File size: 86,523 Bytes
a3116de 4a16168 adff627 4a16168 a18d50d 4a16168 e4b0c31 4a16168 adff627 ee84e6a 4a16168 807fe76 4a16168 a3116de 4a16168 a3116de 4a16168 a3116de 450ce36 ee84e6a 4a16168 807fe76 4a16168 a3116de 26de7cd 36a7320 4cb2baf 36a7320 a3116de 36a7320 a3116de adff627 a3116de 0cc5a22 4cb2baf e4b0c31 adff627 4cb2baf 0cc5a22 e4b0c31 0cc5a22 0795b68 0cc5a22 a3116de fbd2ae8 a3116de e4b0c31 a3116de fbd2ae8 a3116de fbd2ae8 a3116de fbd2ae8 a3116de e4b0c31 a3116de fbd2ae8 a3116de fbd2ae8 a3116de b7d0706 a3116de b7d0706 a3116de fbd2ae8 a3116de e4b0c31 a3116de fbd2ae8 a3116de fbd2ae8 a3116de fbd2ae8 a3116de e4b0c31 a3116de fbd2ae8 a3116de fbd2ae8 a3116de eb3c2b5 fbd2ae8 eb3c2b5 fbd2ae8 eb3c2b5 fbd2ae8 eb3c2b5 0acdeac a3116de fbd2ae8 a3116de fbd2ae8 a3116de fbd2ae8 a3116de 4a16168 807fe76 4a16168 3a64edc 4a16168 e8281aa 4a16168 e8281aa 4a16168 3a64edc 4a16168 a3116de 4a16168 a3116de 4a16168 a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f a3116de 3a7759f ee84e6a 3a7759f ee84e6a 3a7759f ee84e6a 3a7759f ee84e6a 3a7759f a3116de ee84e6a a3116de ee84e6a a3116de ee84e6a a3116de 3a7759f a3116de 3a7759f 4a16168 3a7759f 4a16168 3a7759f 4a16168 3a7759f 4a16168 3a7759f 4a16168 3a7759f a70ff2b 3a7759f a70ff2b 3a7759f a70ff2b 3a7759f a70ff2b a3116de c1a84e8 228f78e d6e6637 c1a84e8 228f78e c1a84e8 a3116de adff627 a3116de f4dfe1f a70ff2b f4dfe1f 86f2cd8 a70ff2b f4dfe1f 27a0645 86f2cd8 27a0645 a70ff2b 27a0645 86f2cd8 f4dfe1f 27a0645 86f2cd8 f4dfe1f a70ff2b f4dfe1f 86f2cd8 f4dfe1f 86f2cd8 27a0645 86f2cd8 27a0645 a70ff2b 27a0645 86f2cd8 f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f a70ff2b f4dfe1f 86f2cd8 a3116de 4a16168 c1a84e8 4a16168 e4b0c31 4a16168 c1a84e8 4a16168 36a7320 4760eaa 36a7320 4760eaa 4a16168 4760eaa 4a16168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 |
"""
TraceMind MCP Server - Hugging Face Space Entry Point (Track 1)
This file serves as the entry point for HuggingFace Space deployment.
Exposes 11 AI-powered MCP tools + 3 Resources + 3 Prompts via Gradio's native MCP support.
Built on Open Source Foundation:
π TraceVerde (genai_otel_instrument) - Automatic OpenTelemetry instrumentation
for LLM frameworks (LiteLLM, Transformers, LangChain, etc.)
GitHub: https://github.com/Mandark-droid/genai_otel_instrument
PyPI: https://pypi.org/project/genai-otel-instrument
π SMOLTRACE - Agent evaluation engine with OTEL tracing built-in
Generates structured datasets (leaderboard, results, traces, metrics)
GitHub: https://github.com/Mandark-droid/SMOLTRACE
PyPI: https://pypi.org/project/smoltrace/
The Flow: TraceVerde instruments β SMOLTRACE evaluates β TraceMind analyzes
Architecture:
User β MCP Client (Claude Desktop, Continue, Cline, etc.)
β MCP Endpoint (Gradio SSE)
β TraceMind MCP Server (this file)
β Tools (mcp_tools.py)
β Google Gemini 2.5 Flash API
For Track 1: Building MCP Servers - Enterprise Category
https://huggingface.co/MCP-1st-Birthday
Tools Provided:
π analyze_leaderboard - AI-powered leaderboard analysis
π debug_trace - Debug agent execution traces with AI
π° estimate_cost - Predict evaluation costs before running
βοΈ compare_runs - Compare evaluation runs with AI analysis
π analyze_results - Analyze detailed test results with optimization recommendations
π get_top_performers - Get top N models from leaderboard (optimized)
π get_leaderboard_summary - Get leaderboard overview statistics
π¦ get_dataset - Load SMOLTRACE datasets as JSON
π§ͺ generate_synthetic_dataset - Create domain-specific test datasets
π generate_prompt_template - Generate customized smolagents prompt templates
π€ push_dataset_to_hub - Upload datasets to HuggingFace Hub
Compatible with:
- Claude Desktop (via Gradio MCP support)
- Continue.dev (VS Code extension)
- Cline (VS Code extension)
- Any MCP client supporting Gradio's MCP protocol
"""
import os
import logging
import gradio as gr
from typing import Optional, Dict, Any
from datetime import datetime
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Local imports
from gemini_client import GeminiClient
from mcp_tools import (
analyze_leaderboard,
debug_trace,
estimate_cost,
compare_runs,
analyze_results,
get_top_performers,
get_leaderboard_summary,
get_dataset,
generate_synthetic_dataset,
generate_prompt_template,
push_dataset_to_hub
)
# Initialize default Gemini client (fallback if user doesn't provide key)
try:
default_gemini_client = GeminiClient()
except ValueError:
default_gemini_client = None # Will prompt user to enter API key
# Gradio Interface for Testing
def create_gradio_ui():
"""Create Gradio UI for testing MCP tools"""
# Note: In Gradio 6, theme is passed to launch(), not Blocks()
with gr.Blocks(title="TraceMind MCP Server") as demo:
# Top Banner (matching TraceMind-AI style)
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 25px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white !important; margin: 0; font-size: 2.5em; font-weight: bold;">
π€ TraceMind MCP Server
</h1>
<p style="color: rgba(255,255,255,0.9); margin: 10px 0 0 0; font-size: 1.2em;">
AI-Powered Analysis for Agent Evaluation
</p>
<p style="color: rgba(255,255,255,0.8); margin: 10px 0 0 0; font-size: 0.9em;">
Powered by Gemini | Gradio | TraceVerde | SMOLTRACE | HuggingFace | OpenTelemetry | MCP
</p>
</div>
""")
gr.Markdown("""
**Track 1 Submission**: Building MCP (Enterprise)
*AI-powered MCP server providing 11 tools, 3 resources, and 3 prompts for agent evaluation analysis.*
""")
# TraceMind Ecosystem (Accordion)
with gr.Accordion("π The TraceMind Ecosystem", open=False):
gr.Markdown("""
### Complete Agent Evaluation Platform
TraceMind MCP Server is part of a 4-project ecosystem for comprehensive agent evaluation:
#### π TraceVerde (genai_otel_instrument)
**Foundation: OpenTelemetry Instrumentation**
- Zero-code OTEL instrumentation for LLM frameworks
- Automatically captures every LLM call, tool usage, and agent step
- Works with LiteLLM, Transformers, LangChain, CrewAI, and more
- [GitHub](https://github.com/Mandark-droid/genai_otel_instrument) | [PyPI](https://pypi.org/project/genai-otel-instrument)
#### π SMOLTRACE
**Foundation: Evaluation Engine**
- Lightweight agent evaluation engine with built-in tracing
- Generates structured datasets (leaderboard, results, traces, metrics)
- Supports both API models (via LiteLLM) and local models (via Transformers)
- [GitHub](https://github.com/Mandark-droid/SMOLTRACE) | [PyPI](https://pypi.org/project/smoltrace/)
#### π€ TraceMind MCP Server (This Project)
**Track 1: Building MCP (Enterprise)**
- Provides AI-powered MCP tools for analyzing evaluation data
- Uses Google Gemini 2.5 Flash for intelligent insights
- 11 tools + 3 resources + 3 prompts
- [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
#### π§ TraceMind-AI
**Track 2: MCP in Action (Enterprise)**
- Interactive UI that consumes MCP tools from this server
- Leaderboard visualization with AI-powered insights
- Autonomous agent chat powered by MCP tools
- Multi-cloud job submission (HuggingFace Jobs + Modal)
- [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind)
### The Flow
```
TraceVerde β SMOLTRACE β Datasets
β
TraceMind MCP Server (AI Tools)
β
TraceMind-AI (UI + Agent)
```
**Built for**: MCP's 1st Birthday Hackathon (Nov 14-30, 2025)
""")
# About Section (Accordion)
with gr.Accordion("π About This MCP Server", open=False):
gr.Markdown("""
### What is This?
TraceMind MCP Server provides intelligent analysis tools for agent evaluation data through the Model Context Protocol (MCP).
