ChemGrasp-OCSR / app.py
pyxist2020's picture
Update app.py
619db5d verified
"""
Base64 to Image Decoder
Decodes Base64 data to image files and optionally converts to MOL format using MolScribe
"""
import gradio as gr
import base64
import json
import tempfile
import os
import logging
from io import BytesIO
from typing import Optional, Tuple, List
import zipfile
# Import required libraries
try:
from PIL import Image
import numpy as np
import torch
# MolScribe will be lazy loaded
except ImportError as e:
logging.error(f"Required library not found: {e}")
print("Please install required dependencies:")
print("pip install pillow")
print("pip install numpy")
print('pip install "gradio[mcp]"')
print("pip install MolScribe")
print("pip install torch")
raise
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variable to cache MolScribe model
_molscribe_model = None
def initialize_molscribe_model():
"""Initialize MolScribe model (CPU)"""
global _molscribe_model
if _molscribe_model is not None:
return _molscribe_model
try:
import numpy as np
import torch
from molscribe import MolScribe
from huggingface_hub import hf_hub_download
logger.info("Downloading MolScribe checkpoint...")
ckpt_path = hf_hub_download('yujieq/MolScribe', 'swin_base_char_aux_1m.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Initializing MolScribe on {device}...")
logger.info(f"NumPy version: {np.__version__}")
logger.info(f"PyTorch version: {torch.__version__}")
_molscribe_model = MolScribe(ckpt_path, device=device)
logger.info("MolScribe model ready")
return _molscribe_model
except Exception as e:
logger.error(f"Failed to initialize MolScribe: {e}")
raise
def run_molscribe_prediction(image_path: str):
"""Run MolScribe prediction"""
try:
import numpy as np
import torch
logger.info("Starting MolScribe prediction...")
logger.info(f"NumPy available: {np.__version__}")
logger.info(f"PyTorch available: {torch.__version__}")
model = initialize_molscribe_model()
logger.info("Model initialized, running prediction...")
result = model.predict_image_file(image_path)
logger.info(f"Prediction completed: {result}")
return result
except Exception as e:
logger.error(f"MolScribe prediction failed: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return {"error": str(e), "traceback": traceback.format_exc()}
def decode_single_base64_image(base64_data: str, filename: Optional[str] = None, include_molscribe: bool = False) -> Tuple[Optional[Image.Image], str, dict]:
"""Decode a single Base64 image (with optional MolScribe conversion)
Args:
base64_data: Base64 encoded image data
filename: Output filename (optional)
include_molscribe: Whether to run MolScribe MOL conversion
Returns:
Tuple[PIL.Image, filename, metadata]
"""
try:
# Clean up Base64 data
base64_data = base64_data.strip()
# Remove data URL prefix
original_format = "unknown"
if base64_data.startswith('data:image'):
header_part = base64_data.split(',')[0]
if 'image/' in header_part:
format_part = header_part.split('image/')[1].split(';')[0]
original_format = format_part.upper()
base64_data = base64_data.split(',')[1]
# Decode Base64
image_data = base64.b64decode(base64_data)
# Convert to PIL Image
image = Image.open(BytesIO(image_data))
# Generate filename
if not filename:
if original_format != "unknown":
filename = f"decoded_image.{original_format.lower()}"
else:
filename = f"decoded_image.{image.format.lower() if image.format else 'png'}"
# Collect metadata
metadata = {
"success": True,
"filename": filename,
"image_format": image.format or original_format,
"image_mode": image.mode,
"image_size": {
"width": image.width,
"height": image.height
},
"original_data_size": len(base64_data),
"decoded_data_size": len(image_data)
}
# Run MolScribe conversion if requested
if include_molscribe:
try:
# Preprocess image for MolScribe
processed_image = image
# Convert RGBA to RGB (handle transparency with white background)
if processed_image.mode == 'RGBA':
background = Image.new('RGB', processed_image.size, (255, 255, 255))
background.paste(processed_image, mask=processed_image.split()[-1])
processed_image = background
elif processed_image.mode != 'RGB':
processed_image = processed_image.convert('RGB')
# Resize if too small (MolScribe recommended minimum)
min_size = 224
if processed_image.width < min_size or processed_image.height < min_size:
scale_factor = max(min_size / processed_image.width, min_size / processed_image.height)
new_width = int(processed_image.width * scale_factor)
new_height = int(processed_image.height * scale_factor)
processed_image = processed_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
logger.info(f"Resized image from {image.width}x{image.height} to {new_width}x{new_height}")
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
processed_image.save(temp_file.name, 'PNG')
temp_image_path = temp_file.name
try:
# Run MolScribe prediction
logger.info(f"Running MolScribe prediction for {filename}...")
result = run_molscribe_prediction(temp_image_path)
if result and not isinstance(result, dict) or not result.get("error"):
metadata["molscribe"] = {
"success": True,
"smiles": result.get('smiles', ''),
"molfile": result.get('molfile', ''),
"confidence": result.get('confidence', 0.0)
}
logger.info(f"MolScribe prediction successful for {filename}")
elif result and result.get("error"):
metadata["molscribe"] = {
"success": False,
"error": result.get("error", "Unknown error"),
"details": result.get("traceback", "No traceback available")
}
logger.warning(f"MolScribe prediction failed for {filename}: {result.get('error')}")
else:
metadata["molscribe"] = {
"success": False,
"error": "MolScribe returned empty result",
"details": "The model may not have detected any chemical structures in the image"
}
logger.warning(f"MolScribe returned empty result for {filename}")
finally:
# Clean up temporary file
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
except Exception as e:
metadata["molscribe"] = {
"success": False,
"error": f"Image preprocessing or MolScribe execution failed: {str(e)}",
"details": "This may happen if the image doesn't contain recognizable chemical structures or if there's a model initialization issue"
}
logger.error(f"MolScribe error for {filename}: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return image, filename, metadata
except Exception as e:
error_metadata = {
"success": False,
"error": str(e),
"filename": filename or "error.png"
}
if include_molscribe:
error_metadata["molscribe"] = {
"success": False,
"error": "Image decoding failed, MolScribe not executed"
}
return None, filename or "error.png", error_metadata
def decode_base64_to_images(input_data: str, include_molscribe: bool = False) -> str:
"""Convert Base64 data to downloadable images (with optional MolScribe conversion)
Args:
input_data: Base64 image data or JSON string containing Base64 images
include_molscribe: Whether to include MolScribe MOL conversion
Returns:
JSON string containing conversion results and download information
"""
try:
if not input_data or not input_data.strip():
return json.dumps({
"error": "No input data provided",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
results = []
temp_files = []
# Determine input data format
input_data = input_data.strip()
if input_data.startswith('{') or input_data.startswith('['):
# JSON format
try:
json_data = json.loads(input_data)
if isinstance(json_data, dict):
# Single image data
if "image_base64" in json_data:
image, filename, metadata = decode_single_base64_image(
json_data["image_base64"],
json_data.get("filename"),
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
# Multi-page data (DECIMER output format)
elif "pages" in json_data:
for page in json_data["pages"]:
for structure in page.get("structures", []):
filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
image, filename, metadata = decode_single_base64_image(
structure["image_base64"],
filename,
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
else:
return json.dumps({
"error": "Invalid JSON format. Expected 'image_base64' or 'pages' field",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
elif isinstance(json_data, list):
# List format
for i, item in enumerate(json_data):
if isinstance(item, dict) and "image_base64" in item:
filename = item.get("filename", f"image_{i+1}.png")
image, filename, metadata = decode_single_base64_image(
item["image_base64"],
filename,
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
except json.JSONDecodeError as e:
return json.dumps({
"error": f"Invalid JSON format: {e}",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
else:
# Plain Base64 string
image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
if image:
temp_files.append((image, filename))
results.append(metadata)
# Calculate successful conversions
successful_conversions = sum(1 for r in results if r.get("success", False))
molscribe_conversions = sum(1 for r in results if r.get("molscribe", {}).get("success", False))
# Compile results
final_result = {
"total_processed": len(results),
"successful_conversions": successful_conversions,
"failed_conversions": len(results) - successful_conversions,
"molscribe_enabled": include_molscribe,
"molscribe_conversions": molscribe_conversions if include_molscribe else None,
"download_info": {
"total_files": len(temp_files),
"files_available": successful_conversions > 0
},
"results": results
