Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,826 Bytes
6447e6c ad6722d 0cfee79 393fc4f fde2beb 44a4bd9 f6dc317 b67da86 393fc4f ad6722d 393fc4f e256a15 393fc4f ad6722d 393fc4f 6447e6c ad6722d 5b9c736 6447e6c ad6722d 393fc4f e256a15 393fc4f 6447e6c 393fc4f e256a15 393fc4f e256a15 393fc4f e256a15 393fc4f ba022c6 393fc4f ba022c6 393fc4f b67da86 393fc4f 6447e6c 393fc4f ad6722d 393fc4f 6447e6c 393fc4f 6447e6c 393fc4f 6447e6c 393fc4f 4aaab6c 393fc4f 6447e6c 393fc4f e256a15 393fc4f ad6722d 393fc4f ad6722d b67da86 393fc4f ad6722d 393fc4f 4aaab6c ad6722d 393fc4f dc155d4 e256a15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
# =========================================================
# MODEL CONFIGURATION
# =========================================================
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_TOKEN = os.environ.get("HF_TOKEN")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 7720
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
# =========================================================
# LOAD PIPELINE
# =========================================================
print("Loading pipeline...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer",
torch_dtype=torch.bfloat16,
device_map="cuda",
token=HF_TOKEN
),
transformer_2=WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer_2",
torch_dtype=torch.bfloat16,
device_map="cuda",
token=HF_TOKEN
),
torch_dtype=torch.bfloat16,
).to("cuda")
# =========================================================
# LOAD LORA ADAPTERS
# =========================================================
print("Loading LoRA adapters...")
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2",
load_into_transformer_2=True
)
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipe.unload_lora_weights()
# =========================================================
# QUANTIZATION & AOT OPTIMIZATION
# =========================================================
print("Applying quantization...")
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
print("Loading AOTI blocks...")
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
# =========================================================
# DEFAULT PROMPTS
# =========================================================
default_prompt_i2v = "Make this image come alive with dynamic, cinematic human motion. Create smooth, natural, lifelike animation with fluid transitions, expressive body movement, realistic physics, and elegant camera flow. Deliver a polished, high-quality motion style that feels immersive, artistic, and visually captivating."
default_negative_prompt = (
"low quality, worst quality, motion artifacts, unstable motion, jitter, frame jitter, wobbling limbs, motion distortion, inconsistent movement, robotic movement, animation-like motion, awkward transitions, incorrect body mechanics, unnatural posing, off-balance poses, broken motion paths, frozen frames, duplicated frames, frame skipping, warped motion, stretching artifacts bad anatomy, incorrect proportions, deformed body, twisted torso, broken joints, dislocated limbs, distorted neck, unnatural spine curvature, malformed hands, extra fingers, missing fingers, fused fingers, distorted legs, extra limbs, collapsed feet, floating feet, foot sliding, foot jitter, backward walking, unnatural gait blurry details, long exposure blur, ghosting, shadow trails, smearing, washed-out colors, overexposure, underexposure, excessive contrast, blown highlights, poorly rendered clothing, fabric glitches, texture warping, clothing merging with body, incorrect cloth physics ugly background, cluttered scene, crowded background, random objects, unwanted text, subtitles, logos, graffiti, grain, noise, static artifacts, compression noise, jpeg artifacts, image-like stillness, painting-like look, cartoon texture, low-resolution textures"
)
# =========================================================
# IMAGE RESIZING LOGIC
# =========================================================
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
# =========================================================
# UTILITY FUNCTIONS
# =========================================================
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
def get_duration(
input_image, prompt, steps, negative_prompt,
duration_seconds, guidance_scale, guidance_scale_2,
seed, randomize_seed, progress,
):
# --- CRITICAL FIX: Handle NoneType for input_image ---
if input_image is None:
return 120 # Return default duration if image is missing to prevent crash
# -----------------------------------------------------
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resize_image(input_image).size
frames = get_num_frames(duration_seconds)
factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
return 10 + int(steps) * step_duration
# =========================================================
# MAIN GENERATION FUNCTION
# =========================================================
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
# =========================================================
# GRADIO UI
# =========================================================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# --- ADVERTISEMENT BANNER FOR DREAM HUB PRO ---
gr.HTML("""
<div style="background: linear-gradient(90deg, #4f46e5, #9333ea); color: white; padding: 15px; border-radius: 10px; text-align: center; margin-bottom: 20px; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; flex-wrap: wrap;">
<div style="text-align: left;">
<h3 style="margin: 0; font-weight: bold; font-size: 18px;">✨ New: Dream Hub Pro (All-in-One)</h3>
<p style="margin: 5px 0 0 0; opacity: 0.9; font-size: 14px;">Access all your pro tools (Wan2.1, Qwen, Audio, Video Enhance) in one place!</p>
</div>
<a href="https://huggingface.co/spaces/dream2589632147/Dream-Hub-Pro" target="_blank" style="text-decoration: none;">
<button style="background-color: white; color: #4f46e5; border: none; padding: 10px 25px; border-radius: 25px; font-weight: bold; cursor: pointer; transition: all 0.2s; font-size: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
🚀 Open Hub Pro Now
</button>
</a>
</div>
</div>
""")
# ---------------------------------------------
gr.Markdown("# 🚀 Dream Wan 2.2 Faster Pro (14B) — Ultra Fast I2V with Lightning LoRA")
gr.Markdown("Optimized FP8 quantized pipeline with AoT blocks & 4-step fast inference ⚡")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(
minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5,
label="Duration (seconds)",
info=f"Model range: {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale (high noise)")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 (low noise)")
generate_button = gr.Button("🎬 Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input,
seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"wan_i2v_input.JPG",
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
4,
],
],
inputs=[input_image_component, prompt_input, steps_slider],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples=False # Disabled caching to prevent startup errors
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |