File size: 25,610 Bytes
8da8945
 
cc89204
 
8da8945
 
cc89204
 
8da8945
 
cc89204
8da8945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f5cc4
c240d75
cc89204
 
 
31f5cc4
 
 
 
 
 
 
 
 
cc89204
8da8945
31f5cc4
c240d75
8da8945
cc89204
 
 
 
 
 
8da8945
 
 
 
 
 
 
 
 
 
31f5cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c240d75
 
 
 
 
 
 
 
 
 
 
8da8945
31f5cc4
 
 
8da8945
 
31f5cc4
8da8945
31f5cc4
 
 
 
 
8da8945
 
 
31f5cc4
 
 
 
 
8da8945
 
 
 
31f5cc4
 
c240d75
31f5cc4
 
 
c240d75
 
 
31f5cc4
 
c240d75
 
31f5cc4
 
 
 
 
 
 
 
 
 
8da8945
cc89204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3e04f
 
 
 
 
 
31f5cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c240d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da8945
 
 
 
cc89204
 
 
 
 
 
 
 
 
 
fd3e04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc89204
 
 
 
 
 
 
8da8945
 
 
 
 
 
 
 
 
 
 
 
 
 
cc89204
8da8945
 
 
 
 
 
 
 
 
31f5cc4
c240d75
cc89204
8da8945
 
 
 
 
 
 
 
 
cc89204
 
 
8da8945
 
 
 
 
 
cc89204
8da8945
 
 
 
cc89204
31f5cc4
c240d75
cc89204
8da8945
 
fd3e04f
cc89204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c240d75
 
cc89204
 
 
 
 
 
 
31f5cc4
 
 
 
cc89204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3e04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc89204
 
 
c240d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc89204
 
 
 
31f5cc4
 
 
c240d75
 
 
31f5cc4
 
cc89204
 
 
 
 
31f5cc4
cc89204
 
 
 
 
31f5cc4
cc89204
fd3e04f
 
 
 
 
 
 
 
 
 
 
 
 
31f5cc4
 
fd3e04f
 
 
 
 
 
 
 
cc89204
 
 
 
 
 
31f5cc4
cc89204
 
 
 
 
 
 
8da8945
cc89204
8da8945
 
 
 
 
31f5cc4
8da8945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc89204
8da8945
 
 
cc89204
8da8945
 
 
 
cc89204
8da8945
 
 
 
 
 
 
 
 
 
cc89204
8da8945
31f5cc4
 
 
c240d75
 
 
31f5cc4
 
cc89204
8da8945
 
 
 
31f5cc4
8da8945
cc89204
8da8945
 
 
31f5cc4
8da8945
 
cc89204
8da8945
 
 
 
 
 
 
 
 
 
 
31f5cc4
8da8945
 
 
cc89204
8da8945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f5cc4
 
 
 
 
 
 
 
 
8da8945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
Embedding Inference API
Supports JobBERT v2/v3, Jina AI, and Voyage AI embeddings
Compatible with Elasticsearch inference endpoint format
"""

from fastapi import FastAPI, HTTPException, Query, Security, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Union
from sentence_transformers import SentenceTransformer
import os
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="Embedding Inference API",
    description="Generate embeddings using JobBERT v2/v3, Jina AI, or Voyage AI",
    version="1.0.0"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

MODELS = {}
VOYAGE_API_KEY = os.environ.get('VOYAGE_API_KEY', '')
FIREWORKS_API_KEY = os.environ.get('FIREWORKS_API_KEY', '')
OPENROUTER_API_KEY = os.environ.get('OPENROUTER_API_KEY', '')
API_KEY = os.environ.get('API_KEY', '')
REQUIRE_API_KEY = os.environ.get('REQUIRE_API_KEY', 'false').lower() == 'true'

# Set cache directories to writable location (important for Docker/HF Spaces)
os.environ['TRANSFORMERS_CACHE'] = os.environ.get('TRANSFORMERS_CACHE', '/tmp/transformers_cache')
os.environ['HF_HOME'] = os.environ.get('HF_HOME', '/tmp/huggingface')
os.environ['SENTENCE_TRANSFORMERS_HOME'] = os.environ.get('SENTENCE_TRANSFORMERS_HOME', '/tmp/sentence_transformers')