}
logger.info(f"Conversion completed: {successful_conversions}/{len(results)} successful")
return json.dumps(final_result, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error in conversion process: {e}")
error_result = {
"error": str(e),
"total_processed": 0,
"successful_conversions": 0,
"failed_conversions": 1,
"molscribe_enabled": include_molscribe,
"molscribe_conversions": 0 if include_molscribe else None,
"download_info": {
"total_files": 0,
"files_available": False
},
"results": []
}
return json.dumps(error_result, indent=2, ensure_ascii=False)
def create_zip_from_base64(input_data: str, include_molscribe: bool = False) -> Optional[str]:
"""Extract images from Base64 data and create ZIP file (including results JSON)"""
try:
if not input_data or not input_data.strip():
logger.warning("Empty input data")
return None
images_to_zip = []
input_data = input_data.strip()
# Parse input data
if input_data.startswith('{') or input_data.startswith('['):
try:
json_data = json.loads(input_data)
if isinstance(json_data, dict):
if "image_base64" in json_data:
image, filename, metadata = decode_single_base64_image(
json_data["image_base64"],
json_data.get("filename"),
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
elif "pages" in json_data:
for page in json_data["pages"]:
for structure in page.get("structures", []):
filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
image, filename, metadata = decode_single_base64_image(
structure["image_base64"],
filename,
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
elif isinstance(json_data, list):
for i, item in enumerate(json_data):
if isinstance(item, dict) and "image_base64" in item:
filename = item.get("filename", f"image_{i+1}.png")
image, filename, metadata = decode_single_base64_image(
item["image_base64"],
filename,
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
except json.JSONDecodeError as e:
logger.error(f"JSON decode error: {e}")
return None
else:
# Plain Base64 string
image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
if image:
images_to_zip.append((image, filename, metadata))
# Create ZIP file
if not images_to_zip:
logger.warning("No images to zip")
return None
logger.info(f"Creating ZIP with {len(images_to_zip)} images")
# Create temporary ZIP file
temp_zip = tempfile.NamedTemporaryFile(suffix='.zip', delete=False)
temp_zip_path = temp_zip.name
temp_zip.close()
# Prepare results JSON
results_data = []
for image, filename, metadata in images_to_zip:
results_data.append(metadata)
results_json = {
"total_processed": len(images_to_zip),
"successful_conversions": len([r for r in results_data if r.get("success", False)]),
"molscribe_enabled": include_molscribe,
"molscribe_conversions": len([r for r in results_data if r.get("molscribe", {}).get("success", False)]) if include_molscribe else 0,
"results": results_data
}
with zipfile.ZipFile(temp_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Add results JSON
json_str = json.dumps(results_json, indent=2, ensure_ascii=False)
zipf.writestr('conversion_results.json', json_str)
for image, filename, metadata in images_to_zip:
# Save image to byte stream and add to ZIP
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
zipf.writestr(filename, img_byte_arr.read())
# Add MOL file if MolScribe data exists
if include_molscribe and metadata.get("molscribe", {}).get("success", False):
mol_filename = filename.rsplit('.', 1)[0] + '.mol'
molfile_content = metadata["molscribe"]["molfile"]
# Add metadata to MOL file
enhanced_molfile = f"""{molfile_content}
> <SMILES>
{metadata["molscribe"]["smiles"]}
> <CONFIDENCE>
{metadata["molscribe"]["confidence"]:.4f}
> <SOURCE_IMAGE>
{filename}
> <GENERATED_BY>
MolScribe via Base64 Decoder
$$$$"""
zipf.writestr(mol_filename, enhanced_molfile)
if os.path.exists(temp_zip_path):
logger.info(f"ZIP file created: {temp_zip_path}")
return temp_zip_path
else:
logger.error("ZIP file was not created")
return None
except Exception as e:
logger.error(f"Error creating ZIP file: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def create_demo():
"""Create Gradio interface for Base64 decoder"""
with gr.Blocks(
title="Base64 to Image Decoder",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# ChemGrasp-OCSR (Base64 to Image Decoder and Optical Chemical Structure Recognition)
Decode Base64-encoded image data and convert to image files.
Optionally generate MOL files using MolScribe.
