TrieTran
Upload folder using huggingface_hub
3255c6b verified
"""
Convert a single task folder with sequences into LIBERO-like demos with fields:
actions, gripper_states, joint_states, robot_states, ee_states,
agentview_images, eye_in_hand_images, agentview_depths, eye_in_hand_depths,
agentview_segs, eye_in_hand_segs, agentview_boxes, eye_in_hand_boxes,
rewards, dones
Expected layout (per task):
taskX/
success/
<seq_name>/
camera_base.mp4 # agentview RGB
camera_wrist.mp4 # eye-in-hand RGB
trajectory.pkl # dict-like (see below)
masks/
<seq_name>/
masks/
000000_id1.png, 000000_id2.png, 000001_id1.png, ...
We infer T (timesteps) from trajectory.pkl (preferred keys: robot_gripper_pose, timestamp).
We parse mask PNGs named "{frame:06d}_id{instance}.png" into a per-frame label map,
and compute per-frame boxes per instance id.
Trajectory .pkl keys (examples):
['robot_eef_pose', 'robot_eef_pose_vel', 'robot_joint', 'robot_joint_vel',
'robot_gripper_pose', 'timestamp', 'task_description']
Actions policy:
- If 'robot_joint_vel' exists: actions = robot_joint_vel (T, DoF)
- Else if 'robot_eef_pose_vel' exists: actions = robot_eef_pose_vel (T, 6/7)
- Else: finite-difference of 'robot_joint' (pad last row with zeros).
Depth and eye-in-hand segs:
- If no depth available, we create zero arrays with the correct length and frame shape.
- If only one set of masks exists (agentview), we mirror it to eye-in-hand segs for compatibility.
Boxes:
- Stored in metainfo JSON as lists of [x1,y1,x2,y2] per frame (pixel coords).
Requires: numpy, opencv-python, h5py, pillow (PIL)
"""
import argparse, json, os, pickle, re, sys
from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple, Dict, Sequence, Optional, Any
import imageio
import numpy as np
import h5py
import cv2
from PIL import Image
MASK_RE = re.compile(r'^(?P<frame>\d+)_id(?P<inst>\d+)\.(?:png|jpg|jpeg|bmp)$', re.IGNORECASE)
# ---------- helpers ----------
def _ensure_uint8_rgb(img: np.ndarray) -> np.ndarray:
arr = np.asarray(img)
if arr.ndim == 2: arr = np.stack([arr]*3, axis=-1)
if arr.shape[-1] == 4: arr = arr[..., :3]
if arr.dtype != np.uint8:
if np.issubdtype(arr.dtype, np.floating) and arr.max() <= 1.0:
arr = (arr * 255.0 + 0.5).astype(np.uint8)
else:
arr = np.clip(arr, 0, 255).astype(np.uint8)
return arr
def _label_to_color(label_map: np.ndarray,
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None):
H, W = label_map.shape
colored = np.zeros((H, W, 3), dtype=np.uint8)
color_map = {} if color_map is None else dict(color_map)
for lid in np.unique(label_map):
if lid == 0: continue
if lid not in color_map:
rng = np.random.RandomState(lid * 9973 % (2**31-1))
color_map[lid] = tuple(int(x) for x in rng.randint(40, 220, size=3))
colored[label_map == lid] = color_map[lid]
return colored, color_map
def _overlay(rgb: np.ndarray, over_rgb: np.ndarray, alpha: float = 0.5) -> np.ndarray:
out = (1.0 - alpha) * rgb.astype(np.float32) + alpha * over_rgb.astype(np.float32)
return np.clip(out, 0, 255).astype(np.uint8)
def _draw_bboxes(rgb: np.ndarray,
bboxes: Sequence[Tuple[int, Sequence[int]]],
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None) -> np.ndarray:
img = rgb.copy()
color_map = {} if color_map is None else color_map
defined_labels = {'id40': 'bottle 1',
'id20': 'bottle 2',
'id60': 'bowl 1',
'id100': 'robot',
'id80': 'bowl 1'}
for seg_id, box in bboxes:
x, y, x2, y2 = [int(v) for v in box]
if seg_id not in color_map:
rng = np.random.RandomState(seg_id * 9973 % (2**31-1))
color_map[seg_id] = tuple(int(x) for x in rng.randint(40, 220, size=3))
bgr = color_map[seg_id][::-1]
cv2.rectangle(img, (x, y), (x2, y2), bgr, 2)
label = defined_labels[f"id{seg_id}"]
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(img, (x, y - th - 4), (x + tw + 4, y), bgr, -1)
cv2.putText(img, label, (x + 2, y - 4),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA)
return img
# ---------- main ----------
def save_annotation_video_imageio(
agentview_images: List[np.ndarray],
agentview_segs: List[np.ndarray],
agentview_bboxes: List[List[Tuple[int, Sequence[int]]]],
out_path: str,
fps: int = 20,
resize: Optional[Tuple[int,int]] = None,
seg_alpha: float = 0.5,
layout: str = "hstack"
) -> str:
"""Save annotated rollout video with raw | bbox | seg-overlay panels using imageio."""
assert len(agentview_images) == len(agentview_segs) == len(agentview_bboxes)
T = len(agentview_images)
if T == 0:
raise ValueError("No frames to render")
imgs = [_ensure_uint8_rgb(f) for f in agentview_images]
segs = [np.asarray(s, dtype=np.int32) for s in agentview_segs]
H, W = imgs[0].shape[:2]
if resize is not None:
W, H = resize
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) for im in imgs]
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) for s in segs]
else:
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) if im.shape[:2] != (H, W) else im for im in imgs]
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) if s.shape != (H, W) else s for s in segs]
color_map: Dict[int, Tuple[int,int,int]] = {}
def compose(t: int) -> np.ndarray:
raw = imgs[t]
box_img = _draw_bboxes(raw, agentview_bboxes[t], color_map=color_map)
seg_col, cm2 = _label_to_color(segs[t], color_map=color_map)
color_map.update(cm2)
seg_overlay = _overlay(raw, seg_col, alpha=seg_alpha)
if layout == "hstack":
return np.concatenate([raw, box_img, seg_overlay], axis=1)
else: # grid
top = np.concatenate([raw, box_img], axis=1)
bot = np.concatenate([seg_overlay, seg_col], axis=1)
return np.concatenate([top, bot], axis=0)
# --- Use imageio.get_writer ---
with imageio.get_writer(out_path, fps=fps, codec="libx264") as writer:
for t in range(T):
frame = compose(t)
writer.append_data(frame) # frame must be (H,W,3) uint8
return out_path
def natural_key(s: str):
return [int(t) if t.isdigit() else t.lower() for t in re.split(r"(\d+)", s)]
def process_gripper_pose(robot_gripper_pose):
raw = np.array(robot_gripper_pose) # shape (T,)
# binary states (open=1, closed=0)
state = raw.astype(np.int32)
# deltas using "previous" rule
delta = np.zeros_like(state[:-1])
prev = -1
for t in range(0, len(state)-1):
if state[t] != state[t+1]:
delta[t] = 1 if state[t] < state[t+1] else -1
prev = delta[t]
else:
delta[t] = prev # carry forward previous action
return delta
def process_video_rgb(path: Path) -> List[np.ndarray]:
if cv2 is None:
raise RuntimeError("OpenCV not available. Please install opencv-python.")
cap = cv2.VideoCapture(str(path))
if not cap.isOpened():
raise RuntimeError(f"Cannot open video: {path}")
frames = []
while True:
ok, frame = cap.read()
if not ok:
break
# Resize to 256x256 and convert BGR->RGB
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
return frames
def parse_masks_dir(H, W, masks_dir: Path) -> Dict[int, Dict[int, np.ndarray]]:
"""
Return nested dict: frame_idx -> {inst_id -> binary mask (H,W,1)}
"""
out: Dict[int, Dict[int, np.ndarray]] = {}
for f in sorted(masks_dir.iterdir(), key=lambda x: natural_key(x.name)):
if not f.is_file(): continue
m = MASK_RE.match(f.name)
if not m: continue
frame = int(m.group("frame"))
inst = int(m.group("inst"))
arr = np.array(Image.open(f).convert("L").resize((W, H))) # (H,W) grayscale
bin_mask = (arr > 0).astype(np.uint8)[..., None] # (H,W,1)
out.setdefault(frame, {})[inst] = bin_mask
return out
def labelmap_and_boxes(H, W, per_inst: Dict[int, np.ndarray]) -> Tuple[np.ndarray, List[List[int]]]:
"""
From {inst_id -> (H,W,1) mask}, build label map (H,W) with labels 30..K*30,
and compute boxes as [x1,y1,x2,y2] for each instance (label>0), in order of inst_id.
Returns (labelmap, boxes)
"""
if not per_inst:
return np.zeros((H,W,1), dtype=np.int32), []
# Determine shape
labelmap = np.zeros((H,W,1), dtype=np.int32)
boxes: List[List[int]] = []
# Sort instances for stable order
for idx, inst_id in enumerate(sorted(per_inst.keys())):
m = per_inst[inst_id][..., 0].astype(bool)
label = (idx + 1)*20 # 0 reserved as background
labelmap[m] = label
# Bounding box
ys, xs = np.where(m)
if len(xs) == 0 or len(ys) == 0:
pass
else:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
boxes.append([label, [x1, y1, x2, y2]])
return labelmap, boxes
def detect_noops_with_gripper_window(
actions: np.ndarray,
gripper_col: int = -1,
tol: float = 1e-6,
window: int = 6,
):
"""
Return a boolean vector is_noop[T] where True marks a no-op step.
A step is no-op if (a) all non-gripper dims are ~0 (|x|<tol), and
(b) it's not within `window` frames after a gripper open/close change.
Parameters
----------
actions : (T, D) array
Action vectors over time.
gripper_col : int
Index of the gripper signal column (default: last col).
tol : float
Tolerance to treat movement dims as zero.
window : int
Number of frames after a gripper state change to mark as active (non-noop).
Returns
-------
is_noop : (T,) bool array
True where the step is considered a no-op.
active_gripper_window : (T,) bool array
True where we are within the post-change window (non-noop region).
"""
a = np.asarray(actions)
assert a.ndim == 2 and a.shape[0] > 0, "actions must be (T, D)"
T, D = a.shape
# 1) movement no-op: all non-gripper dims are near zero
if gripper_col < 0:
g_idx = D + gripper_col
else:
g_idx = gripper_col
assert 0 <= g_idx < D
if D > 1:
move = np.concatenate([a[:, :g_idx], a[:, g_idx+1:]], axis=1)
movement_noop = np.all(np.abs(move) < tol, axis=1)
else:
movement_noop = np.ones(T, dtype=bool) # only gripper present
# 2) gripper activity window: detect state changes and mark window frames
g = a[:, g_idx]
# Convert to binary state: open=1, closed=0 (by sign/threshold)
# Works for {-1,0,1} or continuous values (e.g., widths).
state = (g > 0).astype(np.int8)
# Change points where state flips
changes = np.flatnonzero(np.diff(state, prepend=state[0]) != 0)
active_gripper_window = np.zeros(T, dtype=bool)
for t0 in changes:
t1 = min(t0 + window, T)
active_gripper_window[t0:t1] = True
# Final no-op = movement_noop and NOT in gripper activity window
is_noop = movement_noop & (~active_gripper_window)
return is_noop, active_gripper_window
def process_sequence(seq_name: str, task_dir: Path, out_dir: Path, sequence_rename: Path):
s_dir = task_dir / "success" / seq_name
m_dir = task_dir / "masks" / seq_name / "masks"
# --- Load trajectory ---
pkl_path = s_dir / "trajectory.pkl"
with open(pkl_path, "rb") as f:
traj = pickle.load(f)
task_description = traj['task_description'].lower().replace('.', '')
T = len(traj['robot_eef_pose']) - 1
delta_eef = traj['robot_eef_pose'][1:,:] - traj['robot_eef_pose'][:-1,:]
delta_gripper = process_gripper_pose(traj['robot_gripper_pose'])
delta_gripper = delta_gripper.reshape(T, 1)
actions = np.concatenate([delta_eef, delta_gripper], axis=1)
# --- Read videos as RGB ---
base_vid = s_dir / "camera_base.mp4"
agentview_images = process_video_rgb(base_vid)
agentview_images = agentview_images[:T]
H, W, _ = agentview_images[0].shape
# --- Parse masks into label maps + boxes ---
per_frame = parse_masks_dir(H, W, m_dir)
