LaunchLLM / evaluation /benchmark.py
Bmccloud22's picture
Deploy LaunchLLM - Production AI Training Platform
ec8f374 verified
"""
Benchmark Module
Provides benchmark creation and execution for model testing.
"""
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
import json
import time
from pathlib import Path
@dataclass
class Benchmark:
"""
A single benchmark test.
Attributes:
name: Benchmark name
description: Benchmark description
questions: List of test questions
metadata: Additional metadata
"""
name: str
description: str = ""
questions: List[Dict[str, Any]] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
created_at: Optional[str] = None
domain: str = "general"
difficulty: str = "mixed"
passing_score: float = 70.0
def __post_init__(self):
"""Initialize timestamp if not provided."""
if self.created_at is None:
self.created_at = time.strftime('%Y-%m-%d %H:%M:%S')
def add_question(
self,
question: str,
answer: str,
category: Optional[str] = None,
difficulty: Optional[str] = None,
metadata: Optional[Dict] = None
):
"""
Add a question to the benchmark.
Args:
question: Question text
answer: Expected answer
category: Question category/topic
difficulty: Difficulty level
metadata: Additional metadata
"""
question_dict = {
'question': question,
'answer': answer,
'category': category or 'general',
'difficulty': difficulty or 'intermediate',
'metadata': metadata or {}
}
self.questions.append(question_dict)
def get_questions_by_category(self, category: str) -> List[Dict]:
"""Get all questions in a category."""
return [q for q in self.questions if q.get('category') == category]
def get_questions_by_difficulty(self, difficulty: str) -> List[Dict]:
"""Get all questions of a difficulty level."""
return [q for q in self.questions if q.get('difficulty') == difficulty]
def to_dict(self) -> Dict[str, Any]:
"""Convert benchmark to dictionary."""
return {
'name': self.name,
'description': self.description,
'domain': self.domain,
'difficulty': self.difficulty,
'passing_score': self.passing_score,
'created_at': self.created_at,
'num_questions': len(self.questions),
'questions': self.questions,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'Benchmark':
"""Create benchmark from dictionary."""
return cls(
name=data.get('name', 'Untitled'),
description=data.get('description', ''),
questions=data.get('questions', []),
metadata=data.get('metadata', {}),
created_at=data.get('created_at'),
domain=data.get('domain', 'general'),
difficulty=data.get('difficulty', 'mixed'),
passing_score=data.get('passing_score', 70.0)
)
def save(self, filepath: str):
"""Save benchmark to JSON file."""
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(self.to_dict(), f, indent=2, ensure_ascii=False)
print(f"Benchmark saved to: {filepath}")
@classmethod
def load(cls, filepath: str) -> 'Benchmark':
"""Load benchmark from JSON file."""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
return cls.from_dict(data)
class BenchmarkSuite:
"""
Collection of benchmarks for comprehensive testing.
Features:
- Multiple benchmark management
- Batch execution
- Aggregate scoring
- Result tracking
"""
def __init__(self, name: str = "Default Suite"):
"""
Initialize benchmark suite.
Args:
name: Suite name
"""
self.name = name
self.benchmarks: List[Benchmark] = []
self.results: List[Dict[str, Any]] = []
def add_benchmark(self, benchmark: Benchmark):
"""
Add a benchmark to the suite.
Args:
benchmark: Benchmark to add
"""
self.benchmarks.append(benchmark)
print(f"Added benchmark: {benchmark.name}")
def remove_benchmark(self, benchmark_name: str):
"""
Remove a benchmark by name.
Args:
benchmark_name: Name of benchmark to remove
"""
self.benchmarks = [b for b in self.benchmarks if b.name != benchmark_name]
def get_benchmark(self, name: str) -> Optional[Benchmark]:
"""
Get a benchmark by name.
Args:
name: Benchmark name
Returns:
Benchmark if found, None otherwise
"""
for benchmark in self.benchmarks:
if benchmark.name == name:
return benchmark
return None
def run_benchmark(
self,
benchmark: Benchmark,
model_evaluator: Any,
max_questions: Optional[int] = None
) -> Dict[str, Any]:
"""
Run a single benchmark.
