Spaces:
Sleeping
Sleeping
File size: 33,901 Bytes
436b502 5d1d6ad 436b502 49df435 436b502 853a0d4 60c16e4 853a0d4 3da6811 acf0e5f 853a0d4 49df435 5d1d6ad 49df435 5d1d6ad acf0e5f 5d1d6ad 853a0d4 acf0e5f 579190c acf0e5f 9580f69 d3aca2b acf0e5f 891af3f acf0e5f c7eedeb acf0e5f d243125 60c16e4 d3aca2b c7eedeb 5d1d6ad d3aca2b 5d1d6ad c7eedeb 436b502 49df435 d3aca2b 5d1d6ad c7eedeb 5d1d6ad c7eedeb 436b502 5d1d6ad d3aca2b acf0e5f d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b acf0e5f d243125 60c16e4 d3aca2b 5d1d6ad 90b1095 5d1d6ad 90b1095 5d1d6ad 436b502 49df435 436b502 c7eedeb 5d1d6ad d3aca2b 5d1d6ad 49df435 90b1095 49df435 90b1095 5d1d6ad 49df435 d9e88a5 5d1d6ad 49df435 436b502 5d1d6ad 436b502 5d1d6ad 436b502 5d1d6ad c7eedeb 436b502 c7eedeb 5d1d6ad d9e88a5 436b502 c7eedeb 436b502 5d1d6ad 436b502 5d1d6ad 49df435 5d1d6ad c7eedeb d3aca2b c7eedeb 49df435 5d1d6ad 436b502 5d1d6ad d3aca2b 436b502 5d1d6ad 436b502 d3aca2b acf0e5f d243125 60c16e4 d3aca2b 5d1d6ad d3aca2b 436b502 5d1d6ad 436b502 d3aca2b 5d1d6ad 436b502 49df435 d3aca2b 5d1d6ad 436b502 5d1d6ad 436b502 5d1d6ad 436b502 5d1d6ad d3aca2b 5d1d6ad c842762 853a0d4 acf0e5f 3da6811 765bb8c d3aca2b acf0e5f d3aca2b 5d1d6ad acf0e5f d3aca2b acf0e5f d3aca2b acf0e5f 0feb44a acf0e5f 0feb44a d3aca2b acf0e5f d3aca2b 49df435 d3aca2b 5d1d6ad 49df435 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad acf0e5f d3aca2b 5d1d6ad c842762 d3aca2b 5d1d6ad d3aca2b c842762 5d1d6ad 49df435 5d1d6ad 49df435 d9e88a5 90b1095 c7eedeb 90b1095 c7eedeb 90b1095 c7eedeb 49df435 c7eedeb 49df435 c7eedeb 49df435 c7eedeb 49df435 c7eedeb 49df435 c7eedeb 49df435 c7eedeb 49df435 c7eedeb d3aca2b 5d1d6ad acf0e5f d3aca2b acf0e5f 49df435 d3aca2b 5d1d6ad 49df435 d3aca2b 5d1d6ad 49df435 5d1d6ad d3aca2b 579190c 5d1d6ad 49df435 5d1d6ad c7eedeb 5d1d6ad 49df435 5d1d6ad 436b502 5d1d6ad 49df435 5d1d6ad 49df435 5d1d6ad 49df435 c7eedeb 49df435 5d1d6ad 49df435 c7eedeb cbfe110 579190c d3aca2b 49df435 5d1d6ad 49df435 5d1d6ad 436b502 5d1d6ad 49df435 579190c 5d1d6ad 49df435 579190c d3aca2b 49df435 5d1d6ad 49df435 436b502 c842762 5d1d6ad c7eedeb 5d1d6ad 49df435 5d1d6ad 49df435 c7eedeb d3aca2b 5d1d6ad 49df435 5d1d6ad 49df435 5d1d6ad d3aca2b 5d1d6ad acf0e5f 49df435 acf0e5f 853a0d4 819dd3d 5d1d6ad c7eedeb d3aca2b c7eedeb d3aca2b 49df435 5d1d6ad c7eedeb 5d1d6ad d3aca2b c7eedeb 5d1d6ad c7eedeb d3aca2b 5d1d6ad acf0e5f d3aca2b acf0e5f d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad 49df435 d3aca2b 5d1d6ad d3aca2b 49df435 5d1d6ad d3aca2b 49df435 c842762 5d1d6ad c842762 5d1d6ad 579190c c842762 5d1d6ad 579190c c842762 5d1d6ad acf0e5f d3aca2b acf0e5f 5d1d6ad acf0e5f 49df435 acf0e5f 819dd3d 579190c acf0e5f 579190c d3aca2b acf0e5f 579190c acf0e5f 579190c d3aca2b acf0e5f 579190c 819dd3d 579190c acf0e5f 579190c 819dd3d 579190c acf0e5f 579190c 819dd3d 579190c 765bb8c 579190c d3aca2b 579190c 5d1d6ad 819dd3d d3aca2b 579190c d3aca2b 579190c d3aca2b 579190c acf0e5f 579190c 5d1d6ad 853a0d4 acf0e5f 5d1d6ad d3aca2b 49df435 d3aca2b 