# Create cache directories if they don't exist
for cache_dir in [os.environ['TRANSFORMERS_CACHE'], os.environ['HF_HOME'], os.environ['SENTENCE_TRANSFORMERS_HOME']]:
    os.makedirs(cache_dir, exist_ok=True)

security = HTTPBearer(auto_error=False)
voyage_client = None
fireworks_available = False
openrouter_available = False

logger.info(f"API Key authentication: {'ENABLED' if REQUIRE_API_KEY else 'DISABLED'}")
if API_KEY:
    logger.info(f"✓ API Key configured (length: {len(API_KEY)})")
else:
    logger.info("ℹ️  No API Key set")

if VOYAGE_API_KEY:
    try:
        import voyageai
        voyage_client = voyageai.Client(api_key=VOYAGE_API_KEY)
        logger.info("✓ Voyage AI client initialized")
    except ImportError:
        logger.warning("⚠️  voyageai package not installed")
    except Exception as e:
        logger.warning(f"⚠️  Voyage AI initialization failed: {e}")

if FIREWORKS_API_KEY:
    try:
        import requests
        # Test Fireworks AI connection
        test_response = requests.get(
            "https://api.fireworks.ai/inference/v1/models",
            headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
            timeout=5
        )
        if test_response.status_code in [200, 401, 403]:  # 401/403 means auth works, just list might be restricted
            fireworks_available = True
            logger.info("✓ Fireworks AI API key configured (Qwen3 available)")
        else:
            logger.warning(f"⚠️  Fireworks AI API key validation unclear (status: {test_response.status_code})")
            # Still mark as available - the embeddings endpoint might work
            fireworks_available = True
    except ImportError:
        logger.warning("⚠️  requests package not installed (needed for Fireworks AI)")
    except Exception as e:
        logger.warning(f"⚠️  Fireworks AI validation failed: {e}")
        # Still mark as available if key is set
        fireworks_available = True if FIREWORKS_API_KEY else False

if OPENROUTER_API_KEY:
    try:
        import requests
        openrouter_available = True
        logger.info("✓ OpenRouter API key configured (Qwen3, text-embedding-3-small, and more available)")
    except ImportError:
        logger.warning("⚠️  requests package not installed (needed for OpenRouter)")
    except Exception as e:
        logger.warning(f"⚠️  OpenRouter validation failed: {e}")
        openrouter_available = True if OPENROUTER_API_KEY else False

def load_models():
    """Load embedding models on startup (gracefully handles failures)"""
    
    # JobBERT-v2
    try:
        logger.info("Loading JobBERT-v2...")
        # MODELS['jobbertv2'] = SentenceTransformer('TechWolf/JobBERT-v2')
        logger.info("✓ JobBERT-v2 loaded")
    except Exception as e:
        logger.warning(f"⚠️  JobBERT-v2 not loaded: {e}")
    
    # JobBERT-v3
    try:
        logger.info("Loading JobBERT-v3...")
        MODELS['jobbertv3'] = SentenceTransformer('TechWolf/JobBERT-v3')
        logger.info("✓ JobBERT-v3 loaded")
    except Exception as e:
        logger.warning(f"⚠️  JobBERT-v3 not loaded: {e}")
    
    # Jina AI
    try:
        logger.info("Loading Jina AI embeddings-v3...")
        MODELS['jina'] = SentenceTransformer('jinaai/jina-embeddings-v3', trust_remote_code=True)
        logger.info("✓ Jina AI v3 loaded")
    except Exception as e:
        logger.warning(f"⚠️  Jina AI v3 not loaded: {e}")
    
    # Qwen3-Embedding-8B via Fireworks AI or OpenRouter (API-based, no download needed!)
    if fireworks_available:
        MODELS['qwen3'] = 'fireworks'  # Mark as available via Fireworks AI
        logger.info("✓ Qwen3-Embedding-8B available via Fireworks AI API (MTEB #1, no local model needed)")
    elif openrouter_available:
        MODELS['qwen3'] = 'openrouter'  # Mark as available via OpenRouter
        logger.info("✓ Qwen3-Embedding-8B available via OpenRouter API (MTEB #1, no local model needed)")
    else:
        logger.warning("⚠️  Qwen3-Embedding-8B not available")
        logger.warning("   To enable: Set FIREWORKS_API_KEY or OPENROUTER_API_KEY environment variable")
        logger.warning("   Fireworks: https://fireworks.ai | OpenRouter: https://openrouter.ai")
        logger.warning("   This avoids 15GB local download!")
    