agentview_segs = []
agentview_bboxes = []
for t, inst_dict in per_frame.items():
if t >= T: continue
labelmap, boxes = labelmap_and_boxes(H, W, inst_dict)
if labelmap.size == 0: # in case masks are missing
continue
if (labelmap.shape[0] != H) or (labelmap.shape[1] != W):
# Resize nearest to match video shape
labelmap = np.array(Image.fromarray(labelmap.astype(np.int32)).resize((W, H), resample=Image.NEAREST))
agentview_segs.append(labelmap)
agentview_bboxes.append(boxes)
# save_annotation_video_imageio(
# agentview_images, agentview_segs, agentview_bboxes,
# out_path="annotations.mp4", fps=20, resize=(256,256)
# )
# 1/0
# print(len(agentview_images))
# print(len(agentview_segs))
# print(len(agentview_bboxes))
# print(len(actions))
# print(actions);
# is_noop, active_win = detect_noops_with_gripper_window(actions, gripper_col=-1, tol=1e-5, window=6)
data = {
"episode_key": sequence_rename,
"agentview_images": agentview_images,
"agentview_segs": agentview_segs,
"agentview_boxes": agentview_bboxes,
"actions": actions,
"task_description": task_description,
}
return data
def write_episode(
out_dir: str,
task_name: str,
episode: Dict[str, Any],
):
"""
{
"episode_key": "20250711-13h_52m_58s",
"agentview_images": [...], # list[(H,W,3) uint8]
"agentview_segs": [...], # list[(H,W) int]
"agentview_boxes": [...], # list[list[(id, [x,y,w,h])]]
"actions": np.ndarray or None, # (T,D)
"task_description": "string", # optional
},
"""
episode_key = episode["episode_key"]
h5_filename = f"{task_name}_{episode_key}.hdf5"
meta_filename = f"{task_name}_{episode_key}_metainfo.json"
h5_path = os.path.join(out_dir, h5_filename)
meta_path = os.path.join(out_dir, meta_filename)
# Load or start metainfo (single JSON for all episodes)
if os.path.exists(meta_path):
with open(meta_path, "r") as f:
metainfo = json.load(f)
else:
metainfo = {task_name: {}}
with h5py.File(h5_path, "a") as f: # append if file already exists
root = f.require_group("data")
ep = episode
episode_key = ep["episode_key"]
agentview_images = ep["agentview_images"]
agentview_segs = ep["agentview_segs"]
agentview_boxes = ep["agentview_boxes"]
actions = ep.get("actions", None)
task_description = ep.get("task_description", "")
# --- lengths & alignment ---
lens = [len(agentview_images), len(agentview_segs), len(agentview_boxes)]
if actions is not None: lens.append(len(actions))
T = min(l for l in lens if l > 0)
assert T > 0, f"[{episode_key}] nothing to write"
agentview_images = agentview_images[:T]
agentview_segs = agentview_segs[:T]
agentview_boxes = agentview_boxes[:T]
if actions is None:
actions = np.zeros((T, 1), dtype=np.float32)
else:
actions = np.asarray(actions)[:T]
# --- stack visuals ---
agentview_rgb = np.stack(agentview_images, axis=0) # (T,H,W,3)
agentview_seg = np.stack([np.asarray(s, dtype=np.int32) for s in agentview_segs], axis=0) # (T,H,W)
_, H, W, _ = agentview_seg.shape
# --- placeholders for missing streams/states ---
eye_in_hand_rgb = np.zeros_like(agentview_rgb, dtype=np.uint8)
agentview_depth = np.zeros((T, H, W), dtype=np.float32)
eye_in_hand_depth = np.zeros((T, H, W), dtype=np.float32)
eye_in_hand_seg = np.zeros((T, H, W), dtype=np.int32)
gripper_states = np.zeros((T, 1), dtype=np.float32)
joint_states = np.zeros((T, 0), dtype=np.float32)
ee_states = np.zeros((T, 6), dtype=np.float32) # [pos(3), ori(3)]
robot_states = np.zeros((T, 0), dtype=np.float32)
dones = np.zeros(T, dtype=np.uint8); dones[-1] = 1
rewards = np.zeros(T, dtype=np.uint8); rewards[-1] = 1
# --- create / overwrite episode group ---
if episode_key in root:
del root[episode_key] # clean if re-writing
ep_grp = root.create_group(episode_key)
obs_grp = ep_grp.create_group("obs")
# states
obs_grp.create_dataset("gripper_states", data=gripper_states)
obs_grp.create_dataset("joint_states", data=joint_states)
obs_grp.create_dataset("ee_states", data=ee_states)
obs_grp.create_dataset("ee_pos", data=ee_states[:, :3])
obs_grp.create_dataset("ee_ori", data=ee_states[:, 3:])
# visuals
obs_grp.create_dataset("agentview_rgb", data=agentview_rgb)
obs_grp.create_dataset("eye_in_hand_rgb", data=eye_in_hand_rgb)
obs_grp.create_dataset("agentview_depth", data=agentview_depth)
obs_grp.create_dataset("eye_in_hand_depth", data=eye_in_hand_depth)
obs_grp.create_dataset("agentview_seg", data=agentview_seg)
obs_grp.create_dataset("eye_in_hand_seg", data=eye_in_hand_seg)
# top-level (episode)
ep_grp.create_dataset("actions", data=actions)
ep_grp.create_dataset("robot_states", data=robot_states)
ep_grp.create_dataset("rewards", data=rewards)
ep_grp.create_dataset("dones", data=dones)
# --- update metainfo JSON for this episode ---
if task_name not in metainfo:
metainfo[task_name] = {}
if episode_key not in metainfo[task_name]:
metainfo[task_name][episode_key] = {}
metainfo[task_name][episode_key].update({
"success": True,
"initial_state": robot_states[0].tolist() if len(robot_states) else [],
"task_nouns": [], # fill if you want
"task_description": task_description,
"exo_boxes": agentview_boxes, # per-frame boxes you provided
"ego_boxes": [[] for _ in range(T)], # none available
})
# write/merge metainfo once at the end
with open(meta_path, "w") as f:
json.dump(metainfo, f, indent=2)
return {"hdf5": h5_path, "metainfo": meta_path}
def main():
p = argparse.ArgumentParser(description="Convert sequences to LIBERO-like demos.")
p.add_argument("--task_dir", type=str, help="Path to task folder (contains success/ and masks/).")
p.add_argument("--out_root", type=str, required=True, help="Target directory where <task_name>/<task_name>_<seq>.hdf5 is written.")
args = p.parse_args()
task_dir = Path(args.task_dir).expanduser().resolve()
task_name = task_dir.name
out_root = Path(args.out_root).expanduser().resolve()
out_root.mkdir(parents=True, exist_ok=True)
success_dir = task_dir / "success"
masks_dir = task_dir / "masks"
if not success_dir.is_dir() or not masks_dir.is_dir():
print("[ERROR] task_dir must contain 'success/' and 'masks/'")
sys.exit(1)
success_seqs = {d.name for d in success_dir.iterdir() if d.is_dir()}
mask_seqs = {d.name for d in masks_dir.iterdir() if d.is_dir()}
seqs = sorted(list(success_seqs & mask_seqs), key=natural_key)
results = []
from tqdm import tqdm
for i, name in tqdm(enumerate(seqs)):
info = process_sequence(name, task_dir, out_root, sequence_rename=f'demo_{i+1}')
write_episode(
out_dir=args.out_root,
task_name=info['task_description'],
episode=info,
)
# # Write a small manifest JSON
# manifest = {"task": task_name, "outputs": results}
# (out_root / f"{task_name}_manifest.json").write_text(json.dumps(manifest, indent=2))
# print(f"[DONE] Manifest saved to {out_root / (task_name + '_manifest.json')}")
if __name__ == "__main__":
main()