File size: 14,084 Bytes
1a431a3
93af3e2
b7cfbcf
1a431a3
c1ad781
597b21e
 
93af3e2
 
 
 
4e3b77d
 
 
 
 
9fa71c2
 
4e3b77d
 
 
 
 
 
 
9fa71c2
 
4e3b77d
9fa71c2
4e3b77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa71c2
 
 
 
 
4e3b77d
 
 
 
 
 
 
 
 
 
 
 
 
f5cd9ba
4e3b77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597b21e
4e3b77d
93af3e2
 
 
 
 
 
 
 
 
 
597b21e
1a431a3
a49f337
4e3b77d
b0a9f3e
51b5fb9
 
 
1a431a3
 
 
93af3e2
1a431a3
b0a9f3e
1a431a3
4e3b77d
1a431a3
 
4e3b77d
 
1a431a3
 
93af3e2
1a431a3
 
 
 
 
 
 
 
4e3b77d
1a431a3
 
93af3e2
1a431a3
 
93af3e2
 
 
9047ade
1a431a3
 
80d001c
93af3e2
 
4e3b77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa71c2
 
4e3b77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a431a3
4e3b77d
 
1a431a3
4e3b77d
 
 
1a431a3
4e3b77d
 
1a431a3
4e3b77d
51b5fb9
4e3b77d
 
93af3e2
4e3b77d
93af3e2
4e3b77d
 
a49f337
93af3e2
4e3b77d
 
 
93af3e2
1a431a3
 
93af3e2
 
1a431a3
 
 
 
4e3b77d
1a431a3
 
 
 
 
 
 
 
d45f4bc
a1ef78c
1a431a3
 
d45f4bc
93af3e2
 
a1ef78c
1a431a3
 
9047ade
1a431a3
 
9047ade
 
4e3b77d
9047ade
 
 
4e3b77d
fd3cd81
1a431a3
9047ade
4e3b77d
9047ade
 
 
1a431a3
 
 
9047ade
4e3b77d
9047ade
80d001c
 
 
 
 
 
4e3b77d
80d001c
9047ade
 
4e3b77d
 
93af3e2
4e3b77d
1a431a3
4e3b77d
1a431a3
 
4e3b77d
1a431a3
93af3e2
 
 
a49f337
1a431a3
a49f337
 
 
9047ade
1a431a3
 
80d001c
93af3e2
1a431a3
93af3e2
a1ef78c
93af3e2
1a431a3
4e3b77d
93af3e2
 
1a431a3
 
 
4e3b77d
 
 
 
 
 
1a431a3
 
 
 
 
 
 
4e3b77d
1a431a3
 
 
c1ad781
93af3e2
7d32287
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from gradio_imageslider import ImageSlider
from PIL import Image
import requests
import sys
import subprocess
from huggingface_hub import hf_hub_download
import tempfile

os.environ["GIT_TERMINAL_PROMPT"] = "0"

# Setup ComfyUI and custom nodes
if not os.path.exists("ComfyUI"):
    subprocess.run(["git", "clone", "https://github.com/comfyanonymous/ComfyUI"])

custom_nodes_dir = os.path.join("ComfyUI", "custom_nodes")
os.makedirs(custom_nodes_dir, exist_ok=True)

# Clone UltimateSDUpscale
usd_dir = os.path.join(custom_nodes_dir, "ComfyUI_UltimateSDUpscale")
if not os.path.exists(usd_dir):
    subprocess.run(["git", "clone", "https://github.com/ssitu/ComfyUI_UltimateSDUpscale", usd_dir])

# Clone comfy_mtb
mtb_dir = os.path.join(custom_nodes_dir, "comfy_mtb")
if not os.path.exists(mtb_dir):
    subprocess.run(["git", "clone", "https://github.com/melMass/comfy_mtb", mtb_dir])
    # Install requirements
    if os.path.exists(os.path.join(mtb_dir, "requirements.txt")):
        subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], cwd=mtb_dir)

# Clone KJNodes
kjn_dir = os.path.join(custom_nodes_dir, "ComfyUI-KJNodes")
if not os.path.exists(kjn_dir):
    subprocess.run(["git", "clone", "https://github.com/kijai/ComfyUI-KJNodes", kjn_dir])
    # Install requirements
    if os.path.exists(os.path.join(kjn_dir, "requirements.txt")):
        subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], cwd=kjn_dir)

# Download models if not present
comfy_models_dir = os.path.join("ComfyUI", "models")
os.makedirs(comfy_models_dir, exist_ok=True)

# Diffusion models (Flux FP8)
diffusion_dir = os.path.join(comfy_models_dir, "diffusion_models")
os.makedirs(diffusion_dir, exist_ok=True)
if not os.path.exists(os.path.join(diffusion_dir, "flux1-dev-fp8.safetensors")):
    hf_hub_download(repo_id="Kijai/flux-fp8", filename="flux1-dev-fp8.safetensors", local_dir=diffusion_dir)