49df435 d3aca2b 49df435 d3aca2b 5d1d6ad 579190c d3aca2b 49df435 d3aca2b 49df435 d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 579190c d3aca2b 579190c 49df435 5d1d6ad 49df435 5d1d6ad d3aca2b 5d1d6ad 49df435 5d1d6ad d3aca2b 579190c d3aca2b 5d1d6ad d3aca2b 579190c d3aca2b 5d1d6ad 579190c 5d1d6ad d3aca2b 5d1d6ad d3aca2b 5d1d6ad d3aca2b 579190c d3aca2b 5d1d6ad d3aca2b 3319054 5d1d6ad 49df435 5d1d6ad d3aca2b 579190c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
import os
# ============================================================================
# CPU Optimization - MUST be before TensorFlow import
# ============================================================================
NUM_CORES = os.cpu_count() or 4
os.environ['TF_NUM_INTEROP_THREADS'] = str(NUM_CORES)
os.environ['TF_NUM_INTRAOP_THREADS'] = str(NUM_CORES)
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Force CPU only
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '1' # Intel optimization
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Reduce TF logging
import gradio as gr
import tensorflow as tf
import keras
from huggingface_hub import hf_hub_download
import json
from tokenizers import Tokenizer
import numpy as np
import time
# Configure TF threading
tf.config.threading.set_inter_op_parallelism_threads(NUM_CORES)
tf.config.threading.set_intra_op_parallelism_threads(NUM_CORES)
print(f"β
CPU optimized: {NUM_CORES} threads, oneDNN enabled")
# ============================================================================
# π FESTIVE MODE TOGGLE π
# ============================================================================
FESTIVE = True
# ============================================================================
# Configuration & Model Loading
# ============================================================================
print("π Loading Sam-large-2 Model...")
MODEL_REPO = "Smilyai-labs/Sam-large-2"
CACHE_DIR = "./model_cache"
# ============================================================================
# Model Architecture Definitions (Optimized with KV-Cache)
# ============================================================================
@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.max_len = max_len
self.theta = theta
self.built_cache = False
self.cos_cached = None
self.sin_cached = None
def build(self, input_shape):
super().build(input_shape)
def _build_cache(self):
if not self.built_cache:
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
t = tf.range(self.max_len, dtype=tf.float32)
freqs = tf.einsum("i,j->ij", t, inv_freq)
emb = tf.concat([freqs, freqs], axis=-1)
self.cos_cached = tf.constant(np.cos(emb.numpy()), dtype=tf.float32)
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
self.built_cache = True
def rotate_half(self, x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat([-x2, x1], axis=-1)
def call(self, q, k, offset=0):
"""Apply rotary embeddings with position offset for KV-cache."""