**Powered by**: Google Gemini 2.5 Flash
**π¬ [Quick Demo (5 min)](https://www.loom.com/share/d4d0003f06fa4327b46ba5c081bdf835)** | **πΊ [Full Demo (20 min)](https://www.loom.com/share/de559bb0aef749559c79117b7f951250)**
### MCP Tools (11 Available)
- π **Analyze Leaderboard** - AI-powered insights from evaluation results
- π **Debug Trace** - Understand agent execution with AI debugging
- π° **Estimate Cost** - Predict evaluation costs with AI recommendations
- βοΈ **Compare Runs** - Compare evaluation runs with AI analysis
- π **Analyze Results** - Deep dive into test results
- π **Get Top Performers** - Quick leaderboard queries (optimized)
- π **Get Leaderboard Summary** - High-level statistics (optimized)
- π¦ **Get Dataset** - Load any HuggingFace dataset as JSON
- π§ͺ **Generate Synthetic Dataset** - Create domain-specific test datasets
- π **Generate Prompt Template** - Create customized smolagents prompts
- π€ **Push to Hub** - Upload datasets to HuggingFace Hub
### MCP Resources (3 Available)
- π `leaderboard://{repo}` - Raw leaderboard data
- π `trace://{trace_id}/{repo}` - Raw trace data
- π° `cost://model/{model_name}` - Model pricing data
### MCP Prompts (3 Templates)
- π `analysis_prompt` - Analysis request templates
- π `debug_prompt` - Debugging trace templates
- β‘ `optimization_prompt` - Optimization recommendation templates
""")
# MCP Connection Info (Accordion)
with gr.Accordion("π MCP Connection Details", open=False):
gr.Markdown("""
### Connect Your MCP Client
**HuggingFace Space**:
```
https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server
```
**MCP Endpoint (SSE - Recommended)**:
```
https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
```
**MCP Endpoint (Streamable HTTP)**:
```
https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/
```
### Supported Clients
- Claude Desktop
- Continue.dev
- Cline
- Any MCP-compatible client
""")
gr.Markdown("---")
with gr.Tabs():
# Tab 1: Analyze Leaderboard
with gr.Tab("π Analyze Leaderboard"):
gr.Markdown("### Get AI-powered insights from evaluation leaderboard")
with gr.Row():
with gr.Column():
lb_repo = gr.Textbox(
label="Leaderboard Repository",
value="kshitijthakkar/smoltrace-leaderboard",
placeholder="username/dataset-name"
)
lb_metric = gr.Dropdown(
label="Metric Focus",
choices=["overall", "accuracy", "cost", "latency", "co2"],
value="overall"
)
lb_time = gr.Dropdown(
label="Time Range",
choices=["last_week", "last_month", "all_time"],
value="last_week"
)
lb_top_n = gr.Slider(
label="Top N Models",
minimum=3,
maximum=10,
value=5,
step=1
)
lb_button = gr.Button("π Analyze", variant="primary")
with gr.Column():
lb_output = gr.Markdown(label="Analysis Results")
async def run_analyze_leaderboard(repo, metric, time_range, top_n):
"""
Analyze agent evaluation leaderboard and generate AI-powered insights.
This tool loads agent evaluation data from HuggingFace datasets and uses
Google Gemini 2.5 Flash to provide intelligent analysis of top performers,
trends, cost/performance trade-offs, and actionable recommendations.
Args:
repo (str): HuggingFace dataset repository containing leaderboard data
metric (str): Primary metric to focus analysis on - "overall", "accuracy", "cost", "latency", or "co2"
time_range (str): Time range for analysis - "last_week", "last_month", or "all_time"
top_n (int): Number of top models to highlight in analysis (3-10)
gemini_key (str): Gemini API key from session state
hf_token (str): HuggingFace token from session state
Returns:
str: Markdown-formatted analysis with top performers, trends, and recommendations
"""
try:
result = await analyze_leaderboard(
leaderboard_repo=repo,
metric_focus=metric,
time_range=time_range,
top_n=int(top_n)
)
return result
except Exception as e:
return f"β **Error**: {str(e)}"
lb_button.click(
fn=run_analyze_leaderboard,
inputs=[lb_repo, lb_metric, lb_time, lb_top_n],
outputs=[lb_output]
)
# Tab 2: Debug Trace
with gr.Tab("π Debug Trace"):
gr.Markdown("### Ask questions about specific agent execution traces")
with gr.Row():
with gr.Column():
trace_id = gr.Textbox(
label="Trace ID",
placeholder="trace_abc123",
info="Get this from the Run Detail screen"
)
traces_repo = gr.Textbox(
label="Traces Repository",
placeholder="username/agent-traces-model-timestamp",
info="Dataset containing trace data"
)
question = gr.Textbox(
label="Your Question",
placeholder="Why was tool X called twice?",
lines=3
)
trace_button = gr.Button("π Analyze", variant="primary")
with gr.Column():
trace_output = gr.Markdown(label="Debug Analysis")
async def run_debug_trace(trace_id_val, traces_repo_val, question_val):
"""
Debug a specific agent execution trace using OpenTelemetry data.
This tool analyzes OpenTelemetry trace data from agent executions and uses
Google Gemini 2.5 Flash to answer specific questions about the execution flow,
identify bottlenecks, explain agent behavior, and provide debugging insights.
Args:
trace_id_val (str): Unique identifier for the trace to analyze (e.g., "trace_abc123")
traces_repo_val (str): HuggingFace dataset repository containing trace data
question_val (str): Specific question about the trace (optional, defaults to general analysis)
gemini_key (str): Gemini API key from session state
hf_token (str): HuggingFace token from session state
Returns:
str: Markdown-formatted debug analysis with step-by-step breakdown and answers
"""
try:
if not trace_id_val or not traces_repo_val:
return "β **Error**: Please provide both Trace ID and Traces Repository"
result = await debug_trace(
trace_id=trace_id_val,
traces_repo=traces_repo_val,
question=question_val or "Analyze this trace")
return result
except Exception as e:
return f"β **Error**: {str(e)}"
trace_button.click(
fn=run_debug_trace,
inputs=[trace_id, traces_repo, question],
outputs=[trace_output]
)
# Tab 3: Estimate Cost
with gr.Tab("π° Estimate Cost"):
gr.Markdown("### Predict evaluation costs before running")
with gr.Row():
with gr.Column():
cost_model = gr.Textbox(
label="Model",
placeholder="openai/gpt-4 or meta-llama/Llama-3.1-8B",
info="Use litellm format (provider/model)"
)
cost_agent_type = gr.Dropdown(
label="Agent Type",
choices=["tool", "code", "both"],
value="both"
)
cost_num_tests = gr.Slider(
label="Number of Tests",
minimum=10,
maximum=1000,
value=100,
step=10
)
cost_hardware = gr.Dropdown(
label="Hardware Type",
choices=[
"auto",
# Modal
"cpu", "gpu_t4", "gpu_l4", "gpu_a10", "gpu_l40s",
"gpu_a100", "gpu_a100_80gb", "gpu_h100", "gpu_h200", "gpu_b200",
# HuggingFace Jobs
"cpu-basic", "cpu-upgrade",
"t4-small", "t4-medium",
"l4x1", "l4x4",
"a10g-small", "a10g-large", "a10g-largex2", "a10g-largex4",
"a100-large",
"v5e-1x1", "v5e-2x2", "v5e-2x4"
],
value="auto",
info="Supports Modal and HuggingFace Jobs hardware. 'auto' selects cpu-basic (API) or a10g-small (local)."
)
cost_button = gr.Button("π° Estimate", variant="primary")
with gr.Column():
cost_output = gr.Markdown(label="Cost Estimate")
async def run_estimate_cost(model, agent_type, num_tests, hardware):
"""
Estimate the cost, duration, and CO2 emissions of running agent evaluations.
This tool predicts costs before running evaluations by calculating LLM API costs,
HuggingFace Jobs compute costs, and CO2 emissions. Uses Google Gemini 2.5 Flash
to provide detailed cost breakdown and optimization recommendations.
Args:
model (str): Model identifier in litellm format (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
agent_type (str): Type of agent capabilities to test - "tool", "code", or "both"
num_tests (int): Number of test cases to run (10-1000)
hardware (str): Hardware type for HF Jobs - "auto", "cpu", "gpu_a10", or "gpu_h200"
gemini_key (str): Gemini API key from session state
Returns:
str: Markdown-formatted cost estimate with LLM costs, HF Jobs costs, duration, CO2, and tips
"""
try:
if not model:
return "β **Error**: Please provide a model name"
result = await estimate_cost(
model=model,
agent_type=agent_type,
num_tests=int(num_tests),
hardware=hardware
)
return result
except Exception as e:
return f"β **Error**: {str(e)}"
cost_button.click(
fn=run_estimate_cost,
inputs=[cost_model, cost_agent_type, cost_num_tests, cost_hardware],
outputs=[cost_output]
)
# Tab 4: Compare Runs
with gr.Tab("βοΈ Compare Runs"):
gr.Markdown("""
## Compare Two Evaluation Runs
Compare two evaluation runs with AI-powered analysis across multiple dimensions:
success rate, cost efficiency, speed, environmental impact, and more.
""")
with gr.Row():
with gr.Column():
compare_run_id_1 = gr.Textbox(
label="First Run ID",
placeholder="e.g., run_abc123",
info="Enter the run_id from the leaderboard"
)
with gr.Column():
compare_run_id_2 = gr.Textbox(
label="Second Run ID",
placeholder="e.g., run_xyz789",
info="Enter the run_id to compare against"
)
with gr.Row():
compare_focus = gr.Dropdown(
choices=["comprehensive", "cost", "performance", "eco_friendly"],
value="comprehensive",
label="Comparison Focus",
info="Choose what aspect to focus the comparison on"
)
compare_repo = gr.Textbox(
label="Leaderboard Repository",
value="kshitijthakkar/smoltrace-leaderboard",
info="HuggingFace dataset containing leaderboard data"
)
compare_button = gr.Button("π Compare Runs", variant="primary")
compare_output = gr.Markdown()
async def run_compare_runs(run_id_1, run_id_2, focus, repo):
"""
Compare two evaluation runs and generate AI-powered comparative analysis.
This tool fetches data for two evaluation runs from the leaderboard and uses
Google Gemini 2.5 Flash to provide intelligent comparison across multiple dimensions:
success rate, cost efficiency, speed, environmental impact, and use case recommendations.
Args:
run_id_1 (str): First run ID from the leaderboard to compare
run_id_2 (str): Second run ID from the leaderboard to compare against
focus (str): Focus area - "comprehensive", "cost", "performance", or "eco_friendly"
repo (str): HuggingFace dataset repository containing leaderboard data
gemini_key (str): Gemini API key from session state
hf_token (str): HuggingFace token from session state
Returns:
str: Markdown-formatted comparative analysis with winners, trade-offs, and recommendations
"""
try:
result = await compare_runs(
run_id_1=run_id_1,
run_id_2=run_id_2,
leaderboard_repo=repo,
comparison_focus=focus
)
return result
except Exception as e:
return f"β **Error**: {str(e)}"
compare_button.click(
fn=run_compare_runs,
inputs=[compare_run_id_1, compare_run_id_2, compare_focus, compare_repo],
outputs=[compare_output]
)
# Tab 5: Analyze Results
with gr.Tab("π Analyze Results"):
gr.Markdown("""
## Analyze Test Results & Get Optimization Recommendations
Deep dive into individual test case results to identify failure patterns,
performance bottlenecks, and cost optimization opportunities.
""")
with gr.Row():
results_repo_input = gr.Textbox(
label="Results Repository",
placeholder="e.g., username/smoltrace-results-gpt4-20251114",
info="HuggingFace dataset containing results data"
)
results_focus = gr.Dropdown(
choices=["comprehensive", "failures", "performance", "cost"],
value="comprehensive",
label="Analysis Focus",
info="What aspect to focus the analysis on"
)
with gr.Row():
results_max_rows = gr.Slider(
minimum=10,
maximum=500,
value=100,
step=10,
label="Max Test Cases to Analyze",
info="Limit number of test cases for analysis"
)
results_button = gr.Button("π Analyze Results", variant="primary")
results_output = gr.Markdown()
async def run_analyze_results(repo, focus, max_rows):
"""
Analyze detailed test results and provide optimization recommendations.
Args:
repo (str): HuggingFace dataset repository containing results
focus (str): Analysis focus area
max_rows (int): Maximum test cases to analyze
gemini_key (str): Gemini API key from session state
hf_token (str): HuggingFace token from session state
Returns:
str: Markdown-formatted analysis with recommendations
"""
try:
if not repo:
return "β **Error**: Please provide a results repository"
result = await analyze_results(
results_repo=repo,
analysis_focus=focus,
max_rows=int(max_rows)
)
return result
except Exception as e:
return f"β **Error**: {str(e)}"
results_button.click(
fn=run_analyze_results,
inputs=[results_repo_input, results_focus, results_max_rows],
outputs=[results_output]
)
# Tab 6: Get Top Performers
with gr.Tab("π Get Top Performers"):
gr.Markdown("""
## Get Top Performing Models (Token-Optimized)
Quickly retrieve top N models from the leaderboard without loading all runs.
**90% token reduction** compared to loading the full leaderboard dataset.
""")
with gr.Row():
with gr.Column():
top_perf_repo = gr.Textbox(
label="Leaderboard Repository",
value="kshitijthakkar/smoltrace-leaderboard",
placeholder="username/dataset-name"
)
top_perf_metric = gr.Dropdown(
label="Ranking Metric",
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "co2_emissions_g"],
value="success_rate",
info="Metric to rank models by"
)
top_perf_n = gr.Slider(
label="Top N Models",
minimum=1,
maximum=20,
value=5,
step=1,
info="Number of top models to return"
)
top_perf_button = gr.Button("π Get Top Performers", variant="primary")
with gr.Column():
top_perf_output = gr.JSON(label="Top Performers (JSON)")
async def run_get_top_performers(repo, metric, top_n):
"""Get top performing models from leaderboard."""
try:
import json
result = await get_top_performers(
leaderboard_repo=repo,
metric=metric,
top_n=int(top_n)
)
return json.loads(result)
except Exception as e:
return {"error": str(e)}
top_perf_button.click(
fn=run_get_top_performers,
inputs=[top_perf_repo, top_perf_metric, top_perf_n],
outputs=[top_perf_output]
)
# Tab 7: Get Leaderboard Summary
with gr.Tab("π Get Leaderboard Summary"):
gr.Markdown("""
## Get Leaderboard Overview Statistics (Token-Optimized)
Get high-level summary statistics without loading individual runs.
