paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/deep-learning-models-for-multilingual-hate
|
Deep Learning Models for Multilingual Hate Speech Detection
|
2004.06465
|
https://arxiv.org/abs/2004.06465v3
|
https://arxiv.org/pdf/2004.06465v3.pdf
|
https://github.com/punyajoy/DE-LIMIT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-graph-learning-with
|
Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal Health Event Prediction
|
2106.04751
|
https://arxiv.org/abs/2106.04751v2
|
https://arxiv.org/pdf/2106.04751v2.pdf
|
https://github.com/LuChang-CS/sherbet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/helping-results-assessment-by-adding
|
Helping results assessment by adding explainable elements to the deep relevance matching model
|
2106.05147
|
https://arxiv.org/abs/2106.05147v1
|
https://arxiv.org/pdf/2106.05147v1.pdf
|
https://github.com/giannisosx/explainable-search-drmm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dags-with-no-curl-an-efficient-dag-structure
|
DAGs with No Curl: An Efficient DAG Structure Learning Approach
|
2106.07197
|
https://arxiv.org/abs/2106.07197v1
|
https://arxiv.org/pdf/2106.07197v1.pdf
|
https://github.com/fishmoon1234/DAG-NoCurl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/graph-neural-network-based-anomaly-detection
|
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
|
2106.06947
|
https://arxiv.org/abs/2106.06947v1
|
https://arxiv.org/pdf/2106.06947v1.pdf
|
https://github.com/d-ailin/GDN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-high-resolution
|
Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis
|
2106.07049
|
https://arxiv.org/abs/2106.07049v2
|
https://arxiv.org/pdf/2106.07049v2.pdf
|
https://github.com/nyukat/GLAM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/knowledge-embedded-routing-network-for-scene
|
Knowledge-Embedded Routing Network for Scene Graph Generation
|
1903.03326
|
http://arxiv.org/abs/1903.03326v1
|
http://arxiv.org/pdf/1903.03326v1.pdf
|
https://github.com/HCPLab-SYSU/KERN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dynamics-and-sensitivity-of-signaling
|
Dynamics and Sensitivity of Signaling Pathways
|
2106.06929
|
https://arxiv.org/abs/2106.06929v1
|
https://arxiv.org/pdf/2106.06929v1.pdf
|
https://github.com/sys-bio/CodeForPublishedPapers
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/triangle-sides-for-congruent-numbers-less
|
Triangle Sides for Congruent Numbers less than 10,000
|
2106.07373
|
https://arxiv.org/abs/2106.07373v1
|
https://arxiv.org/pdf/2106.07373v1.pdf
|
https://github.com/dgpaloalto/Congruent-Numbers
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-practical-introduction-to-regression
|
A Practical Introduction to Regression Discontinuity Designs: Foundations
|
1911.09511
|
https://arxiv.org/abs/1911.09511v1
|
https://arxiv.org/pdf/1911.09511v1.pdf
|
https://github.com/rdpackages-replication/CIT_2019_CUP
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/embedding-transfer-with-label-relaxation-for
|
Embedding Transfer with Label Relaxation for Improved Metric Learning
|
2103.14908
|
https://arxiv.org/abs/2103.14908v1
|
https://arxiv.org/pdf/2103.14908v1.pdf
|
https://github.com/tjddus9597/LabelRelaxation-CVPR21
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nprobust-nonparametric-kernel-based
|
nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference
|
1906.00198
|
https://arxiv.org/abs/1906.00198v1
|
https://arxiv.org/pdf/1906.00198v1.pdf
|
https://github.com/nppackages/nprobust
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/towards-better-exploiting-convolutional
|
Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification
|
1602.01517
|
http://arxiv.org/abs/1602.01517v1
|
http://arxiv.org/pdf/1602.01517v1.pdf
|
https://github.com/keillernogueira/exploit-cnn-rs
| true
| false
| false
|
caffe2
|
https://paperswithcode.com/paper/wnut-2020-task-2-identification-of
|
WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
|
2010.08232
|
https://arxiv.org/abs/2010.08232v1
|
https://arxiv.org/pdf/2010.08232v1.pdf
|
https://github.com/VinAIResearch/COVID19Tweet
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma
|
Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)
