|
|
--- |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- colbert |
|
|
- PyLate |
|
|
- feature-extraction |
|
|
- text-classification |
|
|
- sentence-pair-classification |
|
|
- semantic-similarity |
|
|
- semantic-search |
|
|
- retrieval |
|
|
- reranking |
|
|
- generated_from_trainer |
|
|
- dataset_size:1452533 |
|
|
- loss:Contrastive |
|
|
base_model: lightonai/GTE-ModernColBERT-v1 |
|
|
datasets: |
|
|
- redis/langcache-sentencepairs-v1 |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: PyLate |
|
|
--- |
|
|
|
|
|
# Redis fine-tuned late-interaction ColBERT model for semantic caching on LangCache |
|
|
|
|
|
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) on the [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to sequences of 768-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** PyLate model |
|
|
- **Base model:** [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) <!-- at revision 6605e431bed9b582d3eff7699911d2b64e8ccd3f --> |
|
|
- **Document Length:** 512 tokens |
|
|
- **Query Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 tokens |
|
|
- **Similarity Function:** MaxSim |
|
|
- **Training Dataset:** |
|
|
- [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
|
- **Language:** en |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) |
|
|
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) |
|
|
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
ColBERT( |
|
|
(0): Transformer({'max_seq_length': 511, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) |
|
|
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False}) |
|
|
(2): Dense({'in_features': 128, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
First install the PyLate library: |
|
|
|
|
|
```bash |
|
|
pip install -U pylate |
|
|
``` |
|
|
|
|
|
### Retrieval |
|
|
|
|
|
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search. |
|
|
|
|
|
#### Indexing documents |
|
|
|
|
|
Load the ColBERT model and initialize the PLAID index, then encode and index your documents: |
|
|
|
|
|
```python |
|
|
from pylate import indexes, models, retrieve |
|
|
|
|
|
# Step 1: Load the ColBERT model |
|
|
model = models.ColBERT( |
|
|
model_name_or_path="redis/langcache-colbert-v1", |
|
|
) |
|
|
|
|
|
# Step 2: Initialize the PLAID index |
|
|
index = indexes.PLAID( |
|
|
index_folder="pylate-index", |
|
|
index_name="index", |
|
|
override=True, # This overwrites the existing index if any |
|
|
) |
|
|
|
|
|
# Step 3: Encode the documents |
|
|
documents_ids = ["1", "2", "3"] |
|
|
documents = ["document 1 text", "document 2 text", "document 3 text"] |
|
|
|
|
|
documents_embeddings = model.encode( |
|
|
documents, |
|
|
batch_size=32, |
|
|
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries |
|
|
show_progress_bar=True, |
|
|
) |
|
|
|
|
|
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids |
|
|
index.add_documents( |
|
|
documents_ids=documents_ids, |
|
|
documents_embeddings=documents_embeddings, |
|
|
) |
|
|
``` |
|
|
|
|
|
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: |
|
|
|
|
|
```python |
|
|
# To load an index, simply instantiate it with the correct folder/name and without overriding it |
|
|
index = indexes.PLAID( |
|
|
index_folder="pylate-index", |
|
|
index_name="index", |
|
|
) |
|
|
``` |
|
|
|
|
|
#### Retrieving top-k documents for queries |
|
|
|
|
|
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. |
|
|
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: |
|
|
|
|
|
```python |
|
|
# Step 1: Initialize the ColBERT retriever |
|
|
retriever = retrieve.ColBERT(index=index) |
|
|
|
|
|
# Step 2: Encode the queries |
|
|
queries_embeddings = model.encode( |
|
|
["query for document 3", "query for document 1"], |
|
|
batch_size=32, |
|
|
is_query=True, # # Ensure that it is set to False to indicate that these are queries |
|
|
show_progress_bar=True, |
|
|
) |
|
|
|
|
|
# Step 3: Retrieve top-k documents |
|
|
scores = retriever.retrieve( |
|
|
queries_embeddings=queries_embeddings, |
|
|
k=10, # Retrieve the top 10 matches for each query |
|
|
) |
|
|
``` |
|
|
|
|
|
### Reranking |
|
|
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: |
|
|
|
|
|
```python |
|
|
from pylate import rank, models |
|
|
|
|
|
queries = [ |
|
|
"query A", |
|
|
"query B", |
|
|
] |
|
|
|
|
|
documents = [ |
|
|
["document A", "document B"], |
|
|
["document 1", "document C", "document B"], |
|
|
] |
|
|
|
|
|
documents_ids = [ |
|
|
[1, 2], |
|
|
[1, 3, 2], |
|
|
] |
|
|
|
|
|
model = models.ColBERT( |
|
|
model_name_or_path="redis/langcache-colbert-v1", |
|
|
) |
|
|
|
|
|
queries_embeddings = model.encode( |
|
|
queries, |
|
|
is_query=True, |
|
|
) |
|
|
|
|
|
documents_embeddings = model.encode( |
|
|
documents, |
|
|
is_query=False, |
|
|
) |
|
|
|
|
|
reranked_documents = rank.rerank( |
|
|
documents_ids=documents_ids, |
|
|
queries_embeddings=queries_embeddings, |
|
|
documents_embeddings=documents_embeddings, |
|
|
) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### LangCache Sentence Pairs (subsets=['all'], train+val=True) |
|
|
|
|
|
* Dataset: [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
|
* Size: 1,452,533 training samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | negative_1 | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 9 tokens</li><li>mean: 28.67 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 28.51 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.02 tokens</li><li>max: 50 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | negative_1 | |
|
|
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------| |
|
|
| <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code> | <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code> | <code>Are there many Canadians living and working illegally in the United States?</code> | |
|
|
| <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code>Is there any tricks for straight lines mcqs?</code> | |
|
|
| <code> Can I pay with a debit card on PayPal?</code> | <code> Can I pay with a debit card on PayPal?</code> | <code>Can you transfer PayPal funds onto a debit card/credit card?</code> | |
|
|
* Loss: <code>pylate.losses.contrastive.Contrastive</code> |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### LangCache Sentence Pairs (split=test) |
|
|
|
|
|
* Dataset: [LangCache Sentence Pairs (split=test)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
|
* Size: 110,066 evaluation samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | negative_1 | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 26.68 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 26.34 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.39 tokens</li><li>max: 69 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | negative_1 | |
|
|
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------| |
|
|
| <code> What high potential jobs are there other than computer science?</code> | <code> What high potential jobs are there other than computer science?</code> | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> | |
|
|
| <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code> | |
|
|
| <code> water from the faucet is being drunk by a yellow dog</code> | <code>A yellow dog is drinking water from the faucet</code> | <code>Do you get more homework in 9th grade than 8th?</code> | |
|
|
* Loss: <code>pylate.losses.contrastive.Contrastive</code> |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.12.3 |
|
|
- Sentence Transformers: 5.1.1 |
|
|
- PyLate: 1.3.4 |
|
|
- Transformers: 4.56.0 |
|
|
- PyTorch: 2.8.0+cu128 |
|
|
- Accelerate: 1.10.1 |
|
|
- Datasets: 4.0.0 |
|
|
- Tokenizers: 0.22.0 |
|
|
|
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084" |
|
|
} |
|
|
``` |
|
|
|
|
|
#### PyLate |
|
|
```bibtex |
|
|
@misc{PyLate, |
|
|
title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, |
|
|
author={Chaffin, Antoine and Sourty, Raphaël}, |
|
|
url={https://github.com/lightonai/pylate}, |
|
|
year={2024} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |