File size: 10,060 Bytes
9b5168a
d9f5d53
bedf234
9b5168a
 
 
 
d9f5d53
4fb4f18
 
9b5168a
d9f5d53
9b5168a
 
 
d9f5d53
9b5168a
bedf234
9b5168a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ca431
 
9b5168a
 
 
 
 
 
 
 
 
 
 
 
4fb4f18
 
bedf234
9b5168a
 
4fb4f18
9b5168a
4fb4f18
9b5168a
 
4fb4f18
bedf234
 
 
d9f5d53
9b5168a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a235ecf
9b5168a
 
 
 
 
 
 
 
a235ecf
9b5168a
 
 
 
 
 
 
 
 
a235ecf
9b5168a
 
 
 
 
 
 
 
 
 
d9f5d53
bedf234
9b5168a
d9f5d53
9b5168a
 
bedf234
9b5168a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ca431
9b5168a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ca431
9b5168a
 
d9f5d53
9b5168a
90ca431
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# body_analyzer.py
import os
import re
import requests
import base64
import io
from typing import List

HF_API_KEY = os.getenv("HF_API_KEY")
HF_HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} if HF_API_KEY else {}
HF_TIMEOUT = 20  # seconds

# ML model names
PHISHING_MODEL = "cybersectony/phishing-email-detection-distilbert_v2.4.1"
ZERO_SHOT_MODEL = "facebook/bart-large-mnli"  # for intent/behavior

# Suspicious phrase patterns (lowercased when matching)
SUSPICIOUS_PATTERNS = [
    "verify your account",
    "urgent action",
    "click here",
    "reset password",
    "confirm your identity",
    "bank account",
    "invoice",
    "payment required",
    "unauthorized login",
    "compromised",
    "final reminder",
    "account suspended",
    "account deactivated",
    "update your information",
    "legal action",
    "limited time offer",
    "claim your prize",
    "verify immediately",
    "verify now",
    "verify your credentials",
]

# zero-shot candidate labels for message behavior
BEHAVIOR_LABELS = [
    "credential harvesting",
    "invoice/payment fraud",
    "marketing",
    "benign",
    "malware",
    "account takeover",
]

def _call_hf_text_model(model_name: str, text: str):
    """Call HF Inference API for text. Return raw JSON or None on failure."""
    if not HF_API_KEY:
        return None
    try:
        payload = {"inputs": text}
        # For zero-shot, caller will pass parameters in payload if needed
        res = requests.post(
            f"https://api-inference.huggingface.co/models/{model_name}",
            headers=HF_HEADERS,
            json=payload,
            timeout=HF_TIMEOUT,
        )
        return res.json()
    except Exception:
        return None

def _call_hf_zero_shot(text: str, candidate_labels: List[str]):
    if not HF_API_KEY:
        return None
    try:
        payload = {"inputs": text, "parameters": {"candidate_labels": candidate_labels}}
        res = requests.post(
            f"https://api-inference.huggingface.co/models/{ZERO_SHOT_MODEL}",
            headers=HF_HEADERS,
            json=payload,
            timeout=HF_TIMEOUT,
        )
        return res.json()
    except Exception:
        return None

def _call_hf_image_ocr(model_name: str, image_bytes: bytes):
    """
    Call HF image OCR model endpoint. Returns string or None.
    Uses raw bytes upload: content-type application/octet-stream body.
    """
    if not HF_API_KEY:
        return None
    try:
        headers = HF_HEADERS.copy()
        headers["Content-Type"] = "application/octet-stream"
        res = requests.post(
            f"https://api-inference.huggingface.co/models/{model_name}",
            headers=headers,
            data=image_bytes,
            timeout=HF_TIMEOUT,
        )
        # Many vision models return {"generated_text": "..."} or list; attempt to parse common shapes
        data = res.json()
        if isinstance(data, dict):
            # TrOCR-style may return {"generated_text": "..."}
            if "generated_text" in data:
                return data["generated_text"]
            # Some OCR endpoints may return list of dicts
        if isinstance(data, list) and data and isinstance(data[0], dict):
            # choose text-like fields if present
            candidate = data[0].get("generated_text") or data[0].get("text") or data[0].get("caption")
            return candidate
        # fallback: try string concatenation if possible
        if isinstance(data, str):
            return data
    except Exception:
        pass
    return None

# local pytesseract fallback
def _ocr_local_pytesseract(image_bytes):
    try:
        from PIL import Image
        import pytesseract
        import io
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        text = pytesseract.image_to_string(image)
        return text
    except Exception:
        return None

def _parse_hf_phishing_model_output(result):
    """
    Expected: model may return list of logits/probs. Try common shapes.
    Returns: label:str, confidence:float (0..1), all_probs:dict
    """
    if not result:
        return None, 0.0, {}
    # if list of dicts with label & score
    if isinstance(result, list) and len(result) > 0 and isinstance(result[0], dict):
        r0 = result[0]
        label = r0.get("label")
        score = r0.get("score", 0.0)
        return label, float(score or 0.0), {label: float(score or 0.0)}
    # if dict with labels & scores
    if isinstance(result, dict):
        # sometimes returns {'labels': [...], 'scores': [...]}
        labels = result.get("labels") or result.get("label") or []
        scores = result.get("scores") or result.get("score") or []
        if isinstance(labels, list) and isinstance(scores, list) and labels and scores:
            all_probs = {lab: float(sc) for lab, sc in zip(labels, scores)}
            # pick max
            max_lab = max(all_probs.items(), key=lambda x: x[1])
            return max_lab[0], float(max_lab[1]), all_probs
    return None, 0.0, {}