|
1710.05006
|
http://arxiv.org/abs/1710.05006v3
|
http://arxiv.org/pdf/1710.05006v3.pdf
|
https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pseudo-healthy-synthesis-with-pathology
|
Pseudo-healthy synthesis with pathology disentanglement and adversarial learning
|
2005.01607
|
https://arxiv.org/abs/2005.01607v3
|
https://arxiv.org/pdf/2005.01607v3.pdf
|
https://github.com/xiat0616/pseudo-healthy-synthesis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/single-uhd-image-dehazing-via-interpretable
|
Single UHD Image Dehazing via Interpretable Pyramid Network
|
2202.08589
|
https://arxiv.org/abs/2202.08589v1
|
https://arxiv.org/pdf/2202.08589v1.pdf
|
https://github.com/zzr-idam/4KDehazing
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/draw-a-recurrent-neural-network-for-image
|
DRAW: A Recurrent Neural Network For Image Generation
|
1502.04623
|
http://arxiv.org/abs/1502.04623v2
|
http://arxiv.org/pdf/1502.04623v2.pdf
|
https://github.com/simonamtoft/ml-library
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-introduction-to-variational-autoencoders
|
An Introduction to Variational Autoencoders
|
1906.02691
|
https://arxiv.org/abs/1906.02691v3
|
https://arxiv.org/pdf/1906.02691v3.pdf
|
https://github.com/simonamtoft/ml-library
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tutorial-on-variational-autoencoders
|
Tutorial on Variational Autoencoders
|
1606.05908
|
https://arxiv.org/abs/1606.05908v3
|
https://arxiv.org/pdf/1606.05908v3.pdf
|
https://github.com/simonamtoft/ml-library
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sqil-imitation-learning-via-regularized
|
SQIL: Imitation Learning via Reinforcement Learning with Sparse Rewards
|
1905.11108
|
https://arxiv.org/abs/1905.11108v3
|
https://arxiv.org/pdf/1905.11108v3.pdf
|
https://github.com/Div99/IQ-Learn
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deepgreen-deep-learning-of-green-s-functions
|
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
|
2101.07206
|
https://arxiv.org/abs/2101.07206v1
|
https://arxiv.org/pdf/2101.07206v1.pdf
|
https://github.com/sheadan/DeepGreen
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/versavis-an-open-versatile-multi-camera
|
VersaVIS: An Open Versatile Multi-Camera Visual-Inertial Sensor Suite
|
1912.02469
|
https://arxiv.org/abs/1912.02469v1
|
https://arxiv.org/pdf/1912.02469v1.pdf
|
https://github.com/rikba/versavis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/one-to-many-approach-for-improving-super
|
One-to-many Approach for Improving Super-Resolution
|
2106.10437
|
https://arxiv.org/abs/2106.10437v4
|
https://arxiv.org/pdf/2106.10437v4.pdf
|
https://github.com/krenerd/ultimate-sr
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/vimpac-video-pre-training-via-masked-token
|
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning
|
2106.11250
|
https://arxiv.org/abs/2106.11250v1
|
https://arxiv.org/pdf/2106.11250v1.pdf
|
https://github.com/airsplay/vimpac
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tight-approximate-differential-privacy-for
|
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
|
2006.07134
|
https://arxiv.org/abs/2006.07134v3
|
https://arxiv.org/pdf/2006.07134v3.pdf
|
https://github.com/DPBayes/PLD-Accountant
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/statistical-inference-of-the-value-function
|
Statistical Inference of the Value Function for Reinforcement Learning in Infinite Horizon Settings
|
2001.04515
|
https://arxiv.org/abs/2001.04515v2
|
https://arxiv.org/pdf/2001.04515v2.pdf
|
https://github.com/shengzhang37/SAVE
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-unreasonable-effectiveness-of-1
|
On the Unreasonable Effectiveness of Centroids in Image Retrieval
|
2104.13643
|
https://arxiv.org/abs/2104.13643v1
|
https://arxiv.org/pdf/2104.13643v1.pdf
|
https://github.com/lannguyen0910/deep-efficient-person-reid
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nutrition5k-towards-automatic-nutritional
|
Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food
|
2103.03375
|
https://arxiv.org/abs/2103.03375v2
|
https://arxiv.org/pdf/2103.03375v2.pdf
|
https://github.com/google-research-datasets/Nutrition5k
