GeoQuery / docs /backend /CORE_SERVICES.md
GerardCB's picture
Deploy to Spaces (Final Clean)
4851501

Backend Core Services

Detailed reference for GeoQuery's core backend services.


Service Overview

Service File Purpose
LLMGateway core/llm_gateway.py Gemini API integration
GeoEngine core/geo_engine.py DuckDB Spatial wrapper
DataCatalog core/data_catalog.py Dataset metadata management
SemanticSearch core/semantic_search.py Embedding-based discovery
SessionStore core/session_store.py User session and layer management
QueryPlanner core/query_planner.py Multi-step query orchestration
QueryExecutor services/executor.py Main query pipeline

LLMGateway

File: backend/core/llm_gateway.py

Unified interface to Google Gemini API with streaming support.

Initialization

from backend.core.llm_gateway import LLMGateway

llm = LLMGateway()

Configuration:

  • Reads GEMINI_API_KEY from environment
  • Uses gemini-2.0-flash-exp model
  • Enables "thinking" mode for reasoning transparency

Key Methods

detect_intent(query, history) β†’ str

Classifies user query into intent category.

Parameters:

  • query (str): User's natural language query
  • history (List[Dict]): Conversation history

Returns: One of:

  • "GENERAL_CHAT" - Conversational question
  • "DATA_QUERY" - Data request
  • "MAP_REQUEST" - Explicitly wants visualization
  • "SPATIAL_OP" - Geometric operation (intersection, buffer, etc.)
  • "STAT_QUERY" - Requests chart/graph

Example:

intent = await llm.detect_intent("Show me hospitals in Panama", [])
# Returns: "MAP_REQUEST"

generate_analytical_sql(query, schema, history) β†’ str

Generates DuckDB SQL query from natural language.

Parameters:

  • query (str): User query
  • schema (str): Available table schemas
  • history (List[Dict]): Conversation context

Returns: SQL query string

Special Cases:

  • Returns "-- ERROR: DATA_UNAVAILABLE" if data doesn't exist
  • Includes geom column for map visualization
  • Uses DuckDB spatial functions (ST_Intersects, etc.)

Example:

schema = "Table: panama_healthsites_geojson\\nColumns: name, amenity, geom..."
sql = await llm.generate_analytical_sql("hospitals in David", schema, [])
# Returns: "SELECT name, amenity, geom FROM panama_healthsites_geojson 
#           WHERE amenity = 'hospital' AND ST_Intersects(geom, ...)"

generate_spatial_sql(query, context, history) β†’ str

Generates spatial operation SQL (difference, intersection, etc.).

Parameters:

  • query (str): Spatial operation request
  • context (str): Base tables + user layers
  • history (List[Dict]): Conversation history

Returns: SQL with spatial functions

Example:

context = "Base: pan_admin1\\nUser Layers: layer_abc123 (Protected Areas)"
sql = await llm.generate_spatial_sql("subtract protected areas from ChiriquΓ­", context, [])
# Returns: "WITH protected_union AS (SELECT ST_Union(geom) FROM layer_abc123)
#           SELECT a.*, ST_Difference(a.geom, p.geom) as geom 
#           FROM pan_admin1 a, protected_union p WHERE a.adm1_name = 'ChiriquΓ­'"

generate_layer_name(query, sql) β†’ Dict

Generates descriptive name, emoji, and point style for map layer.

Returns:

{
    "name": "Hospitals in David",
    "emoji": "πŸ₯",
    "pointStyle": "icon"  # or "circle" or None
}

Point Style Logic:

  • "icon": Small to medium POI datasets (<500 points)
  • "circle": Large point datasets (>500 points)
  • None: Polygon/line data (uses choropleth or line styling)

stream_explanation(query, sql, data_summary, history)

Streams natural language explanation of results.

Yields: Dict with:

  • {"type": "thought", "text": "reasoning..."} - LLM thinking
  • {"type": "content", "text": "response..."} - Actual response

Example:

async for chunk in llm.stream_explanation("show hospitals", sql, summary, []):
    if chunk["type"] == "content":
        print(chunk["text"], end="", flush=True)

Prompt System

All prompts are centralized in backend/core/prompts.py:

  • SYSTEM_INSTRUCTION - Base system context
  • INTENT_DETECTION_PROMPT - Intent classification
  • SQL_GENERATION_PROMPT - Text-to-SQL
  • SPATIAL_SQL_PROMPT - Spatial operations
  • LAYER_NAME_PROMPT - Layer metadata generation
  • EXPLANATION_PROMPT - Result interpretation

GeoEngine

File: backend/core/geo_engine.py

DuckDB Spatial database wrapper for geospatial queries.