    # Check if at least one model loaded
    if not MODELS:
        error_msg = "No embedding models could be loaded! Check logs above for details."
        logger.error(error_msg)
        raise RuntimeError(error_msg)
    
    logger.info(f"Loaded models: {list(MODELS.keys())}")
    logger.info("API ready!")

async def verify_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Security(security)):
    """Verify API key from Authorization header"""
    if not REQUIRE_API_KEY:
        return True
    
    if not API_KEY:
        raise HTTPException(
            status_code=500,
            detail="API key authentication is enabled but no API key is configured on the server"
        )
    
    if credentials is None:
        raise HTTPException(
            status_code=401,
            detail="Missing authentication credentials. Use: Authorization: Bearer YOUR_API_KEY"
        )
    
    if credentials.credentials != API_KEY:
        raise HTTPException(
            status_code=403,
            detail="Invalid API key"
        )
    
    return True

def estimate_token_count(texts: List[str]) -> int:
    """Estimate token count for input texts (rough approximation)"""
    # Simple estimation: ~1 token per 4 characters
    total_chars = sum(len(text) for text in texts)
    return max(1, total_chars // 4)

def get_fireworks_embeddings(texts: List[str], task: Optional[str] = None) -> List[List[float]]:
    """
    Get embeddings from Fireworks AI Qwen3-Embedding-8B
    
    Args:
        texts: List of texts to embed
        task: Optional task type ('query' for instruction-aware)
    
    Returns:
        List of embedding vectors (4096-dim each)
    """
    import requests
    import json
    
    if not FIREWORKS_API_KEY:
        raise Exception("FIREWORKS_API_KEY not configured")
    
    # Fireworks AI embeddings endpoint
    response = requests.post(
        "https://api.fireworks.ai/inference/v1/embeddings",
        headers={
            "Accept": "application/json",
            "Content-Type": "application/json",
            "Authorization": f"Bearer {FIREWORKS_API_KEY}"
        },
        data=json.dumps({
            "model": "accounts/fireworks/models/qwen3-embedding-8b",
            "input": texts
        }),
        timeout=30
    )
    
    if response.status_code != 200:
        raise Exception(f"Fireworks AI API error: {response.status_code} - {response.text}")
    
    result = response.json()
    embeddings = [item["embedding"] for item in result["data"]]
    
    return embeddings

def get_openrouter_embeddings(texts: List[str], model: str = "qwen/qwen3-embedding-8b") -> List[List[float]]:
    """
    Get embeddings from OpenRouter API
    
    Args:
        texts: List of texts to embed
        model: Model to use (default: qwen/qwen3-embedding-8b)
               Also supports: openai/text-embedding-3-small, openai/text-embedding-3-large
    
    Returns:
        List of embedding vectors
    """
    import requests
    
    if not OPENROUTER_API_KEY:
        raise Exception("OPENROUTER_API_KEY not configured")
    
    response = requests.post(
        "https://openrouter.ai/api/v1/embeddings",
        headers={
            "Authorization": f"Bearer {OPENROUTER_API_KEY}",
            "Content-Type": "application/json"
        },
        json={
            "model": model,
            "input": texts
        },
        timeout=30
    )
    
    if response.status_code != 200:
        raise Exception(f"OpenRouter API error: {response.status_code} - {response.text}")
    
    result = response.json()
    embeddings = [item["embedding"] for item in result["data"]]
    
    return embeddings

@app.on_event("startup")
async def startup_event():
    load_models()

class ElasticsearchInferenceRequest(BaseModel):
    input: Union[str, List[str]] = Field(..., description="Text or list of texts to embed")
    
    class Config:
        schema_extra = {
            "example": {
                "input": "Software Engineer"
            }
        }

class EmbeddingObject(BaseModel):
    object: str = Field("embedding", description="Object type")
    index: int = Field(..., description="Index of the embedding")
    embedding: List[float] = Field(..., description="Embedding vector")

class UsageInfo(BaseModel):
    total_tokens: int = Field(..., description="Total tokens processed")
    prompt_tokens: int = Field(..., description="Prompt tokens")

class OpenAIEmbeddingResponse(BaseModel):
    model: str = Field(..., description="Model used for embeddings")
    object: str = Field("list", description="Object type")
    usage: UsageInfo = Field(..., description="Token usage information")
    data: List[EmbeddingObject] = Field(..., description="List of embeddings")