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/learn-to-resolve-conversational-dependency-a
|
Learn to Resolve Conversational Dependency: A Consistency Training Framework for Conversational Question Answering
|
2106.11575
|
https://arxiv.org/abs/2106.11575v1
|
https://arxiv.org/pdf/2106.11575v1.pdf
|
https://github.com/dmis-lab/excord
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-distributional-perspective-on-reinforcement
|
A Distributional Perspective on Reinforcement Learning
|
1707.06887
|
http://arxiv.org/abs/1707.06887v1
|
http://arxiv.org/pdf/1707.06887v1.pdf
|
https://github.com/qgallouedec/deep_rl
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/zero-shot-chinese-character-recognition-with
|
Zero-Shot Chinese Character Recognition with Stroke-Level Decomposition
|
2106.11613
|
https://arxiv.org/abs/2106.11613v1
|
https://arxiv.org/pdf/2106.11613v1.pdf
|
https://github.com/FudanVI/FudanOCR/tree/main/stroke-level-decomposition
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-knowledge-grounded-counter-narrative
|
Towards Knowledge-Grounded Counter Narrative Generation for Hate Speech
|
2106.11783
|
https://arxiv.org/abs/2106.11783v1
|
https://arxiv.org/pdf/2106.11783v1.pdf
|
https://github.com/marcoguerini/CONAN
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/inspiration-through-observation-demonstrating
|
Inspiration through Observation: Demonstrating the Influence of Automatically Generated Text on Creative Writing
|
2107.04007
|
https://arxiv.org/abs/2107.04007v1
|
https://arxiv.org/pdf/2107.04007v1.pdf
|
https://github.com/roemmele/InSentive
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lightweight-robust-size-aware-cache
|
Lightweight Robust Size Aware Cache Management
|
2105.08770
|
https://arxiv.org/abs/2105.08770v2
|
https://arxiv.org/pdf/2105.08770v2.pdf
|
https://github.com/ohadeytan/caffeine
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/behavior-sequence-transformer-for-e-commerce
|
Behavior Sequence Transformer for E-commerce Recommendation in Alibaba
|
1905.06874
|
https://arxiv.org/abs/1905.06874v1
|
https://arxiv.org/pdf/1905.06874v1.pdf
|
https://github.com/jiwidi/Behavior-Sequence-Transformer-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/atari-5-distilling-the-arcade-learning
|
Atari-5: Distilling the Arcade Learning Environment down to Five Games
|
2210.02019
|
https://arxiv.org/abs/2210.02019v1
|
https://arxiv.org/pdf/2210.02019v1.pdf
|
https://github.com/maitchison/atari-5
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/can-word-sense-distribution-detect-semantic
|
Can Word Sense Distribution Detect Semantic Changes of Words?
|
2310.10400
|
https://arxiv.org/abs/2310.10400v1
|
https://arxiv.org/pdf/2310.10400v1.pdf
|
https://github.com/LivNLP/Sense-based-Semantic-Change-Prediction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/imitation-learning-via-off-policy-1
|
Imitation Learning via Off-Policy Distribution Matching
|
1912.05032
|
https://arxiv.org/abs/1912.05032v1
|
https://arxiv.org/pdf/1912.05032v1.pdf
|
https://github.com/Div99/IQ-Learn
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/distinguishing-short-duration-noise
|
Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers
|
1709.08974
|
http://arxiv.org/abs/1709.08974v2
|
http://arxiv.org/pdf/1709.08974v2.pdf
|
https://github.com/gwastro/1-ogc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/solving-reward-collecting-problems-with-uavs
|
Solving reward-collecting problems with UAVs: a comparison of online optimization and Q-learning
|
2112.00141
|
https://arxiv.org/abs/2112.00141v1
|
https://arxiv.org/pdf/2112.00141v1.pdf
|
https://github.com/benliu31492/solving-reward-collecting-problems-with-uavs-a-comparison-of-online-optimization-and-q-learning
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/hierarchical-variational-memory-for-few-shot-1
|
Hierarchical Variational Memory for Few-shot Learning Across Domains
|
2112.08181
|
https://arxiv.org/abs/2112.08181v2
|
https://arxiv.org/pdf/2112.08181v2.pdf
|
https://github.com/ydu-uva/hiermemory
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/unraveling-the-hidden-organisation-of-urban
|
Unraveling the hidden organisation of urban systems and their mobility flows