πŸ’» **CPU Environment**
## πŸš€ Quick Start
1. Paste your Base64 image data or JSON in the input field
2. (Optional) Check "Include MolScribe MOL conversion" for chemical structures
3. Click "Decode Images" to see results, or "Download as ZIP" to get files
## πŸ“‹ Input Formats
- Single Base64 image data
- JSON format (multiple images supported)
- DECIMER output format (structure images)
## πŸ“š Citation
If you use MolScribe in your research, please cite:
```
@article{MolScribe,
title = {{MolScribe}: Robust Molecular Structure Recognition with Image-to-Graph Generation},
author = {Yujie Qian and Jiang Guo and Zhengkai Tu and Zhening Li and Connor W. Coley and Regina Barzilay},
journal = {Journal of Chemical Information and Modeling},
publisher = {American Chemical Society ({ACS})},
doi = {10.1021/acs.jcim.2c01480},
year = 2023,
}
```
""")
with gr.Row():
with gr.Column():
input_data = gr.Textbox(
label="πŸ“₯ Base64 Image Data or JSON",
lines=10,
placeholder="Enter Base64 image data or JSON format data...",
show_copy_button=True
)
molscribe_checkbox = gr.Checkbox(
label="🧬 Include MolScribe MOL conversion",
value=False,
info="For chemical structures, also generate MOL files"
)
with gr.Row():
decode_btn = gr.Button(
"πŸ–ΌοΈ Decode Images",
variant="primary",
size="lg"
)
download_btn = gr.Button(
"πŸ“¦ Download as ZIP",
variant="secondary",
size="lg"
)
with gr.Column():
result_output = gr.Textbox(
label="πŸ“Š Conversion Results",
lines=15,
show_copy_button=True,
placeholder="Conversion results will appear here...",
interactive=False
)
zip_download = gr.File(
label="πŸ“¦ Download ZIP File"
)
with gr.Accordion("πŸ“– Input Format Examples", open=False):
gr.Markdown("""
### Single Base64 Image
```
iVBORw0KGgoAAAANSUhEUgAA...
```
### Data URL Format
```
...
```
### JSON Format (Single Image)
```json
{
"image_base64": "iVBORw0KGgoAAAANSUhEUgAA...",
"filename": "structure.png"
}
```
### DECIMER Output Format
```json
{
"pages": [
{
"page_number": 1,
"structures": [
{
"segment_id": 1,
"image_base64": "iVBORw0KGgoAAAANSUhEUgAA..."
}
]
}
]
}
```
""")
with gr.Accordion("πŸ“– Output Format Example", open=False):
gr.Markdown("""
### JSON Conversion Results (Display & Inside ZIP)
""")
gr.Code("""
{
"total_processed": 2,
"successful_conversions": 2,
"failed_conversions": 0,
"molscribe_enabled": true,
"molscribe_conversions": 2,
"download_info": {
"total_files": 2,
"files_available": true
},
"results": [
{
"success": true,
"filename": "decoded_image.png",
"image_format": "PNG",
"image_mode": "RGB",
"image_size": {
"width": 256,
"height": 256
},
"original_data_size": 12345,
"decoded_data_size": 8192,
"molscribe": {
"success": true,
"smiles": "c1ccccc1",
"molfile": "\\n Mrv2014 01011200\\n\\n 6 6 0 0 0 0...",
"confidence": 0.9876
}
}
]
}
""", language="json")
gr.Markdown("""
### ZIP File Structure Example
```
chemical_structures.zip
β”œβ”€β”€ conversion_results.json ← JSON data above
β”œβ”€β”€ page_1_structure_1.png ← Decoded image
β”œβ”€β”€ page_1_structure_1.mol ← MOL generated by MolScribe
β”œβ”€β”€ page_1_structure_2.png
β”œβ”€β”€ page_1_structure_2.mol
└── ...
```
""")
# Event handlers
def decode_and_show_results(input_data, include_molscribe):
return decode_base64_to_images(input_data, include_molscribe)
def create_and_show_zip(input_data, include_molscribe):
"""Create ZIP file with error handling"""
try:
if not input_data or not input_data.strip():
logger.warning("No input data provided for ZIP creation")
return None
logger.info(f"Creating ZIP file... (MolScribe: {include_molscribe})")
zip_path = create_zip_from_base64(input_data, include_molscribe)
if zip_path and os.path.exists(zip_path):
file_size = os.path.getsize(zip_path)
logger.info(f"ZIP file created successfully: {zip_path} ({file_size} bytes)")
return zip_path
else:
logger.error("ZIP file creation failed or file not found")
return None
except Exception as e:
logger.error(f"Error in create_and_show_zip: {e}")
import traceback
logger.error(traceback.format_exc())
return None
decode_btn.click(
fn=decode_and_show_results,
inputs=[input_data, molscribe_checkbox],
outputs=[result_output],
show_progress=True
)
download_btn.click(
fn=create_and_show_zip,
inputs=[input_data, molscribe_checkbox],
outputs=[zip_download],
show_progress=True
)
return demo
# Main execution
if __name__ == "__main__":
logger.info("Running in CPU environment")
demo = create_demo()
demo.launch(mcp_server=False)