|
|
import numpy as np |
|
|
import random |
|
|
import warnings |
|
|
import os |
|
|
import time |
|
|
from glob import glob |
|
|
from skimage import color, io |
|
|
from PIL import Image |
|
|
|
|
|
import cv2 |
|
|
cv2.setNumThreads(0) |
|
|
cv2.ocl.setUseOpenCL(False) |
|
|
|
|
|
import torch |
|
|
from torchvision.transforms import ColorJitter, functional, Compose |
|
|
import torch.nn.functional as F |
|
|
|
|
|
def get_middlebury_images(): |
|
|
root = "datasets/Middlebury/MiddEval3" |
|
|
with open(os.path.join(root, "official_train.txt"), 'r') as f: |
|
|
lines = f.read().splitlines() |
|
|
return sorted([os.path.join(root, 'trainingQ', f'{name}/im0.png') for name in lines]) |
|
|
|
|
|
def get_eth3d_images(): |
|
|
return sorted(glob('datasets/ETH3D/two_view_training/*/im0.png')) |
|
|
|
|
|
def get_kitti_images(): |
|
|
return sorted(glob('datasets/KITTI/training/image_2/*_10.png')) |
|
|
|
|
|
def transfer_color(image, style_mean, style_stddev): |
|
|
reference_image_lab = color.rgb2lab(image) |
|
|
reference_stddev = np.std(reference_image_lab, axis=(0,1), keepdims=True) |
|
|
reference_mean = np.mean(reference_image_lab, axis=(0,1), keepdims=True) |
|
|
|
|
|
reference_image_lab = reference_image_lab - reference_mean |
|
|
lamb = style_stddev/reference_stddev |
|
|
style_image_lab = lamb * reference_image_lab |
|
|
output_image_lab = style_image_lab + style_mean |
|
|
l, a, b = np.split(output_image_lab, 3, axis=2) |
|
|
l = l.clip(0, 100) |
|
|
output_image_lab = np.concatenate((l,a,b), axis=2) |
|
|
with warnings.catch_warnings(): |
|
|
warnings.simplefilter("ignore", category=UserWarning) |
|
|
output_image_rgb = color.lab2rgb(output_image_lab) * 255 |
|
|
return output_image_rgb |
|
|
|
|
|
class AdjustGamma(object): |
|
|
|
|
|
def __init__(self, gamma_min, gamma_max, gain_min=1.0, gain_max=1.0): |
|
|
self.gamma_min, self.gamma_max, self.gain_min, self.gain_max = gamma_min, gamma_max, gain_min, gain_max |
|
|
|
|
|
def __call__(self, sample): |
|
|
gain = random.uniform(self.gain_min, self.gain_max) |
|
|
gamma = random.uniform(self.gamma_min, self.gamma_max) |
|
|
return functional.adjust_gamma(sample, gamma, gain) |
|
|
|
|
|
def __repr__(self): |
|
|
return f"Adjust Gamma {self.gamma_min}, ({self.gamma_max}) and Gain ({self.gain_min}, {self.gain_max})" |
|
|
|
|
|
class FlowAugmentor: |
|
|
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True, yjitter=False, saturation_range=[0.6,1.4], gamma=[1,1,1,1]): |
|
|
|
|
|
|
|
|
self.crop_size = crop_size |
|
|
self.min_scale = min_scale |
|
|
self.max_scale = max_scale |
|
|
self.spatial_aug_prob = 1.0 |
|
|
self.stretch_prob = 0.8 |
|
|
self.max_stretch = 0.2 |
|
|
|
|
|
|
|
|
self.yjitter = yjitter |
|
|
self.do_flip = do_flip |
|
|
self.h_flip_prob = 0.5 |
|
|
self.v_flip_prob = 0.1 |
|
|
|
|
|
|
|
|
self.photo_aug = Compose([ColorJitter(brightness=0.4, contrast=0.4, saturation=saturation_range, hue=0.5/3.14), AdjustGamma(*gamma)]) |
|
|
self.asymmetric_color_aug_prob = 0.2 |
|
|
self.eraser_aug_prob = 0.5 |
|
|
|
|
|
def color_transform(self, img1, img2): |