Args:
benchmark: Benchmark to run
model_evaluator: Model evaluator instance
max_questions: Maximum questions to test
Returns:
Benchmark results
"""
print(f"\nRunning benchmark: {benchmark.name}")
print(f"Total questions: {len(benchmark.questions)}")
questions = benchmark.questions[:max_questions] if max_questions else benchmark.questions
# Convert to dataset format
dataset = []
for q in questions:
dataset.append({
'instruction': q['question'],
'input': '',
'output': q['answer']
})
# Run evaluation
start_time = time.time()
eval_results = model_evaluator.evaluate_dataset(dataset)
total_time = time.time() - start_time
# Calculate score
score = self._calculate_score(eval_results)
# Compile results
results = {
'benchmark_name': benchmark.name,
'num_questions': len(questions),
'score': score,
'passed': score >= benchmark.passing_score,
'passing_score': benchmark.passing_score,
'total_time': total_time,
'evaluation_results': eval_results,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
self.results.append(results)
print(f"\n{'='*60}")
print(f"Benchmark: {benchmark.name}")
print(f"Score: {score:.2f}% (Passing: {benchmark.passing_score}%)")
print(f"Status: {'βœ… PASSED' if results['passed'] else '❌ FAILED'}")
print(f"{'='*60}\n")
return results
def run_all_benchmarks(
self,
model_evaluator: Any,
max_questions_per_benchmark: Optional[int] = None
) -> List[Dict[str, Any]]:
"""
Run all benchmarks in the suite.
Args:
model_evaluator: Model evaluator instance
max_questions_per_benchmark: Max questions per benchmark
Returns:
List of all results
"""
print(f"\n{'='*60}")
print(f"Running Benchmark Suite: {self.name}")
print(f"Total Benchmarks: {len(self.benchmarks)}")
print(f"{'='*60}\n")
all_results = []
for benchmark in self.benchmarks:
results = self.run_benchmark(
benchmark,
model_evaluator,
max_questions_per_benchmark
)
all_results.append(results)
# Summary
self._print_summary(all_results)
return all_results
def _calculate_score(self, eval_results: Dict[str, Any]) -> float:
"""
Calculate benchmark score from evaluation results.
Args:
eval_results: Evaluation results
Returns:
Score percentage
"""
metrics = eval_results.get('metrics', {})
# Use available metrics (prioritize accuracy, then BLEU, then ROUGE)
if 'accuracy' in metrics:
return metrics['accuracy']
elif 'bleu' in metrics:
return metrics['bleu']
elif 'rouge_l_f1' in metrics:
return metrics['rouge_l_f1']
else:
# Fallback: simple similarity check
examples = eval_results.get('examples', [])
if not examples:
return 0.0
matches = 0
for ex in examples:
pred = ex.get('prediction', '').lower().strip()
ref = ex.get('reference', '').lower().strip()
if pred in ref or ref in pred:
matches += 1
return (matches / len(examples)) * 100.0
def _print_summary(self, results: List[Dict[str, Any]]):
"""Print summary of all benchmark results."""
print(f"\n{'='*60}")
print(f"BENCHMARK SUITE SUMMARY: {self.name}")
print(f"{'='*60}")
total_benchmarks = len(results)
passed = sum(1 for r in results if r['passed'])
print(f"\nOverall: {passed}/{total_benchmarks} benchmarks passed")
print(f"\nIndividual Results:")
for result in results:
status = 'βœ… PASS' if result['passed'] else '❌ FAIL'
print(f" {status} | {result['benchmark_name']:40s} | Score: {result['score']:6.2f}%")
avg_score = sum(r['score'] for r in results) / len(results) if results else 0
print(f"\nAverage Score: {avg_score:.2f}%")
print(f"{'='*60}\n")
def save_results(self, filepath: str):
"""
Save suite results to JSON.
Args:
filepath: Output file path
"""
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
data = {
'suite_name': self.name,
'num_benchmarks': len(self.benchmarks),
'benchmark_names': [b.name for b in self.benchmarks],
'results': self.results,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
print(f"Suite results saved to: {filepath}")
def to_dict(self) -> Dict[str, Any]:
"""Convert suite to dictionary."""
return {
'name': self.name,
'num_benchmarks': len(self.benchmarks),
'benchmarks': [b.to_dict() for b in self.benchmarks],
'results': self.results
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'BenchmarkSuite':
"""Create suite from dictionary."""
suite = cls(name=data.get('name', 'Default Suite'))
for benchmark_data in data.get('benchmarks', []):
benchmark = Benchmark.from_dict(benchmark_data)
suite.add_benchmark(benchmark)
suite.results = data.get('results', [])
return suite