File size: 5,369 Bytes
7f17fe7
95b43d8
7f17fe7
 
95b43d8
 
e66afc2
1efa28d
3cc319e
1efa28d
 
3cc319e
8153817
1efa28d
 
 
8153817
1efa28d
7f17fe7
1efa28d
7f17fe7
8153817
 
 
 
 
 
 
 
7f17fe7
8153817
 
 
 
 
 
 
 
7f17fe7
3cc319e
 
8153817
6ba018e
1efa28d
 
8153817
 
1efa28d
 
8153817
 
 
1efa28d
 
 
 
 
 
8153817
 
 
 
 
 
 
6ba018e
1efa28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b43d8
 
 
7f17fe7
95b43d8
 
 
 
8153817
1efa28d
 
8153817
7f17fe7
8153817
95b43d8
8153817
 
 
 
 
 
 
 
 
 
 
 
 
 
7f17fe7
95b43d8
 
 
4607c9c
689eabe
95b43d8
 
689eabe
7f17fe7
95b43d8
 
 
8153817
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from fastapi import FastAPI, Request
from pydantic import BaseModel
import torch
import pickle
import gluonnlp as nlp
import numpy as np
import os
import sys # ์˜ค๋ฅ˜ ์‹œ ์„œ๋น„์Šค ์ข…๋ฃŒ๋ฅผ ์œ„ํ•ด sys ๋ชจ๋“ˆ ์ž„ํฌํŠธ

# transformers์˜ AutoTokenizer๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
from transformers import AutoTokenizer # BertModel, BertForSequenceClassification ๋“ฑ์€ ์ด์ œ ์ง์ ‘ ํ•„์š” ์—†์Šต๋‹ˆ๋‹ค.
from torch.utils.data import Dataset, DataLoader
import logging # ๋กœ๊น… ๋ชจ๋“ˆ ์ž„ํฌํŠธ ์œ ์ง€
from huggingface_hub import hf_hub_download # hf_hub_download ์ž„ํฌํŠธ ์œ ์ง€
# collections ๋ชจ๋“ˆ์€ ๋” ์ด์ƒ ํ•„์š” ์—†์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ํ˜น์‹œ ๋ชฐ๋ผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.
import collections 

# --- 1. FastAPI ์•ฑ ๋ฐ ์ „์—ญ ๋ณ€์ˆ˜ ์„ค์ • ---
app = FastAPI()
device = torch.device("cpu") # Hugging Face Spaces์˜ ๋ฌด๋ฃŒ ํ‹ฐ์–ด๋Š” ์ฃผ๋กœ CPU๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

# โœ… category ๋กœ๋“œ (GitHub ์ €์žฅ์†Œ ๋ฃจํŠธ์— ์žˆ์–ด์•ผ ํ•จ)
try:
    with open("category.pkl", "rb") as f:
        category = pickle.load(f)
    print("category.pkl ๋กœ๋“œ ์„ฑ๊ณต.")
except FileNotFoundError:
    print("Error: category.pkl ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ์— ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.")
    sys.exit(1) # ํŒŒ์ผ ์—†์œผ๋ฉด ์„œ๋น„์Šค ์‹œ์ž‘ํ•˜์ง€ ์•Š์Œ

# โœ… vocab ๋กœ๋“œ (GitHub ์ €์žฅ์†Œ ๋ฃจํŠธ์— ์žˆ์–ด์•ผ ํ•จ)
try:
    with open("vocab.pkl", "rb") as f:
        vocab = pickle.load(f)
    print("vocab.pkl ๋กœ๋“œ ์„ฑ๊ณต.")
except FileNotFoundError:
    print("Error: vocab.pkl ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ์— ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.")
    sys.exit(1) # ํŒŒ์ผ ์—†์œผ๋ฉด ์„œ๋น„์Šค ์‹œ์ž‘ํ•˜์ง€ ์•Š์Œ

# โœ… ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ (transformers.AutoTokenizer ์‚ฌ์šฉ)
tokenizer = AutoTokenizer.from_pretrained('skt/kobert-base-v1')
print("ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ ์„ฑ๊ณต.")

