save(f"{img_dump_path}/img_{page_number + 1}.jpg", format="JPEG") # Load PDF doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf" img_dump_path = Path(__file__).parent / "docs/" rel_doc_path = doc_path.relative_to(Path.cwd()) rel_img_dump_path = img_dump_path.relative_to(Path.cwd()) print("pdf index") pil_images = get_images_from_pdf(rel_doc_path, rel_img_dump_path) print("done") vectorstore = Path(__file__).parent / "chroma_db_multi_modal" re_vectorstore_path = vectorstore.relative_to(Path.cwd()) # Load embedding function print("Loading embedding function") embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k") # Create chroma vectorstore_mmembd = Chroma( collection_name="multi-modal-rag", persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"), embedding_function=embedding, ) # Get image URIs image_uris = sorted( [ os.path.join(rel_img_dump_path, image_name) for image_name in os.listdir(rel_img_dump_path) if image_name.endswith(".jpg") ] ) # Add images print("Embedding images") vectorstore_mmembd.add_images(uris=image_uris)
160886
from langchain_chroma import Chroma from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough # Example for document loading (from url), splitting, and creating vectostore """ # Load from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents(documents=all_splits, collection_name="rag-chroma", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() """ # Embed a single document as a test vectorstore = Chroma.from_texts( ["harrison worked at kensho"], collection_name="rag-chroma", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)
160924
import os from typing import List, Tuple from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_log_to_messages from langchain.agents.output_parsers import ( ReActJsonSingleInputOutputParser, ) from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.render import render_text_description_and_args from langchain_community.chat_models import ChatOllama from langchain_core.messages import AIMessage, HumanMessage from neo4j_semantic_ollama.information_tool import InformationTool from neo4j_semantic_ollama.memory_tool import MemoryTool from neo4j_semantic_ollama.recommendation_tool import RecommenderTool from neo4j_semantic_ollama.smalltalk_tool import SmalltalkTool llm = ChatOllama( model="mixtral", temperature=0, base_url=os.environ["OLLAMA_BASE_URL"], streaming=True, ) chat_model_with_stop = llm.bind(stop=["\nObservation"]) tools = [InformationTool(), RecommenderTool(), MemoryTool(), SmalltalkTool()] # Inspiration taken from hub.pull("hwchase17/react-json") system_message = f"""Answer the following questions as best you can. You can answer directly if the user is greeting you or similar. Otherise, you have access to the following tools: {render_text_description_and_args(tools).replace('{', '{{').replace('}', '}}')} The way you use the tools is by specifying a json blob. Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here). The only values that should be in the "action" field are: {[t.name for t in tools]} The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` The $JSON_BLOB must always be enclosed with triple backticks! ALWAYS use the following format: Question: the input question you must answer Thought: you should always think about what to do Action:``` $JSON_BLOB ``` Observation: the result of the action... (this Thought/Action/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Reminder to always use the exact characters `Final Answer` when responding.' """ prompt = ChatPromptTemplate.from_messages( [ ( "user", system_message, ), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) def _format_chat_history(chat_history: List[Tuple[str, str]]): buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_messages(x["intermediate_steps"]), "chat_history": lambda x: ( _format_chat_history(x["chat_history"]) if x.get("chat_history") else [] ), } | prompt | chat_model_with_stop | ReActJsonSingleInputOutputParser() ) # Add typing for input class AgentInput(BaseModel): input: str chat_history: List[Tuple[str, str]] = Field( ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} ) agent_executor = AgentExecutor(agent=agent, tools=tools).with_types( input_type=AgentInput )
160970
nPgo=)](https://www.phorm.ai/query?projectId=c5863b56-6703-4a5d-87b6-7e6031bf16b6) LlamaIndex (GPT Index) is a data framework for your LLM application. Building with LlamaIndex typically involves working with LlamaIndex core and a chosen set of integrations (or plugins). There are two ways to start building with LlamaIndex in Python: 1. **Starter**: `llama-index` (https://pypi.org/project/llama-index/). A starter Python package that includes core LlamaIndex as well as a selection of integrations. 2. **Customized**: `llama-index-core` (https://pypi.org/project/llama-index-core/). Install core LlamaIndex and add your chosen LlamaIndex integration packages on [LlamaHub](https://llamahub.ai/) that are required for your application. There are over 300 LlamaIndex integration packages that work seamlessly with core, allowing you to build with your preferred LLM, embedding, and vector store providers. The LlamaIndex Python library is namespaced such that import statements which include `core` imply that the core package is being used. In contrast, those statements without `core` imply that an integration package is being used. ```python # typical pattern from llama_index.core.xxx import ClassABC # core submodule xxx from llama_index.xxx.yyy import ( SubclassABC, ) # integration yyy for submodule xxx # concrete example from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI ``` ### Important Links LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS. Documentation: https://docs.llamaindex.ai/en/stable/. Twitter: https://twitter.com/llama_index. Discord: https://discord.gg/dGcwcsnxhU. ### Ecosystem - LlamaHub (community library of data loaders): https://llamahub.ai. - LlamaLab (cutting-edge AGI projects using LlamaIndex): https://github.com/run-llama/llama-lab. ## 🚀 Overview **NOTE**: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates! ### Context - LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data. - How do we best augment LLMs with our own private data? We need a comprehensive toolkit to help perform this data augmentation for LLMs. ### Proposed Solution That's where **LlamaIndex** comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools: - Offers **data connectors** to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.). - Provides ways to **structure your data** (indices, graphs) so that this data can be easily used with LLMs. - Provides an **advanced retrieval/query interface over your data**: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output. - Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else). LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs. ## 💡 Contributing Interested in contributing? Contributions to LlamaIndex core as well as contributing integrations that build on the core are both accepted and highly encouraged! See our [Contribution Guide](CONTRIBUTING.md) for more details. ## 📄 Documentation Full documentation can be found here: https://docs.llamaindex.ai/en/latest/. Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources! ## 💻 Example Usage ```sh # custom selection of integrations to work with core pip install llama-index-core pip install llama-index-llms-openai pip install llama-index-llms-replicate pip install llama-index-embeddings-huggingface ``` Examples are in the `docs/examples` folder. Indices are in the `indices` folder (see list of indices below). To build a simple vector store index using OpenAI: ```python import os os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY" from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data() index = VectorStoreIndex.from_documents(documents) ``` To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on [Replicate](https://replicate.com/), where you can easily create a free trial API token: ```python import os os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN" from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.replicate import Replicate from transformers import AutoTokenizer # set the LLM llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e" Settings.llm = Replicate( model=llama2_7b_chat, temperature=0.01, additional_kwargs={"top_p": 1, "max_new_tokens": 300}, ) # set tokenizer to match LLM Settings.tokenizer = AutoTokenizer.from_pretrained( "NousResearch/Llama-2-7b-chat-hf" ) # set the embed model Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data() index = VectorStoreIndex.from_documents( documents, ) ``` To query: ```python query_engine = index.as_query_engine() query_engine.query("YOUR_QUESTION") ``` By default, data