**99% token reduction** compared to loading the full leaderboard dataset.
""")
with gr.Row():
with gr.Column():
summary_repo = gr.Textbox(
label="Leaderboard Repository",
value="kshitijthakkar/smoltrace-leaderboard",
placeholder="username/dataset-name"
)
summary_button = gr.Button("π Get Summary", variant="primary")
with gr.Column():
summary_output = gr.JSON(label="Leaderboard Summary (JSON)")
async def run_get_leaderboard_summary(repo):
"""Get leaderboard summary statistics."""
try:
import json
result = await get_leaderboard_summary(leaderboard_repo=repo)
return json.loads(result)
except Exception as e:
return {"error": str(e)}
summary_button.click(
fn=run_get_leaderboard_summary,
inputs=[summary_repo],
outputs=[summary_output]
)
# Tab 8: Get Dataset
with gr.Tab("π¦ Get Dataset"):
gr.Markdown("""
## Load SMOLTRACE Datasets as JSON
This tool loads datasets with the **smoltrace-** prefix and returns the raw data as JSON.
Use this to access leaderboard data, results datasets, traces datasets, or metrics datasets.
**Restriction**: Only datasets with "smoltrace-" in the name are allowed for security.
**Tip**: If you don't know which dataset to load, first load the leaderboard to see
dataset references in the `results_dataset`, `traces_dataset`, `metrics_dataset` fields.
""")
with gr.Row():
dataset_repo_input = gr.Textbox(
label="Dataset Repository (must contain 'smoltrace-')",
placeholder="e.g., kshitijthakkar/smoltrace-leaderboard",
value="kshitijthakkar/smoltrace-leaderboard",
info="HuggingFace dataset repository path with smoltrace- prefix"
)
dataset_max_rows = gr.Slider(
minimum=1,
maximum=200,
value=50,
step=1,
label="Max Rows",
info="Limit rows to avoid token limits"
)
dataset_button = gr.Button("π₯ Load Dataset", variant="primary")
dataset_output = gr.JSON(label="Dataset JSON Output")
async def run_get_dataset(repo, max_rows):
"""
Load SMOLTRACE datasets from HuggingFace and return as JSON.
This tool loads datasets with the "smoltrace-" prefix and returns the raw data
as JSON. Use this to access leaderboard data, results datasets, traces datasets,
or metrics datasets. Only datasets with "smoltrace-" in the name are allowed.
Args:
repo (str): HuggingFace dataset repository path with "smoltrace-" prefix (e.g., "kshitijthakkar/smoltrace-leaderboard")
max_rows (int): Maximum number of rows to return (1-200, default 50)
hf_token (str): HuggingFace token from session state
Returns:
dict: JSON object with dataset data, metadata, total rows, and column names
"""
try:
import json
result = await get_dataset(
dataset_repo=repo,
max_rows=int(max_rows)
)
# Parse JSON string back to dict for JSON component
return json.loads(result)
except Exception as e:
return {"error": str(e)}
dataset_button.click(
fn=run_get_dataset,
inputs=[dataset_repo_input, dataset_max_rows],
outputs=[dataset_output]
)
# Tab 6: Generate Synthetic Dataset
with gr.Tab("π§ͺ Generate Synthetic Dataset"):
gr.Markdown("""
## Create Domain-Specific Test Datasets for SMOLTRACE
Use AI to generate synthetic evaluation tasks tailored to your domain and tools.
Perfect for creating custom benchmarks when standard datasets don't fit your use case.
**π― Enterprise Use Case**: Quickly create evaluation datasets for:
- Custom tools and APIs your agents use
- Industry-specific domains (finance, healthcare, legal, etc.)
- Internal workflows and processes
- Specialized agent capabilities
**Output Format**: SMOLTRACE-compatible task dataset ready for HuggingFace upload
""")
with gr.Row():
with gr.Column():
synth_domain = gr.Textbox(
label="Domain",
placeholder="e.g., finance, healthcare, travel, ecommerce, customer_support",
value="travel",
info="The domain/industry for your synthetic tasks"
)
synth_tools = gr.Textbox(
label="Tool Names (comma-separated)",
placeholder="e.g., get_weather,search_flights,book_hotel,currency_converter",
value="get_weather,search_flights,book_hotel",
info="Names of tools your agent can use",
lines=2
)
synth_num_tasks = gr.Slider(
label="Number of Tasks",
minimum=5,
maximum=100,
value=10,
step=1,
info="Total number of synthetic tasks to generate"
)
synth_difficulty = gr.Dropdown(
label="Difficulty Distribution",
choices=["balanced", "easy_only", "medium_only", "hard_only", "progressive"],
value="balanced",
info="How to distribute task difficulty"
)
synth_agent_type = gr.Dropdown(
label="Agent Type",
choices=["both", "tool", "code"],
value="both",
info="Target agent type for the tasks"
)
synth_button = gr.Button("π§ͺ Generate Synthetic Dataset", variant="primary", size="lg")
with gr.Column():
synth_output = gr.JSON(label="Generated Dataset (JSON)")
gr.Markdown("""
### π Next Steps
After generation:
1. **Copy the `tasks` array** from the JSON output above
2. **Use the "Push to Hub" tab** to upload directly to HuggingFace
3. **Or upload manually** following the instructions in the output
**π‘ Tip**: The generated dataset includes usage instructions and follows SMOLTRACE naming convention!
""")
async def run_generate_synthetic(domain, tools, num_tasks, difficulty, agent_type):
"""Generate synthetic dataset with async support."""
try:
import json
result = await generate_synthetic_dataset(
domain=domain,
tool_names=tools,
num_tasks=int(num_tasks),
difficulty_distribution=difficulty,
agent_type=agent_type
)
return json.loads(result)
except Exception as e:
return {"error": str(e)}
synth_button.click(
fn=run_generate_synthetic,
inputs=[synth_domain, synth_tools, synth_num_tasks, synth_difficulty, synth_agent_type],
outputs=[synth_output]
)
# Tab: Generate Prompt Template
with gr.Tab("π Generate Prompt Template"):
gr.Markdown("""
## Create Customized Agent Prompt Template
Generate a domain-specific prompt template based on smolagents templates.
This template can be used with your synthetic dataset to run SMOLTRACE evaluations.
**π― Use Case**: After generating a synthetic dataset, create a matching prompt template
that agents can use during evaluation. This ensures your evaluation setup is complete.
**Output**: Customized YAML prompt template ready for use with smolagents
""")
with gr.Row():
with gr.Column():
prompt_domain = gr.Textbox(
label="Domain",
placeholder="e.g., finance, healthcare, customer_support",
value="travel",
info="The domain/industry for the prompt template"
)
prompt_tools = gr.Textbox(
label="Tool Names (comma-separated)",
placeholder="e.g., get_weather,search_flights,book_hotel",
value="get_weather,search_flights,book_hotel",
info="Names of tools the agent will use",
lines=2
)
prompt_agent_type = gr.Dropdown(
label="Agent Type",
choices=["tool", "code"],
value="tool",
info="ToolCallingAgent (tool) or CodeAgent (code)"
)
prompt_button = gr.Button("π Generate Prompt Template", variant="primary", size="lg")
with gr.Column():
prompt_output = gr.JSON(label="Generated Prompt Template (JSON)")
gr.Markdown("""
### π Next Steps
After generation:
1. **Copy the `prompt_template`** from the JSON output above
2. **Save it as a YAML file** (e.g., `{domain}_agent.yaml`)
3. **Include it in your HuggingFace dataset** card or repository
4. **Use it with SMOLTRACE** when running evaluations
**π‘ Tip**: This template is AI-customized for your domain and tools!
""")
async def run_generate_prompt_template(domain, tools, agent_type):
"""Generate prompt template with async support."""
try:
import json
result = await generate_prompt_template(
domain=domain,
tool_names=tools,
agent_type=agent_type
)
return json.loads(result)
except Exception as e:
return {"error": str(e)}
prompt_button.click(
fn=run_generate_prompt_template,
inputs=[prompt_domain, prompt_tools, prompt_agent_type],
outputs=[prompt_output]
)
# Tab 7: Push Dataset to Hub
with gr.Tab("π€ Push to Hub"):
gr.Markdown("""
## Upload Generated Dataset to HuggingFace Hub
Upload your synthetic dataset (from the previous tab or any SMOLTRACE-format dataset)
directly to HuggingFace Hub.
