paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/interest-aware-message-passing-gcn-for
|
Interest-aware Message-Passing GCN for Recommendation
|
2102.10044
|
https://arxiv.org/abs/2102.10044v2
|
https://arxiv.org/pdf/2102.10044v2.pdf
|
https://github.com/liufancs/IMP_GCN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/robust-single-rotation-averaging
|
Robust Single Rotation Averaging
|
2004.00732
|
https://arxiv.org/abs/2004.00732v4
|
https://arxiv.org/pdf/2004.00732v4.pdf
|
https://github.com/sunghoon031/RobustSingleRotationAveraging
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/open-heterogeneous-data-for-condition
|
Open Heterogeneous Data for Condition Monitoring of Multi Faults in Rotating Machines Used in Different Operating Conditions
| null |
https://doi.org/10.36001/ijphm.2023.v14i2.3497
|
https://doi.org/10.36001/ijphm.2023.v14i2.3497
|
https://github.com/khaledbenag/machinery
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/spinart-a-spin-based-verifier-for-artifact
|
SpinArt: A Spin-based Verifier for Artifact Systems
|
1705.09427
|
http://arxiv.org/abs/1705.09427v3
|
http://arxiv.org/pdf/1705.09427v3.pdf
|
https://github.com/oi02lyl/has-verifier
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/verifas-a-practical-verifier-for-artifact
|
VERIFAS: A Practical Verifier for Artifact Systems
|
1705.10007
|
http://arxiv.org/abs/1705.10007v3
|
http://arxiv.org/pdf/1705.10007v3.pdf
|
https://github.com/oi02lyl/has-verifier
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/place-recognition-in-forests-with-urquhart
|
Place Recognition in Forests with Urquhart Tessellations
|
2010.03026
|
https://arxiv.org/abs/2010.03026v2
|
https://arxiv.org/pdf/2010.03026v2.pdf
|
https://github.com/gnardari/urquhart
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/multi-timescale-memory-dynamics-in-a
|
Multi-timescale memory dynamics in a reinforcement learning network with attention-gated memory
|
1712.10062
|
http://arxiv.org/abs/1712.10062v1
|
http://arxiv.org/pdf/1712.10062v1.pdf
|
https://github.com/martin592/hybrid_AuGMEnT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/understanding-the-lomb-scargle-periodogram
|
Understanding the Lomb-Scargle Periodogram
|
1703.09824
|
https://arxiv.org/abs/1703.09824v1
|
https://arxiv.org/pdf/1703.09824v1.pdf
|
https://github.com/jakevdp/PracticalLombScargle
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-pyramidal-residual-networks
|
Deep Pyramidal Residual Networks
|
1610.02915
|
http://arxiv.org/abs/1610.02915v4
|
http://arxiv.org/pdf/1610.02915v4.pdf
|
https://github.com/epfl-ml-reproducers/subspace-attack-reproduction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/parton-labeling-without-matching-unveiling
|
Parton Labeling without Matching: Unveiling Emergent Labelling Capabilities in Regression Models
|
2304.09208
|
https://arxiv.org/abs/2304.09208v2
|
https://arxiv.org/pdf/2304.09208v2.pdf
|
https://github.com/hep-lbdl/covariant-particle-transformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/biomedical-and-clinical-english-model
|
Biomedical and Clinical English Model Packages in the Stanza Python NLP Library
|
2007.14640
|
https://arxiv.org/abs/2007.14640v1
|
https://arxiv.org/pdf/2007.14640v1.pdf
|
https://github.com/napakalas/NLIMED
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/provably-good-batch-reinforcement-learning
|
Provably Good Batch Reinforcement Learning Without Great Exploration
|
2007.08202
|
https://arxiv.org/abs/2007.08202v2
|
https://arxiv.org/pdf/2007.08202v2.pdf
|
https://github.com/yaoliucs/PQL
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scalable-comparative-visualization-of
|
Scalable Comparative Visualization of Ensembles of Call Graphs
|
2007.01395
|
https://arxiv.org/abs/2007.01395v1
|
https://arxiv.org/pdf/2007.01395v1.pdf
|
https://github.com/LLNL/CallFlow
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fast-and-robust-comparison-of-probability
|
Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces
|
2002.01615
|
https://arxiv.org/abs/2002.01615v3
|
https://arxiv.org/pdf/2002.01615v3.pdf
|
https://github.com/joisino/anchor-energy
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/sandeepmukh/pigcasso-electron
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/closing-the-loop-fast-interactive-semi
|
Closing the Loop: Fast, Interactive Semi-Supervised Annotation With Queries on Features and Instances
| null |
https://aclanthology.org/D11-1136/
|
https://aclanthology.org/D11-1136.pdf
|
https://github.com/burrsettles/dualist
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/behavioral-factors-in-interactive-training-of
|
Behavioral Factors in Interactive Training of Text Classifiers
| null |
https://aclanthology.info/papers/N12-1066/n12-1066
|
https://www.aclweb.org/anthology/N12-1066v2
|
https://github.com/burrsettles/dualist
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/simultaneous-translation-and-paraphrase-for
|
Simultaneous Translation and Paraphrase for Language Education
| null |
https://aclanthology.org/2020.ngt-1.28
|
https://aclanthology.org/2020.ngt-1.28.pdf
|
https://github.com/duolingo/duolingo-sharedtask-2020
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/selective-inference-after-likelihood-or-test
|
Selective inference after likelihood- or test-based model selection in linear models
|
1706.09796
|
http://arxiv.org/abs/1706.09796v3
|
http://arxiv.org/pdf/1706.09796v3.pdf
|
https://github.com/davidruegamer/coinflibs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lcsk-practical-similarity-metric-for-long
|
$LCSk$++: Practical similarity metric for long strings
|
1407.2407
|
https://arxiv.org/abs/1407.2407v1
|
https://arxiv.org/pdf/1407.2407v1.pdf
|
https://github.com/fpavetic/lcskpp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/analyzing-2-3-million-maven-dependencies-to
|
API Beauty is in the eye of the Clients: 2.2 Million Maven Dependencies reveal the Spectrum of Client-API Usages
|
1908.09757
|
https://arxiv.org/abs/1908.09757v2
|
https://arxiv.org/pdf/1908.09757v2.pdf
|
https://github.com/castor-software/core-83
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/solc-verify-a-modular-verifier-for-solidity
|
solc-verify: A Modular Verifier for Solidity Smart Contracts
|
1907.04262
|
http://arxiv.org/abs/1907.04262v2
|
http://arxiv.org/pdf/1907.04262v2.pdf
|
https://github.com/SRI-CSL/solidity
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/jumping-var-order-statistics-volatility
|
Jumping VaR: Order Statistics Volatility Estimator for Jumps Classification and Market Risk Modeling
|
1803.07021
|
http://arxiv.org/abs/1803.07021v2
|
http://arxiv.org/pdf/1803.07021v2.pdf
|
https://github.com/sigmaquadro/VolatilityEstimator
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mqtt-st-a-spanning-tree-protocol-for
|
MQTT-ST: a Spanning Tree Protocol for Distributed MQTT Brokers
|
1911.07622
|
http://arxiv.org/abs/1911.07622v1
|
http://arxiv.org/pdf/1911.07622v1.pdf
|
https://github.com/ANTLab-polimi/mosquitto
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-ensemble-of-weighted-viterbi-decoders
|
Deep Ensemble of Weighted Viterbi Decoders for Tail-Biting Convolutional Codes
|
2009.02591
|
https://arxiv.org/abs/2009.02591v4
|
https://arxiv.org/pdf/2009.02591v4.pdf
|
https://github.com/tomerraviv95/TailBitingCC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/spatiotemporal-mapping-of-malaria-prevalence
|
Spatiotemporal mapping of malaria prevalence in Madagascar using routine surveillance and health survey data
|
2008.08358
|
http://arxiv.org/abs/2008.08358v1
|
http://arxiv.org/pdf/2008.08358v1.pdf
|
https://github.com/rarambepola/Prevalence-Madagascar
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/implementation-of-high-order-discontinuous
|
Implementation of high-order, discontinuous Galerkin time stepping for fractional diffusion problems
|
2003.09805
|
http://arxiv.org/abs/2003.09805v1
|
http://arxiv.org/pdf/2003.09805v1.pdf
|
https://github.com/billmclean/FractionalTimeDG.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-distillation-as-instance-specific-label
|
Self-Distillation as Instance-Specific Label Smoothing
|
2006.05065
|
https://arxiv.org/abs/2006.05065v2
|
https://arxiv.org/pdf/2006.05065v2.pdf
|
https://github.com/ZhiluZhang123/neurips_2020_distillation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/attacking-recommender-systems-with-augmented
|
Attacking Recommender Systems with Augmented User Profiles
|
2005.08164
|
https://arxiv.org/abs/2005.08164v2
|
https://arxiv.org/pdf/2005.08164v2.pdf
|
https://github.com/XMUDM/AUSH
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/smt-friendly-formalization-of-the-solidity
|
SMT-Friendly Formalization of the Solidity Memory Model
|
2001.03256
|
http://arxiv.org/abs/2001.03256v2
|
http://arxiv.org/pdf/2001.03256v2.pdf
|
https://github.com/SRI-CSL/solidity
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-reynolds-robust-preconditioner-for-the
|
A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations
|
2004.09398
|
https://arxiv.org/abs/2004.09398v3
|
https://arxiv.org/pdf/2004.09398v3.pdf
|
https://github.com/florianwechsung/alfi
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-subtraction-scheme-for-massive-qed
|
A subtraction scheme for massive QED
|
1909.10244
|
http://arxiv.org/abs/1909.10244v2
|
http://arxiv.org/pdf/1909.10244v2.pdf
|
https://gitlab.com/mule-tools/manual
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ask2transformers-zero-shot-domain-labelling
|
Ask2Transformers: Zero-Shot Domain labelling with Pre-trained Language Models
|
2101.02661
|
https://arxiv.org/abs/2101.02661v2
|
https://arxiv.org/pdf/2101.02661v2.pdf
|
https://github.com/osainz59/Ask2Transformers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/covid-19-deterioration-prediction-via-self
|
COVID-19 Prognosis via Self-Supervised Representation Learning and Multi-Image Prediction
|
2101.04909
|
https://arxiv.org/abs/2101.04909v2
|
https://arxiv.org/pdf/2101.04909v2.pdf
|
https://github.com/facebookresearch/CovidPrognosis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/other-roles-matter-enhancing-role-oriented-1
|
Other Roles Matter! Enhancing Role-Oriented Dialogue Summarization via Role Interactions
|
2205.13190
|
https://arxiv.org/abs/2205.13190v1
|
https://arxiv.org/pdf/2205.13190v1.pdf
|
https://github.com/xiaolinandy/rods
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/efficient-machine-translation-domain-1
|
Efficient Machine Translation Domain Adaptation
|
2204.12608
|
https://arxiv.org/abs/2204.12608v1
|
https://arxiv.org/pdf/2204.12608v1.pdf
|
https://github.com/deep-spin/efficient_knn_mt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/who-said-what-modeling-individual-labelers
|
Who Said What: Modeling Individual Labelers Improves Classification
|
1703.08774
|
http://arxiv.org/abs/1703.08774v2
|
http://arxiv.org/pdf/1703.08774v2.pdf
|
https://github.com/seunghyukcho/doctornet-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/monte-carlo-experiments-of-network-effects-in
|
Monte Carlo Experiments of Network Effects in Randomized Controlled Trials
|
2312.01607
|
https://arxiv.org/abs/2312.01607v1
|
https://arxiv.org/pdf/2312.01607v1.pdf
|
https://github.com/mtrencseni/monte-carlo-network-effects-rct-2023
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/whiteningbert-an-easy-unsupervised-sentence
|
WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
|
2104.01767
|
https://arxiv.org/abs/2104.01767v3
|
https://arxiv.org/pdf/2104.01767v3.pdf
|
https://github.com/Jun-jie-Huang/WhiteningBERT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stargan-vc-non-parallel-many-to-many-voice
|
StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks
|
1806.02169
|
http://arxiv.org/abs/1806.02169v2
|
http://arxiv.org/pdf/1806.02169v2.pdf
|
https://github.com/MindSpore-paper-code-2/code3/tree/main/StarGAN
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/gravitational-lensing-formalism-in-a-curved
|
Gravitational lensing formalism in a curved arc basis: A continuous description of observables and degeneracies from the weak to the strong lensing regime
|
2104.09522
|
https://arxiv.org/abs/2104.09522v2
|
https://arxiv.org/pdf/2104.09522v2.pdf
|
https://github.com/sibirrer/curved_arcs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/meloppr-software-hardware-co-design-for
|
MELOPPR: Software/Hardware Co-design for Memory-efficient Low-latency Personalized PageRank
|
2104.09616
|
https://arxiv.org/abs/2104.09616v1
|
https://arxiv.org/pdf/2104.09616v1.pdf
|
https://github.com/sharc-lab/MeLoPPR
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-hierarchical-item-categories-from
|
Learning Hierarchical Item Categories from Implicit Feedback Data for Efficient Recommendations and Browsing
|
1806.02056
|
https://arxiv.org/abs/1806.02056v2
|
https://arxiv.org/pdf/1806.02056v2.pdf
|
https://github.com/fkhawar/Conformative-Filtering
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/natural-language-inference-in-context
|
Natural Language Inference in Context -- Investigating Contextual Reasoning over Long Texts
|
2011.04864
|
https://arxiv.org/abs/2011.04864v1
|
https://arxiv.org/pdf/2011.04864v1.pdf
|
https://github.com/csitfun/ConTRoL-dataset
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/challenges-in-data-to-document-generation
|
Challenges in Data-to-Document Generation
|
1707.08052
|
http://arxiv.org/abs/1707.08052v1
|
http://arxiv.org/pdf/1707.08052v1.pdf
|
