|
|
""" |
|
|
Convert a single task folder with sequences into LIBERO-like demos with fields: |
|
|
|
|
|
actions, gripper_states, joint_states, robot_states, ee_states, |
|
|
agentview_images, eye_in_hand_images, agentview_depths, eye_in_hand_depths, |
|
|
agentview_segs, eye_in_hand_segs, agentview_boxes, eye_in_hand_boxes, |
|
|
rewards, dones |
|
|
|
|
|
Expected layout (per task): |
|
|
taskX/ |
|
|
success/ |
|
|
<seq_name>/ |
|
|
camera_base.mp4 # agentview RGB |
|
|
camera_wrist.mp4 # eye-in-hand RGB |
|
|
trajectory.pkl # dict-like (see below) |
|
|
masks/ |
|
|
<seq_name>/ |
|
|
masks/ |
|
|
000000_id1.png, 000000_id2.png, 000001_id1.png, ... |
|
|
|
|
|
We infer T (timesteps) from trajectory.pkl (preferred keys: robot_gripper_pose, timestamp). |
|
|
We parse mask PNGs named "{frame:06d}_id{instance}.png" into a per-frame label map, |
|
|
and compute per-frame boxes per instance id. |
|
|
|
|
|
Trajectory .pkl keys (examples): |
|
|
['robot_eef_pose', 'robot_eef_pose_vel', 'robot_joint', 'robot_joint_vel', |
|
|
'robot_gripper_pose', 'timestamp', 'task_description'] |
|
|
|
|
|
Actions policy: |
|
|
- If 'robot_joint_vel' exists: actions = robot_joint_vel (T, DoF) |
|
|
- Else if 'robot_eef_pose_vel' exists: actions = robot_eef_pose_vel (T, 6/7) |
|
|
- Else: finite-difference of 'robot_joint' (pad last row with zeros). |
|
|
|
|
|
Depth and eye-in-hand segs: |
|
|
- If no depth available, we create zero arrays with the correct length and frame shape. |
|
|
- If only one set of masks exists (agentview), we mirror it to eye-in-hand segs for compatibility. |
|
|
|
|
|
Boxes: |
|
|
- Stored in metainfo JSON as lists of [x1,y1,x2,y2] per frame (pixel coords). |
|
|
|
|
|
Requires: numpy, opencv-python, h5py, pillow (PIL) |
|
|
""" |
|
|
import argparse, json, os, pickle, re, sys |
|
|
from dataclasses import dataclass |
|
|
from pathlib import Path |
|
|
from typing import List, Tuple, Dict, Sequence, Optional, Any |
|
|
import imageio |
|
|
|
|
|
import numpy as np |
|
|
import h5py |
|
|
import cv2 |
|
|
|
|
|
from PIL import Image |
|
|
|
|
|
MASK_RE = re.compile(r'^(?P<frame>\d+)_id(?P<inst>\d+)\.(?:png|jpg|jpeg|bmp)$', re.IGNORECASE) |
|
|
|
|
|
|
|
|
|
|
|
def _ensure_uint8_rgb(img: np.ndarray) -> np.ndarray: |
|
|
arr = np.asarray(img) |
|
|
if arr.ndim == 2: arr = np.stack([arr]*3, axis=-1) |
|
|
if arr.shape[-1] == 4: arr = arr[..., :3] |
|
|
if arr.dtype != np.uint8: |
|
|
if np.issubdtype(arr.dtype, np.floating) and arr.max() <= 1.0: |
|
|
arr = (arr * 255.0 + 0.5).astype(np.uint8) |
|
|
else: |
|
|
arr = np.clip(arr, 0, 255).astype(np.uint8) |
|
|
return arr |
|
|
|
|
|
def _label_to_color(label_map: np.ndarray, |
|
|
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None): |
|
|
H, W = label_map.shape |
|
|
colored = np.zeros((H, W, 3), dtype=np.uint8) |
|
|
color_map = {} if color_map is None else dict(color_map) |
|
|
for lid in np.unique(label_map): |
|
|
if lid == 0: continue |
|
|
if lid not in color_map: |
|
|
rng = np.random.RandomState(lid * 9973 % (2**31-1)) |
|
|
color_map[lid] = tuple(int(x) for x in rng.randint(40, 220, size=3)) |
|
|
colored[label_map == lid] = color_map[lid] |
|
|
return colored, color_map |
|
|
|
|
|
def _overlay(rgb: np.ndarray, over_rgb: np.ndarray, alpha: float = 0.5) -> np.ndarray: |
|
|
out = (1.0 - alpha) * rgb.astype(np.float32) + alpha * over_rgb.astype(np.float32) |
|
|
return np.clip(out, 0, 255).astype(np.uint8) |
|
|
|
|
|
def _draw_bboxes(rgb: np.ndarray, |
|
|
bboxes: Sequence[Tuple[int, Sequence[int]]], |
|
|
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None) -> np.ndarray: |
|
|
img = rgb.copy() |
|
|
color_map = {} if color_map is None else color_map |
|
|
defined_labels = {'id40': 'bottle 1', |
|
|
'id20': 'bottle 2', |
|
|
'id60': 'bowl 1', |
|
|
'id100': 'robot', |
|
|
'id80': 'bowl 1'} |
|
|
for seg_id, box in bboxes: |
|
|
x, y, x2, y2 = [int(v) for v in box] |
|
|
if seg_id not in color_map: |
|
|
rng = np.random.RandomState(seg_id * 9973 % (2**31-1)) |
|
|
color_map[seg_id] = tuple(int(x) for x in rng.randint(40, 220, size=3)) |
|
|
bgr = color_map[seg_id][::-1] |
|
|
cv2.rectangle(img, (x, y), (x2, y2), bgr, 2) |
|
|
label = defined_labels[f"id{seg_id}"] |
|
|
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
|
cv2.rectangle(img, (x, y - th - 4), (x + tw + 4, y), bgr, -1) |
|
|
cv2.putText(img, label, (x + 2, y - 4), |
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA) |
|
|
return img |
|
|
|
|
|
|
|
|
def save_annotation_video_imageio( |
|
|
agentview_images: List[np.ndarray], |
|
|
agentview_segs: List[np.ndarray], |
|
|
agentview_bboxes: List[List[Tuple[int, Sequence[int]]]], |
|
|
out_path: str, |
|
|
fps: int = 20, |
|
|
resize: Optional[Tuple[int,int]] = None, |
|
|
seg_alpha: float = 0.5, |
|
|
layout: str = "hstack" |
|
|
) -> str: |
|
|
"""Save annotated rollout video with raw | bbox | seg-overlay panels using imageio.""" |
|
|
assert len(agentview_images) == len(agentview_segs) == len(agentview_bboxes) |
|
|
T = len(agentview_images) |
|
|
if T == 0: |
|
|
raise ValueError("No frames to render") |
|
|
|
|
|
imgs = [_ensure_uint8_rgb(f) for f in agentview_images] |
|
|
segs = [np.asarray(s, dtype=np.int32) for s in agentview_segs] |
|
|
|
|
|
H, W = imgs[0].shape[:2] |
|
|
if resize is not None: |
|
|
W, H = resize |
|
|
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) for im in imgs] |
|
|
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) for s in segs] |
|
|
else: |
|
|
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) if im.shape[:2] != (H, W) else im for im in imgs] |
|
|
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) if s.shape != (H, W) else s for s in segs] |
|
|
|
|
|
color_map: Dict[int, Tuple[int,int,int]] = {} |
|
|
|
|
|
def compose(t: int) -> np.ndarray: |
|
|
raw = imgs[t] |
|
|
box_img = _draw_bboxes(raw, agentview_bboxes[t], color_map=color_map) |
|
|
seg_col, cm2 = _label_to_color(segs[t], color_map=color_map) |
|
|
color_map.update(cm2) |
|
|
seg_overlay = _overlay(raw, seg_col, alpha=seg_alpha) |
|
|
if layout == "hstack": |
|
|
return np.concatenate([raw, box_img, seg_overlay], axis=1) |
|
|
else: |
|
|
top = np.concatenate([raw, box_img], axis=1) |
|
|
bot = np.concatenate([seg_overlay, seg_col], axis=1) |
|
|
return np.concatenate([top, bot], axis=0) |
|
|
|
|
|
|
|
|
with imageio.get_writer(out_path, fps=fps, codec="libx264") as writer: |
|
|
for t in range(T): |
|
|
frame = compose(t) |
|
|
writer.append_data(frame) |
|
|
|
|
|
return out_path |
|
|
|
|
|
def natural_key(s: str): |
|
|
return [int(t) if t.isdigit() else t.lower() for t in re.split(r"(\d+)", s)] |
|
|
|
|
|
def process_gripper_pose(robot_gripper_pose): |
|
|
raw = np.array(robot_gripper_pose) |
|
|
|
|
|
state = raw.astype(np.int32) |
|
|
|
|
|
|
|
|
delta = np.zeros_like(state[:-1]) |
|
|
prev = -1 |
|
|
for t in range(0, len(state)-1): |
|
|
if state[t] != state[t+1]: |
|
|
delta[t] = 1 if state[t] < state[t+1] else -1 |
|
|
prev = delta[t] |
|
|
else: |
|
|
delta[t] = prev |
|
|
|
|
|
return delta |
|
|
|
|
|
def process_video_rgb(path: Path) -> List[np.ndarray]: |
|
|
if cv2 is None: |
|
|
raise RuntimeError("OpenCV not available. Please install opencv-python.") |
|
|
cap = cv2.VideoCapture(str(path)) |
|
|
if not cap.isOpened(): |
|
|
raise RuntimeError(f"Cannot open video: {path}") |
|
|
frames = [] |
|
|
while True: |
|
|
ok, frame = cap.read() |
|
|
if not ok: |
|
|
break |
|
|
|
|
|
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_LINEAR) |
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
frames.append(frame) |
|
|
cap.release() |
|
|
return frames |
|
|
|
|
|
def parse_masks_dir(H, W, masks_dir: Path) -> Dict[int, Dict[int, np.ndarray]]: |
|
|
""" |
|
|
Return nested dict: frame_idx -> {inst_id -> binary mask (H,W,1)} |
|
|
""" |
|
|
out: Dict[int, Dict[int, np.ndarray]] = {} |
|
|
for f in sorted(masks_dir.iterdir(), key=lambda x: natural_key(x.name)): |
|
|
if not f.is_file(): continue |
|
|
m = MASK_RE.match(f.name) |
|
|
if not m: continue |
|
|
frame = int(m.group("frame")) |
|
|
inst = int(m.group("inst")) |
|
|
arr = np.array(Image.open(f).convert("L").resize((W, H))) |
|
|
bin_mask = (arr > 0).astype(np.uint8)[..., None] |
|
|
out.setdefault(frame, {})[inst] = bin_mask |
|
|
return out |
|
|
|
|
|
def labelmap_and_boxes(H, W, per_inst: Dict[int, np.ndarray]) -> Tuple[np.ndarray, List[List[int]]]: |
|
|
""" |
|
|
From {inst_id -> (H,W,1) mask}, build label map (H,W) with labels 30..K*30, |
|
|
and compute boxes as [x1,y1,x2,y2] for each instance (label>0), in order of inst_id. |
|
|
Returns (labelmap, boxes) |
|
|
""" |
|
|
if not per_inst: |
|
|
return np.zeros((H,W,1), dtype=np.int32), [] |
|
|
|
|
|
labelmap = np.zeros((H,W,1), dtype=np.int32) |
|
|
boxes: List[List[int]] = [] |
|
|
|
|
|
for idx, inst_id in enumerate(sorted(per_inst.keys())): |
|
|
m = per_inst[inst_id][..., 0].astype(bool) |
|
|
label = (idx + 1)*20 |
|
|
labelmap[m] = label |
|
|
|
|
|
ys, xs = np.where(m) |
|
|
if len(xs) == 0 or len(ys) == 0: |
|
|
pass |
|
|
else: |
|
|
x1, x2 = int(xs.min()), int(xs.max()) |
|
|
y1, y2 = int(ys.min()), int(ys.max()) |
|
|
boxes.append([label, [x1, y1, x2, y2]]) |
|
|
return labelmap, boxes |
|
|
|
|
|
def detect_noops_with_gripper_window( |
|
|
actions: np.ndarray, |
|
|
gripper_col: int = -1, |
|
|
