Spaces:
Sleeping
Sleeping
File size: 25,610 Bytes
8da8945 cc89204 8da8945 cc89204 8da8945 cc89204 8da8945 31f5cc4 c240d75 cc89204 31f5cc4 cc89204 8da8945 31f5cc4 c240d75 8da8945 cc89204 8da8945 31f5cc4 c240d75 8da8945 31f5cc4 8da8945 31f5cc4 8da8945 31f5cc4 8da8945 31f5cc4 8da8945 31f5cc4 c240d75 31f5cc4 c240d75 31f5cc4 c240d75 31f5cc4 8da8945 cc89204 fd3e04f 31f5cc4 c240d75 8da8945 cc89204 fd3e04f cc89204 8da8945 cc89204 8da8945 31f5cc4 c240d75 cc89204 8da8945 cc89204 8da8945 cc89204 8da8945 cc89204 31f5cc4 c240d75 cc89204 8da8945 fd3e04f cc89204 c240d75 cc89204 31f5cc4 cc89204 fd3e04f cc89204 c240d75 cc89204 31f5cc4 c240d75 31f5cc4 cc89204 31f5cc4 cc89204 31f5cc4 cc89204 fd3e04f 31f5cc4 fd3e04f cc89204 31f5cc4 cc89204 8da8945 cc89204 8da8945 31f5cc4 8da8945 cc89204 8da8945 cc89204 8da8945 cc89204 8da8945 cc89204 8da8945 31f5cc4 c240d75 31f5cc4 cc89204 8da8945 31f5cc4 8da8945 cc89204 8da8945 31f5cc4 8da8945 cc89204 8da8945 31f5cc4 8da8945 cc89204 8da8945 31f5cc4 8da8945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
"""
Embedding Inference API
Supports JobBERT v2/v3, Jina AI, and Voyage AI embeddings
Compatible with Elasticsearch inference endpoint format
"""
from fastapi import FastAPI, HTTPException, Query, Security, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Union
from sentence_transformers import SentenceTransformer
import os
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="Embedding Inference API",
description="Generate embeddings using JobBERT v2/v3, Jina AI, or Voyage AI",
version="1.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MODELS = {}
VOYAGE_API_KEY = os.environ.get('VOYAGE_API_KEY', '')
FIREWORKS_API_KEY = os.environ.get('FIREWORKS_API_KEY', '')
OPENROUTER_API_KEY = os.environ.get('OPENROUTER_API_KEY', '')
API_KEY = os.environ.get('API_KEY', '')
REQUIRE_API_KEY = os.environ.get('REQUIRE_API_KEY', 'false').lower() == 'true'
# Set cache directories to writable location (important for Docker/HF Spaces)
os.environ['TRANSFORMERS_CACHE'] = os.environ.get('TRANSFORMERS_CACHE', '/tmp/transformers_cache')
os.environ['HF_HOME'] = os.environ.get('HF_HOME', '/tmp/huggingface')
os.environ['SENTENCE_TRANSFORMERS_HOME'] = os.environ.get('SENTENCE_TRANSFORMERS_HOME', '/tmp/sentence_transformers')
# Create cache directories if they don't exist
for cache_dir in [os.environ['TRANSFORMERS_CACHE'], os.environ['HF_HOME'], os.environ['SENTENCE_TRANSFORMERS_HOME']]:
os.makedirs(cache_dir, exist_ok=True)
security = HTTPBearer(auto_error=False)
voyage_client = None
fireworks_available = False
openrouter_available = False
logger.info(f"API Key authentication: {'ENABLED' if REQUIRE_API_KEY else 'DISABLED'}")
if API_KEY:
logger.info(f"✓ API Key configured (length: {len(API_KEY)})")
else:
logger.info("ℹ️ No API Key set")
if VOYAGE_API_KEY:
try:
import voyageai
voyage_client = voyageai.Client(api_key=VOYAGE_API_KEY)
logger.info("✓ Voyage AI client initialized")
except ImportError:
logger.warning("⚠️ voyageai package not installed")
except Exception as e:
logger.warning(f"⚠️ Voyage AI initialization failed: {e}")
if FIREWORKS_API_KEY:
try:
import requests
# Test Fireworks AI connection
test_response = requests.get(
"https://api.fireworks.ai/inference/v1/models",
headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
timeout=5
)
if test_response.status_code in [200, 401, 403]: # 401/403 means auth works, just list might be restricted
fireworks_available = True
logger.info("✓ Fireworks AI API key configured (Qwen3 available)")
else:
logger.warning(f"⚠️ Fireworks AI API key validation unclear (status: {test_response.status_code})")
# Still mark as available - the embeddings endpoint might work
fireworks_available = True
except ImportError:
logger.warning("⚠️ requests package not installed (needed for Fireworks AI)")
except Exception as e:
logger.warning(f"⚠️ Fireworks AI validation failed: {e}")
# Still mark as available if key is set
fireworks_available = True if FIREWORKS_API_KEY else False
if OPENROUTER_API_KEY:
try:
import requests
openrouter_available = True
logger.info("✓ OpenRouter API key configured (Qwen3, text-embedding-3-small, and more available)")
except ImportError:
logger.warning("⚠️ requests package not installed (needed for OpenRouter)")
except Exception as e:
logger.warning(f"⚠️ OpenRouter validation failed: {e}")
openrouter_available = True if OPENROUTER_API_KEY else False
def load_models():
"""Load embedding models on startup (gracefully handles failures)"""
# JobBERT-v2
try:
logger.info("Loading JobBERT-v2...")
