Spaces:
Running
Running
File size: 17,238 Bytes
cdeb1d3 e7e29cb cdeb1d3 fae4e5b 664f166 fae4e5b 98dc4d3 ea9bb7d dafc8f1 fae4e5b 659d404 cdeb1d3 e7e29cb fae4e5b 73f859d 8b1f39c 73f859d fae4e5b 8dccf7d fae4e5b d0bd9af 3fbacd1 fae4e5b d0bd9af fae4e5b ddbf0ce fae4e5b 4449927 fae4e5b 4449927 fae4e5b 0b8bed8 4449927 0b8bed8 4449927 0b8bed8 4449927 0b8bed8 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 3fbacd1 4449927 fae4e5b d0bd9af ddbf0ce fae4e5b 994b341 fae4e5b d0bd9af fae4e5b d0bd9af fae4e5b 664f166 d0bd9af fae4e5b d0bd9af fae4e5b 994b341 fae4e5b ea9bb7d fae4e5b 50b95c9 fae4e5b 3578f6e fae4e5b ddbf0ce fae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
---
title: TraceMind AI
emoji: π§
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
short_description: AI agent evaluation with MCP-powered intelligence
license: agpl-3.0
pinned: true
tags:
- mcp-in-action-track-enterprise
- agent-evaluation
- mcp-client
- leaderboard
- gradio
---
# π§ TraceMind-AI
<p align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/TraceMind-AI/assets/TraceVerse_Logo.png" alt="TraceVerse Ecosystem" width="400"/>
<br/>
<br/>
<img src="https://raw.githubusercontent.com/Mandark-droid/TraceMind-AI/assets/Logo.png" alt="TraceMind-AI Logo" width="200"/>
</p>
**Agent Evaluation Platform with MCP-Powered Intelligence**
[](https://github.com/modelcontextprotocol)
[-purple)](https://github.com/modelcontextprotocol/hackathon)
[](https://gradio.app/)
> **π― Track 2 Submission**: MCP in Action (Enterprise)
> **π
MCP's 1st Birthday Hackathon**: November 14-30, 2025
## Overview
TraceMind-AI is a comprehensive platform for evaluating AI agent performance across different models, providers, and configurations. It provides real-time insights, cost analysis, and detailed trace visualization powered by the Model Context Protocol (MCP).
### ποΈ **Built on Open Source Foundation**
This platform is part of a complete agent evaluation ecosystem built on two foundational open-source projects:
**π TraceVerde (genai_otel_instrument)** - Automatic OpenTelemetry Instrumentation
- **What**: Zero-code OTEL instrumentation for LLM frameworks (LiteLLM, Transformers, LangChain, etc.)
- **Why**: Captures every LLM call, tool usage, and agent step automatically
- **Links**: [GitHub](https://github.com/Mandark-droid/genai_otel_instrument) | [PyPI](https://pypi.org/project/genai-otel-instrument)
**π SMOLTRACE** - Agent Evaluation Engine
- **What**: Lightweight, production-ready evaluation framework with OTEL tracing built-in
- **Why**: Generates structured datasets (leaderboard, results, traces, metrics) displayed in this UI
- **Links**: [GitHub](https://github.com/Mandark-droid/SMOLTRACE) | [PyPI](https://pypi.org/project/smoltrace/)
**The Flow**: `TraceVerde` instruments your agents β `SMOLTRACE` evaluates them β `TraceMind-AI` visualizes results with MCP-powered intelligence
---
## Features
- **π Real-time Leaderboard**: Live evaluation data from HuggingFace datasets
- **π€ Autonomous Agent Chat**: Interactive agent powered by smolagents with MCP tools (Track 2)
- **π¬ MCP Integration**: AI-powered analysis using remote MCP servers
- **βοΈ Multi-Cloud Evaluation**: Submit jobs to HuggingFace Jobs or Modal (H200, A100, A10 GPUs)
- **π° Smart Cost Estimation**: Auto-select hardware and predict costs before running evaluations
- **π Trace Visualization**: Detailed OpenTelemetry trace analysis with GPU metrics
- **π Performance Metrics**: GPU utilization, CO2 emissions, token usage tracking
- **π§ Agent Reasoning**: View step-by-step agent planning and tool execution
## MCP Integration
TraceMind demonstrates enterprise MCP client usage by connecting to [TraceMind-mcp-server](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server) via the Model Context Protocol.