https://github.com/KaijuML/rotowire-rg-metric
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/seeking-quality-diversity-in-evolutionary-co
|
Seeking Quality Diversity in Evolutionary Co-design of Morphology and Control of Soft Tensegrity Modular Robots
|
2104.12175
|
https://arxiv.org/abs/2104.12175v1
|
https://arxiv.org/pdf/2104.12175v1.pdf
|
https://github.com/lis-epfl/Tensoft-G21
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/viewport-aware-dynamic-360deg-video-segment
|
Viewport-Aware Dynamic 360° Video Segment Categorization
|
2105.01701
|
https://arxiv.org/abs/2105.01701v2
|
https://arxiv.org/pdf/2105.01701v2.pdf
|
https://github.com/theamaya/Viewport-Aware-Dynamic-360-Video-Segment-Categorization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/provable-repair-of-deep-neural-networks
|
Provable Repair of Deep Neural Networks
|
2104.04413
|
https://arxiv.org/abs/2104.04413v2
|
https://arxiv.org/pdf/2104.04413v2.pdf
|
https://github.com/95616ARG/PRDNN
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/k-lombard/CS4641_Project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/feature-adaptation-of-pre-trained-language
|
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
|
2009.11538
|
https://arxiv.org/abs/2009.11538v3
|
https://arxiv.org/pdf/2009.11538v3.pdf
|
https://github.com/AntheaLi/cs224nProject
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-synthetic-data-generation-for
|
End-to-End Synthetic Data Generation for Domain Adaptation of Question Answering Systems
|
2010.06028
|
https://arxiv.org/abs/2010.06028v1
|
https://arxiv.org/pdf/2010.06028v1.pdf
|
https://github.com/AntheaLi/cs224nProject
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/trajectory-prediction-for-autonomous-driving
|
Trajectory Prediction for Autonomous Driving with Topometric Map
|
2105.03869
|
https://arxiv.org/abs/2105.03869v1
|
https://arxiv.org/pdf/2105.03869v1.pdf
|
https://github.com/Jiaolong/trajectory-prediction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pyg4ometry-a-python-library-for-the-creation
|
PYG4OMETRY: a Python library for the creation of Monte Carlo radiation transport physical geometries
|
2010.01109
|
https://arxiv.org/abs/2010.01109v2
|
https://arxiv.org/pdf/2010.01109v2.pdf
|
https://github.com/willzywiec/transport
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rethinking-architecture-design-for-tackling
|
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning
|
2106.06047
|
https://arxiv.org/abs/2106.06047v2
|
https://arxiv.org/pdf/2106.06047v2.pdf
|
https://github.com/Liangqiong/ViT-FL-main
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/partially-observable-mean-field-reinforcement
|
Partially Observable Mean Field Reinforcement Learning
|
2012.15791
|
https://arxiv.org/abs/2012.15791v1
|
https://arxiv.org/pdf/2012.15791v1.pdf
|
https://github.com/Sriram94/pomfrl
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/time-limited-bloom-filter
|
Time-limited Bloom Filter
|
2306.06742
|
https://arxiv.org/abs/2306.06742v1
|
https://arxiv.org/pdf/2306.06742v1.pdf
|
https://github.com/redisbloom/redisbloom
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/research-on-event-accumulator-settings-for
|
Research on Event Accumulator Settings for Event-Based SLAM
|
2112.00427
|
https://arxiv.org/abs/2112.00427v4
|
https://arxiv.org/pdf/2112.00427v4.pdf
|
https://github.com/robin-shaun/event-slam-accumulator-settings
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-skill-discovery-with-bottleneck
|
Unsupervised Skill Discovery with Bottleneck Option Learning
|
2106.14305
|
https://arxiv.org/abs/2106.14305v1
|
https://arxiv.org/pdf/2106.14305v1.pdf
|
https://github.com/jaekyeom/IBOL
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/improving-graph-neural-networks-with-simple
|
Improving Graph Neural Networks with Simple Architecture Design
|
2105.07634
|
https://arxiv.org/abs/2105.07634v1
|
https://arxiv.org/pdf/2105.07634v1.pdf
|
https://github.com/sunilkmaurya/FSGNN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/continual-adaptation-of-visual
|
Continual Adaptation of Visual Representations via Domain Randomization and Meta-learning
|
2012.04324
|
https://arxiv.org/abs/2012.04324v2
|
https://arxiv.org/pdf/2012.04324v2.pdf
|
https://github.com/cute23333/DR-MetaLearning
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-survey-on-attention-mechanisms-for-medical
|
A survey on attention mechanisms for medical applications: are we moving towards better algorithms?
|
2204.12406
|
https://arxiv.org/abs/2204.12406v1
|
https://arxiv.org/pdf/2204.12406v1.pdf
|
https://github.com/TiagoFilipeSousaGoncalves/survey-attention-medical-imaging
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-risk-aware-reinforcement-learning
|
Robust Risk-Aware Reinforcement Learning
|
2108.10403
|
https://arxiv.org/abs/2108.10403v2
|
https://arxiv.org/pdf/2108.10403v2.pdf
|
https://github.com/sebjai/robust-risk-aware-rl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automating-feedback-analysis-in-surgical
|
Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment
|
2412.00760
|
https://arxiv.org/abs/2412.00760v1
|
https://arxiv.org/pdf/2412.00760v1.pdf
|
https://github.com/firdavsn/SurgicalFeedbackAI
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/predicting-video-with-vqvae-1
|
Predicting Video with VQVAE
|
2103.01950
|
https://arxiv.org/abs/2103.01950v1
|
https://arxiv.org/pdf/2103.01950v1.pdf
|
https://github.com/mattiasxu/Video-VQVAE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/explainability-requires-interactivity
|
Explainability Requires Interactivity
|
2109.07869
|
https://arxiv.org/abs/2109.07869v1
|
https://arxiv.org/pdf/2109.07869v1.pdf
|
https://github.com/healthml/stylegan2-hypotheses-explorer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/analysis-of-the-robustness-of-nmf-algorithms
|
Analysis of the robustness of NMF algorithms
|
2106.02213
|
https://arxiv.org/abs/2106.02213v1
|
https://arxiv.org/pdf/2106.02213v1.pdf
|
https://github.com/alejandrods/Analysis-of-the-robustness-of-NMF-algorithms
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/identifying-incorrect-labels-in-the-conll
|
Identifying Incorrect Labels in the CoNLL-2003 Corpus
| null |
https://aclanthology.org/2020.conll-1.16
|
https://aclanthology.org/2020.conll-1.16.pdf
|
https://github.com/codait/text-extensions-for-pandas
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/reachability-analysis-of-neural-feedback
|
Reachability Analysis of Neural Feedback Loops
|
2108.04140
|
https://arxiv.org/abs/2108.04140v2
|
https://arxiv.org/pdf/2108.04140v2.pdf
|
https://github.com/mit-acl/nn_robustness_analysis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/monitoring-data-requests-in-decentralized
|
Monitoring Data Requests in Decentralized Data Storage Systems: A Case Study of IPFS
|
2104.09202
|
https://arxiv.org/abs/2104.09202v5
|
https://arxiv.org/pdf/2104.09202v5.pdf
|
https://github.com/mrd0ll4r/ipfs-resolver
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/parameter-estimation-and-uncertainty-1
|
Parameter estimation and uncertainty quantification using information geometry
|
2111.12201
|
https://arxiv.org/abs/2111.12201v3
|
https://arxiv.org/pdf/2111.12201v3.pdf
|
https://github.com/jesse-sharp/sharp2021b
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fast-and-direct-nonparametric-procedures-in
|
Fast and direct nonparametric procedures in the L-moment homogeneity test
|
1610.05695
|
http://arxiv.org/abs/1610.05695v1
|
http://arxiv.org/pdf/1610.05695v1.pdf
|
https://github.com/PierreMasselot/Paper--2017--Nonparametric-L-moment-homogeneity-test
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/efficacy-of-mri-data-harmonization-in-the-age
|
Efficacy of MRI data harmonization in the age of machine learning. A multicenter study across 36 datasets
|
2211.04125
|
https://arxiv.org/abs/2211.04125v4
|
https://arxiv.org/pdf/2211.04125v4.pdf
|
https://github.com/imaging-ai-for-health-virtual-lab/harmonizer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/robust-attitude-controller-for-unmanned
|
Robust Attitude Controller for Unmanned Aerial Vehicle Using Dynamic Inversion and Extended State Observer
| null |
https://www.researchgate.net/publication/241163325_Robust_Attitude_Controller_for_Unmanned_Aerial_Vehicle_Using_Dynamic_Inversion_and_Extended_State_Observer
|