**Requirements**:
- HuggingFace account
- API token with write permissions ([Get one here](https://huggingface.co/settings/tokens))
- Dataset in SMOLTRACE format
**Naming Convention**: `{username}/smoltrace-{domain}-tasks` or `{username}/smoltrace-{domain}-tasks-v1`
""")
with gr.Row():
with gr.Column():
push_dataset_json = gr.Textbox(
label="Dataset JSON (tasks array)",
placeholder='[{"id": "task_001", "prompt": "...", "expected_tool": "...", ...}]',
info="Paste the 'tasks' array from generate_synthetic_dataset output",
lines=10
)
push_repo_name = gr.Textbox(
label="Repository Name",
placeholder="your-username/smoltrace-finance-tasks",
info="HuggingFace repo name (follow SMOLTRACE convention)",
value=""
)
push_hf_token = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_...",
info="API token with write permissions",
type="password"
)
push_private = gr.Checkbox(
label="Make dataset private",
value=False,
info="Private datasets are only visible to you"
)
# Hidden field for prompt template (used by API calls from TraceMind-AI)
push_prompt_template = gr.Textbox(
label="Prompt Template (Optional)",
placeholder="Leave empty if not using prompt template",
info="YAML prompt template to include in dataset card",
lines=5,
visible=True,
value=""
)
push_button = gr.Button("π€ Push to HuggingFace Hub", variant="primary", size="lg")
with gr.Column():
push_output = gr.JSON(label="Upload Result")
gr.Markdown("""
### π After Upload
Once uploaded, you can:
1. **View your dataset** at the URL provided in the output
2. **Use in SMOLTRACE** evaluations with the command shown
3. **Share with your team** (if public) or manage access (if private)
**Example**: After uploading to `company/smoltrace-finance-tasks`:
```bash
smoltrace-eval --model openai/gpt-4 --dataset-name company/smoltrace-finance-tasks
```
""")
async def run_push_dataset(dataset_json, repo_name, hf_token, private, prompt_template=""):
"""Push dataset to hub with async support and optional prompt template."""
try:
import json
result = await push_dataset_to_hub(
dataset_json=dataset_json,
repo_name=repo_name,
hf_token=hf_token,
private=private,
prompt_template=prompt_template if prompt_template else None
)
return json.loads(result)
except Exception as e:
return {"error": str(e)}
push_button.click(
fn=run_push_dataset,
inputs=[push_dataset_json, push_repo_name, push_hf_token, push_private, push_prompt_template],
outputs=[push_output]
)
# Tab 9: MCP Resources & Prompts
with gr.Tab("π MCP Resources & Prompts"):
gr.Markdown("""
## MCP Resources & Prompts
Beyond the 7 MCP Tools, this server also exposes **MCP Resources** and **MCP Prompts**
that MCP clients can use directly.
### MCP Resources (Read-Only Data Access)
Resources provide direct access to data without AI processing:
#### 1. `leaderboard://{repo}`
Get raw leaderboard data in JSON format.
**Example**: `leaderboard://kshitijthakkar/smoltrace-leaderboard`
**Returns**: JSON with all evaluation runs
#### 2. `trace://{trace_id}/{repo}`
Get raw trace data for a specific trace.
**Example**: `trace://trace_abc123/kshitijthakkar/smoltrace-traces-gpt4`
**Returns**: JSON with OpenTelemetry spans
#### 3. `cost://model/{model_name}`
Get cost information for a specific model.
**Example**: `cost://model/openai/gpt-4`
**Returns**: JSON with pricing data
---
### MCP Prompts (Reusable Templates)
Prompts provide standardized templates for common workflows:
#### 1. `analysis_prompt(analysis_type, focus_area, detail_level)`
Generate analysis prompt templates.
**Parameters**:
- `analysis_type`: "leaderboard", "trace", "cost"
- `focus_area`: "overall", "performance", "cost", "efficiency"
- `detail_level`: "summary", "detailed", "comprehensive"
#### 2. `debug_prompt(debug_type, context)`
Generate debugging prompt templates.
**Parameters**:
- `debug_type`: "error", "performance", "behavior", "optimization"
- `context`: "agent_execution", "tool_calling", "llm_reasoning"
#### 3. `optimization_prompt(optimization_goal, constraints)`
Generate optimization prompt templates.
**Parameters**:
- `optimization_goal`: "cost", "speed", "quality", "efficiency"
- `constraints`: "maintain_quality", "maintain_speed", "no_constraints"
---
### Testing MCP Resources
Test resources directly from this UI:
""")
with gr.Row():
with gr.Column():
gr.Markdown("#### Test Leaderboard Resource")
resource_lb_repo = gr.Textbox(
label="Repository",
value="kshitijthakkar/smoltrace-leaderboard"
)
resource_lb_button = gr.Button("Fetch Leaderboard Data", variant="primary")
resource_lb_output = gr.JSON(label="Resource Output")
def test_leaderboard_resource(repo):
"""
Test the leaderboard MCP resource by fetching raw leaderboard data.
Args:
repo (str): HuggingFace dataset repository name
Returns:
dict: JSON object with leaderboard data
"""
from mcp_tools import get_leaderboard_data
import json
result = get_leaderboard_data(repo)
return json.loads(result)
resource_lb_button.click(
fn=test_leaderboard_resource,
inputs=[resource_lb_repo],
outputs=[resource_lb_output]
)
with gr.Column():
gr.Markdown("#### Test Cost Resource")
resource_cost_model = gr.Textbox(
label="Model Name",
value="openai/gpt-4"
)
resource_cost_button = gr.Button("Fetch Cost Data", variant="primary")
resource_cost_output = gr.JSON(label="Resource Output")
def test_cost_resource(model):
"""
Test the cost MCP resource by fetching model pricing data.
Args:
model (str): Model identifier (e.g., "openai/gpt-4")
Returns:
dict: JSON object with cost and pricing information
"""
from mcp_tools import get_cost_data
import json
result = get_cost_data(model)
return json.loads(result)
resource_cost_button.click(
fn=test_cost_resource,
inputs=[resource_cost_model],
outputs=[resource_cost_output]
)
gr.Markdown("---")
gr.Markdown("### Testing MCP Prompts")
gr.Markdown("Generate prompt templates for different scenarios:")
with gr.Row():
with gr.Column():
prompt_type = gr.Radio(
label="Prompt Type",
choices=["analysis_prompt", "debug_prompt", "optimization_prompt"],
value="analysis_prompt"
)
# Analysis prompt params
with gr.Group(visible=True) as analysis_group:
analysis_type = gr.Dropdown(
label="Analysis Type",
choices=["leaderboard", "trace", "cost"],
value="leaderboard"
)
focus_area = gr.Dropdown(
label="Focus Area",
choices=["overall", "performance", "cost", "efficiency"],
value="overall"
)
detail_level = gr.Dropdown(
label="Detail Level",
choices=["summary", "detailed", "comprehensive"],
value="detailed"
)
# Debug prompt params
with gr.Group(visible=False) as debug_group:
debug_type = gr.Dropdown(
label="Debug Type",
choices=["error", "performance", "behavior", "optimization"],
value="error"
)
debug_context = gr.Dropdown(
label="Context",
choices=["agent_execution", "tool_calling", "llm_reasoning"],
value="agent_execution"
)
# Optimization prompt params
with gr.Group(visible=False) as optimization_group:
optimization_goal = gr.Dropdown(
label="Optimization Goal",
choices=["cost", "speed", "quality", "efficiency"],
value="cost"
)
constraints = gr.Dropdown(
label="Constraints",
choices=["maintain_quality", "maintain_speed", "no_constraints"],
value="maintain_quality"
)
prompt_button = gr.Button("Generate Prompt", variant="primary")
with gr.Column():
prompt_output = gr.Textbox(
label="Generated Prompt Template",
lines=10,
max_lines=20
)
def toggle_prompt_groups(prompt_type):
"""
Toggle visibility of prompt parameter groups based on selected prompt type.
Args:
prompt_type (str): The type of prompt selected
Returns:
dict: Gradio update objects for group visibility
"""
return {
analysis_group: gr.update(visible=(prompt_type == "analysis_prompt")),
debug_group: gr.update(visible=(prompt_type == "debug_prompt")),
optimization_group: gr.update(visible=(prompt_type == "optimization_prompt"))
}
prompt_type.change(
fn=toggle_prompt_groups,
inputs=[prompt_type],
outputs=[analysis_group, debug_group, optimization_group]
)
def generate_prompt(
prompt_type,
analysis_type_val, focus_area_val, detail_level_val,
debug_type_val, debug_context_val,
optimization_goal_val, constraints_val
):
"""
Generate a prompt template based on the selected type and parameters.
Args:
prompt_type (str): Type of prompt to generate
analysis_type_val (str): Analysis type parameter
focus_area_val (str): Focus area parameter
detail_level_val (str): Detail level parameter
debug_type_val (str): Debug type parameter
debug_context_val (str): Debug context parameter
optimization_goal_val (str): Optimization goal parameter
constraints_val (str): Constraints parameter
Returns:
str: Generated prompt template text
"""
from mcp_tools import analysis_prompt, debug_prompt, optimization_prompt
if prompt_type == "analysis_prompt":
return analysis_prompt(analysis_type_val, focus_area_val, detail_level_val)
elif prompt_type == "debug_prompt":
return debug_prompt(debug_type_val, debug_context_val)
elif prompt_type == "optimization_prompt":
return optimization_prompt(optimization_goal_val, constraints_val)
prompt_button.click(
fn=generate_prompt,
inputs=[
prompt_type,
analysis_type, focus_area, detail_level,
debug_type, debug_context,
optimization_goal, constraints
],
outputs=[prompt_output]
)
# Tab 10: API Documentation
with gr.Tab("π API Documentation"):
gr.Markdown("""
## MCP Tool Specifications
Click on each tool to expand its documentation.
<details>
<summary><h3>π 1. analyze_leaderboard</h3></summary>
**Description**: Generate AI-powered insights from evaluation leaderboard data
**Parameters**:
- `leaderboard_repo` (str): HuggingFace dataset repository (default: "kshitijthakkar/smoltrace-leaderboard")
- `metric_focus` (str): "overall", "accuracy", "cost", "latency", or "co2" (default: "overall")
- `time_range` (str): "last_week", "last_month", or "all_time" (default: "last_week")
- `top_n` (int): Number of top models to highlight (default: 5, min: 3, max: 10)
**Returns**: Markdown-formatted analysis with top performers, trends, and recommendations
</details>
<details>
<summary><h3>π 2. debug_trace</h3></summary>
**Description**: Answer questions about specific agent execution traces
**Parameters**:
- `trace_id` (str, required): Unique identifier for the trace
- `traces_repo` (str, required): HuggingFace dataset repository with trace data
- `question` (str): Specific question about the trace (default: "Analyze this trace and explain what happened")
**Returns**: Markdown-formatted debug analysis with step-by-step breakdown
</details>
<details>
<summary><h3>π° 3. estimate_cost</h3></summary>
**Description**: Predict evaluation costs before running
**Parameters**:
- `model` (str, required): Model identifier in litellm format (e.g., "openai/gpt-4")
- `agent_type` (str, required): "tool", "code", or "both"
- `num_tests` (int): Number of test cases (default: 100, min: 10, max: 1000)
- `hardware` (str): "auto", "cpu", "gpu_a10", or "gpu_h200" (default: "auto")
**Returns**: Markdown-formatted cost estimate with breakdown and optimization tips
</details>
<details>
<summary><h3>βοΈ 4. compare_runs</h3></summary>
**Description**: Compare two evaluation runs with AI-powered analysis
**Parameters**:
- `run_id_1` (str, required): First run ID from the leaderboard
- `run_id_2` (str, required): Second run ID to compare against
- `leaderboard_repo` (str): HuggingFace dataset repository (default: "kshitijthakkar/smoltrace-leaderboard")
- `comparison_focus` (str): "comprehensive", "cost", "performance", or "eco_friendly" (default: "comprehensive")
**Returns**: Markdown-formatted comparative analysis with winner for each category, trade-offs, and recommendations
**Focus Options**:
- `comprehensive`: Complete comparison across all dimensions (success rate, cost, speed, CO2, GPU)
- `cost`: Detailed cost efficiency analysis and ROI
- `performance`: Speed and accuracy trade-off analysis
- `eco_friendly`: Environmental impact and carbon footprint comparison
</details>
<details>
<summary><h3>π 5. get_top_performers</h3></summary>
**Description**: Get top performing models from leaderboard - optimized for quick queries
**β‘ Performance**: This tool is **optimized** to avoid token bloat by returning only essential data for top performers instead of the full leaderboard (51 runs).
**When to use**: Use this instead of `get_dataset()` when you need to answer questions like:
- "Which model is leading?"
- "Show me the top 5 models"
- "What's the best model for cost?"
**Parameters**:
- `leaderboard_repo` (str): HuggingFace dataset repository (default: "kshitijthakkar/smoltrace-leaderboard")
- `metric` (str): Metric to rank by (default: "success_rate")
- Options: "success_rate", "total_cost_usd", "avg_duration_ms", "co2_emissions_g"
- `top_n` (int): Number of top models to return (default: 5, range: 1-20)
**Returns**: JSON object with top performers - **ready to use, no parsing needed**
**Benefits vs get_dataset()**:
- β
Returns only 5-20 runs instead of all 51 runs (90% token reduction)
- β
Properly formatted JSON (no string conversion issues)
- β
Pre-sorted by your chosen metric
- β
Includes only essential columns (10 fields vs 20+ fields)
**Example Response**:
```json
{
"metric_ranked_by": "success_rate",
"ranking_order": "descending (higher is better)",
"total_runs_in_leaderboard": 51,
"top_n": 5,
"top_performers": [
{
"run_id": "run_123",
"model": "openai/gpt-4",
"success_rate": 95.8,
"total_cost_usd": 0.05,
...
}
]
}
```
</details>
<details>
<summary><h3>π 6. get_leaderboard_summary</h3></summary>
**Description**: Get high-level leaderboard summary statistics - optimized for overview queries
**β‘ Performance**: This tool is **optimized** to return only summary statistics (no individual runs), avoiding the full dataset that causes token bloat.
**When to use**: Use this instead of `get_dataset()` when you need to answer questions like:
- "How many runs are in the leaderboard?"
- "What's the average success rate?"
- "Give me an overview of the leaderboard"
**Parameters**:
- `leaderboard_repo` (str): HuggingFace dataset repository (default: "kshitijthakkar/smoltrace-leaderboard")
**Returns**: JSON object with summary statistics - **ready to use, no parsing needed**
**Benefits vs get_dataset()**:
- β
Returns aggregated stats instead of raw data (99% token reduction)
- β
Properly formatted JSON (no string conversion issues)
- β
Includes breakdowns by agent_type and provider
- β
Shows top 3 models by success rate
- β
Calculates averages, totals, and distributions
**Example Response**:
```json
{
"leaderboard_repo": "kshitijthakkar/smoltrace-leaderboard",
"summary": {
"total_runs": 51,
"unique_models": 15,
"overall_stats": {
"avg_success_rate": 89.5,
"best_success_rate": 95.8,
"avg_cost_per_run_usd": 0.023
},
"breakdown_by_agent_type": {...},
"top_3_models_by_success_rate": [...]
