GeoQuery / ARCHITECTURE.md
GerardCB's picture
Deploy to Spaces (Final Clean)
4851501

GeoQuery Architecture

System Overview

GeoQuery is a Territorial Intelligence Platform that combines Large Language Models (LLMs) with geospatial analysis to enable natural language querying of geographic datasets. The system translates conversational queries into SQL, executes spatial operations, and presents results through interactive maps and data visualizations.

Design Philosophy

  1. Natural Language First: Users interact through conversational queries, not SQL or GIS interfaces
  2. Dynamic Data Discovery: No fixed schemaβ€”the system adapts to any GeoJSON dataset added to the catalog
  3. Streaming Intelligence: Real-time thought processes and incremental results via Server-Sent Events
  4. Spatial Native: PostGIS-compatible spatial operations in DuckDB for performant geospatial analysis
  5. Visual by Default: Automatic map visualization, choropleth generation, and data presentation

High-Level Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         Frontend                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚  ChatPanel   β”‚  β”‚  MapViewer   β”‚  β”‚ DataExplorer β”‚     β”‚
β”‚  β”‚  (React)     β”‚  β”‚  (Leaflet)   β”‚  β”‚   (Table)    β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β”‚         β”‚                  β”‚                  β”‚             β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β”‚
β”‚                           β”‚ (SSE/HTTP)                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      API Layer                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚         FastAPI Endpoints                         β”‚       β”‚
β”‚  β”‚  /api/chat (SSE) β”‚ /api/catalog β”‚ /api/schema    β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚                           β”‚                                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     Service Layer                            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚  β”‚ QueryExecutorβ”‚  β”‚   LLMGateway β”‚  β”‚  GeoEngine   β”‚      β”‚
β”‚  β”‚              β”‚  β”‚   (Gemini)   β”‚  β”‚   (DuckDB)   β”‚      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚  β”‚ DataCatalog  β”‚  β”‚SemanticSearchβ”‚  β”‚ SessionStore β”‚      β”‚
β”‚  β”‚ (Embeddings) β”‚  β”‚  (Vectors)   β”‚  β”‚   (Layers)   β”‚      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      Data Layer                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚  β”‚ catalog.json β”‚  β”‚  GeoJSON     β”‚  β”‚ embeddings   β”‚      β”‚
β”‚  β”‚  (Metadata)  β”‚  β”‚  (Datasets)  β”‚  β”‚   (.npy)     β”‚      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚  β”‚         DuckDB In-Memory Database                 β”‚      β”‚
β”‚  β”‚  (Spatial Tables, Temporary Layers, Indexes)     β”‚      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

1. Frontend (Next.js + React)

Location: frontend/src/

The frontend is a single-page application built with Next.js that provides:

  • ChatPanel: Conversational interface with streaming responses
  • MapViewer: Interactive Leaflet map with layer management
  • DataExplorer: Tabular data view with export capabilities

Key Technologies:

  • Next.js 14 (App Router)
  • React 18 with hooks
  • Leaflet for map rendering
  • Server-Sent Events (SSE) for streaming
  • dnd-kit for drag-and-drop layer reordering

2. API Layer (FastAPI)

Location: backend/api/

RESTful API with streaming support:

  • /api/chat (POST): Main query endpoint with SSE streaming
  • /api/catalog (GET): Returns available datasets
  • /api/schema (GET): Returns database schema

Key Technologies:

  • FastAPI for async HTTP
  • Starlette for SSE streaming
  • CORS middleware for cross-origin requests

3. Service Layer

QueryExecutor (backend/services/executor.py)

Orchestrates the entire query pipeline:

  1. Intent detection
  2. Data discovery
  3. SQL generation
  4. Query execution
  5. Response formatting
  6. Explanation generation

LLMGateway (backend/core/llm_gateway.py)

Interfaces with Gemini API:

  • Intent detection with thinking
  • Text-to-SQL generation
  • Natural language explanations
  • Layer naming and styling
  • Error correction
  • Streaming support

GeoEngine (backend/core/geo_engine.py)

Manages spatial database:

  • DuckDB connection with Spatial extension
  • Lazy table loading from GeoJSON
  • SQL query execution
  • Result formatting to GeoJSON
  • Temporary layer registration

DataCatalog (backend/core/data_catalog.py)

Dataset discovery system:

  • Loads catalog.json metadata
  • Generates table summaries for LLM context
  • Provides schema information
  • Manages dataset metadata

SemanticSearch (backend/core/semantic_search.py)

Vector-based dataset discovery:

  • Generates embeddings for dataset descriptions
  • Performs cosine similarity search
  • Returns top-k relevant datasets
  • Scales to large catalogs (100+ datasets)

SessionStore (backend/core/session_store.py)

User session management:

  • Tracks created map layers per session
  • Enables spatial operations on user layers
  • Maintains layer metadata

4. Data Layer

Catalog System (backend/data/catalog.json)

Central metadata registry:

  • Dataset paths and descriptions
  • Semantic descriptions for AI discovery
  • Categories and tags
  • Schema information
  • Data provenance

GeoJSON Datasets (backend/data/)

Organized by source:

  • osm/ - OpenStreetMap data (roads, buildings, POI)
  • admin/ - Administrative boundaries (HDX)
  • global/ - Global datasets (Kontur, Natural Earth)
  • socioeconomic/ - World Bank, MPI data
  • stri/ - STRI GIS Portal datasets

Vector Embeddings (backend/data/embeddings.npy)

Sentence transformer embeddings for semantic search


Data Flow: User Query to Response

Step 1: User Input

User: "Show me hospitals in Panama City"

Step 2: Frontend β†’ Backend

POST /api/chat
{
  "message": "Show me hospitals in Panama City",
  "history": []
}

Step 3: Intent Detection (LLM)

# QueryExecutor calls LLMGateway.detect_intent()
intent = await llm.detect_intent(query, history)
# Returns: "MAP_REQUEST"

Step 4: Semantic Discovery

# SemanticSearch finds relevant tables
candidates = semantic_search.search_table_names(query, top_k=15)
# Returns: ["panama_healthsites_geojson", "osm_amenities", ...]

Step 5: Table Schema Retrieval

# GeoEngine loads relevant tables
geo_engine.ensure_table_loaded("panama_healthsites_geojson")
schema = geo_engine.get_table_schemas()
# Returns: "Table: panama_healthsites_geojson\nColumns: name, amenity, geom..."

Step 6: SQL Generation (LLM)

# LLMGateway generates SQL
sql = await llm.generate_analytical_sql(query, schema, history)
# Returns: "SELECT name, amenity, geom FROM panama_healthsites_geojson 
#           WHERE amenity = 'hospital' AND ST_Intersects(geom, ...)"

Step 7: Query Execution

# GeoEngine executes spatial query
geojson = geo_engine.execute_spatial_query(sql)
# Returns: GeoJSON with 45 hospital features

Step 8: Response Formatting

# Add layer metadata, generate name, configure visualization
layer_info = await llm.generate_layer_name(query, sql)
# Returns: {"name": "Hospitals in Panama City", "emoji": "πŸ₯", "pointStyle": "icon"}

geojson = format_geojson_layer(query, geojson, features, 
                                layer_info["name"], 
                                layer_info["emoji"],
                                layer_info["pointStyle"])

Step 9: Explanation Generation (Streaming)

# LLMGateway generates explanation with streaming
async for chunk in llm.stream_explanation(query, sql, data_summary, history):
    if chunk["type"] == "thought":
        # Stream thinking process to frontend
    elif chunk["type"] == "content":
        # Stream actual response text

Step 10: Frontend Rendering

  • ChatPanel displays streamed explanation
  • MapViewer renders GeoJSON layer with hospital icons
  • DataExplorer shows tabular data

Key Design Decisions

1. Why DuckDB Instead of PostgreSQL?

Chosen: DuckDB with Spatial extension

Rationale:

  • Zero Configuration: Embedded database, no separate server
  • Fast Analytics: Columnar storage optimized for analytical queries
  • Spatial Support: Full PostGIS compatibility via spatial extension
  • GeoJSON Native: Direct GeoJSON import/export
  • Lightweight: Perfect for development and small deployments

Trade-off: Limited concurrency compared to PostgreSQL (acceptable for our use case)

2. Why Semantic Search for Dataset Discovery?

Chosen: Sentence transformer embeddings + cosine similarity

Rationale:

  • Scalability: Works with 100+ datasets without overwhelming LLM context
  • Accuracy: Better matches than keyword search
  • Token Efficiency: Only sends relevant table schemas to LLM