# CLIP models
clip_dir = os.path.join(comfy_models_dir, "clip")
os.makedirs(clip_dir, exist_ok=True)
if not os.path.exists(os.path.join(clip_dir, "clip_l.safetensors")):
    hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir=clip_dir)
if not os.path.exists(os.path.join(clip_dir, "t5xxl_fp8_e4m3fn.safetensors")):
    hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir=clip_dir)

# VAE
vae_dir = os.path.join(comfy_models_dir, "vae")
os.makedirs(vae_dir, exist_ok=True)
if not os.path.exists(os.path.join(vae_dir, "ae.safetensors")):
    hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir=vae_dir)

# Upscale models
upscale_dir = os.path.join(comfy_models_dir, "upscale_models")
os.makedirs(upscale_dir, exist_ok=True)
for model_name in ["RealESRGAN_x2.pth", "RealESRGAN_x4.pth"]:
    model_path = os.path.join(upscale_dir, model_name)
    if not os.path.exists(model_path):
        url = f"https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/{model_name}"
        with open(model_path, "wb") as f:
            f.write(requests.get(url).content)

# Add ComfyUI to sys.path
sys.path.append(os.path.abspath("ComfyUI"))

# Import custom nodes
from nodes import NODE_CLASS_MAPPINGS, init_custom_nodes
init_custom_nodes()

# From the provided script
def get_value_at_index(obj, index):
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

# CSS and constants similar to original
css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
}
.main-header {
    text-align: center;
    margin-bottom: 2rem;
}
"""

power_device = "ZeroGPU"
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192

def make_divisible_by_16(size):
    return ((size // 16) * 16) if (size % 16) < 8 else ((size // 16 + 1) * 16)

def process_input(input_image, upscale_factor):
    w, h = input_image.size
    w_original, h_original = w, h

    was_resized = False

    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        gr.Info("Requested output too large. Resizing input.")
        target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
        scale = (target_input_pixels / (w * h)) ** 0.5
        new_w = max(16, int(w * scale) // 16 * 16)
        new_h = max(16, int(h * scale) // 16 * 16)
        input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
        was_resized = True

    return input_image, w_original, h_original, was_resized

def load_image_from_url(url):
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        return Image.open(response.raw)
    except Exception as e:
        raise gr.Error(f"Failed to load image: {e}")

@spaces.GPU(duration=120)
def enhance_image(
    image_input,
    image_url,
    seed,
    randomize_seed,
    num_inference_steps,
    upscale_factor,
    denoising_strength,
    custom_prompt,
    tile_size,
    progress=gr.Progress(track_tqdm=True),
):
    with torch.inference_mode():
        # Handle input image
        if image_input is not None:
            true_input_image = image_input
        elif image_url:
            true_input_image = load_image_from_url(image_url)
        else:
            raise gr.Error("Provide an image or URL")

        input_image, w_original, h_original, was_resized = process_input(true_input_image, upscale_factor)

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

        # Prepare ComfyUI input image
        input_dir = os.path.join("ComfyUI", "input")
        os.makedirs(input_dir, exist_ok=True)
        temp_filename = f"input_{random.randint(0, 1000000)}.png"
        input_path = os.path.join(input_dir, temp_filename)
        input_image.save(input_path)

        # Nodes
        load_image_node = NODE_CLASS_MAPPINGS["LoadImage"]()
        image_loaded = load_image_node.load_image(image=temp_filename)
        image = get_value_at_index(image_loaded, 0)

        text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]()
        text_out = text_multiline.text_multiline(text=custom_prompt if custom_prompt.strip() else "")
        prompt_text = get_value_at_index(text_out, 0)

        dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
        clip_out = dualcliploader.load_clip(
            clip_name1="clip_l.safetensors",
            clip_name2="t5xxl_fp8_e4m3fn.safetensors",
            type="flux",
        )
        clip = get_value_at_index(clip_out, 0)

        cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
        conditioning = get_value_at_index(cliptextencode.encode(text=prompt_text, clip=clip), 0)

        fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
        positive_out = fluxguidance.append(guidance=3.5, conditioning=conditioning)  # Using 3.5 as in original app
        positive = get_value_at_index(positive_out, 0)

        conditioningzeroout = NODE_CLASS_MAPPINGS["ConditioningZeroOut"]()
        negative_out = conditioningzeroout.zero_out(conditioning=conditioning)
        negative = get_value_at_index(negative_out, 0)

        upscale_name = "RealESRGAN_x2.pth" if upscale_factor == 2 else "RealESRGAN_x4.pth"
        upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
        upscale_model = get_value_at_index(upscalemodelloader.load_model(model_name=upscale_name), 0)

        vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
        vae = get_value_at_index(vaeloader.load_vae(vae_name="ae.safetensors"), 0)

        unetloader = NODE_CLASS_MAPPINGS["LoadDiffusionModel"]()
        model = get_value_at_index(unetloader.load_diffusion_model(unet_name="flux1-dev-fp8.safetensors", weight_dtype="fp8_e4m3fn"), 0)

        ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
        upscale_out = ultimatesdupscale.upscale(
            upscale_by=float(upscale_factor),
            seed=seed,
            steps=num_inference_steps,
            cfg=1.0,
            sampler_name="euler",
            scheduler="normal",
            denoise=denoising_strength,
            mode_type="Linear",
            tile_width=tile_size,
            tile_height=tile_size,
            mask_blur=8,
            tile_padding=32,
            seam_fix_mode="None",
            seam_fix_denoise=1.0,
            seam_fix_width=64,
            seam_fix_mask_blur=8,
            seam_fix_padding=16,
            force_uniform_tiles=True,
            tiled_decode=False,
            image=image,
            model=model,
            positive=positive,
            negative=negative,
            vae=vae,
            upscale_model=upscale_model,
        )
        upscaled_tensor = get_value_at_index(upscale_out, 0)

        # Convert to PIL
        upscaled_img = Image.fromarray((upscaled_tensor[0].cpu().numpy() * 255).astype(np.uint8))

        target_w, target_h = w_original * upscale_factor, h_original * upscale_factor
        if upscaled_img.size != (target_w, target_h):
            upscaled_img = upscaled_img.resize((target_w, target_h), resample=Image.LANCZOS)

        if was_resized:
            upscaled_img = upscaled_img.resize((target_w, target_h), resample=Image.LANCZOS)

        resized_input = true_input_image.resize(upscaled_img.size, resample=Image.LANCZOS)

        # Cleanup temp file
        os.remove(input_path)

        return [resized_input, upscaled_img]

# Gradio interface similar to original
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
    gr.HTML("""
    <div class="main-header">
        <h1>🎨 AI Image Upscaler - Flux FP8</h1>
        <p>Upscale images using Flux FP8 with ComfyUI workflow</p>
        <p>Running on <strong>{}</strong></p>
    </div>
    """.format(power_device))

    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>πŸ“€ Input</h3>")
            
            with gr.Tabs():
                with gr.TabItem("πŸ“ Upload Image"):
                    input_image = gr.Image(label="Upload Image", type="pil", height=200)
                
                with gr.TabItem("πŸ”— Image URL"):
                    image_url = gr.Textbox(
                        label="Image URL",
                        placeholder="https://example.com/image.jpg",
                        value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
                    )
            
            gr.HTML("<h3>πŸŽ›οΈ Prompt Settings</h3>")
            
            custom_prompt = gr.Textbox(
                label="Custom Prompt (optional)",
                placeholder="Enter custom prompt or leave empty",
                lines=2
            )
            
            gr.HTML("<h3>βš™οΈ Upscaling Settings</h3>")
            
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=2
            )
            
            num_inference_steps = gr.Slider(
                label="Inference Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=25
            )
            
            denoising_strength = gr.Slider(
                label="Denoising Strength",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.3
            )

            tile_size = gr.Slider(
                label="Tile Size",
                minimum=256,
                maximum=2048,
                step=64,
                value=1024
            )
            
            with gr.Row():
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
            
            enhance_btn = gr.Button("πŸš€ Upscale Image", variant="primary", size="lg")

        with gr.Column(scale=2):
            gr.HTML("<h3>πŸ“Š Results</h3>")
            
            result_slider = ImageSlider(type="pil", interactive=False, height=600, label=None)

    enhance_btn.click(
        fn=enhance_image,
        inputs=[
            input_image,
            image_url,
            seed,
            randomize_seed,
            num_inference_steps,
            upscale_factor,
            denoising_strength,
            custom_prompt,
            tile_size
        ],
        outputs=[result_slider]
    )
    
    gr.HTML("""
    <div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
        <p><strong>Note:</strong> Uses Flux FP8 model. Ensure compliance with licenses for commercial use.</p>
    </div>
    """)
    
    gr.HTML("""
    <style>
        #result_slider .slider { width: 100% !important; }
        #result_slider img { object-fit: contain !important; width: 100% !important; height: auto !important; }
        #result_slider .gr-button-tool, #result_slider .gr-button-undo, #result_slider .gr-button-clear { display: none !important; }
        #result_slider .badge-container .badge { display: none !important; }
        #result_slider .badge-container::before { content: "Before"; position: absolute; top: 10px; left: 10px; background: rgba(0,0,0,0.5); color: white; padding: 5px; border-radius: 5px; z-index: 10; }
        #result_slider .badge-container::after { content: "After"; position: absolute; top: 10px; right: 10px; background: rgba(0,0,0,0.5); color: white; padding: 5px; border-radius: 5px; z-index: 10; }
    </style>
    """)
    
    gr.HTML("""
    <script>
        document.addEventListener('DOMContentLoaded', function() {
            const sliderInput = document.querySelector('#result_slider input[type="range"]');
            if (sliderInput) { sliderInput.value = 50; sliderInput.dispatchEvent(new Event('input')); }
        });
    </script>
    """)

if __name__ == "__main__":
    demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)