paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/deep-learning-models-for-multilingual-hate
Deep Learning Models for Multilingual Hate Speech Detection
2004.06465
https://arxiv.org/abs/2004.06465v3
https://arxiv.org/pdf/2004.06465v3.pdf
https://github.com/punyajoy/DE-LIMIT
true
true
true
pytorch
https://paperswithcode.com/paper/self-supervised-graph-learning-with
Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal Health Event Prediction
2106.04751
https://arxiv.org/abs/2106.04751v2
https://arxiv.org/pdf/2106.04751v2.pdf
https://github.com/LuChang-CS/sherbet
true
true
false
tf
https://paperswithcode.com/paper/helping-results-assessment-by-adding
Helping results assessment by adding explainable elements to the deep relevance matching model
2106.05147
https://arxiv.org/abs/2106.05147v1
https://arxiv.org/pdf/2106.05147v1.pdf
https://github.com/giannisosx/explainable-search-drmm
true
true
false
none
https://paperswithcode.com/paper/dags-with-no-curl-an-efficient-dag-structure
DAGs with No Curl: An Efficient DAG Structure Learning Approach
2106.07197
https://arxiv.org/abs/2106.07197v1
https://arxiv.org/pdf/2106.07197v1.pdf
https://github.com/fishmoon1234/DAG-NoCurl
true
true
false
pytorch
https://paperswithcode.com/paper/graph-neural-network-based-anomaly-detection
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
2106.06947
https://arxiv.org/abs/2106.06947v1
https://arxiv.org/pdf/2106.06947v1.pdf
https://github.com/d-ailin/GDN
true
true
true
pytorch
https://paperswithcode.com/paper/weakly-supervised-high-resolution
Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis
2106.07049
https://arxiv.org/abs/2106.07049v2
https://arxiv.org/pdf/2106.07049v2.pdf
https://github.com/nyukat/GLAM
true
true
false
pytorch
https://paperswithcode.com/paper/knowledge-embedded-routing-network-for-scene
Knowledge-Embedded Routing Network for Scene Graph Generation
1903.03326
http://arxiv.org/abs/1903.03326v1
http://arxiv.org/pdf/1903.03326v1.pdf
https://github.com/HCPLab-SYSU/KERN
false
false
true
pytorch
https://paperswithcode.com/paper/dynamics-and-sensitivity-of-signaling
Dynamics and Sensitivity of Signaling Pathways
2106.06929
https://arxiv.org/abs/2106.06929v1
https://arxiv.org/pdf/2106.06929v1.pdf
https://github.com/sys-bio/CodeForPublishedPapers
true
true
false
none
https://paperswithcode.com/paper/triangle-sides-for-congruent-numbers-less
Triangle Sides for Congruent Numbers less than 10,000
2106.07373
https://arxiv.org/abs/2106.07373v1
https://arxiv.org/pdf/2106.07373v1.pdf
https://github.com/dgpaloalto/Congruent-Numbers
true
true
false
none
https://paperswithcode.com/paper/a-practical-introduction-to-regression
A Practical Introduction to Regression Discontinuity Designs: Foundations
1911.09511
https://arxiv.org/abs/1911.09511v1
https://arxiv.org/pdf/1911.09511v1.pdf
https://github.com/rdpackages-replication/CIT_2019_CUP
true
false
false
none
https://paperswithcode.com/paper/embedding-transfer-with-label-relaxation-for
Embedding Transfer with Label Relaxation for Improved Metric Learning
2103.14908
https://arxiv.org/abs/2103.14908v1
https://arxiv.org/pdf/2103.14908v1.pdf
https://github.com/tjddus9597/LabelRelaxation-CVPR21
false
false
true
pytorch
https://paperswithcode.com/paper/nprobust-nonparametric-kernel-based
nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference
1906.00198
https://arxiv.org/abs/1906.00198v1
https://arxiv.org/pdf/1906.00198v1.pdf
https://github.com/nppackages/nprobust
true
false
false
none
https://paperswithcode.com/paper/towards-better-exploiting-convolutional
Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification
1602.01517