|
1908.02538
|
https://arxiv.org/abs/1908.02538v2
|
https://arxiv.org/pdf/1908.02538v2.pdf
|
https://github.com/gbertagnolli/intsegration
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/Dlut-lab-zmn/Image-Captioning-Attack
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-critical-sequence-training-for-image
|
Self-critical Sequence Training for Image Captioning
|
1612.00563
|
http://arxiv.org/abs/1612.00563v2
|
http://arxiv.org/pdf/1612.00563v2.pdf
|
https://github.com/Dlut-lab-zmn/Image-Captioning-Attack
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficiently-combining-human-demonstrations
|
Efficiently Combining Human Demonstrations and Interventions for Safe Training of Autonomous Systems in Real-Time
|
1810.11545
|
http://arxiv.org/abs/1810.11545v2
|
http://arxiv.org/pdf/1810.11545v2.pdf
|
https://github.com/viniciusguigo/complete_col
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/cycle-of-learning-for-autonomous-systems-from
|
Cycle-of-Learning for Autonomous Systems from Human Interaction
|
1808.09572
|
http://arxiv.org/abs/1808.09572v2
|
http://arxiv.org/pdf/1808.09572v2.pdf
|
https://github.com/viniciusguigo/complete_col
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/data-clustering-and-noise-undressing-for
|
Data clustering and noise undressing for correlation matrices
|
cond-mat/0101237
|
https://arxiv.org/abs/cond-mat/0101237v1
|
https://arxiv.org/pdf/cond-mat/0101237v1.pdf
|
https://github.com/lyelibi/timeseries_gen
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unireplknet-a-universal-perception-large-1
|
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Ding_UniRepLKNet_A_Universal_Perception_Large-Kernel_ConvNet_for_Audio_Video_Point_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Ding_UniRepLKNet_A_Universal_Perception_Large-Kernel_ConvNet_for_Audio_Video_Point_CVPR_2024_paper.pdf
|
https://github.com/ailab-cvc/unireplknet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/agglomerative-fast-super-paramagnetic
|
Agglomerative Likelihood Clustering
|
1908.00951
|
https://arxiv.org/abs/1908.00951v4
|
https://arxiv.org/pdf/1908.00951v4.pdf
|
https://github.com/lyelibi/timeseries_gen
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-long-horizon-robot-exploration
|
Learning Long-Horizon Robot Exploration Strategies for Multi-Object Search in Continuous Action Spaces
|
2205.11384
|
https://arxiv.org/abs/2205.11384v2
|
https://arxiv.org/pdf/2205.11384v2.pdf
|
https://github.com/robot-learning-freiburg/Multi-Object-Search
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/probing-the-robustness-of-trained-metrics-for-1
|
Probing the Robustness of Trained Metrics for Conversational Dialogue Systems
|
2202.13887
|
https://arxiv.org/abs/2202.13887v1
|
https://arxiv.org/pdf/2202.13887v1.pdf
|
https://github.com/jderiu/metric-robustness
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-deep-features-for-discriminative
|
Learning Deep Features for Discriminative Localization
|
1512.04150
|
http://arxiv.org/abs/1512.04150v1
|
http://arxiv.org/pdf/1512.04150v1.pdf
|
https://github.com/Azure/AzureChestXRay
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exhaustive-symbolic-regression
|
Exhaustive Symbolic Regression
|
2211.11461
|
https://arxiv.org/abs/2211.11461v2
|
https://arxiv.org/pdf/2211.11461v2.pdf
|
https://github.com/MindSpore-MS-Code2/code0/tree/main/esr_ea
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/etpc-a-paraphrase-identification-corpus
|
ETPC - A Paraphrase Identification Corpus Annotated with Extended Paraphrase Typology and Negation
| null |
https://aclanthology.org/L18-1221
|
https://aclanthology.org/L18-1221.pdf
|
https://github.com/venelink/ETPC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-simple-pooling-based-design-for-real-time
|
A Simple Pooling-Based Design for Real-Time Salient Object Detection
|
1904.09569
|
http://arxiv.org/abs/1904.09569v1
|
http://arxiv.org/pdf/1904.09569v1.pdf
|
https://github.com/chouxianyu/Boundary-Aware-PoolNet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/basnet-boundary-aware-salient-object
|
BASNet: Boundary-Aware Salient Object Detection
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.pdf
|
https://github.com/chouxianyu/Boundary-Aware-PoolNet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/training-data-efficient-image-transformers
|
Training data-efficient image transformers & distillation through attention
|
2012.12877
|
https://arxiv.org/abs/2012.12877v2
|
https://arxiv.org/pdf/2012.12877v2.pdf
|
https://github.com/UdbhavPrasad072300/Transformer-Implementations
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/UdbhavPrasad072300/Transformer-Implementations
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/probabilistic-contrastive-principal-component
|
Probabilistic Contrastive Principal Component Analysis
|
2012.07977
|
https://arxiv.org/abs/2012.07977v2
|
https://arxiv.org/pdf/2012.07977v2.pdf
|
https://github.com/AllaVinner/PCPCA-a-little-look
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-free-viewpoint-portrait-generator-with
|
SofGAN: A Portrait Image Generator with Dynamic Styling
|
2007.03780
|
https://arxiv.org/abs/2007.03780v2
|
https://arxiv.org/pdf/2007.03780v2.pdf
|
https://github.com/apchenstu/sofgan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/silhouette-based-view-embeddings-for-gait
|
Silhouette based View embeddings for Gait Recognition under Multiple Views
|
2108.05524
|
https://arxiv.org/abs/2108.05524v1
|
https://arxiv.org/pdf/2108.05524v1.pdf
|
https://github.com/ctrasd/gait-view
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bag-of-tricks-for-long-tail-visual
|
Bag of Tricks for Long-Tail Visual Recognition of Animal Species in Camera-Trap Images
|
2206.12458
|
https://arxiv.org/abs/2206.12458v3
|
https://arxiv.org/pdf/2206.12458v3.pdf
|
https://github.com/alcunha/bagoftricks4cameratraps
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/black-box-safety-analysis-and-retraining-of
|
Black-box Safety Analysis and Retraining of DNNs based on Feature Extraction and Clustering
|
2201.05077
|
https://arxiv.org/abs/2201.05077v4
|
https://arxiv.org/pdf/2201.05077v4.pdf
|
https://zenodo.org/record/6619279
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/gaetanserre/l2rpn-2022_ppo-baseline
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-transport-kernels-for-sequential-and
|
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
|
2006.07593
|
https://arxiv.org/abs/2006.07593v3
|
https://arxiv.org/pdf/2006.07593v3.pdf
|
https://github.com/ntienvu/TW_NAS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-historical-borrowing-framework-to
|
Deep Historical Borrowing Framework to Prospectively and Simultaneously Synthesize Control Information in Confirmatory Clinical Trials with Multiple Endpoints
|
2008.12774
|
https://arxiv.org/abs/2008.12774v2
|
https://arxiv.org/pdf/2008.12774v2.pdf
|
https://github.com/tian-yu-zhan/deep_historical_borrowing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/data-distributional-properties-drive-emergent
|
Data Distributional Properties Drive Emergent In-Context Learning in Transformers
|
2205.05055
|
https://arxiv.org/abs/2205.05055v6
|
https://arxiv.org/pdf/2205.05055v6.pdf
|
https://github.com/deepmind/emergent_in_context_learning
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/houssemjebari/Fruit-Detection
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fader-networks-manipulating-images-by-sliding
|
Fader Networks: Manipulating Images by Sliding Attributes
|
1706.00409
|
http://arxiv.org/abs/1706.00409v2
|
http://arxiv.org/pdf/1706.00409v2.pdf
|
https://github.com/sidwa/ae_thesis
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tutorial-on-variational-autoencoders
|
Tutorial on Variational Autoencoders
|
1606.05908
|
https://arxiv.org/abs/1606.05908v3
|
https://arxiv.org/pdf/1606.05908v3.pdf
|
https://github.com/sidwa/ae_thesis
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/understanding-and-improving-interpolation-in
|
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
|
1807.07543
|
http://arxiv.org/abs/1807.07543v2
|
http://arxiv.org/pdf/1807.07543v2.pdf
|
https://github.com/sidwa/ae_thesis
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-simple-framework-for-contrastive-learning
|
A Simple Framework for Contrastive Learning of Visual Representations
|