# MODELS['jobbertv2'] = SentenceTransformer('TechWolf/JobBERT-v2')
logger.info("✓ JobBERT-v2 loaded")
except Exception as e:
logger.warning(f"⚠️ JobBERT-v2 not loaded: {e}")
# JobBERT-v3
try:
logger.info("Loading JobBERT-v3...")
MODELS['jobbertv3'] = SentenceTransformer('TechWolf/JobBERT-v3')
logger.info("✓ JobBERT-v3 loaded")
except Exception as e:
logger.warning(f"⚠️ JobBERT-v3 not loaded: {e}")
# Jina AI
try:
logger.info("Loading Jina AI embeddings-v3...")
MODELS['jina'] = SentenceTransformer('jinaai/jina-embeddings-v3', trust_remote_code=True)
logger.info("✓ Jina AI v3 loaded")
except Exception as e:
logger.warning(f"⚠️ Jina AI v3 not loaded: {e}")
# Qwen3-Embedding-8B via Fireworks AI or OpenRouter (API-based, no download needed!)
if fireworks_available:
MODELS['qwen3'] = 'fireworks' # Mark as available via Fireworks AI
logger.info("✓ Qwen3-Embedding-8B available via Fireworks AI API (MTEB #1, no local model needed)")
elif openrouter_available:
MODELS['qwen3'] = 'openrouter' # Mark as available via OpenRouter
logger.info("✓ Qwen3-Embedding-8B available via OpenRouter API (MTEB #1, no local model needed)")
else:
logger.warning("⚠️ Qwen3-Embedding-8B not available")
logger.warning(" To enable: Set FIREWORKS_API_KEY or OPENROUTER_API_KEY environment variable")
logger.warning(" Fireworks: https://fireworks.ai | OpenRouter: https://openrouter.ai")
logger.warning(" This avoids 15GB local download!")
# Check if at least one model loaded
if not MODELS:
error_msg = "No embedding models could be loaded! Check logs above for details."
logger.error(error_msg)
raise RuntimeError(error_msg)
logger.info(f"Loaded models: {list(MODELS.keys())}")
logger.info("API ready!")