http://arxiv.org/abs/1602.01517v1
http://arxiv.org/pdf/1602.01517v1.pdf
https://github.com/keillernogueira/exploit-cnn-rs
true
false
false
caffe2
https://paperswithcode.com/paper/wnut-2020-task-2-identification-of
WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
2010.08232
https://arxiv.org/abs/2010.08232v1
https://arxiv.org/pdf/2010.08232v1.pdf
https://github.com/VinAIResearch/COVID19Tweet
false
false
false
none
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma
Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)
1710.05006
http://arxiv.org/abs/1710.05006v3
http://arxiv.org/pdf/1710.05006v3.pdf
https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification
false
false
true
tf
https://paperswithcode.com/paper/pseudo-healthy-synthesis-with-pathology
Pseudo-healthy synthesis with pathology disentanglement and adversarial learning
2005.01607
https://arxiv.org/abs/2005.01607v3
https://arxiv.org/pdf/2005.01607v3.pdf
https://github.com/xiat0616/pseudo-healthy-synthesis
true
true
false
none
https://paperswithcode.com/paper/single-uhd-image-dehazing-via-interpretable
Single UHD Image Dehazing via Interpretable Pyramid Network
2202.08589
https://arxiv.org/abs/2202.08589v1
https://arxiv.org/pdf/2202.08589v1.pdf
https://github.com/zzr-idam/4KDehazing
false
false
true
pytorch
https://paperswithcode.com/paper/draw-a-recurrent-neural-network-for-image
DRAW: A Recurrent Neural Network For Image Generation
1502.04623
http://arxiv.org/abs/1502.04623v2
http://arxiv.org/pdf/1502.04623v2.pdf
https://github.com/simonamtoft/ml-library
false
false
true
pytorch
https://paperswithcode.com/paper/an-introduction-to-variational-autoencoders
An Introduction to Variational Autoencoders
1906.02691
https://arxiv.org/abs/1906.02691v3
https://arxiv.org/pdf/1906.02691v3.pdf
https://github.com/simonamtoft/ml-library
false
false
true
pytorch
https://paperswithcode.com/paper/tutorial-on-variational-autoencoders
Tutorial on Variational Autoencoders
1606.05908
https://arxiv.org/abs/1606.05908v3
https://arxiv.org/pdf/1606.05908v3.pdf
https://github.com/simonamtoft/ml-library
false
false
true
pytorch
https://paperswithcode.com/paper/sqil-imitation-learning-via-regularized
SQIL: Imitation Learning via Reinforcement Learning with Sparse Rewards
1905.11108
https://arxiv.org/abs/1905.11108v3
https://arxiv.org/pdf/1905.11108v3.pdf
https://github.com/Div99/IQ-Learn
false
false
false
pytorch
https://paperswithcode.com/paper/deepgreen-deep-learning-of-green-s-functions
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
2101.07206
https://arxiv.org/abs/2101.07206v1
https://arxiv.org/pdf/2101.07206v1.pdf
https://github.com/sheadan/DeepGreen
true
false
true
tf
https://paperswithcode.com/paper/versavis-an-open-versatile-multi-camera
VersaVIS: An Open Versatile Multi-Camera Visual-Inertial Sensor Suite
1912.02469
https://arxiv.org/abs/1912.02469v1
https://arxiv.org/pdf/1912.02469v1.pdf
https://github.com/rikba/versavis
false
false
true
none
https://paperswithcode.com/paper/one-to-many-approach-for-improving-super
One-to-many Approach for Improving Super-Resolution
2106.10437
https://arxiv.org/abs/2106.10437v4
https://arxiv.org/pdf/2106.10437v4.pdf
https://github.com/krenerd/ultimate-sr
true
true
true
tf
https://paperswithcode.com/paper/vimpac-video-pre-training-via-masked-token
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning
2106.11250
https://arxiv.org/abs/2106.11250v1
https://arxiv.org/pdf/2106.11250v1.pdf
https://github.com/airsplay/vimpac
true
true
true
pytorch
https://paperswithcode.com/paper/tight-approximate-differential-privacy-for
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
2006.07134
