File size: 14,587 Bytes
b8086d5
 
f27fbb4
 
 
b8086d5
 
 
 
f27fbb4
 
b8086d5
c267b11
b8086d5
 
 
 
 
f27fbb4
 
 
 
 
 
 
 
b8086d5
f27fbb4
 
b8086d5
37bd4d6
 
 
 
 
 
 
 
 
 
b8086d5
c267b11
b8086d5
 
f27fbb4
 
 
 
e3e2069
 
 
 
 
b8086d5
c267b11
e3e2069
 
 
dc6c2a4
f27fbb4
e3e2069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27fbb4
 
cf14392
f27fbb4
c267b11
cf14392
b8086d5
 
c267b11
 
 
 
b8086d5
c267b11
 
e3e2069
c267b11
b8086d5
 
 
f27fbb4
c267b11
b8086d5
f27fbb4
 
e3e2069
 
 
b8086d5
 
f27fbb4
 
 
 
 
 
 
 
b8086d5
f27fbb4
 
cf14392
 
 
f27fbb4
 
cf14392
f27fbb4
 
 
 
 
 
 
 
 
 
 
c267b11
 
 
 
37bd4d6
 
 
 
 
 
 
 
 
 
 
c267b11
f27fbb4
 
c267b11
f27fbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c267b11
 
 
 
37bd4d6
 
 
 
 
 
 
b8086d5
f27fbb4
c267b11
 
f27fbb4
 
c267b11
 
 
 
 
 
 
 
 
f27fbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c267b11
 
 
 
37bd4d6
 
 
 
 
 
 
1ff5d0c
c267b11
4b7c0ae
f27fbb4
 
4b7c0ae
37bd4d6
f27fbb4
 
 
 
 
 
 
37bd4d6
 
4b7c0ae
 
 
c267b11
4b7c0ae
c267b11
f27fbb4
 
c267b11
4b7c0ae
 
1ff5d0c
 
f27fbb4
 
 
 
 
 
 
 
 
 
37bd4d6
f27fbb4
 
 
 
 
 
 
1ff5d0c
4b7c0ae
f27fbb4
c267b11
f27fbb4
 
 
 
c267b11
4b7c0ae
f27fbb4
1ff5d0c
f27fbb4
4b7c0ae
f27fbb4
 
 
 
1ff5d0c
f27fbb4
4b7c0ae
f27fbb4
 
 
 
 
 
 
 
4b7c0ae
 
f27fbb4
 
 
 
c267b11
 
 
4b7c0ae
c267b11
f27fbb4
1ff5d0c
c267b11
 
 
1ff5d0c
 
 
 
c267b11
f27fbb4
1ff5d0c
c267b11
 
 
1ff5d0c
 
 
 
4b7c0ae
 
 
 
c267b11
e3e2069
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
from data_processor import DataProcessor
from sentiment_analyzer import SentimentAnalyzer
from model_handler import ModelHandler
from trading_logic import TradingLogic
import io
import base64

# Global instances
data_processor = DataProcessor()
sentiment_analyzer = SentimentAnalyzer()
model_handler = ModelHandler()
trading_logic = TradingLogic()

# Asset mapping
asset_map = {
    "Gold Futures (GC=F)": "GC=F",
    "Bitcoin USD (BTC-USD)": "BTC-USD"
}

def create_chart_analysis(interval, asset_name):
    """Create chart with technical indicators using mplfinance"""
    try:
        ticker = asset_map[asset_name]
        df = data_processor.get_asset_data(ticker, interval)
        if df.empty:
            # Return error plot instead of string
            fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
            fig.patch.set_facecolor('white')
            ax.text(0.5, 0.5, f'No data available for {asset_name}\nPlease try a different interval', 
                   ha='center', va='center', transform=ax.transAxes, fontsize=14, color='red')
            ax.set_title('Data Error', color='black')
            ax.axis('off')
            pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
            pred_fig.patch.set_facecolor('white')
            return fig, {}, pred_fig
        
