Spaces:
Sleeping
Sleeping
| # Backend Inference Service | |
| FastAPI-based REST API for waste classification inference and feedback collection. | |
| ## Setup | |
| ### 1. Install Dependencies | |
| \`\`\`bash | |
| pip install -r backend/requirements.txt | |
| pip install -r ml/requirements.txt | |
| \`\`\` | |
| ### 2. Train or Download Model | |
| Ensure you have a trained model at `ml/models/best_model.pth`: | |
| \`\`\`bash | |
| # Train a model | |
| python ml/train.py | |
| # Or download a pretrained model (if available) | |
| # Place it in ml/models/best_model.pth | |
| \`\`\` | |
| ### 3. Start Service | |
| \`\`\`bash | |
| # Development | |
| python backend/inference_service.py | |
| # Production with Gunicorn | |
| gunicorn backend.inference_service:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 | |
| \`\`\` | |
| Service will be available at `http://localhost:8000` | |
| ## API Endpoints | |
| ### Health Check | |
| \`\`\`bash | |
| GET / | |
| GET /health | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "status": "healthy", | |
| "model_loaded": true, | |
| "timestamp": "2024-01-01T00:00:00" | |
| } | |
| \`\`\` | |
| ### Predict | |
| \`\`\`bash | |
| POST /predict | |
| Content-Type: application/json | |
| { | |
| "image": "..." | |
| } | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "category": "recyclable", | |
| "confidence": 0.95, | |
| "probabilities": { | |
| "recyclable": 0.95, | |
| "organic": 0.02, | |
| "wet-waste": 0.01, | |
| "dry-waste": 0.01, | |
| "ewaste": 0.005, | |
| "hazardous": 0.003, | |
| "landfill": 0.002 | |
| }, | |
| "timestamp": 1704067200000 | |
| } | |
| \`\`\` | |
| ### Feedback | |
| \`\`\`bash | |
| POST /feedback | |
| Content-Type: application/json | |
| { | |
| "image": "...", | |
| "predicted_category": "recyclable", | |
| "corrected_category": "organic", | |
| "confidence": 0.75 | |
| } | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "status": "success", | |
| "message": "Feedback saved for retraining", | |
| "saved_path": "ml/data/retraining/organic/feedback_20240101_120000.jpg" | |
| } | |
| \`\`\` | |
| ### Trigger Retraining | |
| \`\`\`bash | |
| POST /retrain | |
| Authorization: Bearer <ADMIN_API_KEY> | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "status": "started", | |
| "message": "Retraining initiated with 150 new samples", | |
| "feedback_count": 150 | |
| } | |
| \`\`\` | |
| ### Retraining Status | |
| \`\`\`bash | |
| GET /retrain/status | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "status": "success", | |
| "total_retrains": 3, | |
| "events": [...], | |
| "latest": { | |
| "version": 3, | |
| "timestamp": "2024-01-01T00:00:00", | |
| "accuracy": 92.5, | |
| "improvement": 2.3, | |
| "new_samples": 150 | |
| } | |
| } | |
| \`\`\` | |
| ### Statistics | |
| \`\`\`bash | |
| GET /stats | |
| \`\`\` | |
| Response: | |
| \`\`\`json | |
| { | |
| "model_loaded": true, | |
| "categories": ["recyclable", "organic", ...], | |
| "feedback_samples": 150, | |
| "feedback_by_category": { | |
| "recyclable": 45, | |
| "organic": 38, | |
| ... | |
| } | |
| } | |
| \`\`\` | |
| ## Docker Deployment | |
| ### Build and Run | |
| \`\`\`bash | |
| # Build image | |
| docker build -f backend/Dockerfile -t waste-classification-api . | |
| # Run container | |
| docker run -p 8000:8000 \ | |
| -v $(pwd)/ml/models:/app/ml/models \ | |
| -v $(pwd)/ml/data:/app/ml/data \ | |
| waste-classification-api | |
| \`\`\` | |
| ### Using Docker Compose | |
| \`\`\`bash | |
| # Start all services | |
| docker-compose up -d | |
| # View logs | |
| docker-compose logs -f | |
| # Stop services | |
| docker-compose down | |
| \`\`\` | |
| ## Environment Variables | |
| - `PORT`: Server port (default: 8000) | |
| - `ADMIN_API_KEY`: Admin key for retraining endpoint | |
| ## Performance | |
| - **Inference Time**: ~50ms per image (CPU) | |
| - **Throughput**: ~20 requests/second (single worker) | |
| - **Memory**: ~500MB with model loaded | |
| - **Scaling**: Deploy multiple workers for higher throughput | |
| ## Production Deployment | |
| ### Railway / Render | |
| 1. Connect your repository | |
| 2. Set build command: `pip install -r backend/requirements.txt -r ml/requirements.txt` | |
| 3. Set start command: `python backend/inference_service.py` | |
| 4. Set environment variables | |
| 5. Deploy | |
| ### AWS EC2 | |
| 1. Launch EC2 instance (t3.medium or higher) | |
| 2. Install Docker | |
| 3. Clone repository | |
| 4. Run with Docker Compose | |
| 5. Configure security group (port 8000) | |
| 6. Set up SSL with Nginx reverse proxy | |
| ### Vercel (Not Recommended) | |
| FastAPI with ML models exceeds serverless function limits. Use Railway, Render, or AWS EC2 instead. | |
| ## Monitoring | |
| Add application monitoring: | |
| \`\`\`python | |
| from prometheus_fastapi_instrumentator import Instrumentator | |
| Instrumentator().instrument(app).expose(app) | |
| \`\`\` | |
| Access metrics at `/metrics` | |
| ## Security | |
| - Add rate limiting with `slowapi` | |
| - Implement proper authentication | |
| - Validate image sizes and formats | |
| - Use HTTPS in production | |
| - Restrict CORS origins | |
| - Sanitize file uploads | |
| \`\`\` | |