|
|
--- |
|
|
license: apache-2.0 |
|
|
--- |
|
|
<h2 align="center" style="line-height: 25px;"> |
|
|
Unlocking Aha Moments via Reinforcement Learning: Advancing Collaborative Visual Comprehension and Generation |
|
|
</h2> |
|
|
|
|
|
<p align="center"> |
|
|
<a href="https://arxiv.org/abs/2506.01480" style="display: inline-block; margin: 0 5px;"> |
|
|
<img src="https://img.shields.io/badge/Paper-red?style=flat&logo=arxiv" style="height: 15px;"> |
|
|
</a> |
|
|
<a href="https://janus-pro-r1.github.io/" style="display: inline-block; margin: 0 5px;"> |
|
|
<img src="https://img.shields.io/badge/Project Page-white?style=flat&logo=google-docs" style="height: 15px;"> |
|
|
</a> |
|
|
<a href="https://github.com/wendell0218/Janus-Pro-R1" style="display: inline-block; margin: 0 5px;"> |
|
|
<img src="https://img.shields.io/badge/Code-black?style=flat&logo=github" style="height: 15px;"> |
|
|
</a> |
|
|
<a href="https://huggingface.co/midbee/Janus-Pro-R1-7B" style="display: inline-block; margin: 0 5px;"> |
|
|
<img src="https://img.shields.io/badge/-%F0%9F%A4%97%20Checkpoint-orange?style=flat" style="height: 15px;"/> |
|
|
</a> |
|
|
</p> |
|
|
|
|
|
<div align="center"> |
|
|
<span style="font-size: smaller;"> |
|
|
Kaihang Pan<sup>1*</sup>, Yang Wu<sup>2*</sup>, Wendong Bu<sup>1*</sup>, Kai Shen<sup>1‡</sup>, Juncheng Li<sup>1†</sup>, Yingting Wang<sup>2</sup>, |
|
|
<br>Yunfei Li<sup>2</sup>, Siliang Tang<sup>1</sup>, Jun Xiao<sup>1</sup>, Fei Wu<sup>1</sup>, Hang Zhao<sup>2</sup>, Yueting Zhuang<sup>1</sup> |
|
|
<br><sup>1</sup>Zhejiang University, <sup>2</sup>Ant Group |
|
|
<br>*Equal Contribution, <sup>‡</sup>Project Leader, <sup>†</sup>Corresponding Author |
|
|
</span> |
|
|
</div> |
|
|
|
|
|
 |
|
|
|
|
|
## 🚀 Overview |
|
|
|
|
|
|
|
|
We propose a **two-stage training paradigm** to enable introspective text-to-image generation via genuine reasoning chains (CoT), unlocking what we call **Aha Moments** in visual generation: |
|
|
|
|
|
- **Stage 1 – Supervised Fine-Tuning (SFT):** |
|
|
The model learns structured visual reasoning through three subtasks: |
|
|
- Text-to-image generation |
|
|
- Image-text consistency self-evaluation |
|
|
- Image regeneration through reflection |
|
|
|
|
|
- **Stage 2 – Reinforcement Learning (RL):** |
|
|
The model is trained using a token-level Markov decision process with bi-level QA-based rewards to encourage spontaneous reasoning and correction, optimizing via GRPO. |
|
|
|
|
|
With self-reflective capabilities, this approach bridges the gap between text-to-image generation and image editing, enabling a unified and coherent visual reasoning process. |
|
|
|
|
|
<div style="text-align: center;"> |
|
|
<img src="https://janus-pro-r1.github.io/static/images/method.png" width="100%" /> |
|
|
</div> |
|
|
|
|
|
## ✨️ Quickstart |
|
|
|
|
|
**1. Prepare Environment** |
|
|
|
|
|
First, the python environment for inference is the same as that for SFT. Specifically, please clone our repo and prepare the python environment. We recommend using Python>=3.10. |
|
|
|
|
|
```bash |
|
|
git clone https://github.com/wendell0218/Janus-Pro-R1.git |
|
|
cd Janus-Pro-R1 |
|
|
|
|
|
conda create -n janus-pro-r1-sft python=3.11 |
|
|
conda activate janus-pro-r1-sft |
|
|
pip install -r requirements-sft.txt |
|
|
``` |
|
|
|
|
|
**2. Prepare Pretrained Model** |
|
|
|
|
|
Janus-Pro-R1-7B utilizes `Janus-Pro-7B` as the pretrained model for subsequent training. You can download the corresponding model using the following command: |
|
|
```bash |