https://arxiv.org/abs/2006.07134v3
https://arxiv.org/pdf/2006.07134v3.pdf
https://github.com/DPBayes/PLD-Accountant
true
true
false
none
https://paperswithcode.com/paper/statistical-inference-of-the-value-function
Statistical Inference of the Value Function for Reinforcement Learning in Infinite Horizon Settings
2001.04515
https://arxiv.org/abs/2001.04515v2
https://arxiv.org/pdf/2001.04515v2.pdf
https://github.com/shengzhang37/SAVE
true
true
false
none
https://paperswithcode.com/paper/on-the-unreasonable-effectiveness-of-1
On the Unreasonable Effectiveness of Centroids in Image Retrieval
2104.13643
https://arxiv.org/abs/2104.13643v1
https://arxiv.org/pdf/2104.13643v1.pdf
https://github.com/lannguyen0910/deep-efficient-person-reid
false
false
true
pytorch
https://paperswithcode.com/paper/nutrition5k-towards-automatic-nutritional
Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food
2103.03375
https://arxiv.org/abs/2103.03375v2
https://arxiv.org/pdf/2103.03375v2.pdf
https://github.com/google-research-datasets/Nutrition5k
true
true
true
tf
https://paperswithcode.com/paper/learn-to-resolve-conversational-dependency-a
Learn to Resolve Conversational Dependency: A Consistency Training Framework for Conversational Question Answering
2106.11575
https://arxiv.org/abs/2106.11575v1
https://arxiv.org/pdf/2106.11575v1.pdf
https://github.com/dmis-lab/excord
true
true
false
pytorch
https://paperswithcode.com/paper/a-distributional-perspective-on-reinforcement
A Distributional Perspective on Reinforcement Learning
1707.06887
http://arxiv.org/abs/1707.06887v1
http://arxiv.org/pdf/1707.06887v1.pdf
https://github.com/qgallouedec/deep_rl
false
false
false
pytorch
https://paperswithcode.com/paper/zero-shot-chinese-character-recognition-with
Zero-Shot Chinese Character Recognition with Stroke-Level Decomposition
2106.11613
https://arxiv.org/abs/2106.11613v1
https://arxiv.org/pdf/2106.11613v1.pdf
https://github.com/FudanVI/FudanOCR/tree/main/stroke-level-decomposition
true
false
false
pytorch
https://paperswithcode.com/paper/towards-knowledge-grounded-counter-narrative
Towards Knowledge-Grounded Counter Narrative Generation for Hate Speech
2106.11783
https://arxiv.org/abs/2106.11783v1
https://arxiv.org/pdf/2106.11783v1.pdf
https://github.com/marcoguerini/CONAN
true
true
false
none
https://paperswithcode.com/paper/inspiration-through-observation-demonstrating
Inspiration through Observation: Demonstrating the Influence of Automatically Generated Text on Creative Writing
2107.04007
https://arxiv.org/abs/2107.04007v1
https://arxiv.org/pdf/2107.04007v1.pdf
https://github.com/roemmele/InSentive
true
true
false
none
https://paperswithcode.com/paper/lightweight-robust-size-aware-cache
Lightweight Robust Size Aware Cache Management
2105.08770
https://arxiv.org/abs/2105.08770v2
https://arxiv.org/pdf/2105.08770v2.pdf
https://github.com/ohadeytan/caffeine
true
true
true
none
https://paperswithcode.com/paper/behavior-sequence-transformer-for-e-commerce
Behavior Sequence Transformer for E-commerce Recommendation in Alibaba
1905.06874
https://arxiv.org/abs/1905.06874v1
https://arxiv.org/pdf/1905.06874v1.pdf
https://github.com/jiwidi/Behavior-Sequence-Transformer-Pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/atari-5-distilling-the-arcade-learning
Atari-5: Distilling the Arcade Learning Environment down to Five Games
2210.02019
https://arxiv.org/abs/2210.02019v1
https://arxiv.org/pdf/2210.02019v1.pdf
https://github.com/maitchison/atari-5
true
true
false
none
https://paperswithcode.com/paper/can-word-sense-distribution-detect-semantic
Can Word Sense Distribution Detect Semantic Changes of Words?