self._build_cache()
seq_len = tf.shape(q)[2]
dtype = q.dtype
cos = tf.cast(self.cos_cached[offset:offset + seq_len, :], dtype)[None, None, :, :]
sin = tf.cast(self.sin_cached[offset:offset + seq_len, :], dtype)[None, None, :, :]
q_embed = (q * cos) + (self.rotate_half(q) * sin)
k_embed = (k * cos) + (self.rotate_half(k) * sin)
return q_embed, k_embed
def get_config(self):
config = super().get_config()
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
return config
@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
def __init__(self, epsilon=1e-5, **kwargs):
super().__init__(**kwargs)
self.epsilon = epsilon
self.scale = None
def build(self, input_shape):
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
super().build(input_shape)
def call(self, x):
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
def get_config(self):
config = super().get_config()
config.update({"epsilon": self.epsilon})
return config
@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.n_heads = n_heads
self.ff_dim = ff_dim
self.dropout_rate = dropout
self.max_len = max_len
self.rope_theta = rope_theta
self.head_dim = d_model // n_heads
self.layer_idx = layer_idx
def build(self, input_shape):
self.pre_attn_norm = RMSNorm(name="pre_attn_norm")
self.pre_ffn_norm = RMSNorm(name="pre_ffn_norm")
self.q_proj = keras.layers.Dense(self.d_model, use_bias=False, name="q_proj")
self.k_proj = keras.layers.Dense(self.d_model, use_bias=False, name="k_proj")
self.v_proj = keras.layers.Dense(self.d_model, use_bias=False, name="v_proj")
self.out_proj = keras.layers.Dense(self.d_model, use_bias=False, name="o_proj")
self.rope = RotaryEmbedding(self.head_dim, max_len=self.max_len, theta=self.rope_theta)
self.gate_proj = keras.layers.Dense(self.ff_dim, use_bias=False, name="gate_proj")
self.up_proj = keras.layers.Dense(self.ff_dim, use_bias=False, name="up_proj")
self.down_proj = keras.layers.Dense(self.d_model, use_bias=False, name="down_proj")
self.dropout = keras.layers.Dropout(self.dropout_rate)
super().build(input_shape)
def call(self, x, training=None, past_kv=None, use_cache=False):
"""
Args:
x: input tensor [B, T, D] (T=1 during cached generation)
past_kv: tuple of (past_k, past_v) each [B, n_heads, past_len, head_dim]
use_cache: whether to return updated kv cache
Returns:
output, (new_k, new_v) if use_cache else output, None
"""
B = tf.shape(x)[0]
T = tf.shape(x)[1]
dtype = x.dtype
res = x
y = self.pre_attn_norm(x)
# Project Q, K, V for current input
q = tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim])
q = tf.transpose(q, [0, 2, 1, 3]) # [B, n_heads, T, head_dim]
k = tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim])
k = tf.transpose(k, [0, 2, 1, 3])
v = tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim])
v = tf.transpose(v, [0, 2, 1, 3])
# Determine position offset for RoPE
if past_kv is not None:
past_len = tf.shape(past_kv[0])[2]
else:
past_len = 0
# Apply RoPE with position offset
q, k = self.rope(q, k, offset=past_len)
# Concatenate with past KV
if past_kv is not None:
k = tf.concat([past_kv[0], k], axis=2)
v = tf.concat([past_kv[1], v], axis=2)
new_kv = (k, v) if use_cache else None
# Attention
full_len = tf.shape(k)[2]
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
# Causal mask
q_positions = tf.range(past_len, past_len + T)
k_positions = tf.range(full_len)
mask = tf.cast(q_positions[:, None] >= k_positions[None, :], dtype)
mask = tf.where(mask == 0, tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
scores = scores + mask[None, None, :, :]
attn = tf.nn.softmax(scores, axis=-1)
attn_out = tf.matmul(attn, v)
attn_out = tf.transpose(attn_out, [0, 2, 1, 3])
attn_out = tf.reshape(attn_out, [B, T, self.d_model])
x = res + self.dropout(self.out_proj(attn_out), training=training)
# FFN
res = x
y = self.pre_ffn_norm(x)
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
output = res + self.dropout(ffn, training=training)
return output, new_kv
def get_config(self):
config = super().get_config()
config.update({
"d_model": self.d_model,
"n_heads": self.n_heads,
"ff_dim": self.ff_dim,
"dropout": self.dropout_rate,
"max_len": self.max_len,
"rope_theta": self.rope_theta,
"layer_idx": self.layer_idx
})
return config
@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
def __init__(self, **kwargs):
super().__init__()
if 'config' in kwargs and isinstance(kwargs['config'], dict):
self.cfg = kwargs['config']
elif 'vocab_size' in kwargs:
self.cfg = kwargs
else:
self.cfg = kwargs.get('cfg', kwargs)
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
block_args = {
'd_model': self.cfg['d_model'],
'n_heads': self.cfg['n_heads'],
'ff_dim': ff_dim,
'dropout': self.cfg['dropout'],
'max_len': self.cfg['max_len'],
'rope_theta': self.cfg['rope_theta']
}
self.blocks = [
TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
for i in range(self.cfg['n_layers'])
]
self.norm = RMSNorm(name="final_norm")
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
def call(self, input_ids, training=None, past_kv=None, use_cache=False):
"""
Args:
input_ids: [B, T]
past_kv: list of (k, v) tuples, one per layer
use_cache: whether to return updated cache
Returns:
logits, new_past_kv (or None)
"""
x = self.embed(input_ids)
new_past_kv = [] if use_cache else None
for i, block in enumerate(self.blocks):
layer_past = past_kv[i] if past_kv is not None else None
x, layer_kv = block(x, training=training, past_kv=layer_past, use_cache=use_cache)
if use_cache:
new_past_kv.append(layer_kv)
logits = self.lm_head(self.norm(x))
return logits, new_past_kv
def get_config(self):
base_config = super().get_config()
base_config['config'] = self.cfg
return base_config
# --- Model and Tokenizer Loading ---
config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR)
try:
weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR)
print("β
Found checkpoint weights (ckpt.weights.h5)")
use_checkpoint = True
except Exception as e:
print(f"β οΈ Checkpoint not found, falling back to model.keras: {e}")
try:
model_path = hf_hub_download(MODEL_REPO, "model.keras", cache_dir=CACHE_DIR)
use_checkpoint = False
except Exception as e_model:
print(f"β Also failed to find model.keras: {e_model}")
raise RuntimeError("Could not load model weights")
with open(config_path, 'r') as f:
config = json.load(f)
from transformers import AutoTokenizer
hf_tokenizer = AutoTokenizer.from_pretrained("gpt2")
custom_tokens = ["<|im_start|>", "<|im_end|>", "<think>", "</think>", "<CONTINUE>", "<im end for model tun>"]
hf_tokenizer.add_special_tokens({"additional_special_tokens": custom_tokens})
os.makedirs("./temp_tokenizer", exist_ok=True)
hf_tokenizer.save_pretrained("./temp_tokenizer")
tokenizer = Tokenizer.from_file("./temp_tokenizer/tokenizer.json")
print(f"β
Tokenizer created with vocab size: {tokenizer.get_vocab_size()}")
eos_token_id = config.get('eos_token_id', 50256)
print("\nπ Loading model...")
model = None
if use_checkpoint:
print("π¦ Building model from config and loading checkpoint weights...")
model_config = {
'vocab_size': config['vocab_size'],
'd_model': config['hidden_size'],
'n_layers': config['num_hidden_layers'],
'n_heads': config['num_attention_heads'],
'ff_mult': config['intermediate_size'] / config['hidden_size'],
'max_len': config['max_position_embeddings'],
'dropout': 0.1,
'rope_theta': config['rope_theta']
}
model = SAM1Model(config=model_config)
# Build model with dummy input
dummy_input = tf.zeros((1, 16), dtype=tf.int32)
_ = model(dummy_input, training=False, use_cache=False)
print(f"β
Model architecture built: {model.count_params():,} parameters")
try:
model.load_weights(weights_path)
print("β
Checkpoint weights loaded successfully!")
except Exception as e:
print(f"β Failed to load checkpoint weights: {e}")
raise
else:
print("π¦ Loading full saved model...")
try:
custom_objects = {
'SAM1Model': SAM1Model,
'TransformerBlock': TransformerBlock,
'RMSNorm': RMSNorm,
'RotaryEmbedding': RotaryEmbedding
}
model = keras.models.load_model(model_path, compile=False, custom_objects=custom_objects)
print("β
Model loaded successfully")
except Exception as e:
print(f"β Failed to load model: {e}")
raise
if model:
print(f"β
Model loaded: {config['num_hidden_layers']} layers, {config['vocab_size']} vocab")
# Warm up the model
print("π₯ Warming up model...")
warmup_input = tf.constant([[1, 2, 3, 4, 5]], dtype=tf.int32)
_, _ = model(warmup_input, training=False, use_cache=True)
print("β
Model warmed up")
# ============================================================================
# Optimized Inference Logic with KV-Cache
# ============================================================================
stop_generation = False
def sample_token(logits, temperature, top_k, top_p, token_freq, repetition_penalty):
"""Pure NumPy sampling for speed."""