def analyze_body(subject: str, body: str, urls: list, images: list):
    """
    Inputs:
      subject: email subject (str)
      body: plaintext combined body (str)
      urls: list of urls
      images: list of image bytes
    Returns:
      findings (list[str]), score (int 0..100), highlighted_body (str), verdict (str)
    """
    findings = []
    score = 0
    highlighted_body = (body or "")  # will attempt to highlight suspicious text/URLs

    # 1) Basic heuristics on subject + body
    combined_lower = ((subject or "") + "\n" + (body or "")).lower()
    for pattern in SUSPICIOUS_PATTERNS:
        if pattern in combined_lower:
            findings.append(f"Suspicious phrase detected: \"{pattern}\"")
            # weight subject phrases more heavily
            if pattern in (subject or "").lower():
                score += 30
            else:
                score += 18
            try:
                highlighted_body = re.sub(re.escape(pattern), f"<mark>{pattern}</mark>", highlighted_body, flags=re.IGNORECASE)
            except Exception:
                pass

    # 2) URL heuristics (always include)
    for u in urls or []:
        findings.append(f"Suspicious URL detected: {u}")
        score += 10
        try:
            highlighted_body = re.sub(re.escape(u), f"<mark>{u}</mark>", highlighted_body, flags=re.IGNORECASE)
        except Exception:
            pass
        # suspicious domain structure bump
        domain_match = re.search(r"https?://([^/]+)/?", u)
        if domain_match:
            domain = domain_match.group(1)
            if len(domain) > 25 or any(ch.isdigit() for ch in domain.split(".")[0]):
                findings.append(f"URL: suspicious-looking domain {domain}")
                score += 10

    # 3) OCR images
    ocr_texts = []
    if images:
        for img_bytes in images:
            text = None
            # Prefer HF TrOCR-like endpoint if HF_API_KEY provided
            if HF_API_KEY:
                # try a well-known OCR-capable model; TrOCR base is a candidate
                ocr_result = _call_hf_image_ocr("microsoft/trocr-base-stage1", img_bytes)
                if ocr_result:
                    text = ocr_result
            if not text:
                # fallback to local pytesseract
                text = _ocr_local_pytesseract(img_bytes)
            if text:
                ocr_texts.append(text)
                findings.append("OCR: extracted text from image.")
                # add small heuristic score for OCR results
                lower = text.lower()
                for pat in SUSPICIOUS_PATTERNS:
                    if pat in lower:
                        findings.append(f"OCR: suspicious phrase in image -> \"{pat}\"")
                        score += 20

    # 4) ML phishing model (Hugging Face)
    ml_label = None
    ml_conf = 0.0
    ml_all = {}
    model_input = "\n".join([subject or "", body or "", "\n".join(urls or []), "\n".join(ocr_texts or [])]).strip()
    if model_input and HF_API_KEY:
        raw = _call_hf_text_model(PHISHING_MODEL, model_input)
        label, conf, allp = _parse_hf_phishing_model_output(raw)
        if label:
            ml_label = label
            ml_conf = conf
            ml_all = allp
            findings.append(f"HuggingFace phishing model β†’ {label} (conf {conf:.2f})")
            # confidence scaled to score (but cap)
            score += int(conf * 100 * 0.9)  # slightly reduce to avoid double-counting

    # 5) Zero-shot behavior intent model (when HF available)
    behavior = None
    behavior_conf = 0.0
    if HF_API_KEY and model_input:
        zs = _call_hf_zero_shot(model_input, BEHAVIOR_LABELS)
        try:
            if isinstance(zs, dict) and "labels" in zs and "scores" in zs:
                best_label = zs["labels"][0]
                best_score = float(zs["scores"][0])
                behavior = best_label
                behavior_conf = best_score
                findings.append(f"Behavior inference β†’ {behavior} (conf {behavior_conf:.2f})")
                # add modest boost for strong behavior confidence
                if behavior_conf >= 0.7:
                    score += int(behavior_conf * 30)
        except Exception:
            pass

    # 6) Final heuristics fallbacks
    # If ML already strongly flagged phishing, ensure high score
    if ml_conf >= 0.8 and ("phishing" in (ml_label or "").lower()):
        score = max(score, 80)

    # clamp
    try:
        score = int(max(0, min(score, 100)))
    except Exception:
        score = 0

    # Final verdict mapping (tunable)
    if score >= 70:
        verdict = "🚨 Malicious"
    elif 50 <= score < 70:
        verdict = "⚠️ Suspicious"
    elif 30 <= score < 50:
        verdict = "πŸ“© Spam"
    else:
        verdict = "βœ… Safe"
        findings.append("No strong phishing signals detected by models/heuristics.")

    # Return findings, score, highlighted body (with possible <mark> tags), verdict
    return findings, score, highlighted_body, verdict