tol: float = 1e-6, |
|
|
window: int = 6, |
|
|
): |
|
|
""" |
|
|
Return a boolean vector is_noop[T] where True marks a no-op step. |
|
|
A step is no-op if (a) all non-gripper dims are ~0 (|x|<tol), and |
|
|
(b) it's not within `window` frames after a gripper open/close change. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
actions : (T, D) array |
|
|
Action vectors over time. |
|
|
gripper_col : int |
|
|
Index of the gripper signal column (default: last col). |
|
|
tol : float |
|
|
Tolerance to treat movement dims as zero. |
|
|
window : int |
|
|
Number of frames after a gripper state change to mark as active (non-noop). |
|
|
|
|
|
Returns |
|
|
------- |
|
|
is_noop : (T,) bool array |
|
|
True where the step is considered a no-op. |
|
|
active_gripper_window : (T,) bool array |
|
|
True where we are within the post-change window (non-noop region). |
|
|
""" |
|
|
a = np.asarray(actions) |
|
|
assert a.ndim == 2 and a.shape[0] > 0, "actions must be (T, D)" |
|
|
T, D = a.shape |
|
|
|
|
|
|
|
|
if gripper_col < 0: |
|
|
g_idx = D + gripper_col |
|
|
else: |
|
|
g_idx = gripper_col |
|
|
assert 0 <= g_idx < D |
|
|
|
|
|
if D > 1: |
|
|
move = np.concatenate([a[:, :g_idx], a[:, g_idx+1:]], axis=1) |
|
|
movement_noop = np.all(np.abs(move) < tol, axis=1) |
|
|
else: |
|
|
movement_noop = np.ones(T, dtype=bool) |
|
|
|
|
|
|
|
|
g = a[:, g_idx] |
|
|
|
|
|
|
|
|
|
|
|
state = (g > 0).astype(np.int8) |
|
|
|
|
|
|
|
|
changes = np.flatnonzero(np.diff(state, prepend=state[0]) != 0) |
|
|
|
|
|
active_gripper_window = np.zeros(T, dtype=bool) |
|
|
for t0 in changes: |
|
|
t1 = min(t0 + window, T) |
|
|
active_gripper_window[t0:t1] = True |
|
|
|
|
|
|
|
|
is_noop = movement_noop & (~active_gripper_window) |
|
|
return is_noop, active_gripper_window |
|
|
|
|
|
def process_sequence(seq_name: str, task_dir: Path, out_dir: Path, sequence_rename: Path): |
|
|
s_dir = task_dir / "success" / seq_name |
|
|
m_dir = task_dir / "masks" / seq_name / "masks" |
|
|
|
|
|
|
|
|
pkl_path = s_dir / "trajectory.pkl" |
|
|
with open(pkl_path, "rb") as f: |
|
|
traj = pickle.load(f) |
|
|
|
|
|
task_description = traj['task_description'].lower().replace('.', '') |
|
|
T = len(traj['robot_eef_pose']) - 1 |
|
|
|
|
|
delta_eef = traj['robot_eef_pose'][1:,:] - traj['robot_eef_pose'][:-1,:] |
|
|
delta_gripper = process_gripper_pose(traj['robot_gripper_pose']) |
|
|
delta_gripper = delta_gripper.reshape(T, 1) |
|
|
actions = np.concatenate([delta_eef, delta_gripper], axis=1) |
|
|
|
|
|
|
|
|
base_vid = s_dir / "camera_base.mp4" |
|
|
agentview_images = process_video_rgb(base_vid) |
|
|
agentview_images = agentview_images[:T] |
|
|
H, W, _ = agentview_images[0].shape |
|
|
|
|
|
|
|
|
per_frame = parse_masks_dir(H, W, m_dir) |
|
|
agentview_segs = [] |
|
|
agentview_bboxes = [] |
|
|
|
|
|
for t, inst_dict in per_frame.items(): |
|
|
if t >= T: continue |
|
|
labelmap, boxes = labelmap_and_boxes(H, W, inst_dict) |
|
|
if labelmap.size == 0: |
|
|
continue |
|
|
if (labelmap.shape[0] != H) or (labelmap.shape[1] != W): |
|
|
|
|
|