        # Calculate indicators
        df = data_processor.calculate_indicators(df)
        
        # Create main candlestick chart with mplfinance
        # Prepare additional plots for indicators
        ap = []
        
        # Add moving averages (last 100 data points)
        if 'SMA_20' in df.columns:
            ap.append(mpf.make_addplot(df['SMA_20'].iloc[-100:], color='#FFA500', width=1.5, label='SMA 20'))
        if 'SMA_50' in df.columns:
            ap.append(mpf.make_addplot(df['SMA_50'].iloc[-100:], color='#FF4500', width=1.5, label='SMA 50'))
        
        # Add Bollinger Bands
        if 'BB_upper' in df.columns and 'BB_lower' in df.columns:
            ap.append(mpf.make_addplot(df['BB_upper'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
            ap.append(mpf.make_addplot(df['BB_lower'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
        
        # Create figure
        try:
            fig, axes = mpf.plot(
                df[-100:],  # Show last 100 candles
                type='candle',
                style='yahoo',
                title=f'{asset_name} - {interval}',
                ylabel='Price (USD)',
                volume=True,
                addplot=ap,
                figsize=(12, 8),
                returnfig=True,
                warn_too_much_data=200,
                tight_layout=True
            )
            
            # Adjust layout
            fig.patch.set_facecolor('white')
            if axes:
                axes[0].set_facecolor('white')
                axes[0].grid(True, alpha=0.3)
        except Exception as plot_error:
            print(f"Mplfinance plot error: {plot_error}")
            fig, axes = plt.subplots(figsize=(12, 8), facecolor='white')
            fig.patch.set_facecolor('white')
            axes.text(0.5, 0.5, f'Chart Plot Error: {str(plot_error)}', ha='center', va='center', 
                     transform=axes.transAxes, fontsize=14, color='red')
            axes.set_title('Plot Generation Error', color='black')
            axes.axis('off')
        
        # Prepare data for Chronos
        prepared_data = data_processor.prepare_for_chronos(df)
        
        # Generate predictions
        predictions = model_handler.predict(prepared_data, horizon=10)
        current_price = df['Close'].iloc[-1]
        
        # Get signal
        signal, confidence = trading_logic.generate_signal(
            predictions, current_price, df
        )
        
        # Calculate TP/SL
        tp, sl = trading_logic.calculate_tp_sl(
            current_price, df['ATR'].iloc[-1] if 'ATR' in df.columns else 10, signal
        )
        
        # Create metrics display
        metrics = {
            "Current Price": f"${current_price:,.2f}",
            "Signal": signal.upper(),
            "Confidence": f"{confidence:.1%}",
            "Take Profit": f"${tp:,.2f}" if tp else "N/A",
            "Stop Loss": f"${sl:,.2f}" if sl else "N/A",
            "RSI": f"{df['RSI'].iloc[-1]:.1f}" if 'RSI' in df.columns else "N/A",
            "MACD": f"{df['MACD'].iloc[-1]:.4f}" if 'MACD' in df.columns else "N/A",
            "Volume": f"{df['Volume'].iloc[-1]:,.0f}" if 'Volume' in df.columns else "N/A"
        }
        
        # Create prediction chart using matplotlib
        pred_fig, ax = plt.subplots(figsize=(10, 4), facecolor='white')
        pred_fig.patch.set_facecolor('white')
        
        # Plot historical prices (last 30 points)
        hist_data = df['Close'].iloc[-30:]
        hist_dates = df.index[-30:]
        ax.plot(hist_dates, hist_data, color='#4169E1', linewidth=2, label='Historical')
        
        # Plot predictions
        if predictions.any() and len(predictions) > 0:
            future_dates = pd.date_range(
                start=df.index[-1], periods=len(predictions), freq='D'
            )
            ax.plot(future_dates, predictions, color='#FF6600', linewidth=2, 
                   marker='o', markersize=4, label='Predictions')
            
