File size: 17,430 Bytes
23ecacd
 
 
 
 
 
 
 
 
0674654
23ecacd
 
 
 
 
 
 
 
 
 
 
0674654
 
 
 
 
 
 
 
 
 
133c38b
ba9863e
f2dc286
bd90063
be3e7e8
 
 
bb34072
 
 
 
 
 
 
f2dc286
 
bd90063
f2dc286
 
 
 
 
 
 
 
 
 
b6710f4
 
bd90063
 
 
 
ba9863e
be3e7e8
 
bd90063
 
bb34072
 
f2dc286
bd90063
 
f2dc286
 
 
 
 
 
 
 
 
 
 
 
 
b6710f4
 
f2dc286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f9116
 
 
 
 
ba9863e
c5f9116
 
 
 
 
 
ba9863e
 
23ecacd
be3e7e8
 
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0674654
23ecacd
 
 
 
 
 
0674654
23ecacd
0674654
23ecacd
0674654
23ecacd
 
0674654
 
23ecacd
 
 
 
0674654
23ecacd
0674654
23ecacd
 
 
 
 
 
 
 
 
 
0674654
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0674654
23ecacd
 
 
 
 
 
 
0674654
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0674654
 
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0674654
 
 
23ecacd
 
 
 
 
 
 
 
0674654
 
8d65e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba98bb
 
 
8d65e5e
 
23ecacd
 
 
 
8d65e5e
23ecacd
8d65e5e
0674654
23ecacd
 
 
8d65e5e
 
23ecacd
 
d02e800
0674654
d02e800
 
23ecacd
 
 
 
0674654
23ecacd
0674654
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0674654
 
23ecacd
 
 
 
0674654
23ecacd
 
 
 
 
 
0674654
23ecacd
0674654
23ecacd
 
0674654
 
23ecacd
 
 
 
 
ba9863e
0674654
23ecacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba9863e
bb34072
ba9863e
 
be3e7e8
ba9863e
 
bb34072
ba9863e
 
be3e7e8
ba9863e
 
bb34072
be3e7e8
 
 
 
23ecacd
 
 
 
 
 
 
 
 
 
be3e7e8
 
b6710f4
 
 
 
 
 
be3e7e8
 
b6710f4
 
 
 
 
 
 
 
 
 
 
be3e7e8
 
 
 
 
 
 
 
 
b6710f4
 
 
 
be3e7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6710f4
be3e7e8
 
 
 
 
 
 
 
 
 
 
b6710f4
 
23ecacd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os

cache_dir = "/tmp/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = cache_dir
os.makedirs(cache_dir, exist_ok=True)

from gradual.models import GradualInput, GradualOutput
# from gradual.computations import compute_gradual_semantics
from gradual.computations import compute_gradual_space
from aba.aba_builder import prepare_aba_plus_framework, build_aba_framework_from_text
from relations.predict_bert import predict_relation
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
import torch
import pandas as pd
from pathlib import Path
import asyncio
import json
import io
from aba.models import (
    RuleDTO,
    FrameworkSnapshot,
    TransformationStep,
    ABAApiResponseModel,
    ABAPlusDTO,
    MetaInfo,
)
from copy import deepcopy
from datetime import datetime


# -------------------- Config -------------------- #

ABA_EXAMPLES_DIR = Path("./aba/examples")
SAMPLES_DIR = Path("./relations/examples/samples")
GRADUAL_EXAMPLES_DIR = Path("./gradual/examples")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_name = "edgar-demeude/bert-argument"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.to(device)

# -------------------- App -------------------- #
app = FastAPI(title="Argument Mining API")

origins = ["http://localhost:3000", "http://127.0.0.1:3000"]
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# -------------------- Endpoints -------------------- #


@app.get("/")
def root():
    return {"message": "Argument Mining API is running..."}


# --- Predictions --- #

@app.post("/predict-text")
def predict_text(arg1: str = Form(...), arg2: str = Form(...)):
    """Predict relation between two text arguments using BERT."""
    result = predict_relation(arg1, arg2, model, tokenizer, device)
    return {"arg1": arg1, "arg2": arg2, "relation": result}


