Spaces:
Running
on
Zero
Running
on
Zero
VINE: Video Understanding with Natural Language
VINE is a video understanding model that processes videos along with categorical, unary, and binary keywords to return probability distributions over those keywords for detected objects and their relationships.
Quick Start
from transformers import AutoModel
from vine_hf import VineConfig, VineModel, VinePipeline
# Load VINE model from HuggingFace
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# Create pipeline with your checkpoint paths
vine_pipeline = VinePipeline(
model=model,
tokenizer=None,
sam_config_path="/path/to/sam2_config.yaml",
sam_checkpoint_path="/path/to/sam2_checkpoint.pt",
gd_config_path="/path/to/grounding_dino_config.py",
gd_checkpoint_path="/path/to/grounding_dino_checkpoint.pth",
device="cuda",
trust_remote_code=True
)
# Process a video
results = vine_pipeline(
'path/to/video.mp4',
categorical_keywords=['human', 'dog', 'frisbee'],
unary_keywords=['running', 'jumping'],
binary_keywords=['chasing', 'behind'],
return_top_k=3
)
Installation
Option 1: Automated Setup (Recommended)
# Download the setup script
wget https://raw.githubusercontent.com/kevinxuez/vine_hf/main/setup_vine_demo.sh
# Run the setup
bash setup_vine_demo.sh
# Activate environment
conda activate vine_demo
Option 2: Manual Installation
# 1. Create conda environment
conda create -n vine_demo python=3.10 -y
conda activate vine_demo
# 2. Install PyTorch with CUDA support
pip install torch==2.7.1 torchvision==0.22.1 --index-url https://download.pytorch.org/whl/cu126
# 3. Install core dependencies
pip install transformers huggingface-hub safetensors
# 4. Clone and install required repositories
git clone https://github.com/video-fm/video-sam2.git
git clone https://github.com/video-fm/GroundingDINO.git
git clone https://github.com/kevinxuez/LASER.git
git clone https://github.com/kevinxuez/vine_hf.git
# Install in editable mode
pip install -e ./video-sam2
pip install -e ./GroundingDINO
pip install -e ./LASER
pip install -e ./vine_hf
# Build GroundingDINO extensions
cd GroundingDINO && python setup.py build_ext --force --inplace && cd ..
Required Checkpoints
VINE requires SAM2 and GroundingDINO checkpoints for segmentation. Download these separately:
SAM2 Checkpoint
wget https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt
wget https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
GroundingDINO Checkpoint
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
wget https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py
Architecture
video-fm/vine (HuggingFace Hub)
βββ VINE Model Weights (~1.8GB)
β βββ Categorical CLIP model (fine-tuned)
β βββ Unary CLIP model (fine-tuned)
β βββ Binary CLIP model (fine-tuned)
βββ Architecture Files
βββ vine_config.py
βββ vine_model.py
βββ vine_pipeline.py
βββ utilities
User Provides:
βββ Dependencies (via pip/conda)
β βββ laser (video processing utilities)
β βββ sam2 (segmentation)
β βββ groundingdino (object detection)
βββ Checkpoints (downloaded separately)
βββ SAM2 model files
βββ GroundingDINO model files
Why This Architecture?
This separation of concerns provides several benefits:
- Lightweight Distribution: Only VINE-specific weights (~1.8GB) are on HuggingFace
- Version Control: Users can choose their preferred SAM2/GroundingDINO versions
- Licensing: Keeps different model licenses separate
- Flexibility: Easy to swap segmentation backends
- Standard Practice: Similar to models like LLaVA, BLIP-2, etc.