# โœ… ๋ชจ๋ธ ๋กœ๋“œ (Hugging Face Hub์—์„œ ๋‹ค์šด๋กœ๋“œ)
# textClassifierModel.pt ํŒŒ์ผ์€ ์ด๋ฏธ ๊ฒฝ๋Ÿ‰ํ™”๋œ '์™„์ „ํ•œ ๋ชจ๋ธ ๊ฐ์ฒด'๋ผ๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์ง์ ‘ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
try:
    HF_MODEL_REPO_ID = "hiddenFront/TextClassifier" # ์‚ฌ์šฉ์ž๋‹˜์˜ ์‹ค์ œ Hugging Face ์ €์žฅ์†Œ ID
    HF_MODEL_FILENAME = "textClassifierModel.pt" # Hugging Face Hub์— ์—…๋กœ๋“œํ•œ ํŒŒ์ผ ์ด๋ฆ„๊ณผ ์ผ์น˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    
    model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
    print(f"๋ชจ๋ธ ํŒŒ์ผ์ด '{model_path}'์— ์„ฑ๊ณต์ ์œผ๋กœ ๋‹ค์šด๋กœ๋“œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")

    # --- ์ˆ˜์ •๋œ ํ•ต์‹ฌ ๋ถ€๋ถ„ ---
    # ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋ชจ๋ธ ๊ฐ์ฒด๋ฅผ ์ง์ ‘ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
    # ์ด ํŒŒ์ผ์€ ์ด๋ฏธ PyTorch ๋ชจ๋ธ ๊ฐ์ฒด(์–‘์žํ™”๋œ ๋ชจ๋ธ ํฌํ•จ)์ด๋ฏ€๋กœ ๋ฐ”๋กœ ๋กœ๋“œํ•˜์—ฌ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
    model = torch.load(model_path, map_location=device)
    # --- ์ˆ˜์ •๋œ ํ•ต์‹ฌ ๋ถ€๋ถ„ ๋ ---

    model.eval() # ์ถ”๋ก  ๋ชจ๋“œ๋กœ ์„ค์ •
    print("๋ชจ๋ธ ๋กœ๋“œ ์„ฑ๊ณต.")

except Exception as e:
    print(f"Error: ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ๋˜๋Š” ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
    sys.exit(1) # ๋ชจ๋ธ ๋กœ๋“œ ์‹คํŒจ ์‹œ ์„œ๋น„์Šค ์‹œ์ž‘ํ•˜์ง€ ์•Š์Œ


# --- 2. BERTDataset ํด๋ž˜์Šค ์ •์˜ (dataset.py์—์„œ ์˜ฎ๊ฒจ์˜ด) ---
# ์ด ํด๋ž˜์Šค๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
class BERTDataset(Dataset):
    def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, vocab, max_len, pad, pair):
        # nlp.data.BERTSentenceTransform์€ ํ† ํฌ๋‚˜์ด์ € ํ•จ์ˆ˜๋ฅผ ๋ฐ›์Šต๋‹ˆ๋‹ค.
        # AutoTokenizer์˜ tokenize ๋ฉ”์„œ๋“œ๋ฅผ ์ง์ ‘ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค.
        transform = nlp.data.BERTSentenceTransform(
            bert_tokenizer, max_seq_length=max_len, vocab=vocab, pad=pad, pair=pair
        )
        self.sentences = [transform([i[sent_idx]]) for i in dataset]
        self.labels = [np.int32(i[label_idx]) for i in dataset]

    def __getitem__(self, i):
        return (self.sentences[i] + (self.labels[i],))

    def __len__(self):
        return len(self.labels)


# โœ… ๋ฐ์ดํ„ฐ์…‹ ์ƒ์„ฑ์— ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ
max_len = 64
batch_size = 32

# โœ… ์˜ˆ์ธก ํ•จ์ˆ˜
def predict(predict_sentence):
    data = [predict_sentence, '0']
    dataset_another = [data]
    # num_workers๋Š” ๋ฐฐํฌ ํ™˜๊ฒฝ์—์„œ 0์œผ๋กœ ์„ค์ • ๊ถŒ์žฅ
    # tokenizer.tokenize๋ฅผ BERTDataset์— ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค.
    another_test = BERTDataset(dataset_another, 0, 1, tokenizer.tokenize, vocab, max_len, True, False)
    test_dataLoader = DataLoader(another_test, batch_size=batch_size, num_workers=0)

    model.eval() # ์˜ˆ์ธก ์‹œ ๋ชจ๋ธ์„ ํ‰๊ฐ€ ๋ชจ๋“œ๋กœ ์„ค์ •

    with torch.no_grad(): # ๊ทธ๋ผ๋””์–ธํŠธ ๊ณ„์‚ฐ ๋น„ํ™œ์„ฑํ™”
        for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(test_dataLoader):
            token_ids = token_ids.long().to(device)
            segment_ids = segment_ids.long().to(device)
            
            out = model(token_ids, valid_length, segment_ids)
            
            logits = out
            logits = logits.detach().cpu().numpy()
            
            predicted_category_index = np.argmax(logits)
            predicted_category_name = list(category.keys())[predicted_category_index]
            
            return predicted_category_name

# โœ… ์—”๋“œํฌ์ธํŠธ ์ •์˜
class InputText(BaseModel):
    text: str

@app.get("/")
def root():
    return {"message": "Text Classification API (KoBERT)"}

@app.post("/predict")
async def predict_route(item: InputText):
    result = predict(item.text)
    return {"text": item.text, "classification": result}