Spaces:
Sleeping
Sleeping
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| # ---- Step 1: 模型加载 ---- | |
| MODEL_ID = "prithivMLmods/Trash-Net" | |
| processor = AutoImageProcessor.from_pretrained(MODEL_ID) | |
| model = AutoModelForImageClassification.from_pretrained(MODEL_ID) | |
| # ---- Step 2: 专业裁剪(基于OpenCV结构化差异检测) ---- | |
| def smart_crop(base_img: Image.Image, new_img: Image.Image): | |
| if base_img is None or new_img is None: | |
| return None, "Missing image input." | |
| # 转为OpenCV格式 | |
| base = np.array(base_img.convert("RGB")) | |
| new = np.array(new_img.convert("RGB")) | |
| base = cv2.resize(base, (224, 224)) | |
| new = cv2.resize(new, (224, 224)) | |
| # 转灰度 + 高斯模糊减少噪声 | |
| base_gray = cv2.GaussianBlur(cv2.cvtColor(base, cv2.COLOR_RGB2GRAY), (5,5), 0) | |
| new_gray = cv2.GaussianBlur(cv2.cvtColor(new, cv2.COLOR_RGB2GRAY), (5,5), 0) | |
| # 差异检测 | |
| diff = cv2.absdiff(base_gray, new_gray) | |
| _, thresh = cv2.threshold(diff, 40, 255, cv2.THRESH_BINARY) | |
| # 形态学操作:去噪 + 连通区域扩大 | |
| kernel = np.ones((5,5), np.uint8) | |
| thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) | |
| thresh = cv2.dilate(thresh, kernel, iterations=2) | |
| # 查找轮廓 | |
| contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if not contours: | |
| return None, "No significant object difference detected." | |
| # 找最大差异区域 | |
| contour = max(contours, key=cv2.contourArea) | |
| x, y, w, h = cv2.boundingRect(contour) | |
| # 裁剪区域并略微扩大边缘 | |
| margin = 10 | |
| x1 = max(0, x - margin) | |
| y1 = max(0, y - margin) | |
| x2 = min(new.shape[1], x + w + margin) | |
| y2 = min(new.shape[0], y + h + margin) | |
| cropped = new[y1:y2, x1:x2] | |
| cropped_pil = Image.fromarray(cropped) | |
| return cropped_pil, None | |
| # ---- Step 3: TrashNet 分类 ---- | |
| def classify_trash(image: Image.Image): | |
| if image is None: | |
| return "No image to classify.", 0.0 | |
| inputs = processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| preds = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
| label = model.config.id2label[preds.argmax().item()] | |
| confidence = preds.max().item() | |
| return label, confidence | |
| # ---- Step 4: 主逻辑 ---- | |
| def detect_and_classify(base_img, new_img): | |
| if base_img is None or new_img is None: | |
| return "⚠️ Please upload both base and new images.", None, None | |
| cropped, error = smart_crop(base_img, new_img) | |
| if error: | |
| return f"⚠️ {error}", None, None | |
| label, conf = classify_trash(cropped) | |
| return f"✅ Object classified as: {label} ({conf*100:.2f}% confidence)", cropped, label | |
| # ---- Step 5: Gradio 界面 ---- | |
| with gr.Blocks(title="Smart Trash Detector") as demo: | |
| gr.Markdown("# ♻️ Smart Trash Detection (with professional background subtraction)\nUpload a **base image**, then a **new image**.") | |
| with gr.Row(): | |
| base_img = gr.Image(label="Base Image", type="pil") | |
| new_img = gr.Image(label="New Image", type="pil") | |
| run_btn = gr.Button("Analyze and Classify") | |
| with gr.Row(): | |
| result_text = gr.Textbox(label="Result") | |
| result_crop = gr.Image(label="Detected Object (Cropped)") | |
| result_label = gr.Textbox(label="Class") | |
| run_btn.click(detect_and_classify, [base_img, new_img], [result_text, result_crop, result_label]) | |
| if __name__ == "__main__": | |
| demo.launch() | |