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/deepseek-ai/Janus-Pro-7B |
|
|
cd Janus-Pro-7B |
|
|
git lfs pull |
|
|
``` |
|
|
|
|
|
**3. Start Generating!** |
|
|
|
|
|
We illustrate the inference process of introspective text-to-image generation under the simplest scenario, where the model performs a one-time image self-evaluation and image regeneration after the initial text-to-image generation. |
|
|
|
|
|
```python |
|
|
import os |
|
|
import json |
|
|
import torch |
|
|
import PIL.Image |
|
|
import numpy as np |
|
|
from typing import List |
|
|
from torchvision import transforms |
|
|
from transformers import AutoModelForCausalLM |
|
|
from models import MultiModalityCausalLM, VLChatProcessor |
|
|
from tqdm import tqdm |
|
|
import math |
|
|
|
|
|
def center_crop_arr(pil_image, image_size): |
|
|
while min(*pil_image.size) >= 2 * image_size: |
|
|
pil_image = pil_image.resize( |
|
|
tuple(x // 2 for x in pil_image.size), resample=PIL.Image.BOX |
|
|
) |
|
|
|
|
|
scale = image_size / min(*pil_image.size) |
|
|
pil_image = pil_image.resize( |
|
|
tuple(round(x * scale) for x in pil_image.size), resample=PIL.Image.BICUBIC |
|
|
) |
|
|
|
|
|
arr = np.array(pil_image) |
|
|
crop_y = (arr.shape[0] - image_size) // 2 |
|
|
crop_x = (arr.shape[1] - image_size) // 2 |
|
|
return PIL.Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size]) |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate_with_refine( |
|
|
mmgpt: MultiModalityCausalLM, |
|
|
vl_chat_processor: VLChatProcessor, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
temperature: float = 1, |
|
|
parallel_size: int = 4, |
|
|
cfg_weight: float = 5, |
|
|
image_token_num_per_image: int = 576, |
|
|
img_size: int = 384, |
|
|
patch_size: int = 16, |
|
|
img_top_k: int = None, |
|
|
img_top_p: float = None, |
|
|
txt_top_k: int = None, |
|
|
txt_top_p: float = None, |
|
|
max_reflect_len: int = 80, |
|
|
task_list: List[int] = [1,2,3], |
|
|
): |
|
|
prompt = [ |
|
|
'<end_of_image>\nLet me think Does this image match the prompt...', |
|
|
'<|end▁of▁sentence|>\nNext, I will draw a new image<begin_of_image>' |
|
|
] |
|
|
all_imgs_1,embeds_1,attention_mask_1 = [],[],[] |
|
|
output_text_ids,selfcheck,attention_mask_txt = [],[],[] |
|
|
all_imgs_2 = [] |
|
|
parallel_size = input_ids.shape[0] |
|
|
if 1 <= task_list[-1]: |
|
|
tokens = torch.repeat_interleave(input_ids,2,dim=0) |
|
|
for i in range(tokens.size(0)): |
|
|
if i % 2 != 0: |
|
|
pad_list = torch.where(tokens[i]==vl_chat_processor.pad_id)[0] |
|
|
if pad_list.shape[0]==0: |
|
|
st = 1 |
|
|
else: |
|
|
st = pad_list[-1].item()+2 |
|
|
tokens[i, st:-1] = vl_chat_processor.pad_id |
|
|
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) |
|
|
embeds_1 = inputs_embeds |
|
|
attention_mask_1 = torch.repeat_interleave(attention_mask, 2, dim=0) |
|
|
cur_atten_mask = attention_mask_1 |
|
|
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() |
|
|
for i in tqdm(range(image_token_num_per_image)): |
|
|
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, attention_mask=cur_atten_mask, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) |
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = mmgpt.gen_head(hidden_states[:, -1, :]) |
|
|
logit_cond = logits[0::2, :] |
|
|
logit_uncond = logits[1::2, :] |
|
|
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) |
|
|
if img_top_k: |
|
|
v, _ = torch.topk(logits, min(img_top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = float("-inf") |
|
|
probs = torch.softmax(logits / temperature, dim=-1) |
|
|
if img_top_p: |
|
|
probs_sort, probs_idx = torch.sort(probs, |
|
|
dim=-1, |
|
|
descending=True) |
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
mask = probs_sum - probs_sort > img_top_p |
|
|
probs_sort[mask] = 0.0 |
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
next_token = torch.multinomial(probs_sort, num_samples=1) |
|
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
else: |
|
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
generated_tokens[:, i] = next_token.squeeze(dim=-1) |
|
|
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) |
|
|
img_embeds = mmgpt.prepare_gen_img_embeds(next_token) |
|
|
inputs_embeds = img_embeds.unsqueeze(dim=1) |
|
|
cur_atten_mask = torch.cat([cur_atten_mask, torch.ones(cur_atten_mask.size(0), 1).to(attention_mask)], dim=1) |
|
|
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) |
|
|
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) |
|
|
dec = np.clip((dec + 1) / 2 * 255, 0, 255) |
|
|
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) |
|
|
visual_img[:, :, :] = dec |
|
|
for i in range(parallel_size): |
|
|
all_imgs_1.append(PIL.Image.fromarray(visual_img[i])) |
|
|
|
|
|
if 2 <= task_list[-1]: |
|
|
inputs_embeds = embeds_1[::2,:,:] |
|
|
under_embeds = torch.zeros((parallel_size, image_token_num_per_image, 4096), dtype=torch.bfloat16).cuda() |
|
|
for i in range(parallel_size): |
|
|
img_prompt = "<image_placeholder>" |
|
|
prepare_inputs = vl_chat_processor( |
|
|
prompt=img_prompt, images=[all_imgs_1[i]], force_batchify=True |
|
|
).to(input_ids.device) |
|
|
img_embeds = mmgpt.prepare_inputs_embeds(**prepare_inputs) |
|
|
img_embeds = img_embeds[:,2:-1,:] |
|
|
under_embeds[i,:,:] = img_embeds |
|
|
inputs_embeds = torch.cat((inputs_embeds, under_embeds), dim=1) |
|
|
selfcheck_ids = vl_chat_processor.tokenizer.encode(prompt[0])[1:] |
|
|
selfcheck_ids = torch.LongTensor(selfcheck_ids) |
|
|
selfcheck_tokens = torch.zeros((parallel_size, len(selfcheck_ids)), dtype=torch.int).cuda() |
|
|
for i in range(parallel_size): |
|
|
selfcheck_tokens[i, :] = selfcheck_ids |
|
|
selfcheck_embeds = mmgpt.language_model.get_input_embeddings()(selfcheck_tokens) |
|
|
inputs_embeds = torch.cat((inputs_embeds, selfcheck_embeds), dim=1) |
|
|
reflect_tokens = torch.zeros((parallel_size, max_reflect_len), dtype=torch.int).cuda() |
|
|
reflect_len = 0 |
|
|
eos_list = torch.zeros((parallel_size, 1), dtype=torch.int).cuda() |
|
|
add_padding = torch.zeros((parallel_size, 1), dtype=torch.int).cuda() |
|
|
eos_token = vl_chat_processor.tokenizer.encode("<|end▁of▁sentence|>")[-1] |
|
|
padding_token = vl_chat_processor.tokenizer.encode("<|▁pad▁|>")[-1] |
|
|
yes_token = vl_chat_processor.tokenizer.encode("Yes")[-1] |
|
|
no_token = vl_chat_processor.tokenizer.encode("No")[-1] |
|
|
attn_mask = torch.ones((parallel_size, inputs_embeds.shape[1]), dtype=torch.int).cuda() |
|
|
yes_list = torch.zeros((parallel_size), dtype=torch.int).cuda() |
|
|
for i in range(max_reflect_len): |
|
|
outputs = mmgpt.language_model(inputs_embeds=inputs_embeds, attention_mask=attn_mask, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) |
|
|
logits = outputs.logits |
|
|
logits = logits[:,-1,:] |
|
|
if i == 0: |
|
|
allowed_tokens = [yes_token, no_token] |
|
|
allowed_tokens_logits = logits[:,allowed_tokens] |
|
|
logits[:,:] = -math.inf |
|
|
logits[:,allowed_tokens] = allowed_tokens_logits |
|
|
|
|
|
if txt_top_k: |
|
|
v, _ = torch.topk(logits, min(txt_top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = float("-inf") |
|
|
probs = torch.softmax(logits / temperature, dim=-1) |
|
|
if txt_top_p: |
|
|
probs_sort, probs_idx = torch.sort(probs, |
|
|
dim=-1, |
|
|
descending=True) |
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
mask = probs_sum - probs_sort > txt_top_p |
|
|
probs_sort[mask] = 0.0 |
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
next_token = torch.multinomial(probs_sort, num_samples=1) |
|
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
else: |
|
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
if i >= 1: |
|
|
add_padding = ((reflect_tokens[:, i-1] == eos_token) | (reflect_tokens[:, i-1] == padding_token)).unsqueeze(1).to(torch.int) |
|
|
next_token = add_padding*padding_token + (1-add_padding)*next_token |
|
|
if i == 0: |
|
|
yes_list = (next_token == yes_token) |
|
|
reflect_tokens[:, i] = next_token.squeeze(dim=-1) |
|
|
is_eos = (next_token == eos_token) |
|
|
eos_list = eos_list | is_eos.to(torch.int) |
|
|
new_attn = 1-add_padding |
|
|
new_attn = new_attn & (~is_eos) |
|
|
attn_mask = torch.cat((attn_mask, new_attn), dim=1) |
|
|
inputs_embeds = mmgpt.language_model.get_input_embeddings()(next_token) |
|
|
reflect_len = i |
|
|
if eos_list.all(): |
|
|
break |
|
|
reflect_tokens = reflect_tokens[:,:reflect_len+1] |
|
|
max_relect_len = reflect_len+1 |
|
|
output_text_ids = reflect_tokens |
|
|
attention_mask_txt = torch.ones_like(output_text_ids).cuda() |
|
|
attention_mask_txt[output_text_ids == padding_token] = 0 |
|
|
attention_mask_txt[output_text_ids == eos_token] = 0 |
|
|
selfcheck = yes_list.bool() |
|
|
|
|
|
if 3 <= task_list[-1]: |
|
|
tokens = torch.repeat_interleave(input_ids,2,dim=0) |
|
|
for i in range(tokens.size(0)): |
|
|
if i % 2 != 0: |
|
|
pad_list = torch.where(tokens[i]==vl_chat_processor.pad_id)[0] |
|
|
if pad_list.shape[0]==0: |
|
|
st = 1 |
|
|
else: |
|
|
st = pad_list[-1].item()+2 |
|
|
tokens[i, st:-1] = vl_chat_processor.pad_id |
|
|
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) |
|
|
gen_transform = transforms.Compose([ |
|
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, 384)), |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
|
]) |
|
|
gen_embeds_list = [] |
|
|
for i in range(len(all_imgs_1)): |
|
|
img = gen_transform(all_imgs_1[i]) |
|
|
img = img.unsqueeze(0).to(torch.bfloat16).cuda() |
|
|
_, _, all_image_ids = mmgpt.gen_vision_model.encode(img) |
|
|
image_ids = all_image_ids[2] |
|
|
embed = mmgpt.gen_aligner(mmgpt.gen_embed(image_ids)) |
|
|
gen_embeds_list.append(embed) |
|
|
gen_embeds_list.append(embed) |
|
|
gen_embeds = torch.cat(gen_embeds_list, dim=0) |
|
|
inputs_embeds = torch.cat((inputs_embeds, gen_embeds), dim=1) |
|
|
selfcheck_ids = vl_chat_processor.tokenizer.encode(prompt[0])[1:] |
|
|
selfcheck_ids = torch.LongTensor(selfcheck_ids) |
|
|
selfcheck_tokens = torch.zeros((2*parallel_size, len(selfcheck_ids)), dtype=torch.int).cuda() |
|
|
for i in range(2*parallel_size): |
|
|
selfcheck_tokens[i, :] = selfcheck_ids |
|
|
selfcheck_embeds = mmgpt.language_model.get_input_embeddings()(selfcheck_tokens) |
|
|
inputs_embeds = torch.cat((inputs_embeds, selfcheck_embeds), dim=1) |
|
|
attn_mask = torch.ones((2*parallel_size, inputs_embeds.shape[1]), dtype=torch.int).cuda() |
|
|
reflect_embeds = torch.ones((2*parallel_size, max_relect_len), dtype=torch.int).cuda() |
|
|
for i in range(2*parallel_size): |
|
|
reflect_embeds[i] = output_text_ids[i//2] |
|
|
new_attn = torch.ones((2*parallel_size, max_relect_len), dtype=torch.int).cuda() |
|
|
for i in range(2*parallel_size): |
|
|
new_attn[i] = attention_mask_txt[i//2] |
|
|
reflect_embeds = mmgpt.language_model.get_input_embeddings()(reflect_embeds) |
|
|
inputs_embeds = torch.cat((inputs_embeds, reflect_embeds), dim=1) |
|
|
attn_mask = torch.cat((attn_mask, new_attn), dim=1) |
|
|
regen_ids = vl_chat_processor.tokenizer.encode(prompt[1])[1:] |
|
|
regen_ids = torch.LongTensor(regen_ids) |
|
|
regen_tokens = torch.zeros((2*parallel_size, len(regen_ids)), dtype=torch.int).cuda() |
|
|
for i in range(2*parallel_size): |
|
|
regen_tokens[i, :] = regen_ids |
|
|
regen_embeds = mmgpt.language_model.get_input_embeddings()(regen_tokens) |
|
|
inputs_embeds = torch.cat((inputs_embeds, regen_embeds), dim=1) |
|
|
new_attn = torch.ones((2*parallel_size, regen_ids.shape[0]), dtype=torch.int).cuda() |
|
|
attn_mask = torch.cat((attn_mask, new_attn), dim=1) |
|
|
|
|
|
new_generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() |
|
|
for i in tqdm(range(image_token_num_per_image)): |
|
|
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, attention_mask=attn_mask, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) |
|
|
hidden_states = outputs.last_hidden_state |
|
|
new_attn = torch.ones((2*parallel_size, 1), dtype=torch.int).cuda() |
|
|
attn_mask = torch.cat((attn_mask, new_attn), dim=1) |
|
|
logits = mmgpt.gen_head(hidden_states[:, -1, :]) |
|
|
logit_cond = logits[0::2, :] |
|
|
logit_uncond = logits[1::2, :] |
|
|
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) |
|
|
if img_top_k: |
|
|
v, _ = torch.topk(logits, min(img_top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = float("-inf") |
|
|
probs = torch.softmax(logits / temperature, dim=-1) |
|
|
if img_top_p: |
|
|
probs_sort, probs_idx = torch.sort(probs, |
|
|
dim=-1, |
|
|
descending=True) |
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
mask = probs_sum - probs_sort > img_top_p |
|
|
probs_sort[mask] = 0.0 |
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
next_token = torch.multinomial(probs_sort, num_samples=1) |
|
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
else: |
|
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
new_generated_tokens[:, i] = next_token.squeeze(dim=-1) |
|
|
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) |
|
|
img_embeds = mmgpt.prepare_gen_img_embeds(next_token) |
|
|
inputs_embeds = img_embeds.unsqueeze(dim=1) |
|
|
new_dec = mmgpt.gen_vision_model.decode_code(new_generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) |
|
|
new_dec = new_dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) |
|
|
new_dec = np.clip((new_dec + 1) / 2 * 255, 0, 255) |
|
|
new_visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) |
|
|
new_visual_img[:, :, :] = new_dec |
|
|
for i in range(parallel_size): |
|
|
all_imgs_2.append(PIL.Image.fromarray(new_visual_img[i])) |
|
|
|
|
|
return all_imgs_1, all_imgs_2, (output_text_ids.cpu(), selfcheck.squeeze().cpu()) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--model_path", type=str, default="deepseek-ai/Janus-Pro-7B") |
|
|
parser.add_argument("--ckpt_path", type=str, default=None) |
|
|
parser.add_argument("--caption", type=str, default="a brown giraffe and a white stop sign") |
|
|
parser.add_argument("--gen_path", type=str, default="results/samples") |
|
|
parser.add_argument("--reason_path", type=str, default='results/reason.jsonl') |
|
|
parser.add_argument("--regen_path", type=str, default='results/regen_samples') |
|
|
parser.add_argument("--cfg", type=float, default=5.0) |
|
|
parser.add_argument("--parallel_size", type=int, default=4) |
|
|
|
|
|
args = parser.parse_args() |
|
