DrugRNA-Data / scripts /create_disjoint_splits.py
t2ance's picture
Initial upload: RNA-small molecule interaction prediction dataset with three evaluation scenarios
6edb4a9 verified
#!/usr/bin/env python3
"""
Create disjoint splits from drug_rna_cds_sampled_11 dataset.
Creates three datasets:
1. drug_rna_cds_disjoint (fully disjoint if possible)
2. drug_rna_cds_disjoint_rna (RNA-disjoint)
3. drug_rna_cds_disjoint_compound (compound-disjoint)
"""
import pandas as pd
import numpy as np
from pathlib import Path
from collections import defaultdict
import argparse
def analyze_disjoint_feasibility(df):
"""Analyze if fully disjoint split is feasible."""
print("=" * 80)
print("ANALYZING DISJOINT SPLIT FEASIBILITY")
print("=" * 80)
n_compounds = df['SMILES'].nunique()
n_rnas = df['RNA_seq'].nunique()
n_samples = len(df)
print(f"\nDataset statistics:")
print(f" Total samples: {n_samples:,}")
print(f" Unique compounds: {n_compounds:,}")
print(f" Unique RNAs: {n_rnas:,}")
# Analyze compound-RNA pairs
pairs = df.groupby(['SMILES', 'RNA_seq']).size().reset_index(name='count')
print(f" Unique (compound, RNA) pairs: {len(pairs):,}")
# Check samples per entity
samples_per_compound = df.groupby('SMILES').size()
samples_per_rna = df.groupby('RNA_seq').size()
print(f"\n Samples per compound: mean={samples_per_compound.mean():.1f}, median={samples_per_compound.median():.1f}")
print(f" Samples per RNA: mean={samples_per_rna.mean():.1f}, median={samples_per_rna.median():.1f}")
# Estimate fully disjoint feasibility
# For fully disjoint: need non-overlapping sets of (compound, RNA) pairs
# This is only possible if we can partition compounds and RNAs
# Simple heuristic: check if we have enough samples
min_samples_needed = int(0.15 * n_samples) # For test set (15%)
print(f"\n Minimum samples needed for test (15%): {min_samples_needed:,}")
# Check if we can allocate compounds/RNAs
n_compounds_test = int(0.15 * n_compounds)
n_rnas_test = int(0.15 * n_rnas)
print(f" If we allocate 15% of compounds: {n_compounds_test} compounds")
print(f" If we allocate 15% of RNAs: {n_rnas_test} RNAs")
print(f" Max possible samples (all pairs): {n_compounds_test * n_rnas_test:,}")
# Check actual connectivity
compound_to_rnas = df.groupby('SMILES')['RNA_seq'].apply(set).to_dict()
rna_to_compounds = df.groupby('RNA_seq')['SMILES'].apply(set).to_dict()
# Calculate how connected the graph is
avg_rnas_per_compound = df.groupby('SMILES')['RNA_seq'].nunique().mean()
avg_compounds_per_rna = df.groupby('RNA_seq')['SMILES'].nunique().mean()
print(f"\n Connectivity:")
print(f" Avg RNAs per compound: {avg_rnas_per_compound:.1f}")
print(f" Avg compounds per RNA: {avg_compounds_per_rna:.1f}")
# Determine feasibility
fully_disjoint_feasible = (n_compounds_test * n_rnas_test >= min_samples_needed)
print(f"\n Fully disjoint split feasible: {'YES' if fully_disjoint_feasible else 'NO'}")
return fully_disjoint_feasible
def create_fully_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
"""Create fully disjoint split (compounds AND RNAs don't overlap)."""