|
|
""" Photometric augmentation """ |
|
|
|
|
|
|
|
|
if np.random.rand() < self.asymmetric_color_aug_prob: |
|
|
img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) |
|
|
img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) |
|
|
|
|
|
|
|
|
else: |
|
|
image_stack = np.concatenate([img1, img2], axis=0) |
|
|
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) |
|
|
img1, img2 = np.split(image_stack, 2, axis=0) |
|
|
|
|
|
return img1, img2 |
|
|
|
|
|
def eraser_transform(self, img1, img2, bounds=[50, 100]): |
|
|
""" Occlusion augmentation """ |
|
|
|
|
|
ht, wd = img1.shape[:2] |
|
|
if np.random.rand() < self.eraser_aug_prob: |
|
|
mean_color = np.mean(img2.reshape(-1, 3), axis=0) |
|
|
for _ in range(np.random.randint(1, 3)): |
|
|
x0 = np.random.randint(0, wd) |
|
|
y0 = np.random.randint(0, ht) |
|
|
dx = np.random.randint(bounds[0], bounds[1]) |
|
|
dy = np.random.randint(bounds[0], bounds[1]) |
|
|
img2[y0:y0+dy, x0:x0+dx, :] = mean_color |
|
|
|
|
|
return img1, img2 |
|
|
|
|
|
def spatial_transform(self, img1, img2, flow, intrinsic): |
|
|
|
|
|
ht, wd = img1.shape[:2] |
|
|
min_scale = np.maximum( |
|
|
(self.crop_size[0] + 8) / float(ht), |
|
|
(self.crop_size[1] + 8) / float(wd)) |
|
|
|
|
|
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) |
|
|
scale_x = scale |
|
|
scale_y = scale |
|
|
if np.random.rand() < self.stretch_prob: |
|
|
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) |
|
|
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) |
|
|
|
|
|
scale_x = np.clip(scale_x, min_scale, None) |
|
|
scale_y = np.clip(scale_y, min_scale, None) |
|
|
|
|
|
if np.random.rand() < self.spatial_aug_prob: |
|
|
|
|
|
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
|
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
|
flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
|
flow = flow * [scale_x, scale_y] |
|
|
if intrinsic is not None: |
|
|
intrinsic = [intrinsic[0]*scale_x, intrinsic[1]*scale_y, intrinsic[2]*scale_x, intrinsic[3]*scale_y] |
|
|
|
|
|
if self.do_flip: |
|
|
if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': |
|
|
img1 = img1[:, ::-1] |
|
|
img2 = img2[:, ::-1] |
|
|
flow = flow[:, ::-1] * [-1.0, 1.0] |
|
|
|
|
|
if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': |
|
|
tmp = img1[:, ::-1] |
|
|
img1 = img2[:, ::-1] |
|
|
img2 = tmp |
|
|
|
|
|
if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': |
|
|
img1 = img1[::-1, :] |
|
|
img2 = img2[::-1, :] |
|
|
flow = flow[::-1, :] * [1.0, -1.0] |
|
|
|
|
|
if self.yjitter: |
|
|
y0 = np.random.randint(2, img1.shape[0] - self.crop_size[0] - 2) |
|
|
x0 = np.random.randint(2, img1.shape[1] - self.crop_size[1] - 2) |
|
|
|
|
|
y1 = y0 + np.random.randint(-2, 2 + 1) |
|
|
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
img2 = img2[y1:y1+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
|
|
|
else: |
|
|
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) |
|
|
x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) |
|
|
|
|
|
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