Example:

  • Query: "Where can I find doctors?"
  • Semantic search finds: panama_healthsites_geojson (closest match)
  • LLM then generates SQL using only relevant schema

3. Why Server-Sent Events for Streaming?

Chosen: SSE instead of WebSockets

Rationale:

  • Simpler Protocol: One-way communication (server β†’ client)
  • HTTP Compatible: Works through firewalls and proxies
  • Auto Reconnect: Built-in browser support
  • Event Types: Named events for different message types

Trade-off: No client β†’ server streaming (not needed for our use case)

4. Why Lazy Table Loading?

Chosen: Load GeoJSON only when needed

Rationale:

  • Fast Startup: Don't load all datasets on initialization
  • Memory Efficient: Only keep active tables in memory
  • Flexible: Easy to add new datasets without restart

Implementation:

def ensure_table_loaded(self, table_name: str) -> bool:
    if table_name not in self.loaded_tables:
        self.load_geojson_to_table(table_name)
    return table_name in self.loaded_tables

5. Why Choropleth Auto-Detection?

Chosen: Automatic choropleth configuration based on data

Rationale:

  • User Friendly: No manual configuration needed
  • Intelligent: Prioritizes meaningful columns (population, area, density)
  • Adaptive: Works with any numeric column

Logic:

  1. Find numeric columns
  2. Prioritize keywords (population, area, count)
  3. Check value variance (skip if all same)
  4. Enable choropleth with appropriate scale (linear/log)

##Error Handling & Resilience

SQL Error Correction

When a generated SQL query fails:

  1. Extract error message
  2. Send to LLM with original query and schema
  3. LLM generates corrected SQL
  4. Execute repaired query
  5. If still fails, return error to user

Data Unavailable Handling

When requested data doesn't exist:

  1. LLM returns special error marker: -- ERROR: DATA_UNAVAILABLE
  2. System extracts "Requested" and "Available" from response
  3. Returns helpful message to user with alternatives

Missing Tables

  • Catalog lists all datasets but not all loaded
  • Lazy loading attempts to load on demand
  • If file missing, logs warning and continues

Performance Considerations

Query Optimization

  • Spatial Indexes: DuckDB automatically indexes geometry columns
  • Top-K Limits: Large result sets limited to prevent memory issues
  • Lazy Evaluation: Stream results when possible

Embedding Cache

  • Embeddings pre-computed and stored in .npy file
  • Only regenerated when catalog changes
  • Fast cosine similarity via NumPy vectorization

Frontend Rendering

  • Layer Virtualization: Large point datasets use circle markers for performance
  • Choropleth Colors: Pre-computed color palettes
  • Lazy Map Loading: Only render visible layers

Security Considerations

LLM Prompt Injection

  • Mitigation: Clear separation of user query and system instructions
  • Validation: SQL parsing and column name verification
  • Sandboxing: Read-only queries (no INSERT/UPDATE/DELETE)

API Access

  • CORS: Configured allowed origins
  • Rate Limiting: Can be added via middleware (not currently implemented)
  • Authentication: Not implemented (suitable for internal/demo deployments)

Data Privacy

  • No user data stored (stateless queries)
  • Session layers stored in-memory only
  • No query logging by default

Scalability Path

Current Limitations

  • Single Process: No horizontal scaling
  • In-Memory Database: Limited by RAM
  • No Caching: Repeated queries re-execute

Future Enhancements

  1. Add PostgreSQL/PostGIS: For production deployments with persistence
  2. Redis Cache: Cache query results and embeddings
  3. Load Balancer: Multiple FastAPI instances
  4. Background Workers: Async data ingestion with Celery
  5. CDN: Serve GeoJSON datasets from cloud storage

Technology Choices Summary

Component Technology Why?
Backend Language Python 3.11+ Rich geospatial ecosystem, LLM SDKs
Web Framework FastAPI Async support, OpenAPI docs, SSE
Database DuckDB Embedded, fast analytics, spatial support
LLM Google Gemini Thinking mode, streaming, JSON output
Frontend Framework Next.js 14 React, SSR, App Router, TypeScript
Map Library Leaflet Lightweight, flexible, plugin ecosystem
Embeddings sentence-transformers Multilingual, semantic similarity
Data Format GeoJSON Standard, human-readable, LLM-friendly

Next Steps

For detailed information on specific components: