File size: 6,237 Bytes
9175035 54f50bd 9175035 54f50bd 9175035 cbabd42 9175035 cbabd42 df42e91 cbabd42 5d5dab0 cbabd42 5d5dab0 df42e91 54f50bd b0f9ac3 cbabd42 b0f9ac3 cbabd42 b0f9ac3 9175035 54f50bd df42e91 cbabd42 9175035 cbabd42 9175035 cbabd42 9175035 cbabd42 9175035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
from gradio.themes import Base
from gradio.themes.utils import colors, sizes, fonts
from typing import Iterable
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
# Custom Seafoam theme definition
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="linear-gradient(to bottom right, *primary_50, *primary_100, *primary_200)",
body_background_fill_dark="linear-gradient(to bottom right, *primary_900, *primary_800, *primary_700)",
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="32px",
)
seafoam = Seafoam()
def download_stock_data(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
df = stock.history(start=start_date, end=end_date)
return df
def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
try:
stock = yf.Ticker(ticker)
data = stock.history(start=start_date, end=end_date)
if data.empty:
return "No data available for the specified date range."
x = (data.index - data.index[0]).days
y = np.log(data['Close'])
slope, intercept = np.polyfit(x, y, 1)
future_days = 365 * 10
all_days = np.arange(len(x) + future_days)
log_trend = np.exp(intercept + slope * all_days)
inner_upper_band = log_trend * 2
inner_lower_band = log_trend / 2
outer_upper_band = log_trend * 4
outer_lower_band = log_trend / 4
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='#3A9184')))
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='#FF8C61')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='#6FB1A7')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='#6FB1A7')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='#FFC2A5')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='#FFC2A5')))
fig.update_layout(
title={
'text': 'Stock Log Charts',
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Date',
yaxis_title='Price (Log Scale)',
yaxis_type="log",
height=800,
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified',
plot_bgcolor='#F5F9F8',
paper_bgcolor='#F5F9F8',
font=dict(family="Quicksand, sans-serif", size=12, color="#313D38")
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
except Exception as e:
return f"An error occurred: {str(e)}"
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Create Gradio interface with custom Seafoam theme
with gr.Blocks(theme=seafoam, title="Stock Log Charts") as iface:
gr.Markdown("# Stock Log Charts")
gr.Markdown("Enter a stock ticker and date range to generate a logarithmic chart.")
with gr.Row():
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
end_date = gr.Textbox(label="End Date", value=current_date)
submit_button = gr.Button("Generate Chart")
with gr.Row():
log_plot = gr.Plot(label="Logarithmic Stock Chart")
submit_button.click(
plot_interactive_logarithmic_stock_chart,
inputs=[ticker, start_date, end_date],
outputs=[log_plot]
)
# Launch the app
iface.launch() |