# Temperature scaling
scaled_logits = logits / temperature
# Repetition penalty
if repetition_penalty != 1.0:
for token_id, freq in token_freq.items():
if token_id < len(scaled_logits):
scaled_logits[token_id] /= (repetition_penalty ** freq)
# Top-K filtering
if top_k > 0 and top_k < len(scaled_logits):
top_k_indices = np.argpartition(scaled_logits, -top_k)[-top_k:]
top_k_logits = scaled_logits[top_k_indices]
else:
top_k_indices = np.arange(len(scaled_logits))
top_k_logits = scaled_logits
# Softmax (numerically stable)
top_k_logits = top_k_logits - np.max(top_k_logits)
top_k_probs = np.exp(top_k_logits)
top_k_probs /= top_k_probs.sum()
# Top-P (nucleus) filtering
if top_p < 1.0:
sorted_idx = np.argsort(top_k_probs)[::-1]
cumsum = np.cumsum(top_k_probs[sorted_idx])
cutoff = np.searchsorted(cumsum, top_p) + 1
nucleus_idx = sorted_idx[:cutoff]
nucleus_probs = top_k_probs[nucleus_idx]
nucleus_probs /= nucleus_probs.sum()
sampled = np.random.choice(len(nucleus_probs), p=nucleus_probs)
return int(top_k_indices[nucleus_idx[sampled]])
else:
sampled = np.random.choice(len(top_k_probs), p=top_k_probs)
return int(top_k_indices[sampled])
def generate_stream(
prompt: str,
max_tokens: int = 512,
temperature: float = 0.8,
top_k: int = 40,
top_p: float = 0.9,
repetition_penalty: float = 1.1
):
"""Generate text with KV-cache for fast CPU inference."""
global stop_generation
stop_generation = False
# Tokenize prompt
prompt_ids = tokenizer.encode(prompt).ids
input_ids = [i for i in prompt_ids if i != eos_token_id]
if len(input_ids) == 0:
yield "Error: Empty prompt after tokenization"
return
generated_text = ""
token_count = 0
token_freq = {}
# Get special token IDs
im_end_id = tokenizer.token_to_id("<|im_end|>")
model_end_id = tokenizer.token_to_id("<im end for model tun>")
stop_ids = {eos_token_id, im_end_id, model_end_id}
stop_ids.discard(None)
max_context = config['max_position_embeddings']
start_time = time.time()
# === PREFILL PHASE ===
# Truncate if prompt is too long
if len(input_ids) > max_context - max_tokens:
input_ids = input_ids[-(max_context - max_tokens):]
input_tensor = tf.constant([input_ids], dtype=tf.int32)
try:
logits, past_kv = model(input_tensor, training=False, use_cache=True)
except Exception as e:
yield f"Error during prefill: {e}"
return
# Get logits for last position
next_token_logits = logits[0, -1, :].numpy()
prefill_time = time.time() - start_time
print(f"β‘ Prefill: {len(input_ids)} tokens in {prefill_time:.2f}s")
# === GENERATION LOOP ===
decode_start = time.time()
for step in range(max_tokens):
if stop_generation:
yield generated_text + "\n\n*[Generation stopped]*"
return
# Sample next token
next_token_id = sample_token(
next_token_logits, temperature, top_k, top_p, token_freq, repetition_penalty
)
# Stop conditions
if next_token_id in stop_ids:
break
# Update frequency tracking
token_freq[next_token_id] = token_freq.get(next_token_id, 0) + 1
# Decode and yield
token_text = tokenizer.decode([next_token_id])
generated_text += token_text
token_count += 1
yield generated_text
# === DECODE PHASE (single token, reuse cache) ===
next_input = tf.constant([[next_token_id]], dtype=tf.int32)
try:
logits, past_kv = model(next_input, training=False, past_kv=past_kv, use_cache=True)
except Exception as e:
yield generated_text + f"\n\n*[Error during generation: {e}]*"
return
next_token_logits = logits[0, -1, :].numpy()
# Truncate cache if too long
current_len = past_kv[0][0].shape[2] if past_kv and past_kv[0] is not None else 0
if current_len > max_context:
trim_amount = current_len - max_context + 100 # Keep some buffer
past_kv = [
(k[:, :, trim_amount:, :], v[:, :, trim_amount:, :])
for k, v in past_kv
]
decode_time = time.time() - decode_start
total_time = time.time() - start_time
if token_count > 0:
decode_tps = token_count / decode_time if decode_time > 0 else 0
total_tps = token_count / total_time if total_time > 0 else 0
stats = (
f"\n\n*[Generated {token_count} tokens in {total_time:.1f}s "
f"(prefill: {prefill_time:.1f}s, decode: {decode_tps:.1f} tok/s)]*"
)
if not stop_generation:
generated_text += stats
yield generated_text
# ============================================================================
# Chat Interface Logic
# ============================================================================
def format_chat_prompt(message: str, history: list, reasoning_enabled: bool) -> str:
"""Format message history and seed <think> if enabled."""