            # Connect historical to prediction
            ax.plot([hist_dates[-1], future_dates[0]], 
                   [hist_data.iloc[-1], predictions[0]], 
                   color='#FF6600', linewidth=1, linestyle='--')
        
        ax.set_title('Price Prediction (Next 10 Periods)', fontsize=12, color='black')
        ax.set_xlabel('Date', color='black')
        ax.set_ylabel('Price (USD)', color='black')
        ax.legend()
        ax.grid(True, alpha=0.3)
        ax.tick_params(colors='black')
        
        return fig, metrics, pred_fig
        
    except Exception as e:
        # Return error plot instead of string
        fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
        fig.patch.set_facecolor('white')
        ax.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center', 
               transform=ax.transAxes, fontsize=14, color='red')
        ax.set_title('Chart Generation Error', color='black')
        ax.axis('off')
        
        pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
        pred_fig.patch.set_facecolor('white')
        return fig, {}, pred_fig

def analyze_sentiment(asset_name):
    """Analyze market sentiment for selected asset"""
    try:
        sentiment_score, news_summary = sentiment_analyzer.analyze_sentiment(asset_name)
        
        # Create sentiment gauge using matplotlib
        fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
        fig.patch.set_facecolor('white')
        
        # Create gauge
        ax.set_xlim(-1.5, 1.5)
        ax.set_ylim(0, 1)
        ax.set_aspect('equal')
        
        # Draw gauge background
        theta = np.linspace(np.pi, 0, 100)
        ax.plot(np.cos(theta), np.sin(theta), color='lightgray', linewidth=10)
        
        # Draw colored regions
        ax.fill_between(np.cos(theta[50:]), np.sin(theta[50:]), 0, 
                       where=np.cos(theta[50:])<0, color='red', alpha=0.3)
        ax.fill_between(np.cos(theta[25:75]), np.sin(theta[25:75]), 0, 
                       color='gray', alpha=0.3)
        ax.fill_between(np.cos(theta[:50]), np.sin(theta[:50]), 0, 
                       where=np.cos(theta[:50])>0, color='green', alpha=0.3)
        
        # Draw needle
        needle_angle = np.pi * (1 - (sentiment_score + 1) / 2)
        ax.plot([0, 0.8*np.cos(needle_angle)], [0, 0.8*np.sin(needle_angle)], 
               color='gold', linewidth=4)
        
        # Add score text
        ax.text(0, -0.2, f"{sentiment_score:.2f}", ha='center', va='center', 
               fontsize=16, color='black', weight='bold')
        ax.set_title(f'{asset_name} Market Sentiment', color='black')
        
        # Remove axes
        ax.axis('off')
        
        return fig, news_summary
        
    except Exception as e:
        # Return error plot
        fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
        fig.patch.set_facecolor('white')
        ax.text(0.5, 0.5, f'Sentiment Error: {str(e)}', ha='center', va='center', 
               transform=ax.transAxes, fontsize=12, color='red')
        ax.axis('off')
        return fig, f"<p>Error analyzing sentiment: {str(e)}</p>"

def get_fundamentals(asset_name):
    """Get fundamental analysis data"""
    try:
        ticker = asset_map[asset_name]
        fundamentals = data_processor.get_fundamental_data(ticker)
        
        # Create fundamentals table
        table_data = []
        for key, value in fundamentals.items():
            table_data.append([key, value])
        
        df = pd.DataFrame(table_data, columns=['Metric', 'Value'])
        
        # Create fundamentals gauge chart
        fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
        fig.patch.set_facecolor('white')
        
        strength_index = fundamentals.get('Strength Index', 50)
        
        # Create horizontal bar gauge
        ax.barh([0], [strength_index], height=0.3, color='gold', alpha=0.7)
        ax.set_xlim(0, 100)
        ax.set_ylim(-0.5, 0.5)
        ax.set_title(f'{asset_name} Strength Index', color='black')
        ax.set_xlabel('Index Value', color='black')
        ax.text(strength_index, 0, f'{strength_index:.1f}', 
               ha='left', va='center', fontsize=12, color='black', weight='bold')
        ax.grid(True, alpha=0.3)
        ax.tick_params(colors='black')
        
        return fig, df
        
    except Exception as e:
        # Return error plot
        fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
        fig.patch.set_facecolor('white')
        ax.text(0.5, 0.5, f'Fundamentals Error: {str(e)}', ha='center', va='center', 
               transform=ax.transAxes, fontsize=12, color='red')
        ax.axis('off')
        return fig, pd.DataFrame()