2002.05709
|
https://arxiv.org/abs/2002.05709v3
|
https://arxiv.org/pdf/2002.05709v3.pdf
|
https://github.com/sidwa/ae_thesis
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/signgraph-a-sign-sequence-is-worth-graphs-of
|
SignGraph: A Sign Sequence is Worth Graphs of Nodes
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Gan_SignGraph_A_Sign_Sequence_is_Worth_Graphs_of_Nodes_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Gan_SignGraph_A_Sign_Sequence_is_Worth_Graphs_of_Nodes_CVPR_2024_paper.pdf
|
https://github.com/gswycf/signgraph
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/erc-20r-and-erc-721r-reversible-transactions
|
ERC-20R and ERC-721R: Reversible Transactions on Ethereum
|
2208.00543
|
https://arxiv.org/abs/2208.00543v3
|
https://arxiv.org/pdf/2208.00543v3.pdf
|
https://github.com/kkailiwang/erc20r
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ernie-enhanced-representation-through
|
ERNIE: Enhanced Representation through Knowledge Integration
|
1904.09223
|
http://arxiv.org/abs/1904.09223v1
|
http://arxiv.org/pdf/1904.09223v1.pdf
|
https://github.com/lyqcom/emotect
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/what-and-how-well-you-performed-a-multitask
|
What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment
|
1904.04346
|
https://arxiv.org/abs/1904.04346v2
|
https://arxiv.org/pdf/1904.04346v2.pdf
|
https://github.com/InfoX-SEU/DAE-AQA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-biologically-plausible-neural-network-for
|
A biologically plausible neural network for multi-channel Canonical Correlation Analysis
|
2010.00525
|
https://arxiv.org/abs/2010.00525v4
|
https://arxiv.org/pdf/2010.00525v4.pdf
|
https://github.com/flatironinstitute/bio-cca
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-robust-consistent-information-criterion-for
|
A Robust Consistent Information Criterion for Model Selection based on Empirical Likelihood
|
2006.13281
|
http://arxiv.org/abs/2006.13281v1
|
http://arxiv.org/pdf/2006.13281v1.pdf
|
https://github.com/chencxxy28/ELCIC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/combining-diverse-feature-priors-1
|
Combining Diverse Feature Priors
|
2110.08220
|
https://arxiv.org/abs/2110.08220v2
|
https://arxiv.org/pdf/2110.08220v2.pdf
|
https://github.com/MadryLab/copriors
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/free-feature-refinement-for-generalized-zero
|
FREE: Feature Refinement for Generalized Zero-Shot Learning
|
2107.13807
|
https://arxiv.org/abs/2107.13807v1
|
https://arxiv.org/pdf/2107.13807v1.pdf
|
https://github.com/shiming-chen/FREE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-layer-wise-image-vectorization-1
|
Towards Layer-wise Image Vectorization
|
2206.04655
|
https://arxiv.org/abs/2206.04655v1
|
https://arxiv.org/pdf/2206.04655v1.pdf
|
https://github.com/picsart-ai-research/live-layerwise-image-vectorization
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/3dias-3d-shape-reconstruction-with-implicit
|
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces
|
2108.08653
|
https://arxiv.org/abs/2108.08653v1
|
https://arxiv.org/pdf/2108.08653v1.pdf
|
https://github.com/myavartanoo/3DIAS_PyTorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/steady-simultaneous-state-estimation-and
|
STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations
|
2203.01299
|
https://arxiv.org/abs/2203.01299v3
|
https://arxiv.org/pdf/2203.01299v3.pdf
|
https://github.com/mrvplusone/steady
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-search-in-local-branching
|
Revisiting local branching with a machine learning lens
|
2112.02195
|
https://arxiv.org/abs/2112.02195v2
|
https://arxiv.org/pdf/2112.02195v2.pdf
|
https://github.com/pandat8/ml4lb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/kiu-net-overcomplete-convolutional
|
KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation
|
2010.01663
|
https://arxiv.org/abs/2010.01663v2
|
https://arxiv.org/pdf/2010.01663v2.pdf
|
https://github.com/jeya-maria-jose/KiU-Net-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-delicate-local-representations-for
|
Learning Delicate Local Representations for Multi-Person Pose Estimation
|
2003.04030
|
https://arxiv.org/abs/2003.04030v3
|
https://arxiv.org/pdf/2003.04030v3.pdf
|
https://github.com/chenyilun95/tf-cpn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/directquote-a-dataset-for-direct-quotation
|
DirectQuote: A Dataset for Direct Quotation Extraction and Attribution in News Articles
|
2110.07827
|
https://arxiv.org/abs/2110.07827v1
|
https://arxiv.org/pdf/2110.07827v1.pdf
|
https://github.com/thunlp-mt/directquote
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-deep-architecture-for-non-projective
|
A Deep Architecture for Non-Projective Dependency Parsing
| null |
https://aclanthology.org/W15-1508
|
https://aclanthology.org/W15-1508.pdf
|
https://github.com/erickrf/nlpnet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/shapeconv-shape-aware-convolutional-layer-for
|
ShapeConv: Shape-aware Convolutional Layer for Indoor RGB-D Semantic Segmentation
|
2108.10528
|
https://arxiv.org/abs/2108.10528v1
|
https://arxiv.org/pdf/2108.10528v1.pdf
|
https://github.com/hanchaoleng/shapeconv
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficacy-of-bert-embeddings-on-predicting
|
Efficacy of BERT embeddings on predicting disaster from Twitter data
|
2108.10698
|
https://arxiv.org/abs/2108.10698v1
|
https://arxiv.org/pdf/2108.10698v1.pdf
|
https://github.com/ashischanda/sentiment-analysis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-of-human-visual-sensitivity-in
|
Deep Learning of Human Visual Sensitivity in Image Quality Assessment Framework
| null |
http://openaccess.thecvf.com/content_cvpr_2017/html/Kim_Deep_Learning_of_CVPR_2017_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2017/papers/Kim_Deep_Learning_of_CVPR_2017_paper.pdf
|
https://github.com/LeonLIU08/DeepQA-with-Pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/cnn-based-autoencoder-application-in-breast
|
CNN Based Autoencoder Application in Breast Cancer Image Retrieval
| null |
https://ieeexplore.ieee.org/document/9502205
|
https://ieeexplore.ieee.org/document/9502205
|
https://github.com/forderation/breast-cancer-retrieval
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/memorization-precedes-generation-learning
|
Memorization Precedes Generation: Learning Unsupervised GANs with Memory Networks
|
1803.01500
|
http://arxiv.org/abs/1803.01500v2
|
http://arxiv.org/pdf/1803.01500v2.pdf
|
https://github.com/whyjay/memoryGAN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/generic-approaches-for-parallel-rule-matching
|
Generic approaches for parallel rule matching in learning classifier systems
| null |
https://dl.acm.org/doi/10.1145/3377929.3398102
|
https://dl.acm.org/doi/10.1145/3377929.3398102
|
https://github.com/LagLukas/para_matching
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/an-efficient-lorentz-equivariant-graph-neural
|
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
|
2201.08187
|
https://arxiv.org/abs/2201.08187v6
|
https://arxiv.org/pdf/2201.08187v6.pdf
|
https://github.com/sdogsq/LorentzNet-release
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-polytopal-method-for-the-brinkman-problem
|
A polytopal method for the Brinkman problem robust in all regimes
|
2301.03272
|
https://arxiv.org/abs/2301.03272v3
|
https://arxiv.org/pdf/2301.03272v3.pdf
|
https://github.com/jdroniou/HArDCore3D-release
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/accelerating-verified-compiler-development
|
Accelerating Verified-Compiler Development with a Verified Rewriting Engine
|
2205.00862
|
https://arxiv.org/abs/2205.00862v4
|
https://arxiv.org/pdf/2205.00862v4.pdf
|
https://github.com/mit-plv/rewriter
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/energetic-formulation-of-large-deformation
|
Energetic Formulation of Large-Deformation Poroelasticity
|
2112.15298
|
https://arxiv.org/abs/2112.15298v1
|
https://arxiv.org/pdf/2112.15298v1.pdf
|
https://github.com/minakari/poromechanics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/transgan-two-transformers-can-make-one-strong
|
TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up
|
2102.07074
|
https://arxiv.org/abs/2102.07074v4
|
https://arxiv.org/pdf/2102.07074v4.pdf
|
https://github.com/omihub777/vit-cifar
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.