moccaram's picture
Update README.md
e5e0eff verified
---
title: DataSynthis ML JobTask
emoji: 🐒
colorFrom: green
colorTo: gray
sdk: gradio
sdk_version: 5.48.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Stock price forecasting ML demo for DataSynthis internship
---
# πŸ“ˆ DataSynthis ML JobTask
Stock Price Forecasting with Baseline, Statistical, and ML Models
## πŸš€ Project Overview
This project demonstrates a complete **time-series forecasting pipeline** using daily stock price data (2010–2024). It was developed as part of the **DataSynthis ML Internship Task**.
We cover the full workflow:
1. **Baseline Models** β†’ NaΓ―ve Forecast, Simple Exponential Smoothing (SES)
2. **Statistical Model** β†’ ARIMA
3. **ML / DL Models** β†’ Prophet, LSTM
4. **Evaluation** β†’ Rolling-window accuracy metrics (RMSE, MAPE)
5. **Deployment** β†’ Interactive demo with Gradio (via Hugging Face Spaces)
## πŸ› οΈ Features
- Data preprocessing & feature engineering (lags, volatility, RSI, MACD, Bollinger Bands, etc.)
- Feature validation & pruning (correlation, VIF, outlier checks)
- Unified comparison of models with a performance summary table
- Visualizations: trends, normalized comparisons, total returns
- Exportable datasets for reproducibility
## πŸ“Š Deliverables
- **Notebook**: End-to-end workflow (data β†’ models β†’ evaluation)
- **Models**: NaΓ―ve, SES, ARIMA, Prophet, LSTM
- **Visualizations**: stock trends, indicators, correlations, performance plots
- **Deployment**: Hugging Face Space with Gradio app
## πŸ“‚ Repository Structure
πŸ“ DataSynthis_ML_JobTask
β”œβ”€β”€ app.py # Gradio demo app
β”œβ”€β”€ data/ # Preprocessed & engineered datasets
β”œβ”€β”€ notebooks/ # Jupyter notebooks with full pipeline
β”œβ”€β”€ models/ # Trained ARIMA / Prophet / LSTM models
β”œβ”€β”€ outputs/ # Plots, summary tables, feature files
β”œβ”€β”€ README.md # This file