File size: 9,731 Bytes
9175035 54f50bd 9175035 54f50bd 9175035 716866e 9175035 716866e b0f9ac3 716866e b0f9ac3 716866e b0f9ac3 716866e b0f9ac3 716866e a779d49 716866e b0f9ac3 9175035 e5bb596 a779d49 716866e 9175035 e5bb596 9175035 716866e e5bb596 9175035 716866e 9175035 716866e a779d49 cbabd42 a779d49 716866e 9175035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
from gradio.themes import Base
from gradio.themes.utils import colors, sizes, fonts
from typing import Iterable
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
# Custom Seafoam theme definition
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="linear-gradient(to bottom right, *primary_50, *primary_100, *primary_200)",
body_background_fill_dark="linear-gradient(to bottom right, *primary_900, *primary_800, *primary_700)",
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="32px",
)
seafoam = Seafoam()
def download_stock_data(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
df = stock.history(start=start_date, end=end_date)
return df
def plot_chart(ticker, start_date, end_date, chart_type):
try:
stock = yf.Ticker(ticker)
data = stock.history(start=start_date, end=end_date)
if data.empty:
return "No data available for the specified date range.", None, None, None
if chart_type == "Log":
return plot_logarithmic_chart(data, ticker)
else:
return plot_candlestick_chart(data, ticker)
except Exception as e:
return f"An error occurred: {str(e)}", None, None, None
def plot_logarithmic_chart(data, ticker):
x = (data.index - data.index[0]).days
y = np.log(data['Close'])
slope, intercept = np.polyfit(x, y, 1)
future_days = 365 * 10
all_days = np.arange(len(x) + future_days)
log_trend = np.exp(intercept + slope * all_days)
inner_upper_band = log_trend * 2
inner_lower_band = log_trend / 2
outer_upper_band = log_trend * 4
outer_lower_band = log_trend / 4
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='#6FB1A7')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='#6FB1A7')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='#FFC2A5')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='#FFC2A5')))
fig.update_layout(
title={
'text': f'Stock Log Chart: {ticker}',
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Date',
yaxis_title='Price (Log Scale)',
yaxis_type="log",
height=800,
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified',
plot_bgcolor='#F5F9F8',
paper_bgcolor='#F5F9F8',
font=dict(family="Quicksand, sans-serif", size=12, color="#313D38")
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
current_price = data['Close'].iloc[-1]
log_price = log_trend[-len(data):]
percent_diff = ((current_price - log_price.iloc[-1]) / log_price.iloc[-1]) * 100
return fig, current_price, log_price.iloc[-1], percent_diff
def plot_candlestick_chart(data, ticker):
fig = go.Figure(data=[go.Candlestick(x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'])])
fig.update_layout(
title={
'text': f'Stock Candlestick Chart: {ticker}',
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Date',
yaxis_title='Price',
height=800,
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified',
plot_bgcolor='#F5F9F8',
paper_bgcolor='#F5F9F8',
font=dict(family="Quicksand, sans-serif", size=12, color="#313D38")
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
current_price = data['Close'].iloc[-1]
return fig, current_price, None, None
def format_price_info(current_price, log_price, percent_diff):
if current_price is None:
return "Unable to retrieve price information."
if log_price is None or percent_diff is None:
return f"Current Price: ${current_price:.2f}"
color = "green" if percent_diff > 0 else "red"
intensity = min(abs(percent_diff) / 100, 1) # Normalize to 0-1
bg_color = f"rgba({255 if color == 'red' else 0}, {255 if color == 'green' else 0}, 0, {intensity})"
return f"""
<div style="display: flex; justify-content: space-between; padding: 10px; background-color: {bg_color}; border-radius: 10px;">
<div>
<p>Current Price: ${current_price:.2f}</p>
<p>Log Price: ${log_price:.2f}</p>
</div>
<div>
<p style="font-size: 1.2em; font-weight: bold; color: {color};">
{percent_diff:.2f}% {'above' if percent_diff > 0 else 'below'} log price
</p>
</div>
</div>
"""
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Custom CSS for button and input hover effects
custom_css = """
#generate-button:hover {
background-color: #FFB3BA !important; /* Pastel red */
}
#ticker-input input:hover, #start-date-input input:hover, #end-date-input input:hover {
background-color: #FFB3BA !important; /* Pastel red */
}
"""
# Update the Gradio interface section
with gr.Blocks(theme=seafoam, title="Stock Charts", css=custom_css) as iface:
gr.Markdown("# Stock Charts")
gr.Markdown("Enter a stock ticker and date range to generate a chart.")
with gr.Row():
ticker = gr.Textbox(label="Stock Ticker", value="MSFT", elem_id="ticker-input")
start_date = gr.Textbox(label="Start Date", value="2015-01-01", elem_id="start-date-input")
end_date = gr.Textbox(label="End Date", value=current_date, elem_id="end-date-input")
with gr.Accordion("Chart Options", open=False):
chart_type = gr.Radio(["Log", "Candlestick"], label="Chart Type", value="Log")
submit_button = gr.Button("Generate Chart", elem_id="generate-button")
with gr.Row():
chart = gr.Plot(label="Stock Chart")
price_info = gr.HTML(label="Price Information")
def update_chart_and_info(ticker, start_date, end_date, chart_type):
chart_data, current_price, log_price, percent_diff = plot_chart(ticker, start_date, end_date, chart_type)
price_info_html = format_price_info(current_price, log_price, percent_diff)
return chart_data, price_info_html
submit_button.click(
update_chart_and_info,
inputs=[ticker, start_date, end_date, chart_type],
outputs=[chart, price_info]
)
# Launch the app
iface.launch() |