@app.post("/predict-csv-stream")
async def predict_csv_stream(file: UploadFile):
    """Stream CSV predictions progressively using SSE."""
    content = await file.read()
    df = pd.read_csv(io.StringIO(content.decode("utf-8")), quotechar='"')
    if len(df) > 250:
        df = df.head(250)

    async def event_generator():
        total = len(df)
        completed = 0
        for _, row in df.iterrows():
            try:
                result = predict_relation(
                    row["parent"], row["child"], model, tokenizer, device)
                completed += 1
                payload = {
                    "parent": row["parent"],
                    "child": row["child"],
                    "relation": result,
                    "progress": completed / total
                }
                yield f"data: {json.dumps(payload)}\n\n"
                # FORCER flush
                await asyncio.sleep(0)
            except Exception as e:
                yield f"data: {json.dumps({'error': str(e), 'parent': row.get('parent'), 'child': row.get('child')})}\n\n"
                await asyncio.sleep(0)

    return StreamingResponse(event_generator(), media_type="text/event-stream")


@app.get("/samples")
def list_samples():
    files = [f for f in os.listdir(SAMPLES_DIR) if f.endswith(".csv")]
    return {"samples": files}


@app.get("/samples/{filename}")
def get_sample(filename: str):
    file_path = os.path.join(SAMPLES_DIR, filename)
    if not os.path.exists(file_path):
        return {"error": "Sample not found"}
    return FileResponse(file_path, media_type="text/csv")



# --- ABA --- #

def _make_snapshot(fw) -> FrameworkSnapshot:
    return FrameworkSnapshot(
        language=[str(l) for l in sorted(fw.language, key=str)],
        assumptions=[str(a) for a in sorted(fw.assumptions, key=str)],
        rules=[
            RuleDTO(
                id=r.rule_name,
                head=str(r.head),
                body=[str(b) for b in sorted(r.body, key=str)],
            )
            for r in sorted(fw.rules, key=lambda r: r.rule_name)
        ],
        contraries=[
            (str(c.contraried_literal), str(c.contrary_attacker))
            for c in sorted(fw.contraries, key=str)
        ],
        preferences={
            str(k): [str(v) for v in sorted(vals, key=str)]
            for k, vals in (fw.preferences or {}).items()
        } if getattr(fw, "preferences", None) else None,
    )


def _format_set(s) -> str:
    # s may be a Python set/frozenset of Literal or strings.
    try:
        items = sorted([str(x) for x in s], key=str)
    except Exception:
        # fallback if s is already a string like "{a,b}"
        return str(s)
    return "{" + ",".join(items) + "}"


async def _process_aba_framework(
    text: str,
    enable_aba_plus: bool = False,
) -> dict:
    """
    Core processing logic for ABA frameworks.
    
    Args:
        text: The uploaded file content as text
        enable_aba_plus: If True, compute ABA+ elements
        
    Returns:
        Complete response with before/after snapshots and all computations
    """
    # === 1. Build original framework ===
    base_framework = build_aba_framework_from_text(text)
    base_framework.generate_arguments()
    base_framework.generate_attacks()
    original_snapshot = _make_snapshot(base_framework)

    # --- Classical (argument-level) data ---
    original_arguments = [str(arg) for arg in sorted(base_framework.arguments, key=str)]
    original_attacks = [str(att) for att in sorted(base_framework.attacks, key=str)]
    original_reverse_attacks = []

    # === 2. Transform framework ===
    transformed_framework = deepcopy(base_framework).transform_aba()
    transformations = _detect_transformations(base_framework, transformed_framework)

    # --- Initialize containers ---
    original_assumption_sets = []
    final_assumption_sets = []
    original_aba_plus_attacks = []
    final_aba_plus_attacks = []
    original_reverse_attacks = []
    final_reverse_attacks = []
    warnings = []

    # === 3. ABA+ computations ===
    if enable_aba_plus:
        # --- ABA+ on original framework ---
        fw_plus_original = prepare_aba_plus_framework(deepcopy(base_framework))
        fw_plus_original.generate_arguments()
        fw_plus_original.generate_attacks()
        fw_plus_original.make_aba_plus()

        original_assumption_sets = sorted(
            [_format_set(s) for s in getattr(fw_plus_original, "assumption_combinations", [])],
            key=lambda x: (len(x), x),
        )

        original_aba_plus_attacks = [
            f"{_format_set(src)}{_format_set(dst)}"
            for (src, dst) in sorted(
                getattr(fw_plus_original, "normal_attacks", []),
                key=lambda p: (str(p[0]), str(p[1])),
            )
        ]

        original_reverse_attacks = [
            f"{_format_set(src)}{_format_set(dst)}"
            for (src, dst) in sorted(
                getattr(fw_plus_original, "reverse_attacks", []),
                key=lambda p: (str(p[0]), str(p[1])),
            )
        ]

        # --- Ensure transformed framework is consistent before ABA+ ---
        transformed_framework.generate_arguments()
        transformed_framework.generate_attacks()

        # --- Compute ABA+ on transformed framework ---
        fw_plus_transformed = prepare_aba_plus_framework(deepcopy(transformed_framework))
        fw_plus_transformed.generate_arguments()
        fw_plus_transformed.generate_attacks()
        fw_plus_transformed.make_aba_plus()

        final_assumption_sets = sorted(
            [_format_set(s) for s in getattr(fw_plus_transformed, "assumption_combinations", [])],
            key=lambda x: (len(x), x),
        )

        # Debug sanity checks
        print("DEBUG: fw_plus_transformed.assumptions =", getattr(fw_plus_transformed, "assumptions", []))
        print("DEBUG: fw_plus_transformed.normal_attacks =", getattr(fw_plus_transformed, "normal_attacks", []))

        final_aba_plus_attacks = [
            f"{_format_set(src)}{_format_set(dst)}"
            for (src, dst) in sorted(
                getattr(fw_plus_transformed, "normal_attacks", []),
                key=lambda p: (str(p[0]), str(p[1])),
            )
        ]

        final_reverse_attacks = [
            f"{_format_set(src)}{_format_set(dst)}"
            for (src, dst) in sorted(
                getattr(fw_plus_transformed, "reverse_attacks", []),
                key=lambda p: (str(p[0]), str(p[1])),
            )
        ]

        warnings = _validate_aba_plus_framework(fw_plus_transformed)
    else:
        warnings = _validate_framework(transformed_framework)

    # === 4. Classical ABA computations (arguments + attacks) ===
    base_framework.generate_arguments()
    base_framework.generate_attacks()

    transformed_framework.generate_arguments()
    transformed_framework.generate_attacks()

    original_arguments = [str(arg) for arg in sorted(base_framework.arguments, key=str)]
    original_arguments_attacks = [str(att) for att in sorted(base_framework.attacks, key=str)]

    final_arguments = [str(arg) for arg in sorted(transformed_framework.arguments, key=str)]
    final_arguments_attacks = [str(att) for att in sorted(transformed_framework.attacks, key=str)]

    # === 5. Snapshots ===
    original_snapshot = _make_snapshot(base_framework)
    final_snapshot = _make_snapshot(transformed_framework)

    # === 6. Build response with CORRECT structure ===
    before_state = {
        "framework": original_snapshot.dict(),
        "arguments": original_arguments,
        "arguments_attacks": original_arguments_attacks,
        "argument_attacks": original_arguments_attacks,  # same as arguments_attacks for classical ABA
        "assumption_set_attacks": original_aba_plus_attacks if enable_aba_plus else [],
        "reverse_attacks": original_reverse_attacks if enable_aba_plus else [],
        "assumption_sets": original_assumption_sets if enable_aba_plus else [],
    }

    after_state = {
        "framework": final_snapshot.dict(),
        "arguments": final_arguments,
        "arguments_attacks": final_arguments_attacks,
        "argument_attacks": final_arguments_attacks,  # same as arguments_attacks for classical ABA
        "assumption_set_attacks": original_aba_plus_attacks if enable_aba_plus else [],
        "reverse_attacks": original_reverse_attacks if enable_aba_plus else [],
        "assumption_sets": original_assumption_sets if enable_aba_plus else [],
    }

    response = {
        "meta": {
            "request_id": f"req-{datetime.utcnow().timestamp()}",
            "timestamp": datetime.utcnow().isoformat(),
            "transformed": any(t.get("applied", False) for t in [_transform_to_dict(t) for t in transformations]),
            "transformations_applied": [
                t.get("step") for t in [_transform_to_dict(t) for t in transformations] if t.get("applied", False)
            ],
            "warnings": warnings,
            "errors": [],
        },
        "before_transformation": before_state,
        "after_transformation": after_state,
        "transformations": [_transform_to_dict(t) for t in transformations],
    }

    return response


def _detect_transformations(
    base_framework,
    transformed_framework,
) -> list:
    """
    Detect and describe which transformations were applied.
    """
    transformations = []
    
    if transformed_framework.language == base_framework.language and \
       transformed_framework.rules == base_framework.rules:
        # No transformation needed
        transformations.append({
            "step": "none",
            "applied": False,
            "reason": "The framework was already non-circular and atomic.",
            "description": "No transformation applied.",
            "result_snapshot": None,
        })
        return transformations
    
