DeepCritical / docs /implementation /07_phase_hypothesis.md
Joseph Pollack
Initial commit - Independent repository - Breaking fork relationship
016b413
|
raw
history blame
19.9 kB

Phase 7 Implementation Spec: Hypothesis Agent

Goal: Add an agent that generates scientific hypotheses to guide targeted searches. Philosophy: "Don't just find evidenceβ€”understand the mechanisms." Prerequisite: Phase 6 complete (Embeddings working)


1. Why Hypothesis Agent?

Current limitation: Search is reactive, not hypothesis-driven.

Current flow:

  1. User asks about "metformin alzheimer"
  2. Search finds papers
  3. Judge says "need more evidence"
  4. Search again with slightly different keywords

With Hypothesis Agent:

  1. User asks about "metformin alzheimer"
  2. Search finds initial papers
  3. Hypothesis Agent analyzes: "Evidence suggests metformin β†’ AMPK activation β†’ autophagy β†’ amyloid clearance"
  4. Search can now target: "metformin AMPK", "autophagy neurodegeneration", "amyloid clearance drugs"

Key insight: Scientific research is hypothesis-driven. The agent should think like a researcher.


2. Architecture

Current (Phase 6)

User Query β†’ Magentic Manager
                β”œβ”€β”€ SearchAgent β†’ Evidence
                └── JudgeAgent β†’ Sufficient? β†’ Synthesize/Continue

Phase 7

User Query β†’ Magentic Manager
                β”œβ”€β”€ SearchAgent β†’ Evidence
                β”œβ”€β”€ HypothesisAgent β†’ Mechanistic Hypotheses  ← NEW
                └── JudgeAgent β†’ Sufficient? β†’ Synthesize/Continue
                       ↑
                  Uses hypotheses to guide next search

Shared Context Enhancement

evidence_store = {
    "current": [],
    "embeddings": {},
    "vector_index": None,
    "hypotheses": [],        # NEW: Generated hypotheses
    "tested_hypotheses": [], # NEW: Hypotheses with supporting/contradicting evidence
}

3. Hypothesis Model

3.1 Data Model (src/utils/models.py)

class MechanismHypothesis(BaseModel):
    """A scientific hypothesis about drug mechanism."""

    drug: str = Field(description="The drug being studied")
    target: str = Field(description="Molecular target (e.g., AMPK, mTOR)")
    pathway: str = Field(description="Biological pathway affected")
    effect: str = Field(description="Downstream effect on disease")
    confidence: float = Field(ge=0, le=1, description="Confidence in hypothesis")
    supporting_evidence: list[str] = Field(
        default_factory=list,
        description="PMIDs or URLs supporting this hypothesis"
    )
    contradicting_evidence: list[str] = Field(
        default_factory=list,
        description="PMIDs or URLs contradicting this hypothesis"
    )
    search_suggestions: list[str] = Field(
        default_factory=list,
        description="Suggested searches to test this hypothesis"
    )

    def to_search_queries(self) -> list[str]:
        """Generate search queries to test this hypothesis."""
        return [
            f"{self.drug} {self.target}",
            f"{self.target} {self.pathway}",
            f"{self.pathway} {self.effect}",
            *self.search_suggestions
        ]

3.2 Hypothesis Assessment

class HypothesisAssessment(BaseModel):
    """Assessment of evidence against hypotheses."""

    hypotheses: list[MechanismHypothesis]
    primary_hypothesis: MechanismHypothesis | None = Field(
        description="Most promising hypothesis based on current evidence"
    )
    knowledge_gaps: list[str] = Field(
        description="What we don't know yet"
    )
    recommended_searches: list[str] = Field(
        description="Searches to fill knowledge gaps"
    )

4. Implementation

4.0 Text Utilities (src/utils/text_utils.py)

Why These Utilities?

The original spec used arbitrary truncation (evidence[:10] and content[:300]). This loses important information randomly. These utilities provide:

  1. Sentence-aware truncation - cuts at sentence boundaries, not mid-word
  2. Diverse evidence selection - uses embeddings to select varied evidence (MMR)
"""Text processing utilities for evidence handling."""
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService
    from src.utils.models import Evidence


def truncate_at_sentence(text: str, max_chars: int = 300) -> str:
    """Truncate text at sentence boundary, preserving meaning.