# Legacy response models (kept for backward compatibility if needed)
class ElasticsearchInferenceResponse(BaseModel):
    embedding: List[float] = Field(..., description="Embedding vector for single input")
    
class ElasticsearchInferenceBatchResponse(BaseModel):
    embeddings: List[List[float]] = Field(..., description="List of embedding vectors for batch input")

class BatchEmbeddingRequest(BaseModel):
    texts: List[str] = Field(..., description="List of texts to embed", min_items=1)
    model: str = Field(..., description="Model to use: 'jobbertv2', 'jobbertv3', 'jina', or 'voyage'")
    task: Optional[str] = Field(None, description="Task type for Jina AI: 'retrieval.query', 'retrieval.passage', 'text-matching', etc.")
    input_type: Optional[str] = Field(None, description="Input type for Voyage AI: 'document' or 'query'")
    
    class Config:
        schema_extra = {
            "example": {
                "texts": ["Software Engineer", "Data Scientist"],
                "model": "jobbertv3",
                "task": "text-matching"
            }
        }

class BatchEmbeddingResponse(BaseModel):
    embeddings: List[List[float]] = Field(..., description="List of embedding vectors")
    model: str = Field(..., description="Model used")
    dimension: int = Field(..., description="Embedding dimension")
    num_texts: int = Field(..., description="Number of texts processed")

class HealthResponse(BaseModel):
    status: str
    models_loaded: List[str]
    voyage_available: bool
    fireworks_available: bool
    openrouter_available: bool
    api_key_required: bool

@app.get("/", response_model=dict)
async def root():
    """Root endpoint with API information"""
    return {
        "message": "Embedding Inference API",
        "version": "1.0.0",
        "endpoints": {
            "/health": "Health check and available models",
            "/embed": "Generate embeddings - Elasticsearch compatible (POST)",
            "/embed/batch": "Generate batch embeddings (POST)",
            "/models": "List available models",
            "/docs": "API documentation"
        }
    }

@app.get("/health", response_model=HealthResponse)
async def health():
    """Health check endpoint (no authentication required)"""
    models_loaded = list(MODELS.keys())
    return {
        "status": "healthy",
        "models_loaded": models_loaded,
        "voyage_available": voyage_client is not None,
        "fireworks_available": fireworks_available,
        "openrouter_available": openrouter_available,
        "api_key_required": REQUIRE_API_KEY
    }

@app.post("/embed", response_model=OpenAIEmbeddingResponse)
async def create_embeddings_elasticsearch(
    request: ElasticsearchInferenceRequest,
    model: str = Query("jobbertv3", description="Model: jobbertv2, jobbertv3, jina, or voyage"),
    task: Optional[str] = Query(None, description="Task for Jina AI: retrieval.query, retrieval.passage, text-matching, etc."),
    input_type: Optional[str] = Query(None, description="Input type for Voyage AI: document or query"),
    authenticated: bool = Depends(verify_api_key)
):
    """
    Generate embeddings - Elasticsearch inference endpoint compatible format
    
    **Usage:**
    - Single text: `POST /embed?model=jobbertv3` with body `{"input": "Software Engineer"}`
    - Multiple texts: `POST /embed?model=jina` with body `{"input": ["text1", "text2"]}`
    
    **Models (via query parameter):**
    - `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
    - `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance) - default
    - `jina`: Jina AI embeddings-v3 (1024-dim, general purpose)
    - `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context, via Fireworks or OpenRouter)
    - `openrouter`: OpenRouter embeddings (supports multiple models, requires API key)
    - `voyage`: Voyage AI (1024-dim, requires API key)
    
    **Jina AI Tasks (via query parameter):**
    - `retrieval.query`: For search queries
    - `retrieval.passage`: For documents/passages
    - `text-matching`: For similarity matching (default)
    
    **Qwen3 Task (via query parameter):**
    - `query`: For search queries (uses instruction-aware prompt)
    - Default: Documents/passages (no instruction)
    
    **Voyage AI Input Types (via query parameter):**
    - `document`: For documents/passages
    - `query`: For search queries
    """
    model_name = model.lower()
    
    # Handle single string or list of strings
    is_single = isinstance(request.input, str)
    texts = [request.input] if is_single else request.input
    
    if model_name == "voyage":
        if not voyage_client:
            raise HTTPException(
                status_code=503,
                detail="Voyage AI not available. Set VOYAGE_API_KEY environment variable."
            )
        
        try:
            voyage_input_type = input_type or "document"
            result = voyage_client.embed(
                texts=texts,
                model="voyage-3",
                input_type=voyage_input_type
            )
            embeddings = result.embeddings
            
            # Calculate token usage
            token_count = estimate_token_count(texts)
            
            # Create OpenAI-compatible response
            data = [
                EmbeddingObject(index=i, embedding=emb)
                for i, emb in enumerate(embeddings)
            ]
            
            return OpenAIEmbeddingResponse(
                model="voyage-3",
                object="list",
                usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
                data=data
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
    
    elif model_name == "openrouter":
        if not openrouter_available:
            raise HTTPException(
                status_code=503,
                detail="OpenRouter not available. Set OPENROUTER_API_KEY environment variable."
            )
        
        try:
            # Use OpenRouter with specified model or default
            openrouter_model = task or "qwen/qwen3-embedding-8b"  # Use task param as model selector
            embeddings_list = get_openrouter_embeddings(texts, model=openrouter_model)
            
            # Calculate token usage
            token_count = estimate_token_count(texts)
            
            # Create OpenAI-compatible response
            data = [
                EmbeddingObject(index=i, embedding=emb)
                for i, emb in enumerate(embeddings_list)
            ]
            
            return OpenAIEmbeddingResponse(
                model=f"openrouter/{openrouter_model}",
                object="list",
                usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
                data=data
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"OpenRouter error: {str(e)}")
    
    elif model_name in MODELS:
        try:
            selected_model = MODELS[model_name]
            
            # Qwen3 via Fireworks AI API (no local model)
            if model_name == "qwen3" and selected_model == 'fireworks':
                embeddings_list = get_fireworks_embeddings(texts, task=task)
            # Qwen3 via OpenRouter API
            elif model_name == "qwen3" and selected_model == 'openrouter':
                embeddings_list = get_openrouter_embeddings(texts, model="qwen/qwen3-embedding-8b")
            # Jina AI with task type
            elif model_name == "jina" and task:
                embeddings = selected_model.encode(
                    texts,
                    task=task,
                    convert_to_numpy=True
                )
                embeddings_list = embeddings.tolist()
            else:
                embeddings = selected_model.encode(
                    texts,
                    convert_to_numpy=True
                )
                embeddings_list = embeddings.tolist()
            
            # Calculate token usage
            token_count = estimate_token_count(texts)
            
            # Create OpenAI-compatible response
            data = [
                EmbeddingObject(index=i, embedding=emb)
                for i, emb in enumerate(embeddings_list)
            ]
            
            # Determine the full model name for response
            model_display_name = {
                "jobbertv2": "TechWolf/JobBERT-v2",
                "jobbertv3": "TechWolf/JobBERT-v3",
                "jina": "jina-embeddings-v3",
                "qwen3": "Qwen/Qwen3-Embedding-8B"
            }.get(model_name, model_name)
            
            return OpenAIEmbeddingResponse(
                model=model_display_name,
                object="list",
                usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
                data=data
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
    
    else:
        raise HTTPException(
            status_code=400,
            detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
        )

@app.post("/embed/batch", response_model=BatchEmbeddingResponse)
async def create_embeddings_batch(
    request: BatchEmbeddingRequest,
    authenticated: bool = Depends(verify_api_key)
):
    """
    Generate embeddings for multiple texts - Original batch format
    