2310.10400
https://arxiv.org/abs/2310.10400v1
https://arxiv.org/pdf/2310.10400v1.pdf
https://github.com/LivNLP/Sense-based-Semantic-Change-Prediction
true
true
false
pytorch
https://paperswithcode.com/paper/imitation-learning-via-off-policy-1
Imitation Learning via Off-Policy Distribution Matching
1912.05032
https://arxiv.org/abs/1912.05032v1
https://arxiv.org/pdf/1912.05032v1.pdf
https://github.com/Div99/IQ-Learn
false
false
false
pytorch
https://paperswithcode.com/paper/distinguishing-short-duration-noise
Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers
1709.08974
http://arxiv.org/abs/1709.08974v2
http://arxiv.org/pdf/1709.08974v2.pdf
https://github.com/gwastro/1-ogc
false
false
true
none
https://paperswithcode.com/paper/solving-reward-collecting-problems-with-uavs
Solving reward-collecting problems with UAVs: a comparison of online optimization and Q-learning
2112.00141
https://arxiv.org/abs/2112.00141v1
https://arxiv.org/pdf/2112.00141v1.pdf
https://github.com/benliu31492/solving-reward-collecting-problems-with-uavs-a-comparison-of-online-optimization-and-q-learning
true
true
false
tf
https://paperswithcode.com/paper/hierarchical-variational-memory-for-few-shot-1
Hierarchical Variational Memory for Few-shot Learning Across Domains
2112.08181
https://arxiv.org/abs/2112.08181v2
https://arxiv.org/pdf/2112.08181v2.pdf
https://github.com/ydu-uva/hiermemory
true
true
false
tf
https://paperswithcode.com/paper/unraveling-the-hidden-organisation-of-urban
Unraveling the hidden organisation of urban systems and their mobility flows
1908.02538
https://arxiv.org/abs/1908.02538v2
https://arxiv.org/pdf/1908.02538v2.pdf
https://github.com/gbertagnolli/intsegration
false
false
true
none
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
1707.07998
http://arxiv.org/abs/1707.07998v3
http://arxiv.org/pdf/1707.07998v3.pdf
https://github.com/Dlut-lab-zmn/Image-Captioning-Attack
false
false
true
pytorch
https://paperswithcode.com/paper/self-critical-sequence-training-for-image
Self-critical Sequence Training for Image Captioning
1612.00563
http://arxiv.org/abs/1612.00563v2
http://arxiv.org/pdf/1612.00563v2.pdf
https://github.com/Dlut-lab-zmn/Image-Captioning-Attack
false
false
true
pytorch
https://paperswithcode.com/paper/efficiently-combining-human-demonstrations
Efficiently Combining Human Demonstrations and Interventions for Safe Training of Autonomous Systems in Real-Time
1810.11545
http://arxiv.org/abs/1810.11545v2
http://arxiv.org/pdf/1810.11545v2.pdf
https://github.com/viniciusguigo/complete_col
false
false
true
tf
https://paperswithcode.com/paper/cycle-of-learning-for-autonomous-systems-from
Cycle-of-Learning for Autonomous Systems from Human Interaction
1808.09572
http://arxiv.org/abs/1808.09572v2
http://arxiv.org/pdf/1808.09572v2.pdf
https://github.com/viniciusguigo/complete_col
false
false
true
tf
https://paperswithcode.com/paper/data-clustering-and-noise-undressing-for
Data clustering and noise undressing for correlation matrices
cond-mat/0101237
https://arxiv.org/abs/cond-mat/0101237v1
https://arxiv.org/pdf/cond-mat/0101237v1.pdf
https://github.com/lyelibi/timeseries_gen
false
false
true
none
https://paperswithcode.com/paper/unireplknet-a-universal-perception-large-1
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition
null
http://openaccess.thecvf.com//content/CVPR2024/html/Ding_UniRepLKNet_A_Universal_Perception_Large-Kernel_ConvNet_for_Audio_Video_Point_CVPR_2024_paper.html
http://openaccess.thecvf.com//content/CVPR2024/papers/Ding_UniRepLKNet_A_Universal_Perception_Large-Kernel_ConvNet_for_Audio_Video_Point_CVPR_2024_paper.pdf
https://github.com/ailab-cvc/unireplknet
true
true
false
pytorch
https://paperswithcode.com/paper/agglomerative-fast-super-paramagnetic