    Args:
        text: The text to truncate
        max_chars: Maximum characters (default 300)

    Returns:
        Text truncated at last complete sentence within limit
    """
    if len(text) <= max_chars:
        return text

    # Find truncation point
    truncated = text[:max_chars]

    # Look for sentence endings: . ! ? followed by space or end
    for sep in ['. ', '! ', '? ', '.\n', '!\n', '?\n']:
        last_sep = truncated.rfind(sep)
        if last_sep > max_chars // 2:  # Don't truncate too aggressively
            return text[:last_sep + 1].strip()

    # Fallback: find last period
    last_period = truncated.rfind('.')
    if last_period > max_chars // 2:
        return text[:last_period + 1].strip()

    # Last resort: truncate at word boundary
    last_space = truncated.rfind(' ')
    if last_space > 0:
        return text[:last_space].strip() + "..."

    return truncated + "..."


async def select_diverse_evidence(
    evidence: list["Evidence"],
    n: int,
    query: str,
    embeddings: "EmbeddingService | None" = None
) -> list["Evidence"]:
    """Select n most diverse and relevant evidence items.

    Uses Maximal Marginal Relevance (MMR) when embeddings available,
    falls back to relevance_score sorting otherwise.

    Args:
        evidence: All available evidence
        n: Number of items to select
        query: Original query for relevance scoring
        embeddings: Optional EmbeddingService for semantic diversity

    Returns:
        Selected evidence items, diverse and relevant
    """
    if not evidence:
        return []

    if n >= len(evidence):
        return evidence

    # Fallback: sort by relevance score if no embeddings
    if embeddings is None:
        return sorted(
            evidence,
            key=lambda e: e.relevance_score,
            reverse=True
        )[:n]

    # MMR: Maximal Marginal Relevance for diverse selection
    # Score = Ξ» * relevance - (1-Ξ») * max_similarity_to_selected
    lambda_param = 0.7  # Balance relevance vs diversity

    # Get query embedding
    query_emb = await embeddings.embed(query)

    # Get all evidence embeddings
    evidence_embs = await embeddings.embed_batch([e.content for e in evidence])

    # Compute relevance scores (cosine similarity to query)
    from numpy import dot
    from numpy.linalg import norm
    cosine = lambda a, b: float(dot(a, b) / (norm(a) * norm(b)))

    relevance_scores = [cosine(query_emb, emb) for emb in evidence_embs]

    # Greedy MMR selection
    selected_indices: list[int] = []
    remaining = set(range(len(evidence)))

    for _ in range(n):
        best_score = float('-inf')
        best_idx = -1

        for idx in remaining:
            # Relevance component
            relevance = relevance_scores[idx]

            # Diversity component: max similarity to already selected
            if selected_indices:
                max_sim = max(
                    cosine(evidence_embs[idx], evidence_embs[sel])
                    for sel in selected_indices
                )
            else:
                max_sim = 0

            # MMR score
            mmr_score = lambda_param * relevance - (1 - lambda_param) * max_sim

            if mmr_score > best_score:
                best_score = mmr_score
                best_idx = idx

        if best_idx >= 0:
            selected_indices.append(best_idx)
            remaining.remove(best_idx)

    return [evidence[i] for i in selected_indices]

4.1 Hypothesis Prompts (src/prompts/hypothesis.py)

"""Prompts for Hypothesis Agent."""
from src.utils.text_utils import truncate_at_sentence, select_diverse_evidence

SYSTEM_PROMPT = """You are a biomedical research scientist specializing in drug repurposing.

Your role is to generate mechanistic hypotheses based on evidence.

A good hypothesis:
1. Proposes a MECHANISM: Drug β†’ Target β†’ Pathway β†’ Effect
2. Is TESTABLE: Can be supported or refuted by literature search
3. Is SPECIFIC: Names actual molecular targets and pathways
4. Generates SEARCH QUERIES: Helps find more evidence

Example hypothesis format:
- Drug: Metformin
- Target: AMPK (AMP-activated protein kinase)
- Pathway: mTOR inhibition β†’ autophagy activation
- Effect: Enhanced clearance of amyloid-beta in Alzheimer's
- Confidence: 0.7
- Search suggestions: ["metformin AMPK brain", "autophagy amyloid clearance"]

Be specific. Use actual gene/protein names when possible."""


async def format_hypothesis_prompt(
    query: str,
    evidence: list,
    embeddings=None
) -> str:
    """Format prompt for hypothesis generation.

    Uses smart evidence selection instead of arbitrary truncation.

    Args:
        query: The research query
        evidence: All collected evidence
        embeddings: Optional EmbeddingService for diverse selection
    """
    # Select diverse, relevant evidence (not arbitrary first 10)
    selected = await select_diverse_evidence(
        evidence, n=10, query=query, embeddings=embeddings
    )

    # Format with sentence-aware truncation
    evidence_text = "\n".join([
        f"- **{e.citation.title}** ({e.citation.source}): {truncate_at_sentence(e.content, 300)}"
        for e in selected
    ])

    return f"""Based on the following evidence about "{query}", generate mechanistic hypotheses.

## Evidence ({len(selected)} papers selected for diversity)
{evidence_text}

## Task
1. Identify potential drug targets mentioned in the evidence
2. Propose mechanism hypotheses (Drug β†’ Target β†’ Pathway β†’ Effect)
3. Rate confidence based on evidence strength
4. Suggest searches to test each hypothesis

Generate 2-4 hypotheses, prioritized by confidence."""

4.2 Hypothesis Agent (src/agents/hypothesis_agent.py)

"""Hypothesis agent for mechanistic reasoning."""
from collections.abc import AsyncIterable
from typing import TYPE_CHECKING, Any

from agent_framework import (
    AgentRunResponse,
    AgentRunResponseUpdate,
    AgentThread,
    BaseAgent,
    ChatMessage,
    Role,
)
from pydantic_ai import Agent

from src.prompts.hypothesis import SYSTEM_PROMPT, format_hypothesis_prompt
from src.utils.config import settings
from src.utils.models import Evidence, HypothesisAssessment

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService


class HypothesisAgent(BaseAgent):
    """Generates mechanistic hypotheses based on evidence."""

    def __init__(
        self,
        evidence_store: dict[str, list[Evidence]],
        embedding_service: "EmbeddingService | None" = None,  # NEW: for diverse selection
    ) -> None:
        super().__init__(
            name="HypothesisAgent",
            description="Generates scientific hypotheses about drug mechanisms to guide research",
        )
        self._evidence_store = evidence_store
        self._embeddings = embedding_service  # Used for MMR evidence selection
        self._agent = Agent(
            model=settings.llm_provider,  # Uses configured LLM
            output_type=HypothesisAssessment,
            system_prompt=SYSTEM_PROMPT,
        )

    async def run(
        self,
        messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
        *,
        thread: AgentThread | None = None,
        **kwargs: Any,
    ) -> AgentRunResponse:
        """Generate hypotheses based on current evidence."""
        # Extract query
        query = self._extract_query(messages)

        # Get current evidence
        evidence = self._evidence_store.get("current", [])

        if not evidence:
            return AgentRunResponse(
                messages=[ChatMessage(
                    role=Role.ASSISTANT,
                    text="No evidence available yet. Search for evidence first."
                )],
                response_id="hypothesis-no-evidence",
            )

        # Generate hypotheses with diverse evidence selection
        # NOTE: format_hypothesis_prompt is now async
        prompt = await format_hypothesis_prompt(
            query, evidence, embeddings=self._embeddings
        )
        result = await self._agent.run(prompt)
        assessment = result.output

        # Store hypotheses in shared context
        existing = self._evidence_store.get("hypotheses", [])
        self._evidence_store["hypotheses"] = existing + assessment.hypotheses

        # Format response
        response_text = self._format_response(assessment)

        return AgentRunResponse(
            messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
            response_id=f"hypothesis-{len(assessment.hypotheses)}",
            additional_properties={"assessment": assessment.model_dump()},
        )

    def _format_response(self, assessment: HypothesisAssessment) -> str:
        """Format hypothesis assessment as markdown."""
        lines = ["## Generated Hypotheses\n"]

        for i, h in enumerate(assessment.hypotheses, 1):
            lines.append(f"### Hypothesis {i} (Confidence: {h.confidence:.0%})")
            lines.append(f"**Mechanism**: {h.drug} β†’ {h.target} β†’ {h.pathway} β†’ {h.effect}")
            lines.append(f"**Suggested searches**: {', '.join(h.search_suggestions)}\n")

        if assessment.primary_hypothesis:
            lines.append(f"### Primary Hypothesis")
            h = assessment.primary_hypothesis
            lines.append(f"{h.drug} β†’ {h.target} β†’ {h.pathway} β†’ {h.effect}\n")

        if assessment.knowledge_gaps:
            lines.append("### Knowledge Gaps")
            for gap in assessment.knowledge_gaps:
                lines.append(f"- {gap}")

        if assessment.recommended_searches:
            lines.append("\n### Recommended Next Searches")
            for search in assessment.recommended_searches:
                lines.append(f"- `{search}`")

        return "\n".join(lines)

    def _extract_query(self, messages) -> str:
        """Extract query from messages."""
        if isinstance(messages, str):
            return messages
        elif isinstance(messages, ChatMessage):
            return messages.text or ""
        elif isinstance(messages, list):
            for msg in reversed(messages):
                if isinstance(msg, ChatMessage) and msg.role == Role.USER:
                    return msg.text or ""
                elif isinstance(msg, str):
                    return msg
        return ""

    async def run_stream(
        self,
        messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
        *,
        thread: AgentThread | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[AgentRunResponseUpdate]:
        """Streaming wrapper."""
        result = await self.run(messages, thread=thread, **kwargs)
        yield AgentRunResponseUpdate(
            messages=result.messages,
            response_id=result.response_id
        )

4.3 Update MagenticOrchestrator

Add HypothesisAgent to the workflow:

# In MagenticOrchestrator.__init__
self._hypothesis_agent = HypothesisAgent(self._evidence_store)

# In workflow building
workflow = (
    MagenticBuilder()
    .participants(
        searcher=search_agent,
        hypothesizer=self._hypothesis_agent,  # NEW
        judge=judge_agent,
    )
    .with_standard_manager(...)
    .build()
)

# Update task instruction
task = f"""Research drug repurposing opportunities for: {query}

Workflow:
1. SearchAgent: Find initial evidence from PubMed and web
2. HypothesisAgent: Generate mechanistic hypotheses (Drug β†’ Target β†’ Pathway β†’ Effect)
3. SearchAgent: Use hypothesis-suggested queries for targeted search
4. JudgeAgent: Evaluate if evidence supports hypotheses
5. Repeat until confident or max rounds

Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding supporting/contradicting evidence for hypotheses
"""

5. Directory Structure After Phase 7

src/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ search_agent.py
β”‚   β”œβ”€β”€ judge_agent.py
β”‚   └── hypothesis_agent.py     # NEW
β”œβ”€β”€ prompts/
β”‚   β”œβ”€β”€ judge.py
β”‚   └── hypothesis.py           # NEW
β”œβ”€β”€ services/
β”‚   └── embeddings.py
└── utils/
    └── models.py               # Updated with hypothesis models

6. Tests

6.1 Unit Tests (tests/unit/agents/test_hypothesis_agent.py)

"""Unit tests for HypothesisAgent."""
import pytest
from unittest.mock import AsyncMock, MagicMock, patch

from src.agents.hypothesis_agent import HypothesisAgent
from src.utils.models import Citation, Evidence, HypothesisAssessment, MechanismHypothesis


@pytest.fixture
def sample_evidence():
    return [
        Evidence(
            content="Metformin activates AMPK, which inhibits mTOR signaling...",
            citation=Citation(
                source="pubmed",
                title="Metformin and AMPK",
                url="https://pubmed.ncbi.nlm.nih.gov/12345/",
                date="2023"
            )
        )
    ]


@pytest.fixture
def mock_assessment():
    return HypothesisAssessment(
        hypotheses=[
            MechanismHypothesis(
                drug="Metformin",
                target="AMPK",
                pathway="mTOR inhibition",
                effect="Reduced cancer cell proliferation",
                confidence=0.75,
                search_suggestions=["metformin AMPK cancer", "mTOR cancer therapy"]
            )
        ],
        primary_hypothesis=None,
        knowledge_gaps=["Clinical trial data needed"],
        recommended_searches=["metformin clinical trial cancer"]
    )


@pytest.mark.asyncio
async def test_hypothesis_agent_generates_hypotheses(sample_evidence, mock_assessment):
    """HypothesisAgent should generate mechanistic hypotheses."""
    store = {"current": sample_evidence, "hypotheses": []}

    with patch("src.agents.hypothesis_agent.Agent") as MockAgent:
        mock_result = MagicMock()
        mock_result.output = mock_assessment
        MockAgent.return_value.run = AsyncMock(return_value=mock_result)

        agent = HypothesisAgent(store)
        response = await agent.run("metformin cancer")

        assert "AMPK" in response.messages[0].text
        assert len(store["hypotheses"]) == 1


@pytest.mark.asyncio
async def test_hypothesis_agent_no_evidence():
    """HypothesisAgent should handle empty evidence gracefully."""
    store = {"current": [], "hypotheses": []}
    agent = HypothesisAgent(store)

    response = await agent.run("test query")

    assert "No evidence" in response.messages[0].text

7. Definition of Done

Phase 7 is COMPLETE when:

  1. MechanismHypothesis and HypothesisAssessment models implemented
  2. HypothesisAgent generates hypotheses from evidence
  3. Hypotheses stored in shared context
  4. Search queries generated from hypotheses
  5. Magentic workflow includes HypothesisAgent
  6. All unit tests pass

8. Value Delivered

Before (Phase 6) After (Phase 7)
Reactive search Hypothesis-driven search
Generic queries Mechanism-targeted queries
No scientific reasoning Drug β†’ Target β†’ Pathway β†’ Effect
Judge says "need more" Hypothesis says "search for X to test Y"

Real example improvement:

  • Query: "metformin alzheimer"
  • Before: "metformin alzheimer mechanism", "metformin brain"
  • After: "metformin AMPK activation", "AMPK autophagy neurodegeneration", "autophagy amyloid clearance"

The search becomes scientifically targeted rather than keyword variations.