Initialization

from backend.core.geo_engine import get_geo_engine

engine = get_geo_engine()  # Singleton pattern

Creates:

  • In-memory DuckDB database
  • Loads Spatial extension
  • Configures JSON serialization

Key Methods

ensure_table_loaded(table_name) β†’ bool

Lazily loads GeoJSON dataset into DuckDB.

Parameters:

  • table_name (str): Table identifier from catalog

Returns: True if loaded successfully

Behavior:

  • Checks if already loaded (no-op if yes)
  • Looks up path in DataCatalog
  • Reads GeoJSON file with GeoPandas
  • Creates DuckDB table with spatial index
  • Caches in loaded_tables dict

Example:

success = engine.ensure_table_loaded("panama_healthsites_geojson")
if success:
    print(f"Table has {len(engine.loaded_tables['panama_healthsites_geojson'])} rows")

execute_spatial_query(sql) β†’ Dict

Executes SQL and returns GeoJSON.

Parameters:

  • sql (str): DuckDB SQL query

Returns: GeoJSON FeatureCollection

Example:

sql = "SELECT name, geom FROM panama_healthsites_geojson LIMIT 10"
geojson = engine.execute_spatial_query(sql)
# Returns: {"type": "FeatureCollection", "features": [...], "properties": {}}

Error Handling:

  • Raises exception with detailed error message
  • Logs SQL for debugging

register_layer(layer_id, geojson) β†’ str

Registers user-created layer as temporary table.

Parameters:

  • layer_id (str): Unique layer identifier
  • geojson (Dict): GeoJSON FeatureCollection

Returns: Table name (layer_{layer_id})

Purpose: Enables spatial operations on user-created layers

Example:

# User creates layer by querying hospitals
hospitals_geojson = engine.execute_spatial_query("SELECT * FROM ... WHERE amenity='hospital'")

# Register for later spatial ops
table_name = engine.register_layer("abc123", hospitals_geojson)
# Returns: "layer_abc123"

# Now can use in spatial queries
sql = f"SELECT * FROM pan_admin1 WHERE ST_Intersects(geom, (SELECT ST_Union(geom) FROM {table_name}))"

get_table_schemas() β†’ str

Generates schema descriptions for LLM context.

Returns: Formatted string with table/column info

Example Output:

Table: panama_healthsites_geojson
Columns: osm_id, name, amenity, operator, geom
Row count: 986

Table: pan_admin1
Columns: adm0_name, adm1_name, adm1_pcode, area_sqkm, geom
Row count: 10

Supported Spatial Functions

DuckDB Spatial provides PostGIS-compatible functions:

Function Purpose Example
ST_Intersects(a, b) Test intersection WHERE ST_Intersects(hospital.geom, province.geom)
ST_Within(a, b) Test containment WHERE ST_Within(point.geom, polygon.geom)
ST_Distance(a, b) Calculate distance SELECT ST_Distance(a.geom, b.geom) as dist
ST_Buffer(geom, dist) Create buffer SELECT ST_Buffer(geom, 0.1) FROM points
ST_Union(geom) Merge geometries SELECT ST_Union(geom) FROM provinces
ST_Difference(a, b) Subtract geometry SELECT ST_Difference(a.geom, b.geom)
ST_Intersection(a, b) Intersect geometries SELECT ST_Intersection(a.geom, b.geom)

DataCatalog

File: backend/core/data_catalog.py

Manages dataset metadata from catalog.json.

Initialization

from backend.core.data_catalog import get_data_catalog

catalog = get_data_catalog()  # Singleton

Loads:

  • Reads backend/data/catalog.json
  • Parses dataset metadata
  • Builds searchable index

Catalog Structure

{
  "table_name": {
    "path": "relative/path/to/file.geojson",
    "description": "Short description for display",
    "semantic_description": "Detailed description for AI discovery",
    "categories": ["infrastructure", "health"],
    "tags": ["hospitals", "clinics", "healthcare"],
    "schema": {
      "columns": ["name", "type", "beds", "geom"],
      "geometry_type": "Point"
    }
  }
}

Key Methods

get_all_table_summaries() β†’ str

Returns formatted summaries of all datasets for LLM context.

Format:

Table: panama_healthsites_geojson
Description: Healthcare facilities including hospitals, clinics...
Categories: health, infrastructure

get_summaries_for_tables(table_names) β†’ str

Returns summaries for specific tables (used after semantic search).

get_table_metadata(table_name) β†’ Dict

Returns full metadata for a single table.


SemanticSearch

File: backend/core/semantic_search.py

Vector-based dataset discovery using sentence embeddings.

How It Works

  1. Embedding Generation: Convert dataset descriptions to 384-dim vectors
  2. Indexing: Store embeddings in embeddings.npy
  3. Query: Convert user query to vector
  4. Search: Find top-k most similar datasets via cosine similarity

Initialization

from backend.core.semantic_search import get_semantic_search

search = get_semantic_search()  # Singleton

Loads:

  • Sentence transformer model (all-MiniLM-L6-v2)
  • Pre-computed embeddings from file (or generates if missing)

Key Methods

search_table_names(query, top_k=15) β†’ List[str]

Finds most relevant datasets for a query.

Example:

results = search.search_table_names("where are the doctors?", top_k=5)
# Returns: ["panama_healthsites_geojson", "osm_amenities", ...]

Performance: Sub-millisecond for 100+ datasets

Regenerating Embeddings

When catalog.json changes:

rm backend/data/embeddings.npy
python -c "from backend.core.semantic_search import get_semantic_search; get_semantic_search()"

SessionStore

File: backend/core/session_store.py

Manages user sessions and created map layers.

Purpose

  • Track layers created by each user
  • Enable spatial operations between user layers
  • Maintain session state

Key Methods

from backend.core.session_store import get_session_store

store = get_session_store()

# Add layer to session
store.add_layer("session-123", {
    "id": "layer_abc",
    "name": "Hospitals in Panama",
    "table_name": "layer_abc",
    "timestamp": "2026-01-10T12:00:00"
})

# Get session layers
layers = store.get_layers("session-123")

QueryPlanner

File: backend/core/query_planner.py

Decomposes complex queries into executable steps.

Complexity Detection

from backend.core.query_planner import get_query_planner

planner = get_query_planner()

complexity = planner.detect_complexity("compare hospital count vs school count by province")
# Returns: {"is_complex": True, "reason": "Multiple dataset comparison"}

Complex Query Indicators:

  • Multiple datasets
  • Aggregations across categories
  • Comparisons or ratios
  • Multi-condition filters

Query Planning

plan = await planner.plan_query(query, available_tables, llm)

# Returns ExecutionPlan with:
# - steps: List of QueryStep objects
# - parallel_groups: Steps that can run concurrently
# - combination_logic: How to merge results

QueryExecutor

File: backend/services/executor.py

Main orchestrator that coordinates all services.

Query Pipeline

from backend.services.executor import QueryExecutor

executor = QueryExecutor()

# Process query with streaming
async for event in executor.process_query_stream(query, history):
    if event["event"] == "status":
        print(f"Status: {event['data']}")
    elif event["event"] == "chunk":
        print(event["data"], end="")
    elif event["event"] == "result":
        geojson = event["data"]["geojson"]

Execution Steps

  1. Intent Detection β†’ LLMGateway
  2. Semantic Search β†’ SemanticSearch
  3. Schema Loading β†’ DataCatalog + GeoEngine
  4. SQL Generation β†’ LLMGateway
  5. Query Execution β†’ GeoEngine
  6. Result Formatting β†’ ResponseFormatter
  7. Explanation β†’ LLMGateway (streaming)
  8. Layer Registration β†’ SessionStore

Singleton Pattern

Most services use the singleton pattern for efficiency:

# Internal cache
_instance = None

def get_service():
    global _instance
    if _instance is None:
        _instance = Service()
    return _instance

Benefits:

  • Single database connection
  • Cached embeddings
  • Shared catalog

Error Handling

SQL Correction Loop

When generated SQL fails:

try:
    result = geo_engine.execute_spatial_query(sql)
except Exception as e:
    # Try to repair
    corrected_sql = await llm.correct_sql(query, sql, str(e), schema)
    result = geo_engine.execute_spatial_query(corrected_sql)

Data Unavailability

LLM returns special marker:

-- ERROR: DATA_UNAVAILABLE
-- Requested: crime statistics
-- Available: admin boundaries, hospitals, schools

Executor detects and returns helpful message to user.


Next Steps