Spaces:
Sleeping
Sleeping
| title: Food Recognition API | |
| emoji: π | |
| colorFrom: blue | |
| colorTo: red | |
| sdk: gradio | |
| sdk_version: 4.44.1 | |
| app_file: app.py | |
| pinned: false | |
| license: mit | |
| short_description: FastAPI food recognition service | |
| # π Food Recognition API | |
| A FastAPI web service that uses a Vision Transformer model to recognize 10 different types of food from images. | |
| ## π― Features | |
| - **FastAPI Backend** - RESTful API with comprehensive endpoints | |
| - **Gradio Interface** - User-friendly web interface | |
| - **Vision Transformer** - State-of-the-art image classification | |
| - **Real-time Predictions** - Instant food recognition | |
| - **Multiple Input Methods** - File upload and base64 support | |
| ## π½οΈ Supported Food Types | |
| 1. Apple Pie | |
| 2. Caesar Salad | |
| 3. Chocolate Cake | |
| 4. Cup Cakes | |
| 5. Donuts | |
| 6. Hamburger | |
| 7. Ice Cream | |
| 8. Pancakes | |
| 9. Pizza | |
| 10. Waffles | |
| ## π‘ API Endpoints | |
| - **`/`** - Gradio web interface | |
| - **`/health`** - Health check and model status | |
| - **`/classes`** - Get supported food classes | |
| - **`/model-info`** - Detailed model information | |
| - **`/docs`** - Interactive API documentation | |
| ## π Usage | |
| ### Web Interface | |
| Simply upload an image using the Gradio interface above! | |
| ### API Usage | |
| ```python | |
| import requests | |
| # Upload image file | |
| with open('food_image.jpg', 'rb') as f: | |
| files = {'file': f} | |
| response = requests.post('https://your-space-url.hf.space/predict', files=files) | |
| result = response.json() | |
| print(result) | |
| ``` | |
| ### Health Check | |
| ```bash | |
| curl https://your-space-url.hf.space/health | |
| ``` | |
| ## π Model Performance | |
| - **Accuracy**: 68% | |
| - **F1 Score**: 66.5% | |
| - **Architecture**: Vision Transformer (ViT-Base) | |
| - **Training Data**: Custom food dataset | |
| - **Classes**: 10 food categories | |
| ## π§ Technical Details | |
| - **Framework**: FastAPI + Gradio | |
| - **Model**: Hugging Face Transformers | |
| - **Backend**: PyTorch | |
| - **Deployment**: Hugging Face Spaces | |
| ## π Model Information | |
| - **Model ID**: `BinhQuocNguyen/food-recognition-vit` | |
| - **Model URL**: https://huggingface.co/BinhQuocNguyen/food-recognition-vit | |
| - **Training Time**: ~84 minutes | |
| - **Image Size**: 224x224 pixels | |
| ## π οΈ Local Development | |
| ```bash | |
| # Clone the repository | |
| git clone https://github.com/your-username/food-recognition-api | |
| # Install dependencies | |
| pip install -r requirements_spaces.txt | |
| # Run locally | |
| python app.py | |
| ``` | |
| ## π License | |
| MIT License - Feel free to use and modify for your projects. | |
| ## π€ Contributing | |
| Contributions are welcome! Please feel free to submit a Pull Request. | |
| ## π Support | |
| If you encounter any issues or have questions, please open an issue on the repository. | |