LaunchLLM / evaluation /gap_analyzer.py
Bmccloud22's picture
Deploy LaunchLLM - Production AI Training Platform
ec8f374 verified
"""
Gap Analyzer Module
Analyzes model performance to identify knowledge gaps and weak areas.
"""
from typing import List, Dict, Optional, Any, Tuple
import json
from pathlib import Path
from collections import defaultdict
import statistics
class GapAnalyzer:
"""
Analyzes evaluation results to identify knowledge gaps.
Features:
- Topic-level performance analysis
- Trend tracking across evaluations
- Weakness identification
- Strength identification
- Improvement recommendations
"""
def __init__(self):
"""Initialize gap analyzer."""
self.evaluation_history: List[Dict[str, Any]] = []
self.performance_by_category: Dict[str, List[float]] = defaultdict(list)
self.gaps: List[Dict[str, Any]] = []
def add_evaluation_results(self, results: Dict[str, Any]):
"""
Add evaluation results for analysis.
Args:
results: Evaluation results dictionary
"""
self.evaluation_history.append(results)
# Extract category performance if available
if 'examples' in results:
category_scores = defaultdict(list)
for example in results['examples']:
category = example.get('category', 'general')
# Calculate score for this example
prediction = example.get('prediction', '').lower()
reference = example.get('reference', '').lower()
# Simple scoring: 1 if similar, 0 otherwise
score = 1.0 if self._calculate_similarity(prediction, reference) > 0.5 else 0.0
category_scores[category].append(score)
# Store average scores by category
for category, scores in category_scores.items():
avg_score = (sum(scores) / len(scores)) * 100 if scores else 0
self.performance_by_category[category].append(avg_score)
def _calculate_similarity(self, text1: str, text2: str) -> float:
"""Calculate simple similarity between two texts."""
words1 = set(text1.split())
words2 = set(text2.split())
if not words1 or not words2:
return 0.0
intersection = words1 & words2
union = words1 | words2
return len(intersection) / len(union) if union else 0.0
def analyze_gaps(
self,
weak_threshold: float = 60.0,
strong_threshold: float = 85.0
) -> List[Dict[str, Any]]:
"""
Analyze performance and identify gaps.
Args:
weak_threshold: Score below this is considered weak
strong_threshold: Score above this is considered strong
Returns:
List of identified gaps with details
"""
gaps = []
# Analyze each category
for category, scores in self.performance_by_category.items():
if not scores:
continue
avg_score = statistics.mean(scores)
latest_score = scores[-1] if scores else 0
# Calculate trend
trend = "stable"
if len(scores) >= 2:
recent_avg = statistics.mean(scores[-3:]) if len(scores) >= 3 else statistics.mean(scores[-2:])
older_avg = statistics.mean(scores[:-3]) if len(scores) >= 3 else scores[0]
if recent_avg > older_avg + 5:
trend = "improving"
elif recent_avg < older_avg - 5:
trend = "declining"
# Classify performance level
if avg_score < weak_threshold:
level = "WEAK"
priority = "HIGH"
elif avg_score < strong_threshold:
level = "MODERATE"
priority = "MEDIUM"
else:
level = "STRONG"
priority = "LOW"
gap = {
'category': category,
'avg_score': avg_score,
'latest_score': latest_score,
'num_evaluations': len(scores),
'trend': trend,
'level': level,
'priority': priority,
'scores_history': scores
}
gaps.append(gap)
# Sort by priority (weak areas first)
priority_order = {'HIGH': 0, 'MEDIUM': 1, 'LOW': 2}
gaps.sort(key=lambda x: (priority_order.get(x['priority'], 3), x['avg_score']))
self.gaps = gaps
return gaps
def get_weakest_topics(self, n: int = 5) -> List[Dict[str, Any]]:
"""
Get the N weakest topics.
Args:
n: Number of topics to return
Returns:
List of weakest topics
"""
if not self.gaps:
self.analyze_gaps()
weak_gaps = [g for g in self.gaps if g['level'] in ['WEAK', 'MODERATE']]
return weak_gaps[:n]
def get_strongest_topics(self, n: int = 5) -> List[Dict[str, Any]]:
"""
Get the N strongest topics.
Args:
n: Number of topics to return
Returns:
List of strongest topics
"""
if not self.gaps:
self.analyze_gaps()
strong_gaps = [g for g in self.gaps if g['level'] == 'STRONG']
return strong_gaps[:n]
def get_declining_topics(self) -> List[Dict[str, Any]]:
"""Get topics with declining performance."""
if not self.gaps:
self.analyze_gaps()
return [g for g in self.gaps if g['trend'] == 'declining']
def get_improving_topics(self) -> List[Dict[str, Any]]:
"""Get topics with improving performance."""
if not self.gaps:
self.analyze_gaps()
return [g for g in self.gaps if g['trend'] == 'improving']
def generate_gap_report(self) -> str:
"""
Generate a human-readable gap analysis report.
Returns:
Formatted report string
"""
if not self.gaps:
self.analyze_gaps()
report = ["=" * 80]
report.append("KNOWLEDGE GAP ANALYSIS REPORT")
report.append("=" * 80)
report.append("")
# Overall summary
weak_count = sum(1 for g in self.gaps if g['level'] == 'WEAK')
moderate_count = sum(1 for g in self.gaps if g['level'] == 'MODERATE')
strong_count = sum(1 for g in self.gaps if g['level'] == 'STRONG')
report.append(f"Total Categories Analyzed: {len(self.gaps)}")
report.append(f" - WEAK (needs immediate attention): {weak_count}")
report.append(f" - MODERATE (needs improvement): {moderate_count}")
report.append(f" - STRONG (performing well): {strong_count}")
report.append("")
# Weak areas (priority)
weak_topics = [g for g in self.gaps if g['level'] == 'WEAK']
if weak_topics:
report.append("🔴 WEAK AREAS (Priority Training Needed):")
report.append("-" * 80)
for gap in weak_topics:
report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Moderate areas
moderate_topics = [g for g in self.gaps if g['level'] == 'MODERATE']
if moderate_topics:
report.append("🟡 MODERATE AREAS (Recommended Improvement):")
report.append("-" * 80)
for gap in moderate_topics[:5]: # Top 5
report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Strong areas
strong_topics = [g for g in self.gaps if g['level'] == 'STRONG']
if strong_topics:
report.append("🟢 STRONG AREAS (Excellent Performance):")
report.append("-" * 80)
for gap in strong_topics[:5]: # Top 5
report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Trends
declining = self.get_declining_topics()
improving = self.get_improving_topics()
if declining:
report.append("📉 DECLINING PERFORMANCE (Needs Attention):")
report.append("-" * 80)
for gap in declining:
report.append(f" • {gap['category']}: {gap['avg_score']:.1f}%")
report.append("")
if improving:
report.append("📈 IMPROVING PERFORMANCE (Keep It Up!):")
report.append("-" * 80)
for gap in improving:
report.append(f" • {gap['category']}: {gap['avg_score']:.1f}%")
report.append("")
report.append("=" * 80)
return "\n".join(report)
def get_performance_summary(self) -> Dict[str, Any]:
"""
Get overall performance summary.
Returns:
Summary statistics
"""
if not self.gaps:
self.analyze_gaps()
all_scores = [g['avg_score'] for g in self.gaps]
summary = {
'num_categories': len(self.gaps),
'overall_avg_score': statistics.mean(all_scores) if all_scores else 0,
'min_score': min(all_scores) if all_scores else 0,
'max_score': max(all_scores) if all_scores else 0,
'weak_count': sum(1 for g in self.gaps if g['level'] == 'WEAK'),
'moderate_count': sum(1 for g in self.gaps if g['level'] == 'MODERATE'),
'strong_count': sum(1 for g in self.gaps if g['level'] == 'STRONG'),
'declining_count': sum(1 for g in self.gaps if g['trend'] == 'declining'),
'improving_count': sum(1 for g in self.gaps if g['trend'] == 'improving')
}
return summary
def export_gaps(self, filepath: str):
"""
Export gap analysis to JSON file.
Args:
filepath: Output file path
"""
if not self.gaps:
self.analyze_gaps()
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
data = {
'summary': self.get_performance_summary(),
'gaps': self.gaps,
'report': self.generate_gap_report()
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
print(f"Gap analysis exported to: {filepath}")
def load_gaps(self, filepath: str):
"""
Load gap analysis from JSON file.
Args:
filepath: Input file path
"""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
self.gaps = data.get('gaps', [])
# Reconstruct performance_by_category
for gap in self.gaps:
category = gap['category']
scores = gap.get('scores_history', [])
self.performance_by_category[category] = scores
def compare_evaluations(
self,
eval1: Dict[str, Any],
eval2: Dict[str, Any]
) -> Dict[str, Any]:
"""
Compare two evaluation results.
Args:
eval1: First evaluation results
eval2: Second evaluation results
Returns:
Comparison details
"""
comparison = {
'improvement': {},
'decline': {},
'stable': {}
}
# Extract metrics from both
metrics1 = eval1.get('metrics', {})
metrics2 = eval2.get('metrics', {})
# Compare each metric
for metric in set(metrics1.keys()) | set(metrics2.keys()):
if metric in metrics1 and metric in metrics2:
val1 = metrics1[metric]
val2 = metrics2[metric]
if isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
diff = val2 - val1
percent_change = (diff / val1 * 100) if val1 != 0 else 0
if diff > 1: # Improved
comparison['improvement'][metric] = {
'old': val1,
'new': val2,
'change': diff,
'percent_change': percent_change
}
elif diff < -1: # Declined
comparison['decline'][metric] = {
'old': val1,
'new': val2,
'change': diff,
'percent_change': percent_change
}
else: # Stable
comparison['stable'][metric] = {
'old': val1,
'new': val2,
'change': diff
}
return comparison
def get_category_details(self, category: str) -> Optional[Dict[str, Any]]:
"""
Get detailed analysis for a specific category.
Args:
category: Category name
Returns:
Category details or None if not found
"""
if not self.gaps:
self.analyze_gaps()
for gap in self.gaps:
if gap['category'] == category:
return gap
return None