Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import requests | |
| # Set the title of the Streamlit app | |
| st.title("Airbnb Rental Price Prediction") | |
| # Section for online prediction | |
| st.subheader("Online Prediction") | |
| # Collect user input for property features | |
| room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"]) | |
| accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2) | |
| bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2) | |
| cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"]) | |
| cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"]) | |
| instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"]) | |
| review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0) | |
| bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1) | |
| beds = st.number_input("Beds", min_value=0, step=1, value=1) | |
| # Convert user input into a DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'room_type': room_type, | |
| 'accommodates': accommodates, | |
| 'bathrooms': bathrooms, | |
| 'cancellation_policy': cancellation_policy, | |
| 'cleaning_fee': cleaning_fee, | |
| 'instant_bookable': 'f' if instant_bookable=="False" else "t", # Convert to 't' or 'f' | |
| 'review_scores_rating': review_scores_rating, | |
| 'bedrooms': bedrooms, | |
| 'beds': beds | |
| }]) | |
| # Make prediction when the "Predict" button is clicked | |
| if st.button("Predict"): | |
| response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API | |
| if response.status_code == 200: | |
| prediction = response.json()['Predicted Price (in dollars)'] | |
| st.success(f"Predicted Rental Price (in dollars): {prediction}") | |
| else: | |
| st.error("Error making prediction.") | |
| # Section for batch prediction | |
| st.subheader("Batch Prediction") | |
| # Allow users to upload a CSV file for batch prediction | |
| uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"]) | |
| # Make batch prediction when the "Predict Batch" button is clicked | |
| if uploaded_file is not None: | |
| if st.button("Predict Batch"): | |
| response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API | |
| if response.status_code == 200: | |
| predictions = response.json() | |
| st.success("Batch predictions completed!") | |
| st.write(predictions) # Display the predictions | |
| else: | |
| st.error("Error making batch prediction.") | |