File size: 4,794 Bytes
9175035
 
 
 
 
 
 
 
 
 
 
 
cbabd42
9175035
 
 
 
 
 
 
cbabd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5dab0
 
 
 
 
 
cbabd42
 
5d5dab0
 
 
 
 
 
 
cbabd42
 
 
 
 
5d5dab0
 
 
 
b0f9ac3
 
cbabd42
 
 
 
 
 
 
 
 
 
 
b0f9ac3
 
cbabd42
 
 
b0f9ac3
9175035
 
 
5d5dab0
9175035
 
 
 
5d5dab0
 
 
 
 
 
9175035
 
cbabd42
5d5dab0
 
cbabd42
9175035
 
 
 
 
 
cbabd42
9175035
 
cbabd42
9175035
cbabd42
 
 
 
9175035
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime

def download_stock_data(ticker, start_date, end_date):
    stock = yf.Ticker(ticker)
    df = stock.history(start=start_date, end=end_date)
    return df

def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
    try:
        stock = yf.Ticker(ticker)
        data = stock.history(start=start_date, end=end_date)

        if data.empty:
            return "No data available for the specified date range."

        x = (data.index - data.index[0]).days
        y = np.log(data['Close'])
        slope, intercept = np.polyfit(x, y, 1)

        future_days = 365 * 10
        all_days = np.arange(len(x) + future_days)
        log_trend = np.exp(intercept + slope * all_days)

        inner_upper_band = log_trend * 2
        inner_lower_band = log_trend / 2
        outer_upper_band = log_trend * 4
        outer_lower_band = log_trend / 4

        extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')

        fig = go.Figure()

        fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='#3366CC')))
        fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='#DC3912')))
        fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='#FF9900')))
        fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='#FF9900')))
        fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='#109618')))
        fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='#109618')))

        fig.update_layout(
            title={
                'text': 'Stock Log Charts',
                'y': 0.95,
                'x': 0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title='Date',
            yaxis_title='Price (Log Scale)',
            yaxis_type="log",
            height=800,
            legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
            hovermode='x unified',
            plot_bgcolor='#F5F5F5',
            paper_bgcolor='#F5F5F5',
            font=dict(family="Arial", size=12, color="#333333")
        )

        fig.update_xaxes(
            rangeslider_visible=True,
            rangeselector=dict(
                buttons=list([
                    dict(count=1, label="1m", step="month", stepmode="backward"),
                    dict(count=6, label="6m", step="month", stepmode="backward"),
                    dict(count=1, label="YTD", step="year", stepmode="todate"),
                    dict(count=1, label="1y", step="year", stepmode="backward"),
                    dict(step="all")
                ])
            )
        )

        return fig
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")

# Custom CSS to make charts full-width and larger, and apply a theme
custom_css = """
.container {max-width: 100% !important; padding: 0 !important;}
.plot-container {height: 800px !important; width: 100% !important;}
.react-plotly-container {height: 100% !important; width: 100% !important;}
body {background-color: #F5F5F5; color: #333333; font-family: Arial, sans-serif;}
.gradio-container {background-color: #FFFFFF; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);}
.gr-button {background-color: #3366CC; color: white;}
.gr-button:hover {background-color: #254EDB;}
.gr-input {border: 1px solid #CCCCCC; border-radius: 4px;}
.gr-input:focus {border-color: #3366CC; box-shadow: 0 0 0 2px rgba(51, 102, 204, 0.2);}
"""

# Create Gradio interface
with gr.Blocks(css=custom_css, title="Stock Log Charts") as iface:
    gr.Markdown("# Stock Log Charts", elem_id="main-title")
    gr.Markdown("Enter a stock ticker and date range to generate a logarithmic chart.")
    
    with gr.Row():
        ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
        start_date = gr.Textbox(label="Start Date", value="2015-01-01")
        end_date = gr.Textbox(label="End Date", value=current_date)
    
    submit_button = gr.Button("Generate Chart")
    
    with gr.Row():
        log_plot = gr.Plot(label="Logarithmic Stock Chart")
    
    submit_button.click(
        plot_interactive_logarithmic_stock_chart,
        inputs=[ticker, start_date, end_date],
        outputs=[log_plot]
    )

# Launch the app
iface.launch()