Full Usage Example
import os
from pathlib import Path
from transformers import AutoModel
from vine_hf import VinePipeline
# Set up paths
checkpoint_dir = Path("/path/to/checkpoints")
sam_config = checkpoint_dir / "sam2_hiera_t.yaml"
sam_checkpoint = checkpoint_dir / "sam2_hiera_tiny.pt"
gd_config = checkpoint_dir / "GroundingDINO_SwinT_OGC.py"
gd_checkpoint = checkpoint_dir / "groundingdino_swint_ogc.pth"
# Load VINE from HuggingFace
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# Create pipeline
vine_pipeline = VinePipeline(
model=model,
tokenizer=None,
sam_config_path=str(sam_config),
sam_checkpoint_path=str(sam_checkpoint),
gd_config_path=str(gd_config),
gd_checkpoint_path=str(gd_checkpoint),
device="cuda:0",
trust_remote_code=True
)
# Process video
results = vine_pipeline(
"path/to/video.mp4",
categorical_keywords=['person', 'dog', 'ball'],
unary_keywords=['running', 'jumping', 'sitting'],
binary_keywords=['chasing', 'next to', 'holding'],
object_pairs=[(0, 1), (0, 2)], # person-dog, person-ball
return_top_k=5,
include_visualizations=True
)
# Access results
print(f"Detected {results['summary']['num_objects_detected']} objects")
print(f"Top categories: {results['summary']['top_categories']}")
print(f"Top actions: {results['summary']['top_actions']}")
print(f"Top relations: {results['summary']['top_relations']}")
# Access detailed predictions
for obj_id, predictions in results['categorical_predictions'].items():
print(f"\nObject {obj_id}:")
for prob, category in predictions:
print(f" {category}: {prob:.3f}")
Output Format
{
"categorical_predictions": {
object_id: [(probability, category), ...]
},
"unary_predictions": {
(frame_id, object_id): [(probability, action), ...]
},
"binary_predictions": {
(frame_id, (obj1_id, obj2_id)): [(probability, relation), ...]
},
"confidence_scores": {
"categorical": float,
"unary": float,
"binary": float
},
"summary": {
"num_objects_detected": int,
"top_categories": [(category, probability), ...],
"top_actions": [(action, probability), ...],
"top_relations": [(relation, probability), ...]
},
"visualizations": { # if include_visualizations=True
"vine": {
"all": {"frames": [...], "video_path": "..."},
...
}
}
}
Configuration Options
from vine_hf import VineConfig
config = VineConfig(
model_name="openai/clip-vit-base-patch32", # CLIP backbone
segmentation_method="grounding_dino_sam2", # or "sam2"
box_threshold=0.35, # GroundingDINO threshold
text_threshold=0.25, # GroundingDINO threshold
target_fps=5, # Video sampling rate
visualize=True, # Enable visualizations
visualization_dir="outputs/", # Output directory
debug_visualizations=False, # Debug mode
device="cuda:0" # Device
)
Deployment Examples
Local Script
# test_vine.py
from transformers import AutoModel
from vine_hf import VinePipeline
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
pipeline = VinePipeline(model=model, ...)
results = pipeline("video.mp4", ...)
HuggingFace Spaces
# app.py for Gradio Space
import gradio as gr
from transformers import AutoModel
from vine_hf import VinePipeline
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# ... set up pipeline and Gradio interface
API Server
# FastAPI server
from fastapi import FastAPI
from transformers import AutoModel
from vine_hf import VinePipeline
app = FastAPI()
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
pipeline = VinePipeline(model=model, ...)
@app.post("/process")
async def process_video(video_path: str):
return pipeline(video_path, ...)
Troubleshooting
Import Errors
# Make sure all dependencies are installed
pip list | grep -E "laser|sam2|groundingdino"
# Reinstall if needed
pip install -e ./LASER
pip install -e ./video-sam2
pip install -e ./GroundingDINO
CUDA Errors
# Check CUDA availability
import torch
print(torch.cuda.is_available())
print(torch.version.cuda)
# Use CPU if needed
pipeline = VinePipeline(model=model, device="cpu", ...)
Checkpoint Not Found
# Verify checkpoint paths
ls -lh /path/to/sam2_hiera_tiny.pt
ls -lh /path/to/groundingdino_swint_ogc.pth
System Requirements
- Python: 3.10+
- CUDA: 11.8+ (for GPU)
- GPU: 8GB+ VRAM recommended (T4, V100, A100, etc.)
- RAM: 16GB+ recommended
- Storage: ~3GB for checkpoints
Citation
@article{laser2024,
title={LASER: Language-guided Object Grounding and Relation Understanding in Videos},
author={Your Authors},
journal={Your Conference/Journal},
year={2024}
}
License
This model and code are released under the MIT License. Note that SAM2 and GroundingDINO have their own respective licenses.
Links
- Model: https://huggingface.co/video-fm/vine
- Code: https://github.com/kevinxuez/LASER
- vine_hf Package: https://github.com/kevinxuez/vine_hf
- SAM2: https://github.com/facebookresearch/sam2
- GroundingDINO: https://github.com/IDEA-Research/GroundingDINO
Support
For issues or questions:
- Model/Architecture: HuggingFace Discussions
- LASER Framework: GitHub Issues
- vine_hf Package: GitHub Issues