Agglomerative Likelihood Clustering
1908.00951
https://arxiv.org/abs/1908.00951v4
https://arxiv.org/pdf/1908.00951v4.pdf
https://github.com/lyelibi/timeseries_gen
true
true
true
none
https://paperswithcode.com/paper/learning-long-horizon-robot-exploration
Learning Long-Horizon Robot Exploration Strategies for Multi-Object Search in Continuous Action Spaces
2205.11384
https://arxiv.org/abs/2205.11384v2
https://arxiv.org/pdf/2205.11384v2.pdf
https://github.com/robot-learning-freiburg/Multi-Object-Search
true
false
false
pytorch
https://paperswithcode.com/paper/probing-the-robustness-of-trained-metrics-for-1
Probing the Robustness of Trained Metrics for Conversational Dialogue Systems
2202.13887
https://arxiv.org/abs/2202.13887v1
https://arxiv.org/pdf/2202.13887v1.pdf
https://github.com/jderiu/metric-robustness
true
false
true
pytorch
https://paperswithcode.com/paper/learning-deep-features-for-discriminative
Learning Deep Features for Discriminative Localization
1512.04150
http://arxiv.org/abs/1512.04150v1
http://arxiv.org/pdf/1512.04150v1.pdf
https://github.com/Azure/AzureChestXRay
false
false
true
pytorch
https://paperswithcode.com/paper/exhaustive-symbolic-regression
Exhaustive Symbolic Regression
2211.11461
https://arxiv.org/abs/2211.11461v2
https://arxiv.org/pdf/2211.11461v2.pdf
https://github.com/MindSpore-MS-Code2/code0/tree/main/esr_ea
false
false
false
mindspore
https://paperswithcode.com/paper/etpc-a-paraphrase-identification-corpus
ETPC - A Paraphrase Identification Corpus Annotated with Extended Paraphrase Typology and Negation
null
https://aclanthology.org/L18-1221
https://aclanthology.org/L18-1221.pdf
https://github.com/venelink/ETPC
true
true
false
none
https://paperswithcode.com/paper/a-simple-pooling-based-design-for-real-time
A Simple Pooling-Based Design for Real-Time Salient Object Detection
1904.09569
http://arxiv.org/abs/1904.09569v1
http://arxiv.org/pdf/1904.09569v1.pdf
https://github.com/chouxianyu/Boundary-Aware-PoolNet
false
false
false
pytorch
https://paperswithcode.com/paper/basnet-boundary-aware-salient-object
BASNet: Boundary-Aware Salient Object Detection
null
http://openaccess.thecvf.com/content_CVPR_2019/html/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.pdf
https://github.com/chouxianyu/Boundary-Aware-PoolNet
false
false
false
pytorch
https://paperswithcode.com/paper/training-data-efficient-image-transformers
Training data-efficient image transformers & distillation through attention
2012.12877
https://arxiv.org/abs/2012.12877v2
https://arxiv.org/pdf/2012.12877v2.pdf
https://github.com/UdbhavPrasad072300/Transformer-Implementations
false
false
true
pytorch
https://paperswithcode.com/paper/attention-is-all-you-need
Attention Is All You Need
1706.03762
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/pdf/1706.03762v7.pdf
https://github.com/UdbhavPrasad072300/Transformer-Implementations
false
false
true
pytorch
https://paperswithcode.com/paper/probabilistic-contrastive-principal-component
Probabilistic Contrastive Principal Component Analysis
2012.07977
https://arxiv.org/abs/2012.07977v2
https://arxiv.org/pdf/2012.07977v2.pdf
https://github.com/AllaVinner/PCPCA-a-little-look
false
false
true
none
https://paperswithcode.com/paper/a-free-viewpoint-portrait-generator-with
SofGAN: A Portrait Image Generator with Dynamic Styling
2007.03780
https://arxiv.org/abs/2007.03780v2
https://arxiv.org/pdf/2007.03780v2.pdf
https://github.com/apchenstu/sofgan
true
true
true
pytorch
https://paperswithcode.com/paper/silhouette-based-view-embeddings-for-gait
Silhouette based View embeddings for Gait Recognition under Multiple Views
2108.05524
https://arxiv.org/abs/2108.05524v1
https://arxiv.org/pdf/2108.05524v1.pdf
https://github.com/ctrasd/gait-view
true
true
false
pytorch
https://paperswithcode.com/paper/bag-of-tricks-for-long-tail-visual
Bag of Tricks for Long-Tail Visual Recognition of Animal Species in Camera-Trap Images
2206.12458
https://arxiv.org/abs/2206.12458v3
https://arxiv.org/pdf/2206.12458v3.pdf
https://github.com/alcunha/bagoftricks4cameratraps
true
false
false
tf
https://paperswithcode.com/paper/black-box-safety-analysis-and-retraining-of
Black-box Safety Analysis and Retraining of DNNs based on Feature Extraction and Clustering
2201.05077
https://arxiv.org/abs/2201.05077v4
https://arxiv.org/pdf/2201.05077v4.pdf
https://zenodo.org/record/6619279
true
false
false
none
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
Proximal Policy Optimization Algorithms
1707.06347
http://arxiv.org/abs/1707.06347v2
http://arxiv.org/pdf/1707.06347v2.pdf
https://github.com/gaetanserre/l2rpn-2022_ppo-baseline
false
false
true
none
https://paperswithcode.com/paper/optimal-transport-kernels-for-sequential-and
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
2006.07593
https://arxiv.org/abs/2006.07593v3
https://arxiv.org/pdf/2006.07593v3.pdf
https://github.com/ntienvu/TW_NAS
true
true
true
pytorch
https://paperswithcode.com/paper/deep-historical-borrowing-framework-to
Deep Historical Borrowing Framework to Prospectively and Simultaneously Synthesize Control Information in Confirmatory Clinical Trials with Multiple Endpoints
2008.12774
https://arxiv.org/abs/2008.12774v2
https://arxiv.org/pdf/2008.12774v2.pdf
https://github.com/tian-yu-zhan/deep_historical_borrowing
true
true
false
none
https://paperswithcode.com/paper/data-distributional-properties-drive-emergent
Data Distributional Properties Drive Emergent In-Context Learning in Transformers
2205.05055
https://arxiv.org/abs/2205.05055v6
https://arxiv.org/pdf/2205.05055v6.pdf
https://github.com/deepmind/emergent_in_context_learning
true
true
true
jax
https://paperswithcode.com/paper/mask-r-cnn
Mask R-CNN
1703.06870
http://arxiv.org/abs/1703.06870v3
http://arxiv.org/pdf/1703.06870v3.pdf
https://github.com/houssemjebari/Fruit-Detection
false
false
true
none
https://paperswithcode.com/paper/fader-networks-manipulating-images-by-sliding
Fader Networks: Manipulating Images by Sliding Attributes
1706.00409
http://arxiv.org/abs/1706.00409v2
http://arxiv.org/pdf/1706.00409v2.pdf
https://github.com/sidwa/ae_thesis
false
false
true
pytorch
https://paperswithcode.com/paper/tutorial-on-variational-autoencoders
Tutorial on Variational Autoencoders
1606.05908
https://arxiv.org/abs/1606.05908v3
https://arxiv.org/pdf/1606.05908v3.pdf
https://github.com/sidwa/ae_thesis
false
false
true
pytorch
https://paperswithcode.com/paper/understanding-and-improving-interpolation-in
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
1807.07543
http://arxiv.org/abs/1807.07543v2
http://arxiv.org/pdf/1807.07543v2.pdf
https://github.com/sidwa/ae_thesis
false
false
true
pytorch
https://paperswithcode.com/paper/a-simple-framework-for-contrastive-learning
A Simple Framework for Contrastive Learning of Visual Representations
2002.05709
https://arxiv.org/abs/2002.05709v3
https://arxiv.org/pdf/2002.05709v3.pdf
https://github.com/sidwa/ae_thesis
false
false
true
pytorch
https://paperswithcode.com/paper/signgraph-a-sign-sequence-is-worth-graphs-of
SignGraph: A Sign Sequence is Worth Graphs of Nodes
null
http://openaccess.thecvf.com//content/CVPR2024/html/Gan_SignGraph_A_Sign_Sequence_is_Worth_Graphs_of_Nodes_CVPR_2024_paper.html
http://openaccess.thecvf.com//content/CVPR2024/papers/Gan_SignGraph_A_Sign_Sequence_is_Worth_Graphs_of_Nodes_CVPR_2024_paper.pdf
https://github.com/gswycf/signgraph
true
true
false
pytorch
https://paperswithcode.com/paper/erc-20r-and-erc-721r-reversible-transactions
ERC-20R and ERC-721R: Reversible Transactions on Ethereum
2208.00543