**MCP Tools Used:**
- `analyze_leaderboard` - AI-generated insights about evaluation trends
- `estimate_cost` - Cost estimation with hardware recommendations
- `debug_trace` - Interactive trace analysis and debugging
- `compare_runs` - Side-by-side run comparison
- `analyze_results` - Test case analysis with optimization recommendations
## Quick Start
### Prerequisites
**For Viewing Leaderboard & Analysis:**
- Python 3.10+
- HuggingFace account (for authentication)
**For Submitting Evaluation Jobs:**
- β οΈ **HuggingFace Pro account** ($9/month) with credit card
- HuggingFace token with **Read + Write + Run Jobs** permissions
- API keys for model providers (OpenAI, Anthropic, etc.)
> **Note**: Job submission requires a paid HuggingFace Pro account to access compute infrastructure. Viewing existing results is free.
### Installation
1. Clone the repository:
```bash
git clone https://github.com/Mandark-droid/TraceMind-AI.git
cd TraceMind-AI
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Configure environment:
```bash
cp .env.example .env
# Edit .env with your configuration
```
4. Run the application:
```bash
python app.py
```
Visit http://localhost:7860
## π― For Hackathon Judges & Visitors
### Using Your Own API Keys (Recommended)
TraceMind-AI integrates with the TraceMind MCP Server to provide AI-powered analysis. To **prevent credit issues during evaluation**, we recommend configuring your own API keys:
#### Step-by-Step Configuration
**Step 1: Configure MCP Server** (Required for MCP tool features)
1. **Open MCP Server**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server
2. Go to **βοΈ Settings** tab
3. Enter your **Gemini API Key** and **HuggingFace Token**
4. Click **"Save & Override Keys"**
**Step 2: Configure TraceMind-AI** (Optional, for additional features)
1. **Open TraceMind-AI**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind
2. Go to **βοΈ Settings** tab
3. Enter your **Gemini API Key** and **HuggingFace Token**
4. Click **"Save API Keys"**
### Why Configure Both?
- **MCP Server**: Provides AI-powered tools (leaderboard analysis, trace debugging, cost estimation)
- **TraceMind-AI**: Main UI that calls the MCP server for intelligent analysis
- They run in **separate sessions** β need separate configuration
- Configuring both ensures your keys are used for the complete evaluation flow
### Getting Free API Keys
Both APIs have generous free tiers:
**Google Gemini API Key**:
- Visit: https://ai.google.dev/
- Click "Get API Key" β Create project β Generate key
- **Free tier**: 1,500 requests/day (sufficient for evaluation)
**HuggingFace Token** (for viewing):
- Visit: https://huggingface.co/settings/tokens
- Click "New token" β Name it (e.g., "TraceMind Viewer")
- **Permissions**:
- Select "Read" for viewing datasets (sufficient for browsing leaderboard)
- **Free tier**: No rate limits for public dataset access
### Default Configuration (Without Your Keys)
If you don't configure your own keys:
- Apps will use our pre-configured keys from HuggingFace Spaces Secrets
- Fine for brief testing, but may hit rate limits during high traffic
- Recommended to configure your keys for full evaluation
### Security Notes
β
**Session-only storage**: Keys stored only in browser memory
β
**No server persistence**: Keys never saved to disk
β
**Not exposed via API**: Settings forms use `api_name=False`
β
**HTTPS encryption**: All API calls over secure connections
## π Submitting Evaluation Jobs
TraceMind-AI allows you to submit evaluation jobs to **two cloud platforms**:
- **HuggingFace Jobs**: Managed compute with H200, A100, A10, T4 GPUs
- **Modal**: Serverless GPU compute with pay-per-second pricing
### β οΈ Requirements for Job Submission
**For HuggingFace Jobs:**
1. **HuggingFace Pro Account** ($9/month)
- Sign up at: https://huggingface.co/pricing
- **Credit card required** to pay for compute usage
- Free accounts cannot submit jobs
2. **HuggingFace Token with Enhanced Permissions**
- Visit: https://huggingface.co/settings/tokens
- Create token with these permissions:
- β
**Read** (view datasets)
- β
**Write** (upload results)
- β
**Run Jobs** (submit evaluation jobs)
- β οΈ Read-only tokens will NOT work
**For Modal (Optional Alternative):**
1. **Modal Account** (Free tier available)
- Sign up at: https://modal.com
- Generate API token at: https://modal.com/settings/tokens
- Pay-per-second billing (no monthly subscription)
2. **Configure Modal Credentials in Settings**
- MODAL_TOKEN_ID (starts with `ak-`)
- MODAL_TOKEN_SECRET (starts with `as-`)
**Both Platforms Require:**
3. **Model Provider API Keys**
- OpenAI, Anthropic, Google, etc.
- Configure in Settings β LLM Provider API Keys
- Passed securely as job secrets
### Hardware Options & Pricing
TraceMind **auto-selects optimal hardware** based on your model size and provider:
**HuggingFace Jobs:**
- **cpu-basic**: API models (OpenAI, Anthropic) - ~$0.05/hr
- **t4-small**: Small models (4B-8B parameters) - ~$0.60/hr
- **a10g-small**: Medium models (7B-13B) - ~$1.10/hr
- **a100-large**: Large models (70B+) - ~$3.00/hr
- Pricing: https://huggingface.co/pricing#spaces-pricing
**Modal:**
- **CPU**: API models - ~$0.0001/sec
- **A10G**: Small-medium models (7B-13B) - ~$0.0006/sec
- **A100-80GB**: Large models (70B+) - ~$0.0030/sec
- **H200**: Fastest inference - ~$0.0050/sec
- Pricing: https://modal.com/pricing
### How to Submit a Job
1. **Configure API Keys** (Settings tab):
- Add HF Token (with Run Jobs permission) - **required for both platforms**
- Add Modal credentials (MODAL_TOKEN_ID + MODAL_TOKEN_SECRET) - **for Modal only**
- Add LLM provider keys (OpenAI, Anthropic, etc.)
2. **Create Evaluation** (New Evaluation tab):
- **Select infrastructure**: HuggingFace Jobs or Modal
- Choose model and agent type
- Configure hardware (or use **"auto"** for smart selection)
- Set timeout (default: 1h)
- Click "π° Estimate Cost" to preview cost/duration
- Click "Submit Evaluation"
3. **Monitor Job**:
- View job ID and status in confirmation screen
- **HF Jobs**: Track at https://huggingface.co/jobs or use Job Monitoring tab
- **Modal**: Track at https://modal.com/apps
- Results automatically appear in leaderboard when complete
### What Happens During a Job
1. Job starts on selected infrastructure (HF Jobs or Modal)
2. Docker container built with required dependencies
3. SMOLTRACE evaluates your model with OpenTelemetry tracing
4. Results uploaded to 4 HuggingFace datasets:
- Leaderboard entry (summary stats)
- Results dataset (test case details)
- Traces dataset (OTEL spans)
- Metrics dataset (GPU metrics, CO2 emissions)
5. Results appear in TraceMind leaderboard automatically
**Expected Duration:**
- CPU jobs (API models): 2-5 minutes
- GPU jobs (local models): 15-30 minutes (includes model download)
## Configuration
Create a `.env` file with the following variables:
```env
# HuggingFace Configuration
HF_TOKEN=your_token_here
# Agent Model Configuration (for Chat Screen - Track 2)
# Options: "hfapi" (default), "inference_client", "litellm"
AGENT_MODEL_TYPE=hfapi
# API Keys for different model types
# Required if AGENT_MODEL_TYPE=litellm
GEMINI_API_KEY=your_gemini_api_key_here
# MCP Server URL (note: /sse endpoint for smolagents integration)
MCP_SERVER_URL=https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
# Dataset Configuration
LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
# Development Mode (optional - disables OAuth for local testing)
DISABLE_OAUTH=true
```
### Agent Model Options
The Agent Chat screen supports three model configurations:
1. **`hfapi` (Default)**: Uses HuggingFace Inference API
- Model: `Qwen/Qwen2.5-Coder-32B-Instruct`
- Requires: `HF_TOKEN`
- Best for: General use, free tier available
2. **`inference_client`**: Uses Nebius provider
- Model: `deepseek-ai/DeepSeek-V3-0324`
- Requires: `HF_TOKEN`
- Best for: Advanced reasoning, faster inference
3. **`litellm`**: Uses Google Gemini
- Model: `gemini/gemini-2.5-flash`
- Requires: `GEMINI_API_KEY`
- Best for: Gemini-specific features
## Data Sources
TraceMind-AI loads evaluation data from HuggingFace datasets:
- **Leaderboard**: Aggregate statistics for all evaluation runs
- **Results**: Individual test case results
- **Traces**: OpenTelemetry trace data
- **Metrics**: GPU metrics and performance data
## Architecture
### Project Structure
```
TraceMind-AI/
βββ app.py # Main Gradio application
βββ data_loader.py # HuggingFace dataset integration
βββ mcp_client/ # MCP client implementation
β βββ client.py # Async MCP client
β βββ sync_wrapper.py # Synchronous wrapper
βββ utils/ # Utilities
β βββ auth.py # HuggingFace OAuth
β βββ navigation.py # Screen navigation
βββ screens/ # UI screens
βββ components/ # Reusable components
βββ styles/ # Custom CSS
```
### MCP Client Integration
TraceMind-AI uses the MCP Python SDK to connect to remote MCP servers:
```python
from mcp_client.sync_wrapper import get_sync_mcp_client
# Initialize MCP client
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
# Call MCP tools
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
```
## Usage
### Viewing the Leaderboard
1. Log in with your HuggingFace account
2. Navigate to the "Leaderboard" tab
3. Click "Load Leaderboard" to fetch the latest data
4. View AI-powered insights generated by the MCP server
### Estimating Costs
1. Navigate to the "Cost Estimator" tab
2. Enter the model name (e.g., `openai/gpt-4`)
3. Select agent type and number of tests
4. Click "Estimate Cost" for AI-powered analysis
### Viewing Trace Details
1. Select an evaluation run from the leaderboard
2. Click on a specific test case
3. View detailed OpenTelemetry trace visualization
4. Ask questions about the trace using MCP-powered analysis
### Using the Agent Chat (Track 2)
1. Navigate to the "π€ Agent Chat" tab
2. The autonomous agent will initialize with MCP tools from TraceMind MCP Server
3. Ask questions about agent evaluations:
- "What are the top 3 performing models and their costs?"
- "Estimate the cost of running 500 tests with DeepSeek-V3 on H200"
- "Load the leaderboard and show me the last 5 run IDs"
4. Watch the agent plan, execute tools, and provide detailed answers
5. Enable "Show Agent Reasoning" to see step-by-step tool execution
6. Use Quick Action buttons for common queries
**Example Questions:**
- Analysis: "Analyze the current leaderboard and show me the top performing models with their costs"
- Cost Comparison: "Compare the costs of the top 3 models - which one offers the best value?"
- Recommendations: "Based on the leaderboard data, which model would you recommend for a production system?"
## Technology Stack
- **UI Framework**: Gradio 5.49.1
- **Agent Framework**: smolagents 1.22.0+ (Track 2)
- **MCP Protocol**: MCP integration via Gradio & smolagents MCPClient
- **Data**: HuggingFace Datasets API
- **Authentication**: HuggingFace OAuth
- **AI Models**:
- Default: Qwen/Qwen2.5-Coder-32B-Instruct (HF Inference API)
- Optional: DeepSeek-V3 (Nebius), Gemini 2.5 Flash
- MCP Server: Google Gemini 2.5 Pro
## Development
### Running Locally
```bash
# Install dependencies
pip install -r requirements.txt
# Set development mode (optional - disables OAuth)
export DISABLE_OAUTH=true
# Run the app
python app.py
```
### Running on HuggingFace Spaces
This application is configured for deployment on HuggingFace Spaces using the Gradio SDK. The `app.py` file serves as the entry point.
## Documentation
For detailed implementation documentation, see:
- [Data Loader API](data_loader.py) - Dataset loading and caching
- [MCP Client API](mcp_client/client.py) - MCP protocol integration
- [Authentication](utils/auth.py) - HuggingFace OAuth integration
## Demo Video
[Link to demo video showing the application in action]
## Social Media
[Link to social media post about this project]
## License
AGPL-3.0 License
This project is licensed under the GNU Affero General Public License v3.0. See the LICENSE file for details.
## Contributing
Contributions are welcome! Please open an issue or submit a pull request.
## Built By
**Track**: MCP in Action (Enterprise)
**Author**: Kshitij Thakkar
**Powered by**: MCP Servers (TraceMind-mcp-server) + Gradio
**Built with**: Gradio 5.49.1 (MCP client integration)
---
## Acknowledgments
- **MCP Team** - For the Model Context Protocol specification
- **Gradio Team** - For Gradio 6 with MCP integration
- **HuggingFace** - For Spaces hosting and dataset infrastructure
- **Google** - For Gemini API access
- **[Eliseu Silva](https://huggingface.co/elismasilva)** - For the [gradio_htmlplus](https://huggingface.co/spaces/elismasilva/gradio_htmlplus) custom component that powers our interactive leaderboard table. Eliseu's timely help and collaboration during the hackathon was invaluable!
## Links
- **Live Demo**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind
- **MCP Server**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server
- **GitHub**: https://github.com/Mandark-droid/TraceMind-AI
- **MCP Specification**: https://modelcontextprotocol.io
---
**MCP's 1st Birthday Hackathon Submission**
*Track: MCP in Action - Enterprise*
|