auto-labelizer / README.md
Metal3d's picture
Try python 3.12
83d24cf
---
title: Labelizer - AI Image Labeling Tool
emoji: πŸ–ΌοΈ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
python_version: "3.12"
---
# πŸ–ΌοΈ Labelizer - AI Image Labeling Tool
An intelligent image labeling tool that uses Florence-2 vision-language model to automatically generate detailed descriptions for your images. Perfect for creating labeled datasets for machine learning projects.
## ✨ Features
- πŸ€– **AI-Powered Labeling**: Uses advanced Florence-2 model for accurate image descriptions
- πŸ“Š **Batch Processing**: Label multiple images at once with progress tracking
- ✏️ **Manual Editing**: Edit generated labels to fit your specific needs
- πŸ“¦ **Flexible Export**: Download datasets with organized folder structure or flat format
- 🎨 **User-Friendly Interface**: Clean, intuitive Gradio interface with emoji-enhanced navigation
## πŸš€ How to Use
1. **Upload Images**: Click "πŸ“ Upload images" to select multiple image files
2. **Generate Labels**:
- Click "✨ Generate label" below individual images
- Or click "🏷️ Labelize all images" for batch processing
3. **Review & Edit**: Modify any generated labels as needed
4. **Download**: Create and download your labeled dataset as a ZIP file
## πŸ› οΈ Technical Details
- **Model**: Florence-2-large-hf for vision-language understanding
- **Framework**: Gradio with ZeroGPU support
- **Supported Formats**: JPG, PNG, GIF, BMP, TIFF, WebP
- **Export Options**: Organized folders (images/ + labels/) or flat structure
## πŸ“‹ Supported Tasks
The tool supports various captioning tasks:
- `<MORE_DETAILED_CAPTION>`: Comprehensive image descriptions
- `<DETAILED_CAPTION>`: Detailed but concise descriptions
- `<CAPTION>`: Basic image captions
## 🎯 Use Cases
- **Machine Learning**: Create labeled datasets for computer vision tasks
- **Content Management**: Organize image collections with descriptions
- **Accessibility**: Generate alt-text for images
- **Research**: Prepare datasets for academic projects
## ⚑ Performance
- Optimized for GPU acceleration with ZeroGPU
- Efficient batch processing for large datasets
- Lazy loading to minimize resource usage
---
Built with ❀️ using [Gradio](https://gradio.app/) and [Florence-2](https://huggingface.co/microsoft/Florence-2-large)