async def verify_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Security(security)):
"""Verify API key from Authorization header"""
if not REQUIRE_API_KEY:
return True
if not API_KEY:
raise HTTPException(
status_code=500,
detail="API key authentication is enabled but no API key is configured on the server"
)
if credentials is None:
raise HTTPException(
status_code=401,
detail="Missing authentication credentials. Use: Authorization: Bearer YOUR_API_KEY"
)
if credentials.credentials != API_KEY:
raise HTTPException(
status_code=403,
detail="Invalid API key"
)
return True
def estimate_token_count(texts: List[str]) -> int:
"""Estimate token count for input texts (rough approximation)"""
# Simple estimation: ~1 token per 4 characters
total_chars = sum(len(text) for text in texts)
return max(1, total_chars // 4)
def get_fireworks_embeddings(texts: List[str], task: Optional[str] = None) -> List[List[float]]:
"""
Get embeddings from Fireworks AI Qwen3-Embedding-8B
Args:
texts: List of texts to embed
task: Optional task type ('query' for instruction-aware)
Returns:
List of embedding vectors (4096-dim each)
"""
import requests
import json
if not FIREWORKS_API_KEY:
raise Exception("FIREWORKS_API_KEY not configured")
# Fireworks AI embeddings endpoint
response = requests.post(
"https://api.fireworks.ai/inference/v1/embeddings",
headers={
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {FIREWORKS_API_KEY}"
},
data=json.dumps({
"model": "accounts/fireworks/models/qwen3-embedding-8b",
"input": texts
}),
timeout=30
)
if response.status_code != 200:
raise Exception(f"Fireworks AI API error: {response.status_code} - {response.text}")
result = response.json()
embeddings = [item["embedding"] for item in result["data"]]
return embeddings
def get_openrouter_embeddings(texts: List[str], model: str = "qwen/qwen3-embedding-8b") -> List[List[float]]:
"""
Get embeddings from OpenRouter API
Args:
texts: List of texts to embed
model: Model to use (default: qwen/qwen3-embedding-8b)
Also supports: openai/text-embedding-3-small, openai/text-embedding-3-large
Returns:
List of embedding vectors
"""
import requests
if not OPENROUTER_API_KEY:
raise Exception("OPENROUTER_API_KEY not configured")
response = requests.post(
"https://openrouter.ai/api/v1/embeddings",
headers={
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json"
},
json={
"model": model,
"input": texts
},
timeout=30
)
if response.status_code != 200:
raise Exception(f"OpenRouter API error: {response.status_code} - {response.text}")
result = response.json()
embeddings = [item["embedding"] for item in result["data"]]
return embeddings
@app.on_event("startup")
async def startup_event():
load_models()
class ElasticsearchInferenceRequest(BaseModel):
input: Union[str, List[str]] = Field(..., description="Text or list of texts to embed")
class Config:
schema_extra = {
"example": {
"input": "Software Engineer"
}
}
class EmbeddingObject(BaseModel):
object: str = Field("embedding", description="Object type")
index: int = Field(..., description="Index of the embedding")
embedding: List[float] = Field(..., description="Embedding vector")
class UsageInfo(BaseModel):
total_tokens: int = Field(..., description="Total tokens processed")
prompt_tokens: int = Field(..., description="Prompt tokens")
class OpenAIEmbeddingResponse(BaseModel):
model: str = Field(..., description="Model used for embeddings")
object: str = Field("list", description="Object type")
usage: UsageInfo = Field(..., description="Token usage information")
data: List[EmbeddingObject] = Field(..., description="List of embeddings")
# Legacy response models (kept for backward compatibility if needed)
class ElasticsearchInferenceResponse(BaseModel):
embedding: List[float] = Field(..., description="Embedding vector for single input")
class ElasticsearchInferenceBatchResponse(BaseModel):
embeddings: List[List[float]] = Field(..., description="List of embedding vectors for batch input")
class BatchEmbeddingRequest(BaseModel):
texts: List[str] = Field(..., description="List of texts to embed", min_items=1)
model: str = Field(..., description="Model to use: 'jobbertv2', 'jobbertv3', 'jina', or 'voyage'")
task: Optional[str] = Field(None, description="Task type for Jina AI: 'retrieval.query', 'retrieval.passage', 'text-matching', etc.")
input_type: Optional[str] = Field(None, description="Input type for Voyage AI: 'document' or 'query'")
class Config:
schema_extra = {
"example": {
"texts": ["Software Engineer", "Data Scientist"],
"model": "jobbertv3",
"task": "text-matching"
}
}
class BatchEmbeddingResponse(BaseModel):
embeddings: List[List[float]] = Field(..., description="List of embedding vectors")
model: str = Field(..., description="Model used")
dimension: int = Field(..., description="Embedding dimension")
num_texts: int = Field(..., description="Number of texts processed")
class HealthResponse(BaseModel):
status: str
models_loaded: List[str]
voyage_available: bool
fireworks_available: bool
openrouter_available: bool
api_key_required: bool
@app.get("/", response_model=dict)
async def root():
"""Root endpoint with API information"""
return {
"message": "Embedding Inference API",
"version": "1.0.0",
"endpoints": {
"/health": "Health check and available models",
"/embed": "Generate embeddings - Elasticsearch compatible (POST)",
"/embed/batch": "Generate batch embeddings (POST)",
"/models": "List available models",
"/docs": "API documentation"
}
}
@app.get("/health", response_model=HealthResponse)
async def health():
"""Health check endpoint (no authentication required)"""
models_loaded = list(MODELS.keys())
return {
"status": "healthy",
"models_loaded": models_loaded,
"voyage_available": voyage_client is not None,
"fireworks_available": fireworks_available,
"openrouter_available": openrouter_available,
"api_key_required": REQUIRE_API_KEY
}
@app.post("/embed", response_model=OpenAIEmbeddingResponse)
async def create_embeddings_elasticsearch(
request: ElasticsearchInferenceRequest,
model: str = Query("jobbertv3", description="Model: jobbertv2, jobbertv3, jina, or voyage"),
task: Optional[str] = Query(None, description="Task for Jina AI: retrieval.query, retrieval.passage, text-matching, etc."),
input_type: Optional[str] = Query(None, description="Input type for Voyage AI: document or query"),
authenticated: bool = Depends(verify_api_key)
):
"""
Generate embeddings - Elasticsearch inference endpoint compatible format
**Usage:**
- Single text: `POST /embed?model=jobbertv3` with body `{"input": "Software Engineer"}`
- Multiple texts: `POST /embed?model=jina` with body `{"input": ["text1", "text2"]}`
**Models (via query parameter):**
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance) - default
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose)
- `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context, via Fireworks or OpenRouter)
- `openrouter`: OpenRouter embeddings (supports multiple models, requires API key)
- `voyage`: Voyage AI (1024-dim, requires API key)
**Jina AI Tasks (via query parameter):**
- `retrieval.query`: For search queries
- `retrieval.passage`: For documents/passages
- `text-matching`: For similarity matching (default)
**Qwen3 Task (via query parameter):**
- `query`: For search queries (uses instruction-aware prompt)
- Default: Documents/passages (no instruction)
**Voyage AI Input Types (via query parameter):**
- `document`: For documents/passages
- `query`: For search queries
"""
model_name = model.lower()
# Handle single string or list of strings
is_single = isinstance(request.input, str)
texts = [request.input] if is_single else request.input
if model_name == "voyage":
if not voyage_client:
raise HTTPException(
status_code=503,
detail="Voyage AI not available. Set VOYAGE_API_KEY environment variable."
)
try:
voyage_input_type = input_type or "document"
result = voyage_client.embed(
texts=texts,
model="voyage-3",
input_type=voyage_input_type
)
embeddings = result.embeddings
# Calculate token usage
token_count = estimate_token_count(texts)
# Create OpenAI-compatible response
data = [
EmbeddingObject(index=i, embedding=emb)
for i, emb in enumerate(embeddings)
]
return OpenAIEmbeddingResponse(
model="voyage-3",
object="list",
usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
data=data
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
elif model_name == "openrouter":
if not openrouter_available:
raise HTTPException(
status_code=503,
detail="OpenRouter not available. Set OPENROUTER_API_KEY environment variable."
)
try:
# Use OpenRouter with specified model or default
openrouter_model = task or "qwen/qwen3-embedding-8b" # Use task param as model selector
embeddings_list = get_openrouter_embeddings(texts, model=openrouter_model)
# Calculate token usage
token_count = estimate_token_count(texts)
# Create OpenAI-compatible response
data = [
EmbeddingObject(index=i, embedding=emb)
for i, emb in enumerate(embeddings_list)
]
return OpenAIEmbeddingResponse(
model=f"openrouter/{openrouter_model}",
object="list",
usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
data=data
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"OpenRouter error: {str(e)}")
elif model_name in MODELS:
try:
selected_model = MODELS[model_name]
# Qwen3 via Fireworks AI API (no local model)
if model_name == "qwen3" and selected_model == 'fireworks':
embeddings_list = get_fireworks_embeddings(texts, task=task)