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
    title="Trading Analysis & Prediction",
    css="""
        .gradio-container {background-color: #FFFFFF !important; color: #000000 !important}
        .gr-button-primary {background-color: #4169E1 !important; color: #FFFFFF !important}
        .gr-button-secondary {border-color: #4169E1 !important; color: #4169E1 !important}
        .gr-tab button {color: #000000 !important}
        .gr-tab button.selected {background-color: #4169E1 !important; color: #FFFFFF !important}
        .gr-highlighted {background-color: #F0F0F0 !important}
        .anycoder-link {color: #4169E1 !important; text-decoration: none; font-weight: bold}
        .gr-json {background-color: #FFFFFF !important; color: #000000 !important}
        .gr-json label {color: #000000 !important}
        .gr-textbox, .gr-dropdown, .gr-number {background-color: #FFFFFF !important; color: #000000 !important}
    """
) as demo:
    
    # Header with anycoder link
    gr.HTML("""
        <div style="text-align: center; padding: 20px;">
            <h1 style="color: #4169E1;">Trading Analysis & Prediction</h1>
            <p>Advanced AI-powered analysis for Gold and Bitcoin</p>
            <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="anycoder-link">Built with anycoder</a>
        </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            asset_dropdown = gr.Dropdown(
                choices=list(asset_map.keys()),
                value="Gold Futures (GC=F)",
                label="Select Asset",
                info="Choose trading pair"
            )
        with gr.Column(scale=1):
            interval_dropdown = gr.Dropdown(
                choices=[
                    "5m", "15m", "30m", "1h", "1d", "1wk", "1mo", "3mo"
                ],
                value="1d",
                label="Time Interval",
                info="Select analysis timeframe"
            )
        with gr.Column(scale=1):
            refresh_btn = gr.Button("Refresh Data", variant="primary")
    
    with gr.Tabs():
        with gr.TabItem("Chart Analysis"):
            with gr.Row():
                with gr.Column(scale=2):
                    chart_plot = gr.Plot(label="Price Chart")
                with gr.Column(scale=1):
                    metrics_output = gr.JSON(label="Trading Metrics")
            
            with gr.Row():
                pred_plot = gr.Plot(label="Price Predictions")
        
        with gr.TabItem("Sentiment Analysis"):
            with gr.Row():
                with gr.Column(scale=1):
                    sentiment_gauge = gr.Plot(label="Sentiment Score")
                with gr.Column(scale=1):
                    news_display = gr.HTML(label="Market News")
        
        with gr.TabItem("Fundamentals"):
            with gr.Row():
                with gr.Column(scale=1):
                    fundamentals_gauge = gr.Plot(label="Strength Index")
                with gr.Column(scale=1):
                    fundamentals_table = gr.Dataframe(
                        headers=["Metric", "Value"],
                        label="Key Fundamentals",
                        interactive=False
                    )
    
    # Event handlers
    def update_all(interval, asset):
        chart, metrics, pred = create_chart_analysis(interval, asset)
        sentiment, news = analyze_sentiment(asset)
        fund_gauge, fund_table = get_fundamentals(asset)
        
        return chart, metrics, pred, sentiment, news, fund_gauge, fund_table
    
    refresh_btn.click(
        fn=update_all,
        inputs=[interval_dropdown, asset_dropdown],
        outputs=[
            chart_plot, metrics_output, pred_plot,
            sentiment_gauge, news_display,
            fundamentals_gauge, fundamentals_table
        ]
    )
    
    demo.load(
        fn=update_all,
        inputs=[interval_dropdown, asset_dropdown],
        outputs=[
            chart_plot, metrics_output, pred_plot,
            sentiment_gauge, news_display,
            fundamentals_gauge, fundamentals_table
        ]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_api=True
    )