File size: 7,719 Bytes
9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 b0f9ac3 9175035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
from io import BytesIO
import base64
def download_stock_data(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
df = stock.history(start=start_date, end=end_date)
return df
def plot_interactive_chart(ticker, start_date, end_date, chart_type):
try:
stock = yf.Ticker(ticker)
data = stock.history(start=start_date, end=end_date)
if data.empty:
return "No data available for the specified date range."
if chart_type == "Logarithmic":
fig = create_logarithmic_chart(data, ticker)
else:
fig = create_candlestick_chart(data, ticker)
return fig
except Exception as e:
return f"An error occurred: {str(e)}"
def create_logarithmic_chart(data, ticker):
x = (data.index - data.index[0]).days
y = np.log(data['Close'])
slope, intercept = np.polyfit(x, y, 1)
future_days = 365 * 10
all_days = np.arange(len(x) + future_days)
log_trend = np.exp(intercept + slope * all_days)
inner_upper_band = log_trend * 2
inner_lower_band = log_trend / 2
outer_upper_band = log_trend * 4
outer_lower_band = log_trend / 4
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
fig.update_layout(
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
xaxis_title='Date',
yaxis_title='Price (Log Scale)',
yaxis_type="log",
height=800,
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified'
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
def create_candlestick_chart(data, ticker):
fig = go.Figure(data=[go.Candlestick(x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'])])
fig.update_layout(
title=f'{ticker} Stock Price (Candlestick Chart)',
xaxis_title='Date',
yaxis_title='Price',
height=800,
hovermode='x unified'
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
def export_data(ticker, start_date, end_date, format):
data = download_stock_data(ticker, start_date, end_date)
if format == 'CSV':
output = BytesIO()
data.to_csv(output, index=True)
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:text/csv;base64,{b64}'
elif format == 'Excel':
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
data.to_excel(writer, sheet_name='Stock Data', index=True)
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}'
elif format == 'PDF':
output = BytesIO()
fig = go.Figure(data=[go.Table(
header=dict(values=list(data.columns)),
cells=dict(values=[data[col] for col in data.columns])
)])
fig.write_image(output, format='pdf')
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:application/pdf;base64,{b64}'
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Custom CSS to make charts full-width and larger, and apply additional styling
custom_css = """
.container {max-width: 100% !important; padding: 0 !important;}
.plot-container {height: 800px !important; width: 100% !important;}
.react-plotly-container {height: 100% !important; width: 100% !important;}
body {
background-color: #f0f0f0;
font-family: 'Helvetica', sans-serif;
}
.gradio-container {
margin: auto;
padding: 15px;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #4CAF50;
border: none;
color: white;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 5px;
padding: 10px 24px;
}
.gr-button:hover {
background-color: #45a049;
}
.gr-form {
border: 1px solid #ddd;
border-radius: 5px;
padding: 15px;
margin-bottom: 20px;
}
.gr-input {
width: 100%;
padding: 12px 20px;
margin: 8px 0;
display: inline-block;
border: 1px solid #ccc;
border-radius: 4px;
box-sizing: border-box;
}
.gr-input:focus {
border-color: #4CAF50;
outline: none;
}
.gr-label {
font-weight: bold;
margin-bottom: 5px;
}
"""
# Create Gradio interface with updated theme
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Log Charting Tool") as iface:
gr.Markdown("# Log Charting Tool")
gr.Markdown("Enter a stock ticker and date range to generate a chart and export data.")
with gr.Row():
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
end_date = gr.Textbox(label="End Date", value=current_date)
with gr.Row():
chart_type = gr.Radio(["Logarithmic", "Candlestick"], label="Chart Type", value="Logarithmic")
export_format = gr.Dropdown(["CSV", "Excel", "PDF"], label="Export Format", value="CSV")
with gr.Row():
generate_button = gr.Button("Generate Chart")
export_button = gr.Button("Export Data")
with gr.Row():
chart_output = gr.Plot(label="Stock Chart")
export_output = gr.File(label="Exported Data")
generate_button.click(
plot_interactive_chart,
inputs=[ticker, start_date, end_date, chart_type],
outputs=[chart_output]
)
export_button.click(
export_data,
inputs=[ticker, start_date, end_date, export_format],
outputs=[export_output]
)
# Launch the app
iface.launch() |