is stored in-memory. To persist to disk (under `./storage`): ```python index.storage_context.persist() ``` To reload from disk: ```python from llama_index.core import StorageContext, load_index_from_storage # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="./storage") # load index index = load_index_from_storage(storage_context) ``` ## 🔧 Dependencies We use poetry as the package manager for all Python packages. As a result, the dependencies of each Python package can be found by referencing the `pyproject.toml` file in each of the package's folders. ```bash cd <desired-package-folder> pip install poetry poetry install --with dev ``` ## 📖 Citation Reference to cite if you use LlamaIndex in a paper: ``` @software{Liu_LlamaIndex_2022, author = {Liu, Jerry}, doi = {10.5281/zenodo.1234}, month = {11}, title = {{LlamaIndex}}, url = {https://github.com/jerryjliu/llama_index}, year = {2022} } ```
160978
import os import tempfile from typing import List, Union import streamlit as st import tiktoken from langchain.text_splitter import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from langchain.text_splitter import ( TextSplitter as LCSplitter, ) from langchain.text_splitter import TokenTextSplitter as LCTokenTextSplitter from llama_index import SimpleDirectoryReader from llama_index.node_parser.interface import TextSplitter from llama_index.schema import Document from llama_index.text_splitter import CodeSplitter, SentenceSplitter, TokenTextSplitter from streamlit.runtime.uploaded_file_manager import UploadedFile DEFAULT_TEXT = "The quick brown fox jumps over the lazy dog." text = st.sidebar.text_area("Enter text", value=DEFAULT_TEXT) uploaded_files = st.sidebar.file_uploader("Upload file", accept_multiple_files=True) type = st.sidebar.radio("Document Type", options=["Text", "Code"]) n_cols = st.sidebar.number_input("Columns", value=2, min_value=1, max_value=3) assert isinstance(n_cols, int) @st.cache_resource(ttl=3600) def load_document(uploaded_files: List[UploadedFile]) -> List[Document]: # Read documents temp_dir = tempfile.TemporaryDirectory() for file in uploaded_files: temp_filepath = os.path.join(temp_dir.name, file.name) with open(temp_filepath, "wb") as f: f.write(file.getvalue()) reader = SimpleDirectoryReader(input_dir=temp_dir.name) return reader.load_data() if uploaded_files: if text != DEFAULT_TEXT: st.warning("Text will be ignored when uploading files") docs = load_document(uploaded_files) text = "\n".join([doc.text for doc in docs]) chunk_size = st.slider( "Chunk Size", value=512, min_value=1, max_value=4096, ) chunk_overlap = st.slider( "Chunk Overlap", value=0, min_value=0, max_value=4096, ) cols = st.columns(n_cols) for ind, col in enumerate(cols): if type == "Text": text_splitter_cls = col.selectbox( "Text Splitter", options=[ "TokenTextSplitter", "SentenceSplitter", "LC:RecursiveCharacterTextSplitter", "LC:CharacterTextSplitter", "LC:TokenTextSplitter", ], index=ind, key=f"splitter_cls_{ind}", ) text_splitter: Union[TextSplitter, LCSplitter] if text_splitter_cls == "TokenTextSplitter": text_splitter = TokenTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) elif text_splitter_cls == "SentenceSplitter": text_splitter = SentenceSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) elif text_splitter_cls == "LC:RecursiveCharacterTextSplitter": text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) elif text_splitter_cls == "LC:CharacterTextSplitter": text_splitter = CharacterTextSplitter.from_tiktoken_encoder( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) elif text_splitter_cls == "LC:TokenTextSplitter": text_splitter = LCTokenTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) else: raise ValueError("Unknown text splitter") elif type == "Code": text_splitter_cls = col.selectbox("Text Splitter", options=["CodeSplitter"]) if text_splitter_cls == "CodeSplitter": language = col.text_input("Language", value="python") max_chars = col.slider("Max Chars", value=1500) text_splitter = CodeSplitter(language=language, max_chars=max_chars) else: raise ValueError("Unknown text splitter") chunks = text_splitter.split_text(text) tokenizer = tiktoken.get_encoding("gpt2").encode for chunk_ind, chunk in enumerate(chunks): n_tokens = len(tokenizer(chunk)) n_chars = len(chunk) col.text_area( f"Chunk {chunk_ind} - {n_tokens} tokens - {n_chars} chars", chunk, key=f"text_area_{ind}_{chunk_ind}", height=500, )
161093
- 2023-08-29 ### New Features - Add embedding finetuning (#7452) - Added support for RunGPT LLM (#7401) - Integration guide and notebook with DeepEval (#7425) - Added `VectorIndex` and `VectaraRetriever` as a managed index (#7440) - Added support for `to_tool_list` to detect and use async functions (#7282) ## [0.8.12] - 2023-08-28 ### New Features - add openai finetuning class (#7442) - Service Context to/from dict (#7395) - add finetuning guide (#7429) ### Smaller Features / Nits / Bug Fixes - Add example how to run FalkorDB docker (#7441) - Update root.md to use get_response_synthesizer expected type. (#7437) - Bugfix MonsterAPI Pydantic version v2/v1 support. Doc Update (#7432) ## [0.8.11.post3] - 2023-08-27 ### New Features - AutoMergingRetriever (#7420) ## [0.8.10.post1] - 2023-08-25 ### New Features - Added support for `MonsterLLM` using MonsterAPI (#7343) - Support comments fields in NebulaGraphStore and int type VID (#7402) - Added configurable endpoint for DynamoDB (#6777) - Add structured answer filtering for Refine response synthesizer (#7317) ### Bug Fixes / Nits - Use `utf-8` for json file reader (#7390) - Fix entity extractor initialization (#7407) ## [0.8.9] - 2023-08-24 ### New Features - Added support for FalkorDB/RedisGraph graph store (#7346) - Added directed sub-graph RAG (#7378) - Added support for `BM25Retriever` (#7342) ### Bug Fixes / Nits - Added `max_tokens` to `Xinference` LLM (#7372) - Support cache dir creation in multithreaded apps (#7365) - Ensure temperature is a float for openai (#7382) - Remove duplicate subjects in knowledge graph retriever (#7378) - Added support for both pydantic v1 and v2 to allow other apps to move forward (#7394) ### Breaking/Deprecated API Changes - Refactor prompt template (#7319) - Use `BasePromptTemplate` for generic typing - Use `PromptTemplate`, `ChatPromptTemplate`, `SelectorPromptTemplate` as core implementations - Use `LangchainPromptTemplate` for compatibility with Langchain prompt templates - Fully replace specific prompt classes (e.g. `SummaryPrompt`) with generic `BasePromptTemplate` for typing in codebase. - Keep `Prompt` as an alias for `PromptTemplate` for backwards compatibility. - BREAKING CHANGE: remove support for `Prompt.from_langchain_prompt`, please use `template=LangchainPromptTemplate(lc_template)` instead. ## [0.8.8] - 2023-08-23 ### New Features - `OpenAIFineTuningHandler` for collecting LLM inputs/outputs for OpenAI fine tuning (#7367) ### Bug Fixes / Nits - Add support for `claude-instant-1.2` (#7369) ## [0.8.7] - 2023-08-22 ### New Features - Support fine-tuned OpenAI models (#7364) - Added support for Cassandra vector store (#6784) - Support pydantic fields in tool functions (#7348) ### Bug Fixes / Nits - Fix infinite looping with forced function call in `OpenAIAgent` (#7363) ## [0.8.6] - 2023-08-22 ### New Features - auto vs. recursive retriever notebook (#7353) - Reader and Vector Store for BagelDB with example notebooks (#7311) ### Bug Fixes / Nits - Use service context for intermediate index in retry source query engine (#7341) - temp fix for prompt helper + chat models (#7350) - Properly skip unit-tests when packages not installed (#7351) ## [0.8.5.post2] - 2023-08-20 ### New Features - Added FireStore docstore/index store support (#7305) - add recursive agent notebook (#7330) ### Bug Fixes / Nits - Fix Azure pydantic error (#7329) - fix callback trace ids (make them a context var) (#7331) ## [0.8.5.post1] - 2023-08-18 ### New Features - Awadb Vector Store (#7291) ### Bug Fixes / Nits - Fix bug in OpenAI llm temperature type ## [0.8.5] - 2023-08-18 ### New Features - Expose a system prompt/query wrapper prompt in the service context for open-source LLMs (#6647) - Changed default MyScale index format to `MSTG` (#7288) - Added tracing to chat engines/agents (#7304) - move LLM and embeddings to pydantic (#7289) ### Bug Fixes / Nits - Fix sentence splitter bug (#7303) - Fix sentence splitter infinite loop (#7295) ## [0.8.4] - 2023-08-17 ### Bug Fixes / Nits - Improve SQL Query parsing (#7283) - Fix loading embed_model from global service context (#7284) - Limit langchain version until we migrate to pydantic v2 (#7297) ## [0.8.3] - 2023-08-16 ### New Features - Added Knowledge Graph RAG Retriever (#7204) ### Bug Fixes / Nits - accept `api_key` kwarg in OpenAI LLM class constructor (#7263) - Fix