labelmap = np.array(Image.fromarray(labelmap.astype(np.int32)).resize((W, H), resample=Image.NEAREST)) |
|
|
agentview_segs.append(labelmap) |
|
|
agentview_bboxes.append(boxes) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = { |
|
|
"episode_key": sequence_rename, |
|
|
"agentview_images": agentview_images, |
|
|
"agentview_segs": agentview_segs, |
|
|
"agentview_boxes": agentview_bboxes, |
|
|
"actions": actions, |
|
|
"task_description": task_description, |
|
|
} |
|
|
return data |
|
|
|
|
|
def write_episode( |
|
|
out_dir: str, |
|
|
task_name: str, |
|
|
episode: Dict[str, Any], |
|
|
): |
|
|
""" |
|
|
{ |
|
|
"episode_key": "20250711-13h_52m_58s", |
|
|
"agentview_images": [...], # list[(H,W,3) uint8] |
|
|
"agentview_segs": [...], # list[(H,W) int] |
|
|
"agentview_boxes": [...], # list[list[(id, [x,y,w,h])]] |
|
|
"actions": np.ndarray or None, # (T,D) |
|
|
"task_description": "string", # optional |
|
|
}, |
|
|
""" |
|
|
episode_key = episode["episode_key"] |
|
|
h5_filename = f"{task_name}_{episode_key}.hdf5" |
|
|
meta_filename = f"{task_name}_{episode_key}_metainfo.json" |
|
|
|
|
|
h5_path = os.path.join(out_dir, h5_filename) |
|
|
meta_path = os.path.join(out_dir, meta_filename) |
|
|
|
|
|
|
|
|
if os.path.exists(meta_path): |
|
|
with open(meta_path, "r") as f: |
|
|
metainfo = json.load(f) |
|
|
else: |
|
|
metainfo = {task_name: {}} |
|
|
|
|
|
with h5py.File(h5_path, "a") as f: |
|
|
root = f.require_group("data") |
|
|
ep = episode |
|
|
episode_key = ep["episode_key"] |
|
|
agentview_images = ep["agentview_images"] |
|
|
agentview_segs = ep["agentview_segs"] |
|
|
agentview_boxes = ep["agentview_boxes"] |
|
|
actions = ep.get("actions", None) |
|
|
task_description = ep.get("task_description", "") |
|
|
|
|
|
|
|
|
lens = [len(agentview_images), len(agentview_segs), len(agentview_boxes)] |
|
|
if actions is not None: lens.append(len(actions)) |
|
|
T = min(l for l in lens if l > 0) |
|
|
assert T > 0, f"[{episode_key}] nothing to write" |
|
|
|
|
|
agentview_images = agentview_images[:T] |
|
|
agentview_segs = agentview_segs[:T] |
|
|
agentview_boxes = agentview_boxes[:T] |
|
|
if actions is None: |
|
|
actions = np.zeros((T, 1), dtype=np.float32) |
|
|
else: |
|
|
actions = np.asarray(actions)[:T] |
|
|
|
|
|
|
|
|
agentview_rgb = np.stack(agentview_images, axis=0) |
|
|
agentview_seg = np.stack([np.asarray(s, dtype=np.int32) for s in agentview_segs], axis=0) |
|
|
_, H, W, _ = agentview_seg.shape |
|
|
|
|
|
|
|
|
eye_in_hand_rgb = np.zeros_like(agentview_rgb, dtype=np.uint8) |
|
|
agentview_depth = np.zeros((T, H, W), dtype=np.float32) |
|
|
eye_in_hand_depth = np.zeros((T, H, W), dtype=np.float32) |
|
|
eye_in_hand_seg = np.zeros((T, H, W), dtype=np.int32) |
|
|
|
|
|
gripper_states = np.zeros((T, 1), dtype=np.float32) |
|
|
joint_states = np.zeros((T, 0), dtype=np.float32) |
|
|
ee_states = np.zeros((T, 6), dtype=np.float32) |
|
|
robot_states = np.zeros((T, 0), dtype=np.float32) |
|
|
|
|
|
dones = np.zeros(T, dtype=np.uint8); dones[-1] = 1 |
|
|
rewards = np.zeros(T, dtype=np.uint8); rewards[-1] = 1 |
|
|
|
|
|
|
|
|
if episode_key in root: |
|
|
del root[episode_key] |
