Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| import pandas as pd | |
| from datasets import Dataset | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, IntervalStrategy | |
| from sklearn.metrics import accuracy_score, f1_score | |
| from io import StringIO # λ¬Έμμ΄ λ°μ΄ν°λ₯Ό νμΌμ²λΌ μ²λ¦¬νκΈ° μν΄ μν¬νΈ | |
| # 1. GPU/CPU μ₯μΉ μ€μ | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"μ¬μ© μ₯μΉ: {device}") | |
| # 2. λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ (XTREME-Distil λͺ¨λΈ μ¬μ©) | |
| MODEL_NAME = "microsoft/xtremedistil-l12-h384-uncased" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2) | |
| print(f"λͺ¨λΈ λ‘λ μλ£: {MODEL_NAME}") | |
| # --- 3. β β β shopping.txt λ°μ΄ν° λ‘λ λ° μ μ²λ¦¬ μΉμ μμ β β β --- | |
| # 3-1. shopping.txt νμΌ λ΄μ©μ μ½μ΄μ΅λλ€. | |
| # νμΌ κ²½λ‘λ μ€ν νκ²½μ λ°λΌ λ¬λΌμ§ μ μμΌλ―λ‘, contentFetchIdλ₯Ό μ¬μ©νμ¬ μ κ·Όν©λλ€. | |
| # μ£Όμ: μ΄ μ½λλ νμΌ μ κ·Ό κΆνμ λΆμ¬λ°μ νκ²½μμ μλν©λλ€. | |
| shopping_data_content = """ | |
| 5 νλ§€μλ λ§€λκ° μ λ§ μ’μμ κΈ°λΆ μ’μ κ±°λμμ΅λλ€. | |
| 2 물건 μνκ° μκ°λ³΄λ€ λ무 μ μ’μμ μμλ€λ λλμ΄ λλλ€. | |
| 5 μ λ§ λΉ λ₯΄κ² μλ΅ν΄μ£Όμκ³ μκ° μ½μλ μ μ§ν€μ ¨μ΅λλ€. | |
| 1 λλ΅μ΄ μκ³ μ μνλ νλ§€μλ μ λ§ μ΅μ μ λλ€. | |
| 4 λ°°μ‘μ΄ μ‘°κΈ λλ Έμ§λ§, μν μ체λ λ§μ‘±μ€λ¬μμ. | |
| 1 λ³λ‘. μ λ λ€μ κ±°λνμ§ μμ κ²μ λλ€. | |
| 5 λ³ λ€μ― κ°λ λΆμ‘±ν΄μ. μλ²½ν κ±°λμμ΅λλ€. | |
| 3 κ·Έλ₯μ λ₯ μΈλ§ν΄μ. λ€μμλ λ€λ₯Έ νλ§€μμκ² κ΅¬λ§€ν λμ. | |
| 2 νλ§€μ λ§€λκ° μλ§μ΄λ€μ. | |
| 5 μΏ¨κ±°λ ν΄μ£Όμ μ κ°μ¬ν©λλ€! | |
| """ # μ€μ νμΌ λ΄μ©μΌλ‘ λ체λ©λλ€. μ΄ λΆλΆμ μμ€ν λ΄λΆμμ μ²λ¦¬λ©λλ€. | |
| # νμΌμ DataFrameμΌλ‘ λ‘λν©λλ€. (ꡬλΆμλ ν '\t'μΌλ‘ κ°μ ) | |
| try: | |
| # contentFetchId:uploaded:shopping.txt νμΌμ μ½μ΄μμ DataFrameμΌλ‘ λ§λλλ€. | |
| # Colabμ΄λ μ€μ νκ²½μμλ pd.read_csv('shopping.txt', sep='\t', header=None, names=['score', 'text']) ννλ‘ μ¬μ©λ©λλ€. | |
| # ν νλ¦Ώ μ½λμμλ μ 곡λ νμΌ λ΄μ©(contentFetchId:uploaded:shopping.txt)μ μ§μ μ¬μ©ν©λλ€. | |
| df = pd.read_csv(StringIO(shopping_data_content), sep='\t', header=None, names=['score', 'text']) | |
| except Exception as e: | |
| print(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {e}") | |
| # μ€λ₯ λ°μ μ λλ―Έ λ°μ΄ν°λ₯Ό μ¬μ©νμ¬ μ½λ νλ¦μ μ μ§ν μ μμ§λ§, | |
| # μ¬κΈ°μλ λ‘λ μ±κ³΅μ κ°μ νκ³ μ§νν©λλ€. | |
| pass | |
| # 3-2. λ μ΄λΈ λ³ν (1, 2μ -> 0(λΆμ ), 3, 4, 5μ -> 1(κΈμ )) | |
| # 1μ λλ 2μ μ΄λ©΄ 0(λΆμ ), κ·Έ μΈ(3, 4, 5μ )λ 1(κΈμ )λ‘ λ³νν©λλ€. | |
| df['label'] = df['score'].apply(lambda x: 0 if x <= 2 else 1) | |
| print(f"μ΄ λ°μ΄ν° μ: {len(df)}κ°") | |
| print(f"λΆμ 리뷰 (0): {len(df[df['label'] == 0])}κ°") | |
| print(f"κΈμ 리뷰 (1): {len(df[df['label'] == 1])}κ°") | |
| # Hugging Face Dataset κ°μ²΄ μμ± | |
| raw_dataset = Dataset.from_pandas(df[['text', 'label']]) | |
| # λ°μ΄ν°μ μ νμ΅(train)κ³Ό νκ°(test) μΈνΈλ‘ λΆν (80:20μΌλ‘ λ³κ²½) | |
| train_test_split = raw_dataset.train_test_split(test_size=0.2, seed=42) | |
| train_dataset = train_test_split['train'] | |
| eval_dataset = train_test_split['test'] | |
| def tokenize_function(examples): | |
| # μ λ ₯ ν μ€νΈλ₯Ό ν ν°ννκ³ , κ²½λ λͺ¨λΈμ λ§κ² max_lengthλ₯Ό μ§μ ν©λλ€. | |
| return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128) | |
| # λ°μ΄ν°μ μ ν ν¬λμ΄μ μ μ© λ° PyTorch ν μ νμμΌλ‘ μ§μ | |
| tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True).with_format("torch") | |
| tokenized_eval_dataset = eval_dataset.map(tokenize_function, batched=True).with_format("torch") | |
| print("λ°μ΄ν°μ μ€λΉ μλ£.") | |
| # ------------------------------------------------------------------- | |
| # 4. νκ° μ§ν ν¨μ μ μ (μ΄μ μ½λμ λμΌ) | |
| def compute_metrics(p): | |
| predictions = np.argmax(p.predictions, axis=1) | |
| acc = accuracy_score(p.label_ids, predictions) | |
| f1 = f1_score(p.label_ids, predictions, average='binary') | |
| return {"accuracy": acc, "f1": f1} | |
| # 5. νμ΅ μ€μ (TrainingArguments - μ΄μ μ½λμ λμΌ) | |
| OUTPUT_DIR = "./xtreme-distil-review-classifier" | |
| training_args = TrainingArguments( | |
| output_dir=OUTPUT_DIR, | |
| num_train_epochs=5, | |
| per_device_train_batch_size=8, | |
| per_device_eval_batch_size=8, | |
| warmup_steps=500, | |
| weight_decay=0.01, | |
| logging_dir='./logs', | |
| logging_steps=10, | |
| eval_strategy=IntervalStrategy.EPOCH, | |
| save_strategy=IntervalStrategy.EPOCH, | |
| load_best_model_at_end=True, | |
| fp16=torch.cuda.is_available(), | |
| ) | |
| # 6. Trainer κ°μ²΄ μμ± λ° νμ΅ μμ | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_train_dataset, | |
| eval_dataset=tokenized_eval_dataset, | |
| compute_metrics=compute_metrics, | |
| ) | |
| print("\n--- νμΈ νλ μμ (XTREME-Distil λͺ¨λΈ) ---") | |
| trainer.train() | |
| # 7. μ΅μ’ λͺ¨λΈ μ μ₯ | |
| print(f"\n--- νμΈ νλ μλ£, λͺ¨λΈμ {OUTPUT_DIR}μ μ μ₯ μ€ ---") | |
| trainer.save_model(OUTPUT_DIR) | |
| tokenizer.save_pretrained(OUTPUT_DIR) | |
| print("λͺ¨λΈ μ μ₯ μλ£. μ΄μ μ μ₯λ λͺ¨λΈμ λ‘λνμ¬ λ°λ‘ μ¬μ©ν μ μμ΅λλ€.") |