prompt = ""
for user_msg, assistant_msg in history:
prompt += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
if assistant_msg:
# Clean up any stats from previous messages
clean_msg = assistant_msg.split("\n\n*[")[0]
prompt += f"<|im_start|>assistant\n{clean_msg}<|im_end|>\n"
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
if reasoning_enabled:
prompt += "<think>"
return prompt
def chat_stream(
message: str,
history: list,
max_tokens: int,
temperature: float,
top_k: int,
top_p: float,
repetition_penalty: float,
reasoning_enabled: bool
):
if not message.strip():
yield history
return
prompt = format_chat_prompt(message, history, reasoning_enabled)
partial_response = ""
for generated in generate_stream(
prompt, max_tokens, temperature, top_k, top_p, repetition_penalty
):
partial_response = generated
# Robust end-of-turn detection
stop_tags = ["<|im_end|>", "<im end for model tun>"]
earliest_stop = len(partial_response)
should_stop = False
for tag in stop_tags:
if tag in partial_response:
idx = partial_response.find(tag)
if idx < earliest_stop:
earliest_stop = idx
should_stop = True
display_response = partial_response
if should_stop:
# Keep the stats portion if present
stats_start = partial_response.find("\n\n*[")
if stats_start > earliest_stop:
display_response = partial_response[:earliest_stop] + partial_response[stats_start:]
else:
display_response = partial_response[:earliest_stop]
# Post-process reasoning tags for display
if reasoning_enabled:
if '<think>' in display_response and '</think>' in display_response:
start_idx = display_response.find('<think>')
end_idx = display_response.find('</think>')
if start_idx != -1 and end_idx != -1 and end_idx > start_idx:
thought_content = display_response[start_idx + len('<think>'):end_idx].strip()
formatted_thought = thought_content.replace("\n", "<br>")
details_html = (
f'<details class="reasoning-block">'
f'<summary>π§ Model Reasoning (Click to expand)</summary>'
f'<p>{formatted_thought}</p>'
f'</details>'
)
display_response = (
display_response[:start_idx] +
details_html +
display_response[end_idx + len('</think>'):]
)
elif '<think>' in display_response and '</think>' not in display_response:
display_response = display_response.replace('<think>', '**π§ Thinking:** ')
yield history + [[message, display_response.strip()]]
def stop_gen():
global stop_generation
stop_generation = True
return None
# ============================================================================
# Gradio UI
# ============================================================================
custom_css = """
.gradio-container { max-width: 1200px !important; margin: auto !important; }
.header {
text-align: center; padding: 2rem; background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white; border-radius: 12px; margin-bottom: 2rem; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse { 0%, 100% { transform: scale(1); } 50% { transform: scale(1.02); } }
.header h1 { font-size: 2.8rem; margin-bottom: 0.5rem; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.2); }
.header p { font-size: 1.1rem; opacity: 0.95; }
.celebration { font-size: 2rem; margin: 0.5rem; animation: bounce 1s ease infinite; }
@keyframes bounce { 0%, 100% { transform: translateY(0); } 50% { transform: translateY(-10px); } }
.twin-badge {
display: inline-block; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; padding: 0.5rem 1rem; border-radius: 20px; font-weight: bold; margin: 0.5rem;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
}
footer { text-align: center; padding: 2rem; color: #666; border-top: 1px solid #eee; margin-top: 2rem; }
#reasoning-control-group { position: relative; display: flex; align-items: center; justify-content: center; margin-right: 10px; }
#reasoning-toggle-btn {
font-size: 1.5rem; border-radius: 50%; width: 40px; height: 40px; padding: 0;
