Spaces:
Sleeping
Sleeping
File size: 6,182 Bytes
7f17fe7 95b43d8 7f17fe7 95b43d8 e66afc2 44d2bcd 3cc319e 44d2bcd 3cc319e 44d2bcd 95c8334 8153817 95c8334 7f17fe7 1efa28d 7f17fe7 44d2bcd 8153817 44d2bcd 8153817 44d2bcd 7f17fe7 44d2bcd 8153817 44d2bcd 8153817 44d2bcd 7f17fe7 44d2bcd 3cc319e 44d2bcd 6ba018e 1efa28d 8153817 44d2bcd 1efa28d 8153817 44d2bcd 8153817 95c8334 58648d1 44d2bcd 8153817 44d2bcd 8153817 6ba018e 95b43d8 7f17fe7 95b43d8 1efa28d 8153817 7f17fe7 44d2bcd 95b43d8 44d2bcd 8153817 44d2bcd 8153817 44d2bcd 8153817 7f17fe7 95b43d8 4607c9c 689eabe 95b43d8 689eabe 7f17fe7 95b43d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from fastapi import FastAPI, Request
from pydantic import BaseModel
import torch
import pickle
import gluonnlp as nlp
import numpy as np
import os
import sys
import collections
import logging # λ‘κΉ
λͺ¨λ μν¬νΈ
from transformers import AutoTokenizer, BertModel
from torch.utils.data import Dataset, DataLoader
from huggingface_hub import hf_hub_download
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class BERTClassifier(torch.nn.Module):
def __init__(self,
bert,
hidden_size = 768,
num_classes=5, # λΆλ₯ν ν΄λμ€ μ (category λμ
λ리 ν¬κΈ°μ μΌμΉ)
dr_rate=None,
params=None):
super(BERTClassifier, self).__init__()
self.bert = bert
self.dr_rate = dr_rate
self.classifier = torch.nn.Linear(hidden_size , num_classes)
if dr_rate:
self.dropout = torch.nn.Dropout(p=dr_rate)
def gen_attention_mask(self, token_ids, valid_length):
attention_mask = torch.zeros_like(token_ids)
for i, v in enumerate(valid_length):
attention_mask[i][:v] = 1
return attention_mask.float()
def forward(self, token_ids, valid_length, segment_ids):
attention_mask = self.gen_attention_mask(token_ids, valid_length)
_, pooler = self.bert(input_ids=token_ids, token_type_ids=segment_ids.long(), attention_mask=attention_mask.float().to(token_ids.device), return_dict=False)
if self.dr_rate:
out = self.dropout(pooler)
else:
out = pooler
return self.classifier(out)
# --- 2. BERTDataset ν΄λμ€ μ μ ---
class BERTDataset(Dataset):
def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, vocab, max_len, pad, pair):
transform = nlp.data.BERTSentenceTransform(
bert_tokenizer, max_seq_length=max_len, vocab=vocab, pad=pad, pair=pair
)
self.sentences = [transform([i[sent_idx]]) for i in dataset]
self.labels = [np.int32(i[label_idx]) for i in dataset]
def __getitem__(self, i):
return (self.sentences[i] + (self.labels[i],))
def __len__(self):
return len(self.labels)
app = FastAPI()
device = torch.device("cpu") # Hugging Face Spacesμ λ¬΄λ£ ν°μ΄λ μ£Όλ‘ CPUλ₯Ό μ¬μ©ν©λλ€.
# β
category λ‘λ
try:
with open("category.pkl", "rb") as f:
category = pickle.load(f)
logger.info("category.pkl λ‘λ μ±κ³΅.")
except FileNotFoundError:
logger.error("Error: category.pkl νμΌμ μ°Ύμ μ μμ΅λλ€. νλ‘μ νΈ λ£¨νΈμ μλμ§ νμΈνμΈμ.")
sys.exit(1)
# β
vocab λ‘λ
try:
with open("vocab.pkl", "rb") as f:
vocab = pickle.load(f)
logger.info("vocab.pkl λ‘λ μ±κ³΅.")
except FileNotFoundError:
logger.error("Error: vocab.pkl νμΌμ μ°Ύμ μ μμ΅λλ€. νλ‘μ νΈ λ£¨νΈμ μλμ§ νμΈνμΈμ.")
sys.exit(1)
# β
ν ν¬λμ΄μ λ‘λ
tokenizer = AutoTokenizer.from_pretrained('skt/kobert-base-v1')
logger.info("ν ν¬λμ΄μ λ‘λ μ±κ³΅.")
# β
λͺ¨λΈ λ‘λ (Hugging Face Hubμμ λ€μ΄λ‘λ)
try:
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
HF_MODEL_FILENAME = "textClassifierModel.pt"
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
logger.info(f"λͺ¨λΈ νμΌμ΄ '{model_path}'μ μ±κ³΅μ μΌλ‘ λ€μ΄λ‘λλμμ΅λλ€.")
bert_base_model = BertModel.from_pretrained('skt/kobert-base-v1')
model = BERTClassifier(
bert_base_model,
dr_rate=0.5, # νμ΅ μ μ¬μ©λ dr_rate κ°μΌλ‘ λ³κ²½νμΈμ.
num_classes=len(category)
)
loaded_state_dict = torch.load(model_path, map_location=device)
new_state_dict = collections.OrderedDict()
for k, v in loaded_state_dict.items():
name = k
if name.startswith('module.'):
name = name[7:]
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)
model.to(device)
model.eval()
logger.info("λͺ¨λΈ λ‘λ μ±κ³΅.")
except Exception as e:
logger.error(f"Error: λͺ¨λΈ λ€μ΄λ‘λ λλ λ‘λ μ€ μ€λ₯ λ°μ: {e}")
sys.exit(1)
# β
λ°μ΄ν°μ
μμ±μ νμν νλΌλ―Έν°
max_len = 64
batch_size = 32
# β
μμΈ‘ ν¨μ
def predict(predict_sentence):
data = [predict_sentence, '0']
dataset_another = [data]
another_test = BERTDataset(dataset_another, 0, 1, tokenizer.tokenize, vocab, max_len, True, False)
test_dataLoader = DataLoader(another_test, batch_size=batch_size, num_workers=0)
model.eval()
with torch.no_grad():
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(test_dataLoader):
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
out = model(token_ids, valid_length, segment_ids)
logits = out # λͺ¨λΈμ μ§μ μΆλ ₯μ λ‘μ§μ
λλ€.
probs = torch.nn.functional.softmax(logits, dim=1) # νλ₯ κ³μ°
predicted_category_index = torch.argmax(probs, dim=1).item() # μμΈ‘ μΈλ±μ€
predicted_category_name = list(category.keys())[predicted_category_index] # μμΈ‘ μΉ΄ν
κ³ λ¦¬ μ΄λ¦
# --- μμΈ‘ μμΈ λ‘κΉ
---
logger.info(f"Input Text: '{predict_sentence}'")
logger.info(f"Raw Logits: {logits.tolist()}")
logger.info(f"Probabilities: {probs.tolist()}")
logger.info(f"Predicted Index: {predicted_category_index}")
logger.info(f"Predicted Label: '{predicted_category_name}'")
# --- μμΈ‘ μμΈ λ‘κΉ
λ ---
return predicted_category_name
# β
μλν¬μΈνΈ μ μ
class InputText(BaseModel):
text: str
@app.get("/")
def root():
return {"message": "Text Classification API (KoBERT)"}
@app.post("/predict")
async def predict_route(item: InputText):
result = predict(item.text)
return {"text": item.text, "classification": result}
|