    # Determine transformation type
    was_circular = base_framework.is_aba_circular()
    was_atomic = base_framework.is_aba_atomic()
    
    step_name = "non_circular" if was_circular else "atomic"
    reason = "circular dependencies" if was_circular else "non-atomic rules"
    
    transformations.append({
        "step": step_name,
        "applied": True,
        "reason": f"The framework contained {reason}.",
        "description": f"Transformed into a {step_name.replace('_', '-')} version.",
        "result_snapshot": _make_snapshot(transformed_framework),
    })
    
    return transformations


def _transform_to_dict(t):
    """Convert TransformationStep to dict if needed."""
    if isinstance(t, dict):
        return t
    return {
        "step": t.step,
        "applied": t.applied,
        "reason": t.reason,
        "description": t.description,
        "result_snapshot": t.result_snapshot,
    }


def _validate_framework(framework) -> list[str]:
    """
    Validate framework and return any warnings.
    """
    warnings = []
    
    if hasattr(framework, "preferences") and framework.preferences:
        all_assumptions = {str(a) for a in framework.assumptions}
        pref_keys = {str(k) for k in framework.preferences.keys()}
        
        if not pref_keys.issubset(all_assumptions):
            warnings.append(
                "Incomplete preference relation: not all assumptions appear in the preference mapping."
            )
    
    return warnings


def _validate_aba_plus_framework(framework) -> list[str]:
    """
    Validate ABA+ framework and return any warnings.
    """
    return _validate_framework(framework)


@app.post("/aba-upload")
async def aba_upload(file: UploadFile = File(...)):
    """
    Handle classical ABA framework generation.
    
    Returns: original & final frameworks with arguments and attacks (no ABA+ data)
    """
    content = await file.read()
    text = content.decode("utf-8")
    return await _process_aba_framework(text, enable_aba_plus=False)


@app.post("/aba-plus-upload")
async def aba_plus_upload(file: UploadFile = File(...)):
    """
    Handle ABA+ framework generation.
    
    Returns: original & final frameworks with arguments, attacks, AND reverse_attacks for both
    """
    content = await file.read()
    text = content.decode("utf-8")
    return await _process_aba_framework(text, enable_aba_plus=True)


@app.get("/aba-examples")
def list_aba_examples():
    examples = [f.name for f in ABA_EXAMPLES_DIR.glob("*.txt")]
    return {"examples": examples}


@app.get("/aba-examples/{filename}")
def get_aba_example(filename: str):
    file_path = ABA_EXAMPLES_DIR / filename
    if not file_path.exists() or not file_path.is_file():
        return {"error": "File not found"}
    return FileResponse(file_path, media_type="text/plain", filename=filename)


# --- Gradual semantics --- #

# @app.post("/gradual", response_model=GradualOutput)
# def compute_gradual(input_data: GradualInput):
#     """API endpoint to compute Weighted h-Categorizer samples and convex hull."""
#     return compute_gradual_semantics(
#         A=input_data.A,
#         R=input_data.R,
#         n_samples=input_data.n_samples,
#         max_iter=input_data.max_iter
#     )

@app.post("/gradual", response_model=GradualOutput)
def compute_gradual(input_data: GradualInput):
    """
    API endpoint to compute Weighted h-Categorizer samples
    and their convex hull (acceptability degree space).
    """
    num_args, hull_volume, hull_area, hull_points, samples, axes = compute_gradual_space(
        num_args=input_data.num_args,
        R=input_data.R,
        n_samples=input_data.n_samples,
        axes=input_data.axes,
        controlled_args=input_data.controlled_args,
    )

    return GradualOutput(
        num_args=num_args,
        hull_volume=hull_volume,
        hull_area=hull_area,
        hull_points=hull_points,
        samples=samples,
        axes=axes,
    )


@app.get("/gradual-examples")
def list_gradual_examples():
    """
    List all available gradual semantics example files.
    Each example must be a JSON file with structure:
    {
        # "args": ["A", "B", "C"],
        # "relations": [["A", "B"], ["B", "C"]]
        "num_args": 3,
        "R": [["A", "B"], ["B", "C"], ["C", "A"]],
    }
    """
    if not GRADUAL_EXAMPLES_DIR.exists():
        return {"examples": []}

    examples = []
    for file in GRADUAL_EXAMPLES_DIR.glob("*.json"):
        examples.append({
            "name": file.stem,
            "path": file.name,
            "content": None
        })
    return {"examples": examples}


@app.get("/gradual-examples/{example_name}")
def get_gradual_example(example_name: str):
    """
    Return the content of a specific gradual example file.
    Example: GET /gradual-examples/simple.json
    """
    file_path = GRADUAL_EXAMPLES_DIR / example_name
    if not file_path.exists():
        raise HTTPException(status_code=404, detail="Example not found")

    try:
        with open(file_path, "r", encoding="utf-8") as f:
            content = json.load(f)
        return JSONResponse(content=content)
    except json.JSONDecodeError:
        raise HTTPException(
            status_code=400, detail="Invalid JSON format in example file")