|
|
ep_grp = root.create_group(episode_key) |
|
|
obs_grp = ep_grp.create_group("obs") |
|
|
|
|
|
|
|
|
obs_grp.create_dataset("gripper_states", data=gripper_states) |
|
|
obs_grp.create_dataset("joint_states", data=joint_states) |
|
|
obs_grp.create_dataset("ee_states", data=ee_states) |
|
|
obs_grp.create_dataset("ee_pos", data=ee_states[:, :3]) |
|
|
obs_grp.create_dataset("ee_ori", data=ee_states[:, 3:]) |
|
|
|
|
|
|
|
|
obs_grp.create_dataset("agentview_rgb", data=agentview_rgb) |
|
|
obs_grp.create_dataset("eye_in_hand_rgb", data=eye_in_hand_rgb) |
|
|
obs_grp.create_dataset("agentview_depth", data=agentview_depth) |
|
|
obs_grp.create_dataset("eye_in_hand_depth", data=eye_in_hand_depth) |
|
|
obs_grp.create_dataset("agentview_seg", data=agentview_seg) |
|
|
obs_grp.create_dataset("eye_in_hand_seg", data=eye_in_hand_seg) |
|
|
|
|
|
|
|
|
ep_grp.create_dataset("actions", data=actions) |
|
|
ep_grp.create_dataset("robot_states", data=robot_states) |
|
|
ep_grp.create_dataset("rewards", data=rewards) |
|
|
ep_grp.create_dataset("dones", data=dones) |
|
|
|
|
|
|
|
|
if task_name not in metainfo: |
|
|
metainfo[task_name] = {} |
|
|
if episode_key not in metainfo[task_name]: |
|
|
metainfo[task_name][episode_key] = {} |
|
|
|
|
|
metainfo[task_name][episode_key].update({ |
|
|
"success": True, |
|
|
"initial_state": robot_states[0].tolist() if len(robot_states) else [], |
|
|
"task_nouns": [], |
|
|
"task_description": task_description, |
|
|
"exo_boxes": agentview_boxes, |
|
|
"ego_boxes": [[] for _ in range(T)], |
|
|
}) |
|
|
|
|
|
|
|
|
with open(meta_path, "w") as f: |
|
|
json.dump(metainfo, f, indent=2) |
|
|
|
|
|
return {"hdf5": h5_path, "metainfo": meta_path} |
|
|
|
|
|
def main(): |
|
|
p = argparse.ArgumentParser(description="Convert sequences to LIBERO-like demos.") |
|
|
p.add_argument("--task_dir", type=str, help="Path to task folder (contains success/ and masks/).") |
|
|
p.add_argument("--out_root", type=str, required=True, help="Target directory where <task_name>/<task_name>_<seq>.hdf5 is written.") |
|
|
args = p.parse_args() |
|
|
|
|
|
task_dir = Path(args.task_dir).expanduser().resolve() |
|
|
task_name = task_dir.name |
|
|
out_root = Path(args.out_root).expanduser().resolve() |
|
|
out_root.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
success_dir = task_dir / "success" |
|
|
masks_dir = task_dir / "masks" |
|
|
if not success_dir.is_dir() or not masks_dir.is_dir(): |
|
|
print("[ERROR] task_dir must contain 'success/' and 'masks/'") |
|
|
sys.exit(1) |
|
|
|
|
|
success_seqs = {d.name for d in success_dir.iterdir() if d.is_dir()} |
|
|
mask_seqs = {d.name for d in masks_dir.iterdir() if d.is_dir()} |
|
|
seqs = sorted(list(success_seqs & mask_seqs), key=natural_key) |
|
|
|
|
|
results = [] |
|
|
from tqdm import tqdm |
|
|
for i, name in tqdm(enumerate(seqs)): |
|
|
info = process_sequence(name, task_dir, out_root, sequence_rename=f'demo_{i+1}') |
|
|
|
|
|
write_episode( |
|
|
out_dir=args.out_root, |
|
|
task_name=info['task_description'], |
|
|
episode=info, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|