min-width: 0 !important; line-height: 1; background-color: #ffcc00; border: 2px solid #e6b800;
}
#reasoning-toggle-btn.off { background-color: #e0e0e0; border: 2px solid #ccc; }
.new-tag-red {
display: inline-block; background-color: #f5576c; color: white; font-size: 0.7em;
font-weight: bold; padding: 2px 5px; border-radius: 4px; line-height: 1;
position: absolute; top: -5px; right: -5px; z-index: 10; animation: blink 1s infinite;
}
@keyframes blink { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } }
.gradio-html details.reasoning-block {
border: 1px solid #ddd; border-left: 5px solid #667eea; padding: 5px 10px;
margin: 10px 0; border-radius: 4px; background-color: #f9f9ff;
}
.gradio-html details.reasoning-block summary { font-weight: bold; cursor: pointer; outline: none; color: #667eea; }
.gradio-html details.reasoning-block p { margin-top: 5px; padding-left: 10px; border-left: 1px dashed #ccc; white-space: pre-wrap; }
.modal-overlay {
position: fixed; top: 0; left: 0; right: 0; bottom: 0; background: rgba(0, 0, 0, 0.7);
display: flex; justify-content: center; align-items: center; z-index: 1000;
}
.modal-content {
background: white; padding: 30px; border-radius: 15px; width: 90%; max-width: 900px;
box-shadow: 0 10px 50px rgba(0, 0, 0, 0.5); animation: slide-in 0.5s ease-out;
}
@keyframes slide-in { from { transform: translateY(-50px); opacity: 0; } to { transform: translateY(0); opacity: 1; } }
.modal-content h2 { color: #764ba2; border-bottom: 2px solid #eee; padding-bottom: 10px; margin-top: 0; }
.comparison-box { display: flex; gap: 20px; margin-top: 20px; }
.comparison-mode { flex: 1; padding: 15px; border-radius: 10px; }
.mode-reasoning { border: 2px solid #667eea; background-color: #f6f7ff; }
.mode-direct { border: 2px solid #fcb69f; background-color: #fffaf5; }
.comparison-mode h3 { margin-top: 0; font-size: 1.3rem; }
.comparison-mode pre { background-color: #eef; padding: 10px; border-radius: 5px; overflow-x: auto; }
.close-btn {
margin-top: 20px; padding: 10px 20px; background-color: #764ba2; color: white;
border: none; border-radius: 8px; cursor: pointer; font-size: 1rem; transition: background-color 0.3s;
}
.close-btn:hover { background-color: #5d3a84; }
.speed-indicator {
background: linear-gradient(135deg, #00b894, #00cec9);
color: white; padding: 5px 10px; border-radius: 10px; font-size: 0.8rem;
display: inline-block; margin-left: 10px;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
reasoning_enabled = gr.State(False)
welcome_modal_html = gr.HTML(
"""
<div id="welcome-modal" class="modal-overlay" style="display:none;">
<div class="modal-content">
<h2>π§ Welcome to Sam-large-2: Dual-Mode Reasoning Demo</h2>
<p>Our latest model features <strong>Chain-of-Thought (CoT)</strong> functionality and <strong>KV-Cache optimization</strong> for fast CPU inference!</p>
<div class="comparison-box">
<div class="comparison-mode mode-reasoning">
<h3>π‘ Reasoning Mode (ON)</h3>
<p>The model performs a <strong>CoT step</strong> first. The internal thought process is contained within <code><think>...</think></code> tags.</p>
</div>
<div class="comparison-mode mode-direct">
<h3>βͺ Direct Mode (OFF)</h3>
<p>The model generates the final answer immediately, maximizing speed.</p>
</div>
</div>
<button class="close-btn" onclick="document.getElementById('welcome-modal').style.display='none'">Got it! Start Chatting</button>
</div>
</div>
"""
)
if FESTIVE:
gr.HTML("""
<div class="header">
<div class="celebration">π π β¨ π π</div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/yBUDdaTze1L84NaDSpZGf.jpeg"
alt="Sam-large-2" style="max-width: 400px; border-radius: 12px; margin: 1rem auto; display: block; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);">
<h1>π€ Sam-large-2 Chat π€</h1>
<p><strong>LATEST RELEASE!</strong> Our <strong>BEST Reasoning Model</strong> - Now with KV-Cache! <span class="speed-indicator">β‘ 5-20x Faster</span></p>