}
}
```
</details>
<details>
<summary><h3>π¦ 7. get_dataset</h3></summary>
**Description**: Load SMOLTRACE datasets from HuggingFace and return as JSON
**β οΈ Note**: For leaderboard queries, prefer using `get_top_performers()` or `get_leaderboard_summary()` instead - they're optimized to avoid token bloat!
**Parameters**:
- `dataset_repo` (str, required): HuggingFace dataset repository path with "smoltrace-" prefix (e.g., "kshitijthakkar/smoltrace-leaderboard")
- `max_rows` (int): Maximum number of rows to return (default: 50, range: 1-200)
**Returns**: JSON object with dataset data and metadata
**Restriction**: Only datasets with "smoltrace-" in the repository name are allowed for security.
**Use Cases**:
- Load smoltrace-results-* datasets to see individual test case details
- Load smoltrace-traces-* datasets to access OpenTelemetry trace data
- Load smoltrace-metrics-* datasets to get GPU metrics and performance data
- For leaderboard: Use `get_top_performers()` or `get_leaderboard_summary()` instead!
**Workflow**:
1. Use `get_leaderboard_summary()` for overview questions
2. Use `get_top_performers()` for "top N" queries
3. Use `get_dataset()` only for non-leaderboard datasets or when you need specific run IDs
</details>
<details>
<summary><h3>π§ͺ 8. generate_synthetic_dataset</h3></summary>
**Description**: Generate domain-specific synthetic test datasets for SMOLTRACE evaluations using AI
**Parameters**:
- `domain` (str, required): The domain for synthetic tasks (e.g., "finance", "healthcare", "travel", "ecommerce", "customer_support")
- `tool_names` (str, required): Comma-separated list of tool names to include (e.g., "get_weather,search_web,calculator")
- `num_tasks` (int): Number of synthetic tasks to generate (default: 10, range: 5-100)
- `difficulty_distribution` (str): How to distribute task difficulty (default: "balanced")
- Options: "balanced" (40% easy, 40% medium, 20% hard), "easy_only", "medium_only", "hard_only", "progressive" (50% easy, 30% medium, 20% hard)
- `agent_type` (str): Target agent type for tasks (default: "both")
- Options: "tool" (ToolCallingAgent), "code" (CodeAgent), "both" (50/50 mix)
**Returns**: JSON object with dataset_info (including batch statistics), tasks array (SMOLTRACE format), and usage_instructions
**π Batched Generation**:
- Requests >20 tasks are automatically split into parallel batches
- Each batch generates up to 20 tasks concurrently
- Example: 100 tasks = 5 parallel batches (20 tasks each)
- Timeout: 120 seconds per batch
- Token limit: 8,192 per batch (40,960 total for 100 tasks)
**Performance**:
- 5-20 tasks: Single batch, ~30-60 seconds
- 21-100 tasks: Multiple parallel batches, ~60-120 seconds per batch
**SMOLTRACE Task Format**:
Each task includes: `id`, `prompt`, `expected_tool`, `expected_tool_calls` (optional), `difficulty`, `agent_type`, `expected_keywords` (optional)
**Use Cases**:
- Create custom evaluation datasets for industry-specific domains
- Test agents with proprietary tools and APIs
- Generate benchmarks for internal workflows
- Rapid prototyping of evaluation scenarios
</details>
<details>
<summary><h3>π€ 9. push_dataset_to_hub</h3></summary>
**Description**: Push a generated synthetic dataset to HuggingFace Hub
**Parameters**:
- `dataset_json` (str, required): JSON string containing the tasks array from generate_synthetic_dataset
- `repo_name` (str, required): HuggingFace repository name following SMOLTRACE naming convention
- Format: `{username}/smoltrace-{domain}-tasks` or `{username}/smoltrace-{domain}-tasks-v{version}`
- Examples: `kshitij/smoltrace-finance-tasks`, `kshitij/smoltrace-healthcare-tasks-v2`
- `hf_token` (str, optional): HuggingFace API token with write permissions (uses saved token from Settings if not provided)
- `private` (bool): Whether to create a private repository (default: False)
**Returns**: JSON object with upload status, repository URL, and dataset information
**Validation**:
- β
Checks SMOLTRACE naming convention (`smoltrace-` prefix required)
- β
Validates all tasks have required fields (id, prompt, expected_tool, difficulty, agent_type)
- β
Verifies HuggingFace token has write permissions
- β
Handles repository creation if it doesn't exist
**Workflow**:
1. Generate synthetic dataset using `generate_synthetic_dataset`
2. Extract the `tasks` array from the response JSON
3. Convert tasks array to JSON string
4. Call `push_dataset_to_hub` with the JSON string and desired repo name
5. Share the dataset URL with your team or use in SMOLTRACE evaluations
**Example Integration**:
```python
# Step 1: Generate dataset
result = generate_synthetic_dataset(
domain="finance",
tool_names="get_stock_price,calculate_roi,fetch_company_info",
num_tasks=50
)
# Step 2: Extract tasks
import json
data = json.loads(result)
tasks_json = json.dumps(data["tasks"])
# Step 3: Push to HuggingFace
push_result = push_dataset_to_hub(
dataset_json=tasks_json,
repo_name="your-username/smoltrace-finance-tasks",
hf_token="hf_xxx",
private=False
)
```
</details>
<details>
<summary><h3>π 10. analyze_results</h3></summary>
**Description**: Analyzes detailed test results and provides optimization recommendations
**Parameters**:
- `results_repo` (str, required): HuggingFace dataset containing results
- Format: `username/smoltrace-results-model-timestamp`
- Must contain "smoltrace-results-" prefix
- `analysis_focus` (str): Focus area for analysis (default: "comprehensive")
- Options: "failures", "performance", "cost", "comprehensive"
- `max_rows` (int): Maximum test cases to analyze (default: 100, range: 10-500)
**Returns**: JSON object with AI analysis including:
- Overall statistics (success rate, average duration, total cost)
- Failure patterns and root causes
- Performance bottlenecks in specific test cases
- Cost optimization opportunities
- Tool usage patterns
- Task-specific insights (which types work well vs poorly)
- Actionable optimization recommendations
**Use Case**:
After running an evaluation, analyze the detailed test results to understand why certain tests are failing and get specific recommendations for improving success rate.
**Example**:
```python
result = analyze_results(
results_repo="kshitij/smoltrace-results-gpt4-20251120",
analysis_focus="failures",
max_rows=100
)
```
</details>
<details>
<summary><h3>π 11. generate_prompt_template</h3></summary>
**Description**: Generate customized smolagents prompt template for a specific domain and tool set
**Parameters**:
- `domain` (str, required): Domain for the prompt template
- Examples: "finance", "healthcare", "customer_support", "e-commerce"
- `tool_names` (str, required): Comma-separated list of tool names
- Format: "tool1,tool2,tool3"
- Example: "get_stock_price,calculate_roi,fetch_company_info"
- `agent_type` (str): Agent type (default: "tool")
- Options: "tool" (ToolCallingAgent), "code" (CodeAgent)
**Returns**: JSON object containing:
- Customized YAML prompt template
- Metadata (domain, tools, agent_type, timestamp)
- Usage instructions
**Use Case**:
When you generate synthetic datasets with `generate_synthetic_dataset`, use this tool to create a matching prompt template that agents can use during evaluation. This ensures your evaluation setup is complete and ready to run.
**Integration**:
The generated prompt template can be included in your HuggingFace dataset card, making it easy for anyone to run evaluations with your dataset.
**Example**:
```python
result = generate_prompt_template(
domain="customer_support",
tool_names="search_knowledge_base,create_ticket,send_email,escalate_to_human",
agent_type="tool"
)
```
</details>
---
## MCP Integration
This Gradio app is MCP-enabled. When deployed to HuggingFace Spaces, it can be accessed via MCP clients.