    **Models:**
    - `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
    - `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance)
    - `jina`: Jina AI embeddings-v3 (1024-dim, general purpose, supports task types)
    - `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context)
    - `voyage`: Voyage AI (1024-dim, requires API key)
    
    **Jina AI Tasks:**
    - `retrieval.query`: For search queries
    - `retrieval.passage`: For documents/passages
    - `text-matching`: For similarity matching (default)
    - `classification`: For classification tasks
    - `separation`: For clustering
    
    **Voyage AI Input Types:**
    - `document`: For documents/passages
    - `query`: For search queries
    """
    model_name = request.model.lower()
    
    if model_name == "voyage":
        if not voyage_client:
            raise HTTPException(
                status_code=503,
                detail="Voyage AI not available. Set VOYAGE_API_KEY environment variable."
            )
        
        try:
            voyage_input_type = request.input_type or "document"
            result = voyage_client.embed(
                texts=request.texts,
                model="voyage-3",
                input_type=voyage_input_type
            )
            embeddings = result.embeddings
            dimension = len(embeddings[0]) if embeddings else 0
            
            return BatchEmbeddingResponse(
                embeddings=embeddings,
                model="voyage-3",
                dimension=dimension,
                num_texts=len(request.texts)
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
    
    elif model_name in MODELS:
        try:
            selected_model = MODELS[model_name]
            
            # Qwen3 via Fireworks AI API (no local model)
            if model_name == "qwen3" and selected_model == 'fireworks':
                embeddings_list = get_fireworks_embeddings(request.texts, task=request.task)
            # Qwen3 via OpenRouter API
            elif model_name == "qwen3" and selected_model == 'openrouter':
                embeddings_list = get_openrouter_embeddings(request.texts, model="qwen/qwen3-embedding-8b")
            # Jina AI with task type
            elif model_name == "jina" and request.task:
                embeddings = selected_model.encode(
                    request.texts,
                    task=request.task,
                    convert_to_numpy=True
                )
                embeddings_list = embeddings.tolist()
            else:
                embeddings = selected_model.encode(
                    request.texts,
                    convert_to_numpy=True
                )
                embeddings_list = embeddings.tolist()
            dimension = len(embeddings_list[0]) if embeddings_list else 0
            
            return BatchEmbeddingResponse(
                embeddings=embeddings_list,
                model=model_name,
                dimension=dimension,
                num_texts=len(request.texts)
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
    
    else:
        raise HTTPException(
            status_code=400,
            detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
        )

@app.get("/models")
async def list_models(authenticated: bool = Depends(verify_api_key)):
    """List available models and their specifications"""
    models_info = {
        "jobbertv2": {
            "name": "TechWolf/JobBERT-v2",
            "dimension": 768,
            "description": "Job-specific BERT model fine-tuned on job titles",
            "max_tokens": 512,
            "available": "jobbertv2" in MODELS
        },
        "jobbertv3": {
            "name": "TechWolf/JobBERT-v3",
            "dimension": 768,
            "description": "Latest JobBERT model with improved performance",
            "max_tokens": 512,
            "available": "jobbertv3" in MODELS
        },
        "jina": {
            "name": "jinaai/jina-embeddings-v3",
            "dimension": 1024,
            "description": "General-purpose embeddings with long context support",
            "max_tokens": 8192,
            "available": "jina" in MODELS,
            "tasks": ["retrieval.query", "retrieval.passage", "text-matching", "classification", "separation"]
        },
        "qwen3": {
            "name": "Qwen/Qwen3-Embedding-8B",
            "dimension": 4096,
            "description": "🏆 MTEB #1 multilingual model (100+ languages, 32k context, instruction-aware)",
            "max_tokens": 32768,
            "available": "qwen3" in MODELS,
            "tasks": ["query", "document"],
            "features": ["multilingual", "instruction-aware", "long-context"]
        },
        "voyage": {
            "name": "voyage-3",
            "dimension": 1024,
            "description": "State-of-the-art embeddings (requires API key)",
            "max_tokens": 32000,
            "available": voyage_client is not None,
            "input_types": ["document", "query"]
        }
    }
    return models_info

if __name__ == "__main__":
    import uvicorn
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)