print("\n" + "=" * 80)
print("CREATING FULLY DISJOINT SPLIT")
print("=" * 80)
np.random.seed(seed)
# Get unique entities
compounds = df['SMILES'].unique()
rnas = df['RNA_seq'].unique()
# Shuffle
np.random.shuffle(compounds)
np.random.shuffle(rnas)
# Split compounds
n_compounds = len(compounds)
n_train_comp = int(train_ratio * n_compounds)
n_val_comp = int(val_ratio * n_compounds)
train_compounds = set(compounds[:n_train_comp])
val_compounds = set(compounds[n_train_comp:n_train_comp + n_val_comp])
test_compounds = set(compounds[n_train_comp + n_val_comp:])
# Split RNAs
n_rnas = len(rnas)
n_train_rna = int(train_ratio * n_rnas)
n_val_rna = int(val_ratio * n_rnas)
train_rnas = set(rnas[:n_train_rna])
val_rnas = set(rnas[n_train_rna:n_train_rna + n_val_rna])
test_rnas = set(rnas[n_train_rna + n_val_rna:])
# Assign samples based on BOTH compound and RNA membership
train_df = df[(df['SMILES'].isin(train_compounds)) & (df['RNA_seq'].isin(train_rnas))].copy()
val_df = df[(df['SMILES'].isin(val_compounds)) & (df['RNA_seq'].isin(val_rnas))].copy()
test_df = df[(df['SMILES'].isin(test_compounds)) & (df['RNA_seq'].isin(test_rnas))].copy()
print(f"\n Allocated:")
print(f" Train: {len(train_compounds)} compounds, {len(train_rnas)} RNAs → {len(train_df)} samples")
print(f" Val: {len(val_compounds)} compounds, {len(val_rnas)} RNAs → {len(val_df)} samples")
print(f" Test: {len(test_compounds)} compounds, {len(test_rnas)} RNAs → {len(test_df)} samples")
total_samples = len(train_df) + len(val_df) + len(test_df)
print(f"\n Total samples retained: {total_samples:,} / {len(df):,} ({100*total_samples/len(df):.1f}%)")
if total_samples < 0.5 * len(df):
print(f"\n ⚠️ Warning: Lost {100*(1-total_samples/len(df)):.1f}% of samples")
print(f" Fully disjoint split may not be practical for this dataset")
return None
return train_df, val_df, test_df
def create_rna_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
"""Create RNA-disjoint split (RNAs don't overlap across splits)."""
print("\n" + "=" * 80)
print("CREATING RNA-DISJOINT SPLIT (Target: 70:15:15)")
print("=" * 80)
np.random.seed(seed)
# Get RNAs with their sample counts
rna_counts = df.groupby('RNA_seq').size().reset_index(name='count')
rna_counts = rna_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle
# Target sample counts
total_samples = len(df)
target_train = int(train_ratio * total_samples)
target_val = int(val_ratio * total_samples)
target_test = total_samples - target_train - target_val
print(f"\n Target sample distribution:")
print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)")
print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)")
print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)")
# Greedy assignment: assign RNAs to splits to match target ratios
train_rnas = []
val_rnas = []
test_rnas = []
train_count = 0
val_count = 0
test_count = 0
for _, row in rna_counts.iterrows():
rna = row['RNA_seq']
count = row['count']
# Assign to the split that needs samples most
train_deficit = target_train - train_count
val_deficit = target_val - val_count
test_deficit = target_test - test_count
if train_deficit >= val_deficit and train_deficit >= test_deficit:
train_rnas.append(rna)
train_count += count
elif val_deficit >= test_deficit:
val_rnas.append(rna)
val_count += count
else:
test_rnas.append(rna)
test_count += count
train_rnas = set(train_rnas)
val_rnas = set(val_rnas)
test_rnas = set(test_rnas)
# Assign samples based on RNA
train_df = df[df['RNA_seq'].isin(train_rnas)].copy()
val_df = df[df['RNA_seq'].isin(val_rnas)].copy()
test_df = df[df['RNA_seq'].isin(test_rnas)].copy()
print(f"\n Split RNAs:")
print(f" Train: {len(train_rnas)} RNAs ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)")
print(f" Val: {len(val_rnas)} RNAs ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)")
print(f" Test: {len(test_rnas)} RNAs ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)")
# Verify disjointness
assert len(train_rnas & val_rnas) == 0, "Train and val RNAs overlap!"
assert len(train_rnas & test_rnas) == 0, "Train and test RNAs overlap!"
assert len(val_rnas & test_rnas) == 0, "Val and test RNAs overlap!"
print(f"\n ✓ RNA-disjoint verified: no RNA overlap across splits")
# Check compound overlap (expected)
train_compounds = set(train_df['SMILES'].unique())
val_compounds = set(val_df['SMILES'].unique())
test_compounds = set(test_df['SMILES'].unique())
overlap_train_val = len(train_compounds & val_compounds)
overlap_train_test = len(train_compounds & test_compounds)
print(f"\n Compound overlap (expected):")
print(f" Train-Val: {overlap_train_val} compounds")
print(f" Train-Test: {overlap_train_test} compounds")
return train_df, val_df, test_df
def create_compound_disjoint_split(df, train_ratio=0.7, val_ratio=0.15, seed=42):
"""Create compound-disjoint split (compounds don't overlap across splits)."""
print("\n" + "=" * 80)
print("CREATING COMPOUND-DISJOINT SPLIT (Target: 70:15:15)")
print("=" * 80)
np.random.seed(seed)
# Get compounds with their sample counts
compound_counts = df.groupby('SMILES').size().reset_index(name='count')
compound_counts = compound_counts.sample(frac=1, random_state=seed).reset_index(drop=True) # Shuffle
# Target sample counts
total_samples = len(df)
target_train = int(train_ratio * total_samples)
target_val = int(val_ratio * total_samples)
target_test = total_samples - target_train - target_val
print(f"\n Target sample distribution:")
print(f" Train: {target_train:,} ({train_ratio*100:.0f}%)")
print(f" Val: {target_val:,} ({val_ratio*100:.0f}%)")
print(f" Test: {target_test:,} ({(1-train_ratio-val_ratio)*100:.0f}%)")
# Greedy assignment: assign compounds to splits to match target ratios
train_compounds = []
val_compounds = []
test_compounds = []
train_count = 0
val_count = 0
test_count = 0
for _, row in compound_counts.iterrows():
compound = row['SMILES']
count = row['count']
# Assign to the split that needs samples most
train_deficit = target_train - train_count
val_deficit = target_val - val_count
test_deficit = target_test - test_count
if train_deficit >= val_deficit and train_deficit >= test_deficit:
train_compounds.append(compound)
train_count += count
elif val_deficit >= test_deficit:
val_compounds.append(compound)
val_count += count
else:
test_compounds.append(compound)
test_count += count
train_compounds = set(train_compounds)
val_compounds = set(val_compounds)
test_compounds = set(test_compounds)
# Assign samples based on compound
train_df = df[df['SMILES'].isin(train_compounds)].copy()
val_df = df[df['SMILES'].isin(val_compounds)].copy()
test_df = df[df['SMILES'].isin(test_compounds)].copy()
print(f"\n Split compounds:")
print(f" Train: {len(train_compounds)} compounds ({len(train_df):,} samples, {100*len(train_df)/len(df):.1f}%)")
print(f" Val: {len(val_compounds)} compounds ({len(val_df):,} samples, {100*len(val_df)/len(df):.1f}%)")
print(f" Test: {len(test_compounds)} compounds ({len(test_df):,} samples, {100*len(test_df)/len(df):.1f}%)")
# Verify disjointness
assert len(train_compounds & val_compounds) == 0, "Train and val compounds overlap!"
assert len(train_compounds & test_compounds) == 0, "Train and test compounds overlap!"
assert len(val_compounds & test_compounds) == 0, "Val and test compounds overlap!"
print(f"\n ✓ Compound-disjoint verified: no compound overlap across splits")
# Check RNA overlap (expected)
train_rnas = set(train_df['RNA_seq'].unique())
val_rnas = set(val_df['RNA_seq'].unique())
test_rnas = set(test_df['RNA_seq'].unique())
overlap_train_val = len(train_rnas & val_rnas)
overlap_train_test = len(train_rnas & test_rnas)
print(f"\n RNA overlap (expected):")
print(f" Train-Val: {overlap_train_val} RNAs")
print(f" Train-Test: {overlap_train_test} RNAs")
return train_df, val_df, test_df
def save_splits(train_df, val_df, test_df, output_dir, dataset_name):
"""Save splits to files."""
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save CSV files
train_df.to_csv(output_path / 'train_text.csv', index=False)
val_df.to_csv(output_path / 'val_text.csv', index=False)
test_df.to_csv(output_path / 'test_text.csv', index=False)
# Create report
report = f"""# {dataset_name} Dataset Report
## Overview
Disjoint splits created from drug_rna_cds_sampled_11 dataset.
## Split Statistics
### Sample Counts
- Train: {len(train_df):,} samples ({100*train_df['label'].mean():.1f}% positive)
- Val: {len(val_df):,} samples ({100*val_df['label'].mean():.1f}% positive)
- Test: {len(test_df):,} samples ({100*test_df['label'].mean():.1f}% positive)
- Total: {len(train_df) + len(val_df) + len(test_df):,} samples
### Unique Entities
#### Compounds
- Train: {train_df['SMILES'].nunique():,}
- Val: {val_df['SMILES'].nunique():,}
- Test: {test_df['SMILES'].nunique():,}
#### RNAs
- Train: {train_df['RNA_seq'].nunique():,}
- Val: {val_df['RNA_seq'].nunique():,}
- Test: {test_df['RNA_seq'].nunique():,}
## Disjointness Properties
### Compound Disjointness
- Train-Val compound overlap: {len(set(train_df['SMILES'].unique()) & set(val_df['SMILES'].unique()))}
- Train-Test compound overlap: {len(set(train_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))}
- Val-Test compound overlap: {len(set(val_df['SMILES'].unique()) & set(test_df['SMILES'].unique()))}
### RNA Disjointness
- Train-Val RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(val_df['RNA_seq'].unique()))}
- Train-Test RNA overlap: {len(set(train_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))}
- Val-Test RNA overlap: {len(set(val_df['RNA_seq'].unique()) & set(test_df['RNA_seq'].unique()))}
## Output Format
Same as drug_rna_cds_sampled_11:
- Columns: RNA_ID, Compound_ID, RNA_seq, SMILES, text, label
- Files: train_text.csv, val_text.csv, test_text.csv
## Use Case
This split tests the model's ability to generalize to:
- {'New compounds AND new RNAs' if 'disjoint' in dataset_name and 'rna' not in dataset_name and 'compound' not in dataset_name else 'New RNAs' if 'rna' in dataset_name else 'New compounds' if 'compound' in dataset_name else 'New samples'}
Date: {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
with open(output_path / 'DATASET_REPORT.md', 'w') as f:
f.write(report)
print(f"\n Saved to: {output_path}")
print(f" - train_text.csv")
print(f" - val_text.csv")
print(f" - test_text.csv")
print(f" - DATASET_REPORT.md")
def main():
parser = argparse.ArgumentParser(
description="Create disjoint splits from drug_rna_cds_sampled_11"
)
parser.add_argument(
'--input',
default='datasets/drug_rna_cds_sampled_11',
help='Input dataset directory'
)
parser.add_argument(
'--seed',
type=int,
default=42,
help='Random seed'
)
args = parser.parse_args()
print("=" * 80)
print("CREATING DISJOINT SPLITS FROM drug_rna_cds_sampled_11")
print("=" * 80)
# Load data
input_path = Path(args.input)
# Combine all splits from source
dfs = []
for split in ['train', 'val', 'test']:
csv_path = input_path / f'{split}_text.csv'
if csv_path.exists():
dfs.append(pd.read_csv(csv_path))
df = pd.concat(dfs, ignore_index=True)
print(f"\nLoaded {len(df):,} samples from {input_path}")
# Analyze feasibility
fully_disjoint_feasible = analyze_disjoint_feasibility(df)
# 1. Try fully disjoint
if fully_disjoint_feasible:
print("\n" + "#" * 80)
print("# CREATING: drug_rna_cds_disjoint (FULLY DISJOINT)")
print("#" * 80)
result = create_fully_disjoint_split(df, seed=args.seed)
if result is not None:
train_df, val_df, test_df = result
save_splits(
train_df, val_df, test_df,
'datasets/drug_rna_cds_disjoint',
'drug_rna_cds_disjoint'
)
else:
print("\n ⚠️ Skipping fully disjoint split - not practical for this dataset")
else:
print("\n ⚠️ Skipping fully disjoint split - not enough samples")
# 2. Create RNA-disjoint
print("\n" + "#" * 80)
print("# CREATING: drug_rna_cds_disjoint_rna (RNA-DISJOINT)")
print("#" * 80)
train_df, val_df, test_df = create_rna_disjoint_split(df, seed=args.seed)
save_splits(
train_df, val_df, test_df,
'datasets/drug_rna_cds_disjoint_rna',
'drug_rna_cds_disjoint_rna'
)
# 3. Create compound-disjoint
print("\n" + "#" * 80)
print("# CREATING: drug_rna_cds_disjoint_compound (COMPOUND-DISJOINT)")
print("#" * 80)
train_df, val_df, test_df = create_compound_disjoint_split(df, seed=args.seed)
save_splits(
train_df, val_df, test_df,
'datasets/drug_rna_cds_disjoint_compound',
'drug_rna_cds_disjoint_compound'
)
print("\n" + "=" * 80)
print("ALL DISJOINT SPLITS CREATED SUCCESSFULLY")
print("=" * 80)
print("\nCreated datasets:")
if fully_disjoint_feasible:
print(" 1. drug_rna_cds_disjoint - Fully disjoint (compounds AND RNAs)")
print(" 2. drug_rna_cds_disjoint_rna - RNA-disjoint")
print(" 3. drug_rna_cds_disjoint_compound - Compound-disjoint")
if __name__ == "__main__":
main()