**HuggingFace Space**: `https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server`
**π¬ Quick Demo (5 min)**: [Watch on Loom](https://www.loom.com/share/d4d0003f06fa4327b46ba5c081bdf835)
**πΊ Full Demo (20 min)**: [Watch on Loom](https://www.loom.com/share/de559bb0aef749559c79117b7f951250)
**MCP Endpoint (SSE - Recommended)**: `https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse`
**MCP Endpoint (Streamable HTTP)**: `https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/`
### What's Exposed via MCP:
#### 11 MCP Tools (AI-Powered & Optimized)
The eleven tools above (`analyze_leaderboard`, `debug_trace`, `estimate_cost`, `compare_runs`, `analyze_results`, `get_top_performers`, `get_leaderboard_summary`, `get_dataset`, `generate_synthetic_dataset`, `generate_prompt_template`, `push_dataset_to_hub`)
are automatically exposed as MCP tools and can be called from any MCP client.
#### 3 MCP Resources (Data Access)
- `leaderboard://{repo}` - Raw leaderboard data
- `trace://{trace_id}/{repo}` - Raw trace data
- `cost://model/{model_name}` - Model pricing data
#### 3 MCP Prompts (Templates)
- `analysis_prompt(analysis_type, focus_area, detail_level)` - Analysis templates
- `debug_prompt(debug_type, context)` - Debug templates
- `optimization_prompt(optimization_goal, constraints)` - Optimization templates
**See the "π MCP Resources & Prompts" tab to test these features.**
""")
gr.Markdown("""
---
## Environment Variables
Required:
- `GEMINI_API_KEY`: Your Google Gemini API key
- `HF_TOKEN`: Your HuggingFace token (for dataset access)
## Source Code
This server is part of the TraceMind project submission for MCP's 1st Birthday Hackathon.
**Track 1**: Building MCP (Enterprise)
**Tag**: `building-mcp-track-enterprise`
""")
with gr.Tab("βοΈ Settings"):
# Show current key status (fully masked for security)
current_gemini = os.environ.get("GEMINI_API_KEY", "")
current_hf = os.environ.get("HF_TOKEN", "")
gemini_display = "β
Configured" if current_gemini else "β Not configured"
hf_display = "β
Configured" if current_hf else "β Not configured"
gr.Markdown(f"""
### API Configuration
**Current Status**: Gemini API: {gemini_display} β’ HuggingFace Token: {hf_display}
The server is pre-configured with API keys from HuggingFace Spaces Secrets. Optionally override with your own keys for this session.
""")
with gr.Row():
gemini_api_key_input = gr.Textbox(
label="Google Gemini API Key (Optional)",
placeholder="AIza...",
type="password",
value="",
info="Free tier: 1,500 requests/day",
scale=1
)
hf_token_input = gr.Textbox(
label="HuggingFace Token (Optional)",
placeholder="hf_...",
type="password",
value="",
info="Read or Write permissions",
scale=1
)
with gr.Row():
save_keys_btn = gr.Button("πΎ Apply Configuration", variant="primary", size="lg")
reset_keys_btn = gr.Button("π Reset to Defaults", variant="secondary", size="lg")
settings_status = gr.Markdown("")
with gr.Accordion("π Setup Instructions", open=False):
gr.Markdown("""
**Google Gemini API**: Get your key at [Google AI Studio](https://ai.google.dev/) (Free: 1,500 requests/day)
**HuggingFace Token**: Create at [HuggingFace Settings](https://huggingface.co/settings/tokens) (Read or Write permissions)
**Security**: Custom keys are session-only and cleared on page refresh.
""")
# Event handlers for Settings tab
def save_override_keys(gemini, hf):
"""Save user-provided API keys to session (override Spaces Secrets)"""
results = []
if gemini and gemini.strip():
if gemini.startswith("AIza"):
os.environ["GEMINI_API_KEY"] = gemini.strip()
results.append("β
**Gemini API**: Configuration applied successfully")
logger.info("Gemini API key overridden by user")
else:
results.append("β **Gemini API**: Invalid format (must start with 'AIza')")
if hf and hf.strip():
if hf.startswith("hf_"):
os.environ["HF_TOKEN"] = hf.strip()
results.append("β
**HuggingFace Token**: Configuration applied successfully")
logger.info("HuggingFace token overridden by user")
else:
results.append("β **HuggingFace Token**: Invalid format (must start with 'hf_')")
if not results:
return "βΉοΈ **No changes**: Empty fields submitted. Default configuration remains active."
results.append("\n**Status**: Custom configuration active for this session.")
return "\n\n".join(results)
def reset_to_defaults():
"""Reset to Spaces Secrets (requires page refresh)"""
return """
βΉοΈ **Reset Instructions**
To restore default HuggingFace Spaces configuration:
1. Refresh this page (F5 or Ctrl+R)
2. Session overrides will be cleared automatically
Default credentials will be active after refresh.
"""
# Wire up buttons with api_name=False for security
save_keys_btn.click(
fn=save_override_keys,
inputs=[gemini_api_key_input, hf_token_input],
outputs=[settings_status],
api_name=False # β
CRITICAL: Prevents API key exposure via Gradio API
)
reset_keys_btn.click(
fn=reset_to_defaults,
outputs=[settings_status],
api_name=False # β
CRITICAL: Prevents exposure
)
return demo
if __name__ == "__main__":
logger.info("=" * 70)
logger.info("TraceMind MCP Server - HuggingFace Space (Track 1)")
logger.info("=" * 70)
logger.info("MCP Server: TraceMind Agent Evaluation Platform v1.0.0")
logger.info("Protocol: Model Context Protocol (MCP)")
logger.info("Transport: Gradio Native MCP Support (SSE)")
logger.info("MCP Endpoint (SSE): https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse")
logger.info("MCP Endpoint (HTTP): https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/")
logger.info("=" * 70)
logger.info("Features:")
logger.info(" β 7 AI-Powered Tools (Leaderboard + Trace + Cost + Dataset)")
logger.info(" β 3 Real-Time Resources (leaderboard, trace, cost data)")
logger.info(" β 3 Prompt Templates (analysis, debug, optimization)")
logger.info(" β Google Gemini 2.5 Flash - Intelligent Analysis")
logger.info(" β HuggingFace Dataset Integration")
logger.info(" β SMOLTRACE Format Support")
logger.info(" β Synthetic Dataset Generation")
logger.info("=" * 70)
logger.info("Tool Categories:")
logger.info(" π Analysis: analyze_leaderboard, compare_runs")
logger.info(" π Debugging: debug_trace")
logger.info(" π° Cost: estimate_cost")
logger.info(" π¦ Data: get_dataset")
logger.info(" π§ͺ Generation: generate_synthetic_dataset, push_dataset_to_hub")
logger.info("=" * 70)
logger.info("Compatible Clients:")
logger.info(" β’ Claude Desktop")
logger.info(" β’ Continue.dev (VS Code)")
logger.info(" β’ Cline (VS Code)")
logger.info(" β’ Any MCP-compatible client")
logger.info("=" * 70)
logger.info("How to Connect (Claude Desktop/HF MCP Client):")
logger.info(" 1. Go to https://huggingface.co/settings/mcp")
logger.info(" 2. Add Space: MCP-1st-Birthday/TraceMind-mcp-server")
logger.info(" 3. Start using TraceMind tools in your MCP client!")
logger.info("=" * 70)
logger.info("Starting Gradio UI + MCP Server on 0.0.0.0:7860...")
logger.info("Waiting for connections...")
logger.info("=" * 70)
try:
# Create Gradio interface
demo = create_gradio_ui()
# Theme configuration (matching TraceMind-AI) - Gradio 6 requires theme in launch()
theme = gr.themes.Base(
primary_hue="indigo",
secondary_hue="purple",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
).set(
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_900",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
)
# Launch with MCP server enabled
demo.launch(
server_name="0.0.0.0",
server_port=7860,
mcp_server=True, # Enable MCP server functionality
theme=theme # Gradio 6: theme goes here, not in Blocks()
)
except Exception as e:
logger.error(f"Failed to start server: {e}")
logger.error("Check that:")
logger.error(" 1. GEMINI_API_KEY environment variable is set")
logger.error(" 2. Port 7860 is available")
logger.error(" 3. All dependencies are installed")
raise
|