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(args.model_path) |
|
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(args.model_path, trust_remote_code=True) |
|
|
if args.ckpt_path is not None: |
|
|
state_dict = torch.load(f"{args.ckpt_path}", map_location="cpu") |
|
|
vl_gpt.load_state_dict(state_dict) |
|
|
|
|
|
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() |
|
|
|
|
|
# You can flexibly modify the code here to perform batched inference. |
|
|
allprompts = [] |
|
|
# prompt = f'<|User|>: {args.caption}\n\n<|Assistant|>:<begin_of_image>' |
|
|
conversation = [ |
|
|
{ |
|
|
"role": "<|User|>", |
|
|
"content": args.caption, |
|
|
}, |
|
|
{"role": "<|Assistant|>", "content": ""}, |
|
|
] |
|
|
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( |
|
|
conversations=conversation, |
|
|
sft_format=vl_chat_processor.sft_format, |
|
|
system_prompt="", |
|
|
) |
|
|
prompt = sft_format + vl_chat_processor.image_start_tag |
|
|
allprompts.append(prompt) |
|
|
|
|
|
tokenized_input = vl_chat_processor.tokenizer( |
|
|
allprompts, |
|
|
return_tensors="pt", |
|
|
padding='longest', |
|
|
max_length=200, truncation=True |
|
|
).to('cuda') |
|
|
|
|
|
prompt_ids = tokenized_input['input_ids'] |
|
|
prompt_mask = tokenized_input['attention_mask'] |
|
|
|
|
|
images, regen_images, (output_text_ids, selfcheck) = generate_with_refine( |
|
|
vl_gpt, |
|
|
vl_chat_processor, |
|
|
input_ids=prompt_ids, attention_mask=prompt_mask, |
|
|
parallel_size = args.parallel_size, |
|
|
cfg_weight = args.cfg, |
|
|
) |
|
|
os.makedirs(args.gen_path, exist_ok=True) |
|
|
os.makedirs(args.reason_path, exist_ok=True) |
|
|
os.makedirs(args.regen_path, exist_ok=True) |
|
|
|
|
|
for i in range(args.parallel_size): |
|
|
img_name = str(i).zfill(4)+".png" |
|
|
save_path = os.path.join(args.gen_path, img_name) |
|
|
images[i].save(save_path) |
|
|
|
|
|
with open(args.reason_path, 'w') as f: |
|
|
for i in range(args.parallel_size): |
|
|
reason_data = {"prompt": args.caption} |
|
|
img_name = str(i).zfill(4) |
|
|
reason_data["filename"] = os.path.join(args.gen_path, f"{img_name}.png") |
|
|
reason_data["correct"] = bool(selfcheck[i]) |
|
|
reason_data["reason"] = vl_chat_processor.tokenizer.decode(output_text_ids[i].cpu().tolist(), skip_special_tokens=True) |
|
|
reason_data = json.dumps(reason_data, ensure_ascii=False) |
|
|
f.write(reason_data+'\n') |
|
|
|
|
|
|
|
|
for i in range(args.parallel_size): |
|
|
img_name = str(i).zfill(4)+".png" |
|
|
save_path = os.path.join(args.regen_path, img_name) |
|
|
if selfcheck[i]: |
|
|
images[i].save(save_path) |
|
|
else: |
|
|
regen_images[i].save(save_path) |
|
|
``` |
|
|
|
|
|
|
|
|
## 🤝 Acknowledgment |
|
|
|
|
|
Our project is developed based on the following repositories: |
|
|
|
|
|
- [Janus-Series](https://github.com/deepseek-ai/Janus): Unified Multimodal Understanding and Generation Models |
|
|
- [Open-R1](https://github.com/huggingface/open-r1): Fully open reproduction of DeepSeek-R1 |
|
|
|
|
|
## 📜 Citation |
|
|
|
|
|
If you find this work useful for your research, please cite our paper and star our git repo: |
|
|
|
|
|
```bibtex |
|
|
@article{pan2025unlocking, |
|
|
title={Unlocking Aha Moments via Reinforcement Learning: Advancing Collaborative Visual Comprehension and Generation}, |
|
|
author={Pan, Kaihang and Wu, Yang and Bu, Wendong and Shen, Kai and Li, Juncheng and Wang, Yingting and Li, Yunfei and Tang, Siliang and Xiao, Jun and Wu, Fei and others}, |
|
|
journal={arXiv preprint arXiv:2506.01480}, |
|
|
year={2025} |
|
|
} |
|
|
``` |