# Qwen3 via OpenRouter API
elif model_name == "qwen3" and selected_model == 'openrouter':
embeddings_list = get_openrouter_embeddings(texts, model="qwen/qwen3-embedding-8b")
# Jina AI with task type
elif model_name == "jina" and task:
embeddings = selected_model.encode(
texts,
task=task,
convert_to_numpy=True
)
embeddings_list = embeddings.tolist()
else:
embeddings = selected_model.encode(
texts,
convert_to_numpy=True
)
embeddings_list = embeddings.tolist()
# Calculate token usage
token_count = estimate_token_count(texts)
# Create OpenAI-compatible response
data = [
EmbeddingObject(index=i, embedding=emb)
for i, emb in enumerate(embeddings_list)
]
# Determine the full model name for response
model_display_name = {
"jobbertv2": "TechWolf/JobBERT-v2",
"jobbertv3": "TechWolf/JobBERT-v3",
"jina": "jina-embeddings-v3",
"qwen3": "Qwen/Qwen3-Embedding-8B"
}.get(model_name, model_name)
return OpenAIEmbeddingResponse(
model=model_display_name,
object="list",
usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
data=data
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
else:
raise HTTPException(
status_code=400,
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
)
@app.post("/embed/batch", response_model=BatchEmbeddingResponse)
async def create_embeddings_batch(
request: BatchEmbeddingRequest,
authenticated: bool = Depends(verify_api_key)
):
"""
Generate embeddings for multiple texts - Original batch format
**Models:**
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance)
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose, supports task types)
- `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context)
- `voyage`: Voyage AI (1024-dim, requires API key)
**Jina AI Tasks:**
- `retrieval.query`: For search queries
- `retrieval.passage`: For documents/passages
- `text-matching`: For similarity matching (default)
- `classification`: For classification tasks
- `separation`: For clustering
**Voyage AI Input Types:**
- `document`: For documents/passages
- `query`: For search queries
"""
model_name = request.model.lower()
if model_name == "voyage":
if not voyage_client:
raise HTTPException(
status_code=503,
detail="Voyage AI not available. Set VOYAGE_API_KEY environment variable."
)
try:
voyage_input_type = request.input_type or "document"
result = voyage_client.embed(
texts=request.texts,
model="voyage-3",
input_type=voyage_input_type
)
embeddings = result.embeddings
dimension = len(embeddings[0]) if embeddings else 0
return BatchEmbeddingResponse(
embeddings=embeddings,
model="voyage-3",
dimension=dimension,
num_texts=len(request.texts)
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
elif model_name in MODELS:
try:
selected_model = MODELS[model_name]
# Qwen3 via Fireworks AI API (no local model)
if model_name == "qwen3" and selected_model == 'fireworks':
embeddings_list = get_fireworks_embeddings(request.texts, task=request.task)
# Qwen3 via OpenRouter API
elif model_name == "qwen3" and selected_model == 'openrouter':
embeddings_list = get_openrouter_embeddings(request.texts, model="qwen/qwen3-embedding-8b")
# Jina AI with task type
elif model_name == "jina" and request.task:
embeddings = selected_model.encode(
request.texts,
task=request.task,
convert_to_numpy=True
)
embeddings_list = embeddings.tolist()
else:
embeddings = selected_model.encode(
request.texts,
convert_to_numpy=True
)
embeddings_list = embeddings.tolist()
dimension = len(embeddings_list[0]) if embeddings_list else 0
return BatchEmbeddingResponse(
embeddings=embeddings_list,
model=model_name,
dimension=dimension,
num_texts=len(request.texts)
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
else:
raise HTTPException(
status_code=400,
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
)
@app.get("/models")
async def list_models(authenticated: bool = Depends(verify_api_key)):
"""List available models and their specifications"""
models_info = {
"jobbertv2": {
"name": "TechWolf/JobBERT-v2",
"dimension": 768,
"description": "Job-specific BERT model fine-tuned on job titles",
"max_tokens": 512,
"available": "jobbertv2" in MODELS
},
"jobbertv3": {
"name": "TechWolf/JobBERT-v3",
"dimension": 768,
"description": "Latest JobBERT model with improved performance",
"max_tokens": 512,
"available": "jobbertv3" in MODELS
},
"jina": {
"name": "jinaai/jina-embeddings-v3",
"dimension": 1024,
"description": "General-purpose embeddings with long context support",
"max_tokens": 8192,
"available": "jina" in MODELS,
"tasks": ["retrieval.query", "retrieval.passage", "text-matching", "classification", "separation"]
},
"qwen3": {
"name": "Qwen/Qwen3-Embedding-8B",
"dimension": 4096,
"description": "🏆 MTEB #1 multilingual model (100+ languages, 32k context, instruction-aware)",
"max_tokens": 32768,
"available": "qwen3" in MODELS,
"tasks": ["query", "document"],
"features": ["multilingual", "instruction-aware", "long-context"]
},
"voyage": {
"name": "voyage-3",
"dimension": 1024,
"description": "State-of-the-art embeddings (requires API key)",
"max_tokens": 32000,
"available": voyage_client is not None,
"input_types": ["document", "query"]
}
}
return models_info
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|