https://www.researchgate.net/publication/241163325_Robust_Attitude_Controller_for_Unmanned_Aerial_Vehicle_Using_Dynamic_Inversion_and_Extended_State_Observer
|
https://github.com/avionicscode/Robust-Attitude-Controller-for-UAV-Using-Dynamic-Inversion-and-Extended-State-Observer-controller
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/lenacabrera/gb_mnmt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rational-polynomial-camera-model-warping-for
|
Rational Polynomial Camera Model Warping for Deep Learning Based Satellite Multi-View Stereo Matching
|
2109.11121
|
https://arxiv.org/abs/2109.11121v1
|
https://arxiv.org/pdf/2109.11121v1.pdf
|
https://github.com/whu-gpcv/satmvs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/electra-pre-training-text-encoders-as-1
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2003.10555
|
https://arxiv.org/abs/2003.10555v1
|
https://arxiv.org/pdf/2003.10555v1.pdf
|
https://github.com/stefan-it/europeana-bert
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/integrating-pattern-and-fact-based-fake-news
|
Integrating Pattern- and Fact-based Fake News Detection via Model Preference Learning
|
2109.11333
|
https://arxiv.org/abs/2109.11333v1
|
https://arxiv.org/pdf/2109.11333v1.pdf
|
https://github.com/ictmcg/pref-fend
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cross-linguistically-consistent-semantic-and
|
Cross-linguistically Consistent Semantic and Syntactic Annotation of Child-directed Speech
|
2109.10952
|
https://arxiv.org/abs/2109.10952v2
|
https://arxiv.org/pdf/2109.10952v2.pdf
|
https://github.com/omriabnd/cds_syntax_semantics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/distilbert-a-distilled-version-of-bert
|
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
|
1910.01108
|
https://arxiv.org/abs/1910.01108v4
|
https://arxiv.org/pdf/1910.01108v4.pdf
|
https://github.com/stefan-it/europeana-bert
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/convbert-improving-bert-with-span-based
|
ConvBERT: Improving BERT with Span-based Dynamic Convolution
|
2008.02496
|
https://arxiv.org/abs/2008.02496v3
|
https://arxiv.org/pdf/2008.02496v3.pdf
|
https://github.com/stefan-it/europeana-bert
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/stefan-it/europeana-bert
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/superpoint-self-supervised-interest-point
|
SuperPoint: Self-Supervised Interest Point Detection and Description
|
1712.07629
|
http://arxiv.org/abs/1712.07629v4
|
http://arxiv.org/pdf/1712.07629v4.pdf
|
https://github.com/gabriel-sgama/semantic-superpoint
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-task-learning-using-uncertainty-to
|
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
|
1705.07115
|
http://arxiv.org/abs/1705.07115v3
|
http://arxiv.org/pdf/1705.07115v3.pdf
|
https://github.com/gabriel-sgama/semantic-superpoint
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/calfat-calibrated-federated-adversarial
|
CalFAT: Calibrated Federated Adversarial Training with Label Skewness
|
2205.14926
|
https://arxiv.org/abs/2205.14926v3
|
https://arxiv.org/pdf/2205.14926v3.pdf
|
https://github.com/cc233/calfat
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/leveraging-convergence-behavior-to-balance
|
Leveraging convergence behavior to balance conflicting tasks in multi-task learning
|
2204.06698
|
https://arxiv.org/abs/2204.06698v1
|
https://arxiv.org/pdf/2204.06698v1.pdf
|
https://github.com/gabriel-sgama/semantic-superpoint
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-channel-coronal-hole-detection-with
|
Multi-channel coronal hole detection with convolutional neural networks
|
2104.14313
|
https://arxiv.org/abs/2104.14313v2
|
https://arxiv.org/pdf/2104.14313v2.pdf
|
https://github.com/RobertJaro/MultiChannelCHDetection
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/wide-activation-for-efficient-and-accurate
|
Wide Activation for Efficient and Accurate Image Super-Resolution
|
1808.08718
|
http://arxiv.org/abs/1808.08718v2
|
http://arxiv.org/pdf/1808.08718v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-7/tree/main/wdsr
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-bregman-admm-for-bethe-variational-problem
|
A Bregman ADMM for Bethe variational problem
|
2502.04613
|
https://arxiv.org/abs/2502.04613v2
|
https://arxiv.org/pdf/2502.04613v2.pdf
|
https://github.com/ttymath/badmm-bvp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/plug-and-play-language-models-a-simple
|
Plug and Play Language Models: A Simple Approach to Controlled Text Generation
|
1912.02164
|
https://arxiv.org/abs/1912.02164v4
|
https://arxiv.org/pdf/1912.02164v4.pdf
|
https://github.com/AdarshKumar712/PPLM.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ruleformer-context-aware-rule-mining-over
|
Ruleformer: Context-aware Rule Mining over Knowledge Graph
| null |
https://aclanthology.org/2022.coling-1.225
|
https://aclanthology.org/2022.coling-1.225.pdf
|
https://github.com/zjukg/ruleformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/theoretical-limits-of-one-shot-distributed
|
One-Shot Federated Learning: Theoretical Limits and Algorithms to Achieve Them
|
1905.04634
|
https://arxiv.org/abs/1905.04634v5
|
https://arxiv.org/pdf/1905.04634v5.pdf
|
https://github.com/sabersalehk/MRE_C
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-generate-clinically-coherent
|
Learning to Generate Clinically Coherent Chest X-Ray Reports
| null |
https://aclanthology.org/2020.findings-emnlp.110
|
https://aclanthology.org/2020.findings-emnlp.110.pdf
|
https://github.com/justinlovelace/coherent-xray-report-generation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-residual-network-for-steganalysis-of
|
Deep residual network for steganalysis of digital images
| null |
https://ieeexplore.ieee.org/abstract/document/8470101/
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8470101
|
https://github.com/albblgb/Deep-Steganalysis
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/perceiving-the-world-question-guided
|
Perceiving the World: Question-guided Reinforcement Learning for Text-based Games
|
2204.09597
|
https://arxiv.org/abs/2204.09597v2
|
https://arxiv.org/pdf/2204.09597v2.pdf
|
https://github.com/yunqiuxu/qwa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/finqa-a-dataset-of-numerical-reasoning-over
|
FinQA: A Dataset of Numerical Reasoning over Financial Data
|
2109.00122
|
https://arxiv.org/abs/2109.00122v3
|
https://arxiv.org/pdf/2109.00122v3.pdf
|
https://github.com/czyssrs/finqa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/viscous-fingering-in-fractured-porous-media
|
Numerical simulations of viscous fingering in fractured porous media
|
1906.10472
|
https://arxiv.org/abs/1906.10472v2
|
https://arxiv.org/pdf/1906.10472v2.pdf
|
https://github.com/rbe051/viscfrac
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fairrec-two-sided-fairness-for-personalized
|
FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms
|
2002.10764
|
https://arxiv.org/abs/2002.10764v2
|
https://arxiv.org/pdf/2002.10764v2.pdf
|
https://github.com/gourabkumarpatro/fairrec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/hephaestus-a-large-scale-multitask-dataset
|
Hephaestus: A large scale multitask dataset towards InSAR understanding
|
2204.09435
|
https://arxiv.org/abs/2204.09435v1
|
https://arxiv.org/pdf/2204.09435v1.pdf
|
https://github.com/orion-ai-lab/hephaestus
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/cv/vgg19
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/denoising-autoencoders-for-fast-combinatorial
|
Denoising Autoencoders for fast Combinatorial Black Box Optimization
|
1503.01954
|
http://arxiv.org/abs/1503.01954v2
|
http://arxiv.org/pdf/1503.01954v2.pdf
|
https://github.com/wohnjayne/eda-suite
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.