https://arxiv.org/abs/2208.00543v3
https://arxiv.org/pdf/2208.00543v3.pdf
https://github.com/kkailiwang/erc20r
true
true
true
none
https://paperswithcode.com/paper/ernie-enhanced-representation-through
ERNIE: Enhanced Representation through Knowledge Integration
1904.09223
http://arxiv.org/abs/1904.09223v1
http://arxiv.org/pdf/1904.09223v1.pdf
https://github.com/lyqcom/emotect
false
false
false
mindspore
https://paperswithcode.com/paper/what-and-how-well-you-performed-a-multitask
What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment
1904.04346
https://arxiv.org/abs/1904.04346v2
https://arxiv.org/pdf/1904.04346v2.pdf
https://github.com/InfoX-SEU/DAE-AQA
false
false
true
pytorch
https://paperswithcode.com/paper/a-biologically-plausible-neural-network-for
A biologically plausible neural network for multi-channel Canonical Correlation Analysis
2010.00525
https://arxiv.org/abs/2010.00525v4
https://arxiv.org/pdf/2010.00525v4.pdf
https://github.com/flatironinstitute/bio-cca
false
false
true
none
https://paperswithcode.com/paper/a-robust-consistent-information-criterion-for
A Robust Consistent Information Criterion for Model Selection based on Empirical Likelihood
2006.13281
http://arxiv.org/abs/2006.13281v1
http://arxiv.org/pdf/2006.13281v1.pdf
https://github.com/chencxxy28/ELCIC
false
false
true
none
https://paperswithcode.com/paper/combining-diverse-feature-priors-1
Combining Diverse Feature Priors
2110.08220
https://arxiv.org/abs/2110.08220v2
https://arxiv.org/pdf/2110.08220v2.pdf
https://github.com/MadryLab/copriors
true
true
true
pytorch
https://paperswithcode.com/paper/free-feature-refinement-for-generalized-zero
FREE: Feature Refinement for Generalized Zero-Shot Learning
2107.13807
https://arxiv.org/abs/2107.13807v1
https://arxiv.org/pdf/2107.13807v1.pdf
https://github.com/shiming-chen/FREE
true
true
true
pytorch
https://paperswithcode.com/paper/towards-layer-wise-image-vectorization-1
Towards Layer-wise Image Vectorization
2206.04655
https://arxiv.org/abs/2206.04655v1
https://arxiv.org/pdf/2206.04655v1.pdf
https://github.com/picsart-ai-research/live-layerwise-image-vectorization
true
true
true
pytorch
https://paperswithcode.com/paper/3dias-3d-shape-reconstruction-with-implicit
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces
2108.08653
https://arxiv.org/abs/2108.08653v1
https://arxiv.org/pdf/2108.08653v1.pdf
https://github.com/myavartanoo/3DIAS_PyTorch
true
false
true
pytorch
https://paperswithcode.com/paper/steady-simultaneous-state-estimation-and
STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations
2203.01299
https://arxiv.org/abs/2203.01299v3
https://arxiv.org/pdf/2203.01299v3.pdf
https://github.com/mrvplusone/steady
true
true
true
none
https://paperswithcode.com/paper/learning-to-search-in-local-branching
Revisiting local branching with a machine learning lens
2112.02195
https://arxiv.org/abs/2112.02195v2
https://arxiv.org/pdf/2112.02195v2.pdf
https://github.com/pandat8/ml4lb
true
true
false
pytorch
https://paperswithcode.com/paper/kiu-net-overcomplete-convolutional
KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation
2010.01663
https://arxiv.org/abs/2010.01663v2
https://arxiv.org/pdf/2010.01663v2.pdf
https://github.com/jeya-maria-jose/KiU-Net-pytorch
true
true
true
pytorch
https://paperswithcode.com/paper/learning-delicate-local-representations-for
Learning Delicate Local Representations for Multi-Person Pose Estimation
2003.04030
https://arxiv.org/abs/2003.04030v3
https://arxiv.org/pdf/2003.04030v3.pdf
https://github.com/chenyilun95/tf-cpn
false
false
true
tf
https://paperswithcode.com/paper/directquote-a-dataset-for-direct-quotation
DirectQuote: A Dataset for Direct Quotation Extraction and Attribution in News Articles
2110.07827
https://arxiv.org/abs/2110.07827v1
https://arxiv.org/pdf/2110.07827v1.pdf
https://github.com/thunlp-mt/directquote
true
true
false
none
https://paperswithcode.com/paper/a-deep-architecture-for-non-projective
A Deep Architecture for Non-Projective Dependency Parsing
null
https://aclanthology.org/W15-1508
https://aclanthology.org/W15-1508.pdf
https://github.com/erickrf/nlpnet
true
true
false
none
https://paperswithcode.com/paper/shapeconv-shape-aware-convolutional-layer-for
ShapeConv: Shape-aware Convolutional Layer for Indoor RGB-D Semantic Segmentation
2108.10528
https://arxiv.org/abs/2108.10528v1
https://arxiv.org/pdf/2108.10528v1.pdf
https://github.com/hanchaoleng/shapeconv
true
true
true
pytorch
https://paperswithcode.com/paper/efficacy-of-bert-embeddings-on-predicting
Efficacy of BERT embeddings on predicting disaster from Twitter data
2108.10698
https://arxiv.org/abs/2108.10698v1
https://arxiv.org/pdf/2108.10698v1.pdf
https://github.com/ashischanda/sentiment-analysis
true
true
false
pytorch
https://paperswithcode.com/paper/deep-learning-of-human-visual-sensitivity-in
Deep Learning of Human Visual Sensitivity in Image Quality Assessment Framework
null
http://openaccess.thecvf.com/content_cvpr_2017/html/Kim_Deep_Learning_of_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Kim_Deep_Learning_of_CVPR_2017_paper.pdf
https://github.com/LeonLIU08/DeepQA-with-Pytorch
false
false
false
pytorch
https://paperswithcode.com/paper/cnn-based-autoencoder-application-in-breast
CNN Based Autoencoder Application in Breast Cancer Image Retrieval
null
https://ieeexplore.ieee.org/document/9502205
https://ieeexplore.ieee.org/document/9502205
https://github.com/forderation/breast-cancer-retrieval
true
false
false
tf
https://paperswithcode.com/paper/memorization-precedes-generation-learning
Memorization Precedes Generation: Learning Unsupervised GANs with Memory Networks
1803.01500
http://arxiv.org/abs/1803.01500v2
http://arxiv.org/pdf/1803.01500v2.pdf
https://github.com/whyjay/memoryGAN
true
true
false
tf
https://paperswithcode.com/paper/generic-approaches-for-parallel-rule-matching
Generic approaches for parallel rule matching in learning classifier systems
null
https://dl.acm.org/doi/10.1145/3377929.3398102
https://dl.acm.org/doi/10.1145/3377929.3398102
https://github.com/LagLukas/para_matching
false
false
false
none
https://paperswithcode.com/paper/an-efficient-lorentz-equivariant-graph-neural
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
2201.08187
https://arxiv.org/abs/2201.08187v6
https://arxiv.org/pdf/2201.08187v6.pdf
https://github.com/sdogsq/LorentzNet-release
true
true
false
pytorch
https://paperswithcode.com/paper/a-polytopal-method-for-the-brinkman-problem
A polytopal method for the Brinkman problem robust in all regimes
2301.03272
https://arxiv.org/abs/2301.03272v3
https://arxiv.org/pdf/2301.03272v3.pdf
https://github.com/jdroniou/HArDCore3D-release
true
false
false
none
https://paperswithcode.com/paper/accelerating-verified-compiler-development
Accelerating Verified-Compiler Development with a Verified Rewriting Engine
2205.00862
https://arxiv.org/abs/2205.00862v4
https://arxiv.org/pdf/2205.00862v4.pdf
https://github.com/mit-plv/rewriter
true
true
false
none
https://paperswithcode.com/paper/energetic-formulation-of-large-deformation
Energetic Formulation of Large-Deformation Poroelasticity
2112.15298
https://arxiv.org/abs/2112.15298v1
https://arxiv.org/pdf/2112.15298v1.pdf
https://github.com/minakari/poromechanics
true
true
false
none
https://paperswithcode.com/paper/transgan-two-transformers-can-make-one-strong
TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up
2102.07074
https://arxiv.org/abs/2102.07074v4
https://arxiv.org/pdf/2102.07074v4.pdf
https://github.com/omihub777/vit-cifar
false
false
true
pytorch