<div class="twin-badge">Reasoning Model</div>
<div class="celebration">π π« π― β‘ π₯</div>
</div>
""")
else:
gr.HTML("""<div class="header"><h1>π€ Sam-large-2 Chat</h1><p>Advanced Reasoning Model with KV-Cache</p></div>""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=600,
show_label=False,
avatar_images=(
None,
"https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/KtiMi-aDUOOeN--YNT-Fu.jpeg"
),
bubble_full_width=False
)
with gr.Row():
with gr.Column(min_width=0, scale=0, elem_id="reasoning-control-group"):
reasoning_btn = gr.Button("π‘", size="sm", elem_id="reasoning-toggle-btn", elem_classes=["off"])
gr.HTML('<span class="new-tag-red">NEW</span>')
msg = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
scale=8,
container=False
)
submit_btn = gr.Button("Send π" if FESTIVE else "Send", variant="primary", scale=1)
stop_btn = gr.Button("βΉοΈ Stop", variant="stop", scale=1)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Chat", size="sm")
retry_btn = gr.Button("π Retry", size="sm")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Generation Settings")
max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=50, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature")
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-K")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty")
gr.Markdown("---")
gr.Markdown(f"""### π Sam-large-2 Model Info
**Type:** Chain-of-Thought Reasoning Model
**Vocab:** {config['vocab_size']:,}
**Layers:** {config['num_hidden_layers']}
**Context:** {config['max_position_embeddings']:,} tokens
**Optimization:** KV-Cache enabled β‘
""")
gr.Examples(
examples=[
"Explain quantum computing in simple terms",
"Write a short poem about artificial intelligence",
"What is 24 * 12? Show your reasoning.",
"What are the main differences between Python and JavaScript?"
],
inputs=msg
)
gr.HTML("""
<footer>
<p><strong>π Sam-large-2 - LATEST RELEASE with KV-Cache! π</strong></p>
<p style="font-size: 0.9rem; color: #999;">Trained from scratch on TPU v5e-8 β’ Built by Smily studios with TensorFlow & Gradio</p>
</footer>
""")
def show_modal_js():
return """
(function() {
if (sessionStorage.getItem('sam2_modal_shown') !== 'true') {
const modal = document.getElementById('welcome-modal');
if (modal) { modal.style.display = 'flex'; sessionStorage.setItem('sam2_modal_shown', 'true'); }
}
})();
"""
demo.load(None, inputs=None, outputs=None, js=show_modal_js())
def toggle_reasoning(current_state):
new_state = not current_state
return new_state, gr.update(elem_classes="" if new_state else "off")
reasoning_btn.click(
fn=toggle_reasoning,
inputs=[reasoning_enabled],
outputs=[reasoning_enabled, reasoning_btn],
preprocess=False
)
common_inputs = [msg, chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled]
submit_event = msg.submit(
chat_stream,
inputs=common_inputs,
outputs=[chatbot]
).then(lambda: "", outputs=[msg])
click_event = submit_btn.click(
chat_stream,
inputs=common_inputs,
outputs=[chatbot]
).then(lambda: "", outputs=[msg])
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[submit_event, click_event])
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
def retry_last(history, max_tok, temp, topk, topp, rep_pen, reasoning_en):
if not history:
return history
last_user_msg = history[-1][0]
for update in chat_stream(last_user_msg, history[:-1], max_tok, temp, topk, topp, rep_pen, reasoning_en):
yield update
retry_event = retry_btn.click(
retry_last,
inputs=[chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled],
outputs=[chatbot]
)
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[retry_event])
if __name__ == "__main__":
print("\n" + "=" * 60)
print("π Starting Sam-large-2 Chat with KV-Cache Optimization")
print("=" * 60 + "\n")
demo.queue(max_size=20)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True) |