Sharp-onnx / README.md
Kyle Pearson
Update framework to ONNX Runtime (FP32/FP16), remove Apple dependencies, add validation script for ONNX conversion with FP32-preserving ops, fix FP16 precision issues, update inference CLI with depth exaggeration, rename docs, and enable LFS support.
5cd2df6
---
license: apple-amlr
library_name: ml-sharp
pipeline_tag: image-to-3d
base_model: apple/Sharp
tags:
- onnx
- monocular-view-synthesis
- gaussian-splatting
- quantization
- fp16
---
# Sharp Monocular View Synthesis in Less Than a Second (ONNX Edition)
[![Project Page](https://img.shields.io/badge/Project-Page-green)](https://apple.github.io/ml-sharp/)
[![arXiv](https://img.shields.io/badge/arXiv-2512.10685-b31b1b.svg)](https://arxiv.org/abs/2512.10685)
This software project is a communnity contribution and not affiliated with the original the research paper:
> _Sharp Monocular View Synthesis in Less Than a Second_ by _Lars Mescheder, Wei Dong, Shiwei Li, Xuyang Bai, Marcel Santos, Peiyun Hu, Bruno Lecouat, Mingmin Zhen, Amaël Delaunoy, Tian Fang, Yanghai Tsin, Stephan Richter and Vladlen Koltun_.
> We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements.
#### This release includes fully validated **ONNX** versions of SHARP (FP32 and FP16), optimized for cross-platform inference on Windows, Linux, and macOS.
![](viewer.gif)
Rendered using [Splat Viewer](https://huggingface.co/spaces/pearsonkyle/Gaussian-Splat-Viewer)
## Getting started
### 🚀 Run Inference
Use the provided [inference_onnx.py](inference_onnx.py) script to run SHARP inference:
```bash
# Run inference with FP16 model (faster, smaller)
python inference_onnx.py -m sharp_fp16.onnx -i test.png -o test.ply -d 0.5
```
**CLI Options:**
- `-m, --model`: Path to ONNX model file
- `-i, --input`: Path to input image (PNG, JPEG, etc.)
- `-o, --output`: Path for output PLY file
- `-d, --decimate`: Decimation ratio 0.0-1.0 (default: 1.0 = keep all)
- `--disparity-factor`: Depth scale factor (default: 1.0)
- `--depth-scale`: Depth exaggeration factor (default: 1.0)
**Features:**
- Cross-platform ONNX Runtime inference (CPU/GPU)
- Automatic image preprocessing and resizing
- Gaussian decimation for reduced file sizes
- PLY output compatible with all major 3D Gaussian viewers
## Model Input and Output
### 📥 Input
The ONNX model accepts two inputs:
- **`image`**: A 3-channel RGB image in `float32` format with shape `(1, 3, H, W)`.
- Values expected in range `[0, 1]` (normalized RGB).
- Recommended resolution: `1536×1536` (matches training size).
- Aspect ratio preserved; input resized internally if needed.
- **`disparity_factor`**: A scalar tensor of shape `(1,)` representing the ratio `focal_length / image_width`.
- Use `1.0` for standard cameras (e.g., typical smartphone or DSLR).
- Adjust to control depth scale: higher values = closer objects, lower values = farther scenes.
### 📤 Output
The model outputs five tensors representing a 3D Gaussian splat representation:
| Output | Shape | Description |
|--------|-------|-------------|
| `mean_vectors_3d_positions` | `(1, N, 3)` | 3D positions in Normalized Device Coordinates (NDC) — x, y, z. |
| `singular_values_scales` | `(1, N, 3)` | Scale parameters along each principal axis (width, height, depth). |
| `quaternions_rotations` | `(1, N, 4)` | Unit quaternions `[w, x, y, z]` encoding orientation of each Gaussian. |
| `colors_rgb_linear` | `(1, N, 3)` | Linear RGB color values in range `[0, 1]` (no gamma correction). |
| `opacities_alpha_channel` | `(1, N)` | Opacity (alpha) values per Gaussian, in range `[0, 1]`. |
The total number of Gaussians `N` is approximately 1,179,648 for the default model.
## Model Conversion
To convert SHARP from PyTorch to ONNX, use the provided conversion script:
```bash
# Convert to FP32 ONNX (higher precision)
python convert_onnx.py -o sharp.onnx --validate
# Convert to FP16 ONNX (faster inference, smaller model)
python convert_onnx.py -o sharp_fp16.onnx -q fp16 --validate
```
**Conversion Options:**
- `-c, --checkpoint`: Path to PyTorch checkpoint (downloads from Apple if not provided)
- `-o, --output`: Output ONNX model path
- `-q, --quantize`: Quantization type (`fp16` for half-precision)
- `--validate`: Validate converted model against PyTorch reference
- `--input-image`: Path to test image for validation
**Requirements:**
- PyTorch and ml-sharp source code (automatically downloaded)
- ONNX and ONNX Runtime for validation
## Citation
If you find this work useful, please cite the original paper:
```bibtex
@inproceedings{Sharp2025:arxiv,
title = {Sharp Monocular View Synthesis in Less Than a Second},
author = {Lars Mescheder and Wei Dong and Shiwei Li and Xuyang Bai and Marcel Santos and Peiyun Hu and Bruno Lecouat and Mingmin Zhen and Ama\"{e}l Delaunoy and Tian Fang and Yanghai Tsin and Stephan R. Richter and Vladlen Koltun},
journal = {arXiv preprint arXiv:2512.10685},
year = {2025},
url = {https://arxiv.org/abs/2512.10685},
}
```