to create separate queue instances for separate instances of `StreamingAgentChatResponse` (#7264) ## [0.8.2.post1] - 2023-08-14 ### New Features - Added support for Rockset as a vector store (#7111) ### Bug Fixes - Fixed bug in service context definition that could disable LLM (#7261) ## [0.8.2] - 2023-08-14 ### New Features - Enable the LLM or embedding model to be disabled by setting to `None` in the service context (#7255) - Resolve nearly any huggingface embedding model using the `embed_model="local:<model_name>"` syntax (#7255) - Async tool-calling support (#7239) ### Bug Fixes / Nits - Updated supabase kwargs for add and query (#7103) - Small tweak to default prompts to allow for more general purpose queries (#7254) - Make callback manager optional for `CustomLLM` + docs update (#7257) ## [0.8.1] - 2023-08-13 ### New Features - feat: add node_postprocessors to ContextChatEngine (#7232) - add ensemble query engine tutorial (#7247) ### Smaller Features - Allow EMPTY keys for Fastchat/local OpenAI API endpoints (#7224) ## [0.8.0] - 2023-08-11 ### New Features - Added "LLAMA_INDEX_CACHE_DIR" to control cached files (#7233) - Default to pydantic selectors when possible (#7154, #7223) - Remove the need for langchain wrappers on `embed_model` in the service context (#7157) - Metadata extractors take an `LLM` object now, in addition to `LLMPredictor` (#7202) - Added local mode + fallback to llama.cpp + llama2 (#7200) - Added local fallback for embeddings to `BAAI/bge-small-en` (#7200) - Added `SentenceWindowNodeParser` + `MetadataReplacementPostProcessor` (#7211) ### Breaking Changes - Change default LLM to gpt-3.5-turbo from text-davinci-003 (#7223) - Change prompts for compact/refine/tree_summarize to work better with gpt-3.5-turbo (#7150, #7179, #7223) - Increase default LLM temperature to 0.1 (#7180) ## [0.7.24.post1] - 2023-08-11 ### Other Changes - Reverted #7223 changes to defaults (#7235) ## [0.7.24]
161101
# 🗂️ LlamaIndex 🦙 [![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-index)](https://pypi.org/project/llama-index/) [![GitHub contributors](https://img.shields.io/github/contributors/jerryjliu/llama_index)](https://github.com/jerryjliu/llama_index/graphs/contributors) [![Discord](https://img.shields.io/discord/1059199217496772688)](https://discord.gg/dGcwcsnxhU) LlamaIndex (GPT Index) is a data framework for your LLM application. PyPI: - LlamaIndex: https://pypi.org/project/llama-index/. - GPT Index (duplicate): https://pypi.org/project/gpt-index/. LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS. Documentation: https://docs.llamaindex.ai/en/stable/. Twitter: https://twitter.com/llama_index.legacy. Discord: https://discord.gg/dGcwcsnxhU. ### Ecosystem - LlamaHub (community library of data loaders): https://llamahub.ai. - LlamaLab (cutting-edge AGI projects using LlamaIndex): https://github.com/run-llama/llama-lab. ## 🚀 Overview **NOTE**: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates! ### Context - LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data. - How do we best augment LLMs with our own private data? We need a comprehensive toolkit to help perform this data augmentation for LLMs. ### Proposed Solution That's where **LlamaIndex** comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools: - Offers **data connectors** to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.). - Provides ways to **structure your data** (indices, graphs) so that this data can be easily used with LLMs. - Provides an **advanced retrieval/query interface over your data**: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output. - Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else). LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs. ## 💡 Contributing Interested in contributing? See our [Contribution Guide](CONTRIBUTING.md) for more details. ## 📄 Documentation Full documentation can be found here: https://docs.llamaindex.ai/en/latest/. Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources! ## 💻 Example Usage ``` pip install llama-index ``` Examples are in the `examples` folder. Indices are in the `indices` folder (see list of indices below). To build a simple vector store index using OpenAI: ```python import os os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY" from llama_index.legacy.legacy import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data() index = VectorStoreIndex.from_documents(documents) ``` To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on [Replicate](https://replicate.com/), where you can easily create a free trial API token: ```python import os os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN" from llama_index.legacy.legacy.llms import Replicate llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e" llm = Replicate( model=llama2_7b_chat, temperature=0.01, additional_kwargs={"top_p": 1, "max_new_tokens": 300}, ) # set tokenizer to match LLM from llama_index.legacy.legacy import set_global_tokenizer from transformers import AutoTokenizer set_global_tokenizer( AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode ) from llama_index.legacy.legacy.embeddings import HuggingFaceEmbedding from llama_index.legacy.legacy import ServiceContext embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") service_context = ServiceContext.from_defaults( llm=llm, embed_model=embed_model ) from llama_index.legacy.legacy import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data() index = VectorStoreIndex.from_documents( documents, service_context=service_context ) ``` To query: ```python query_engine = index.as_query_engine() query_engine.query("YOUR_QUESTION") ``` By default, data is stored in-memory. To persist to disk (under `./storage`): ```python index.storage_context.persist() ``` To reload from disk: ```python from llama_index.legacy.legacy import StorageContext, load_index_from_storage # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="./storage") # load index index = load_index_from_storage(storage_context) ``` ## 🔧 Dependencies The main third-party package requirements are `tiktoken`, `openai`, and `langchain`. All requirements should be contained within the `setup.py` file. To run the package locally without building the wheel, simply run: ```bash pip install poetry poetry install --with dev ``` ## 📖 Citation Reference to cite if you use LlamaIndex in a paper: ``` @software{Liu_LlamaIndex_2022, author = {Liu, Jerry}, doi = {10.5281/zenodo.1234}, month = {11}, title = {{LlamaIndex}}, url = {https://github.com/jerryjliu/llama_index}, year = {2022} } ```
161109
"""Async utils.""" import asyncio from itertools import zip_longest from typing import Any, Coroutine, Iterable, List def asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module def run_async_tasks( tasks: List[Coroutine], show_progress: bool = False, progress_bar_desc: str = "Running async tasks", ) -> List[Any]: """Run a list of async tasks.""" tasks_to_execute: List[Any] = tasks if show_progress: try: import nest_asyncio from tqdm.asyncio import tqdm # jupyter notebooks already have an event loop running # we need to reuse it instead of creating a new one nest_asyncio.apply() loop = asyncio.get_event_loop() async def _tqdm_gather() -> List[Any]: return await tqdm.gather(*tasks_to_execute, desc=progress_bar_desc) tqdm_outputs: List[Any] = loop.run_until_complete(_tqdm_gather()) return tqdm_outputs # run the operation w/o tqdm on hitting a fatal # may occur in some environments where tqdm.asyncio # is not supported except Exception: pass async def _gather() -> List[Any]: return await asyncio.gather(*tasks_to_execute) outputs: List[Any] = asyncio.run(_gather()) return outputs def chunks(iterable: Iterable, size: int) -> Iterable: args = [iter(iterable)] * size return zip_longest(*args, fillvalue=None) async def batch_gather( tasks: List[Coroutine], batch_size: int = 10, verbose: bool = False ) -> List[Any]: output: List[Any] = [] for task_chunk in chunks(tasks, batch_size): output_chunk = await asyncio.gather(*task_chunk) output.extend(output_chunk) if verbose: print(f"Completed {len(output)} out of {len(tasks)} tasks") return output def get_asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module DEFAULT_NUM_WORKERS = 4 async def run_jobs( jobs: List[Coroutine], show_progress: bool = False, workers: int = DEFAULT_NUM_WORKERS, ) -> List[Any]: """Run jobs. Args: jobs (List[Coroutine]): List of jobs to run. show_progress (bool): Whether to show progress bar. Returns: List[Any]: List of results. """ asyncio_mod = get_asyncio_module(show_progress=show_progress) semaphore = asyncio.Semaphore(workers) async def worker(job: Coroutine) -> Any: async with semaphore: return await job pool_jobs = [worker(job) for job in jobs] return await asyncio_mod.gather(*pool_jobs)