File size: 6,237 Bytes
9175035
54f50bd
 
 
9175035
 
 
 
 
 
54f50bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9175035
 
 
 
 
cbabd42
9175035
 
 
 
 
 
 
cbabd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df42e91
 
 
 
 
 
cbabd42
 
5d5dab0
 
 
 
 
 
 
cbabd42
 
 
 
 
5d5dab0
df42e91
 
54f50bd
b0f9ac3
 
cbabd42
 
 
 
 
 
 
 
 
 
 
b0f9ac3
 
cbabd42
 
 
b0f9ac3
9175035
 
 
54f50bd
 
df42e91
cbabd42
9175035
 
 
 
 
 
cbabd42
9175035
 
cbabd42
9175035
cbabd42
 
 
 
9175035
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from gradio.themes import Base
from gradio.themes.utils import colors, sizes, fonts
from typing import Iterable
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime

# Custom Seafoam theme definition
class Seafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="linear-gradient(to bottom right, *primary_50, *primary_100, *primary_200)",
            body_background_fill_dark="linear-gradient(to bottom right, *primary_900, *primary_800, *primary_700)",
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            slider_color="*secondary_300",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            button_large_padding="32px",
        )

seafoam = Seafoam()

def download_stock_data(ticker, start_date, end_date):
    stock = yf.Ticker(ticker)
    df = stock.history(start=start_date, end=end_date)
    return df

def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
    try:
        stock = yf.Ticker(ticker)
        data = stock.history(start=start_date, end=end_date)

        if data.empty:
            return "No data available for the specified date range."

        x = (data.index - data.index[0]).days
        y = np.log(data['Close'])
        slope, intercept = np.polyfit(x, y, 1)

        future_days = 365 * 10
        all_days = np.arange(len(x) + future_days)
        log_trend = np.exp(intercept + slope * all_days)

        inner_upper_band = log_trend * 2
        inner_lower_band = log_trend / 2
        outer_upper_band = log_trend * 4
        outer_lower_band = log_trend / 4

        extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')

        fig = go.Figure()

        fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='#3A9184')))
        fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='#FF8C61')))
        fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='#6FB1A7')))
        fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='#6FB1A7')))
        fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='#FFC2A5')))
        fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='#FFC2A5')))

        fig.update_layout(
            title={
                'text': 'Stock Log Charts',
                'y': 0.95,
                'x': 0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title='Date',
            yaxis_title='Price (Log Scale)',
            yaxis_type="log",
            height=800,
            legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
            hovermode='x unified',
            plot_bgcolor='#F5F9F8',
            paper_bgcolor='#F5F9F8',
            font=dict(family="Quicksand, sans-serif", size=12, color="#313D38")
        )

        fig.update_xaxes(
            rangeslider_visible=True,
            rangeselector=dict(
                buttons=list([
                    dict(count=1, label="1m", step="month", stepmode="backward"),
                    dict(count=6, label="6m", step="month", stepmode="backward"),
                    dict(count=1, label="YTD", step="year", stepmode="todate"),
                    dict(count=1, label="1y", step="year", stepmode="backward"),
                    dict(step="all")
                ])
            )
        )

        return fig
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")

# Create Gradio interface with custom Seafoam theme
with gr.Blocks(theme=seafoam, title="Stock Log Charts") as iface:
    gr.Markdown("# Stock Log Charts")
    gr.Markdown("Enter a stock ticker and date range to generate a logarithmic chart.")
    
    with gr.Row():
        ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
        start_date = gr.Textbox(label="Start Date", value="2015-01-01")
        end_date = gr.Textbox(label="End Date", value=current_date)
    
    submit_button = gr.Button("Generate Chart")
    
    with gr.Row():
        log_plot = gr.Plot(label="Logarithmic Stock Chart")
    
    submit_button.click(
        plot_interactive_logarithmic_stock_chart,
        inputs=[ticker, start_date, end_date],
        outputs=[log_plot]
    )

# Launch the app
iface.launch()