if intrinsic is not None: |
|
|
intrinsic[2] = intrinsic[2] - x0 |
|
|
intrinsic[3] = intrinsic[3] - y0 |
|
|
|
|
|
return img1, img2, flow, intrinsic |
|
|
|
|
|
|
|
|
def __call__(self, img1, img2, flow, intrinsic=None): |
|
|
img1, img2 = self.color_transform(img1, img2) |
|
|
img1, img2 = self.eraser_transform(img1, img2) |
|
|
img1, img2, flow, intrinsic = self.spatial_transform(img1, img2, flow, intrinsic) |
|
|
|
|
|
img1 = np.ascontiguousarray(img1) |
|
|
img2 = np.ascontiguousarray(img2) |
|
|
flow = np.ascontiguousarray(flow) |
|
|
if intrinsic is not None: |
|
|
intrinsic= np.array(intrinsic) |
|
|
|
|
|
return img1, img2, flow, intrinsic |
|
|
|
|
|
class SparseFlowAugmentor: |
|
|
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False, yjitter=False, saturation_range=[0.7,1.3], gamma=[1,1,1,1]): |
|
|
|
|
|
self.crop_size = crop_size |
|
|
self.min_scale = min_scale |
|
|
self.max_scale = max_scale |
|
|
self.spatial_aug_prob = 0.8 |
|
|
self.stretch_prob = 0.8 |
|
|
self.max_stretch = 0.2 |
|
|
|
|
|
|
|
|
self.do_flip = do_flip |
|
|
self.h_flip_prob = 0.5 |
|
|
self.v_flip_prob = 0.1 |
|
|
|
|
|
|
|
|
self.photo_aug = Compose([ColorJitter(brightness=0.3, contrast=0.3, saturation=saturation_range, hue=0.3/3.14), AdjustGamma(*gamma)]) |
|
|
self.asymmetric_color_aug_prob = 0.2 |
|
|
self.eraser_aug_prob = 0.5 |
|
|
|
|
|
def color_transform(self, img1, img2): |
|
|
image_stack = np.concatenate([img1, img2], axis=0) |
|
|
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) |
|
|
img1, img2 = np.split(image_stack, 2, axis=0) |
|
|
return img1, img2 |
|
|
|
|
|
def eraser_transform(self, img1, img2): |
|
|
ht, wd = img1.shape[:2] |
|
|
if np.random.rand() < self.eraser_aug_prob: |
|
|
mean_color = np.mean(img2.reshape(-1, 3), axis=0) |
|
|
for _ in range(np.random.randint(1, 3)): |
|
|
x0 = np.random.randint(0, wd) |
|
|
y0 = np.random.randint(0, ht) |
|
|
dx = np.random.randint(50, 100) |
|
|
dy = np.random.randint(50, 100) |
|
|
img2[y0:y0+dy, x0:x0+dx, :] = mean_color |
|
|
|
|
|
return img1, img2 |
|
|
|
|
|
def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): |
|
|
ht, wd = flow.shape[:2] |
|
|
coords = np.meshgrid(np.arange(wd), np.arange(ht)) |
|
|
coords = np.stack(coords, axis=-1) |
|
|
|
|
|
coords = coords.reshape(-1, 2).astype(np.float32) |
|
|
flow = flow.reshape(-1, 2).astype(np.float32) |
|
|
valid = valid.reshape(-1).astype(np.float32) |
|
|
|
|
|
coords0 = coords[valid>=1] |
|
|
flow0 = flow[valid>=1] |
|
|
|
|
|
ht1 = int(round(ht * fy)) |
|
|
wd1 = int(round(wd * fx)) |
|
|
|
|
|
coords1 = coords0 * [fx, fy] |
|
|
flow1 = flow0 * [fx, fy] |
|
|
|
|
|
xx = np.round(coords1[:,0]).astype(np.int32) |
|
|
yy = np.round(coords1[:,1]).astype(np.int32) |
|
|
|
|
|
v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) |
|
|
xx = xx[v] |
|
|
yy = yy[v] |
|
|
flow1 = flow1[v] |
|
|
|
|
|
flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) |
|
|
valid_img = np.zeros([ht1, wd1], dtype=np.int32) |
|
|
|
|
|
flow_img[yy, xx] = flow1 |
|
|
valid_img[yy, xx] = 1 |
|
|
|
|
|
return flow_img, valid_img |
|
|
|
|
|
def pad_images(self, img1, img2, flow, valid, intrinsic): |
|
|
ch, cw = self.crop_size |
|
|
padded_data = [] |
|
|
|
|
|
for data in [img1, img2, flow, valid]: |
|
|
h, w = data.shape[:2] |
|
|
pad_h = max(0, ch - h) |
|
|
pad_w = max(0, cw - w) |
|
|
|
|
|
if pad_h > 0 or pad_w > 0: |
|
|
pad_width = ((0, pad_h), (0, pad_w)) + ((0, 0),) * (data.ndim - 2) |
|
|
padded_data.append(np.pad(data, pad_width, mode='constant', constant_values=0)) |
|
|
else: |
|
|
padded_data.append(data) |
|
|
|
|
|
return padded_data, intrinsic |
|
|
|
|
|
def spatial_transform(self, img1, img2, flow, valid, intrinsic): |
|
|
|
|
|
|
|
|
ht, wd = img1.shape[:2] |
|
|
min_scale = np.maximum( |
|
|
(self.crop_size[0] + 1) / float(ht), |
|
|
(self.crop_size[1] + 1) / float(wd)) |
|
|
|
|
|
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) |
|
|
scale_x = np.clip(scale, min_scale, None) |
|
|
scale_y = np.clip(scale, min_scale, None) |
|
|
|
|
|
if np.random.rand() < self.spatial_aug_prob: |
|
|
|
|
|
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
|
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
|
flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) |
|
|
if intrinsic is not None: |
|
|
intrinsic = [intrinsic[0]*scale_x, intrinsic[1]*scale_y, intrinsic[2]*scale_x, intrinsic[3]*scale_y] |
|
|
|
|
|
if self.do_flip: |
|
|
if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': |
|
|
img1 = img1[:, ::-1] |
|
|
img2 = img2[:, ::-1] |
|
|
flow = flow[:, ::-1] * [-1.0, 1.0] |
|
|
|
|
|
if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': |
|
|
tmp = img1[:, ::-1] |
|
|
img1 = img2[:, ::-1] |
|
|
img2 = tmp |
|
|
|
|
|
if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': |
|
|
img1 = img1[::-1, :] |
|
|
img2 = img2[::-1, :] |
|
|
flow = flow[::-1, :] * [1.0, -1.0] |
|
|
|
|
|
margin_y = 20 |
|
|
margin_x = 50 |
|
|
|
|
|
img1, img2, flow, valid, intrinsic = self.pad_images(img1, img2, flow, valid, intrinsic) |
|
|
|
|
|
|
|
|
|
|
|
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) |
|
|
x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) |
|
|
|
|
|
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) |
|
|
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) |
|
|
|
|
|
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
|
|
|
if intrinsic is not None: |
|
|
intrinsic[2] = intrinsic[2] - x0 |
|
|
intrinsic[3] = intrinsic[3] - y0 |
|
|
|
|
|
|
|
|
return img1, img2, flow, valid, intrinsic |
|
|
|
|
|
|
|
|
def __call__(self, img1, img2, flow, valid, intrinsic=None): |
|
|
img1, img2 = self.color_transform(img1, img2) |
|
|
img1, img2 = self.eraser_transform(img1, img2) |
|
|
img1, img2, flow, valid, intrinsic = self.spatial_transform(img1, img2, flow, valid, intrinsic) |
|
|
|
|
|
img1 = np.ascontiguousarray(img1) |
|
|
img2 = np.ascontiguousarray(img2) |
|
|
flow = np.ascontiguousarray(flow) |
|
|
valid = np.ascontiguousarray(valid) |
|
|
if intrinsic is not None: |
|
|
intrinsic= np.array(intrinsic) |
|
|
|
|
|
return img1, img2, flow, valid, intrinsic |
|
|
|