Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,712 Bytes
6d29b78 9d1bc12 6d29b78 9d1bc12 6228c8b 6d29b78 2e8da0d 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 02db00d 9d1bc12 6228c8b a42df2c 6228c8b 8826601 9d1bc12 6228c8b 9d1bc12 6228c8b 9d1bc12 6d29b78 9d1bc12 6d29b78 f99be6b 6228c8b 02db00d 6228c8b 02db00d 6228c8b 9d1bc12 6228c8b 9d1bc12 81d6159 8c054ac c9f04dd d419dc7 c9f04dd d419dc7 a038035 d419dc7 a038035 c9f04dd d419dc7 c9f04dd d419dc7 a038035 c9f04dd a038035 d419dc7 c9f04dd 6228c8b c9f04dd 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 2314c25 69e894e 6d29b78 2314c25 81d6159 8c054ac 81d6159 8c054ac 8ee0e91 ea621bd 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 8ee0e91 81d6159 8c054ac 6d29b78 9d1bc12 6d29b78 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 8024c78 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 8024c78 6228c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
import traceback
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS — LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== 🔥 SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"💠 GPU Total : {total:.2f} GB")
log(f"💠 GPU Allocated : {allocated:.2f} GB")
log(f"💠 GPU Reserved : {reserved:.2f} GB")
log(f"💠 GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"🧠 CPU Usage : {cpu}%")
log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"⚠️ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("🔍 Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"📌 PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"📌 PLATFORM : {platform.platform()}")
log(f"📌 TORCH VERSION : {torch.__version__}")
log(f"📌 TRANSFORMERS VERSION : {transformers.__version__}")
log(f"📌 DIFFUSERS VERSION : {diffusers.__version__}")
log(f"📌 CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("❌ CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0])
return pil_img
except Exception as e:
log(f"⚠️ Failed to decode latent: {e}")
return None
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\n🔍🔍 FULL TRANSFORMER DEBUG DUMP: {name}")
log("=" * 80)
try:
log(f"Model class : {model.__class__.__name__}")
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
log(f"Device : {next(model.parameters()).device}")
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
# Check quantization
if hasattr(model, "is_loaded_in_4bit"):
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
if hasattr(model, "is_loaded_in_8bit"):
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
# Find blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
chosen_attr = attr
break
log(f"Block container attr : {chosen_attr}")
if blocks is None:
log("⚠️ No valid block container found.")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but not iterable.")
return
total = len(blocks)
log(f"Total Blocks : {total}")
log("-" * 80)
# Inspect first N blocks
N = min(20, total)
for i in range(N):
block = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}]")
log(f"Class: {block.__class__.__name__}")
# Print submodules
for n, m in block.named_children():
log(f" ├─ {n}: {m.__class__.__name__}")
# Print attention related
if hasattr(block, "attn"):
attn = block.attn
log(f" ├─ Attention: {attn.__class__.__name__}")
log(f" │ Heads : {getattr(attn, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
# Device + dtype info
try:
dev = next(block.parameters()).device
log(f" ├─ Device : {dev}")
except StopIteration:
pass
try:
dt = next(block.parameters()).dtype
log(f" ├─ DType : {dt}")
except StopIteration:
pass
log("\n🔚 END TRANSFORMER DEBUG DUMP")
log("=" * 80)
except Exception as e:
log(f"❌ ERROR IN INSPECTOR: {e}")
import torch
import time
# ---------- UTILITY ----------
def pretty_header(title):
log("\n\n" + "=" * 80)
log(f"🎛️ {title}")
log("=" * 80 + "\n")
# ---------- MEMORY ----------
def get_vram(prefix=""):
try:
allocated = torch.cuda.memory_allocated() / 1024**2
reserved = torch.cuda.memory_reserved() / 1024**2
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
except:
log(f"{prefix}VRAM: CUDA not available")
# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
pretty_header(f"🔬 Inspecting {name}")
try:
log(f"📦 Class : {module.__class__.__name__}")
log(f"🔢 DType : {getattr(module, 'dtype', 'unknown')}")
log(f"💻 Device : {next(module.parameters()).device}")
log(f"🧮 Params : {sum(p.numel() for p in module.parameters()):,}")
# Quantization state
if hasattr(module, "is_loaded_in_4bit"):
log(f"⚙️ 4-bit QLoRA : {module.is_loaded_in_4bit}")
if hasattr(module, "is_loaded_in_8bit"):
log(f"⚙️ 8-bit load : {module.is_loaded_in_8bit}")
# Attention backend (DiT)
if hasattr(module, "set_attention_backend"):
try:
attn = getattr(module, "attention_backend", None)
log(f"🚀 Attention Backend: {attn}")
except:
pass
# Search for blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(module, attr):
blocks = getattr(module, attr)
chosen_attr = attr
break
log(f"\n📚 Block Container : {chosen_attr}")
if blocks is None:
log("⚠️ No block structure found")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but are not iterable")
return
total = len(blocks)
log(f"🔢 Total Blocks : {total}\n")
# Inspect first 15 blocks
N = min(15, total)
for i in range(N):
blk = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}] — {blk.__class__.__name__}")
for n, m in blk.named_children():
log(f" ├─ {n:<15} {m.__class__.__name__}")
# Attention details
if hasattr(blk, "attn"):
a = blk.attn
log(f" ├─ Attention")
log(f" │ Heads : {getattr(a, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(a, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(a, 'attention_backend', 'unknown')}")
# Device / dtype
try:
log(f" ├─ Device : {next(blk.parameters()).device}")
log(f" ├─ DType : {next(blk.parameters()).dtype}")
except StopIteration:
pass
get_vram(" ▶ ")
except Exception as e:
log(f"❌ Module inspect error: {e}")
# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
pretty_header("🧩 LoRA ADAPTERS")
try:
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
log("⚠️ No LoRA system detected.")
return
if hasattr(pipe, "adapter_names"):
names = pipe.adapter_names
log(f"Available Adapters: {names}")
if hasattr(pipe, "active_adapters"):
log(f"Active Adapters : {pipe.active_adapters}")
if hasattr(pipe, "lora_scale"):
log(f"LoRA Scale : {pipe.lora_scale}")
# LoRA modules
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
for name, module in pipe.transformer.named_modules():
if "lora" in name.lower():
log(f" 🔧 LoRA Module: {name} ({module.__class__.__name__})")
except Exception as e:
log(f"❌ LoRA inspect error: {e}")
# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
pretty_header("🚀 FULL PIPELINE DEBUGGING")
try:
log(f"Pipeline Class : {pipe.__class__.__name__}")
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
log(f"Device : {pipe.device}")
except:
pass
get_vram("▶ ")
# Inspect TRANSFORMER
if hasattr(pipe, "transformer"):
inspect_module("Transformer", pipe.transformer)
# Inspect TEXT ENCODER
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
inspect_module("Text Encoder", pipe.text_encoder)
# Inspect UNET (if ZImage pipeline has it)
if hasattr(pipe, "unet"):
inspect_module("UNet", pipe.unet)
# LoRA adapters
inspect_loras(pipe)
pretty_header("🎉 END DEBUG REPORT")
# ============================================================
# LOAD TRANSFORMER — WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("🔧 LOADING TRANSFORMER BLOCK")
log("===================================================")
log("📌 Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Transformer loaded successfully.")
except Exception as e:
log(f"❌ Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("🔧 LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Text encoder loaded successfully.")
except Exception as e:
log(f"❌ Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("🔧 BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# If transformer supports setting backend, prefer flash-3
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
log("✅ transformer.set_attention_backend('_flash_3') called")
except Exception as _e:
log(f"⚠️ set_attention_backend failed: {_e}")
# default LoRA load (keeps your existing behaviour)
try:
pipe.load_lora_weights("rahul7star/ZImageLora",
weight_name="NSFW/doggystyle_pov.safetensors", adapter_name="lora")
pipe.set_adapters(["lora",], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
except Exception as _e:
log(f"⚠️ Default LoRA load failed: {_e}")
debug_pipeline(pipe)
# pipe.unload_lora_weights()
pipe.to("cuda")
log("✅ Pipeline built successfully.")
LOGS += log("Pipeline build completed.") + "\n"
except Exception as e:
log(f"❌ Pipeline build failed: {e}")
log(traceback.format_exc())
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
# -----------------------------
# Monkey-patch prepare_latents (safe)
# -----------------------------
if pipe is not None and hasattr(pipe, "prepare_latents"):
original_prepare_latents = pipe.prepare_latents
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
try:
result_latents = original_prepare_latents(batch_size, num_channels_latents, height, width, dtype, device, generator, latents)
log_msg = f"🔹 prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
if hasattr(self, "_latents_log"):
self._latents_log.append(log_msg)
else:
self._latents_log = [log_msg]
return result_latents
except Exception as e:
log(f"⚠️ prepare_latents wrapper failed: {e}")
raise
# apply patch safely
try:
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
log("✅ prepare_latents monkey-patched")
except Exception as e:
log(f"⚠️ Failed to attach prepare_latents patch: {e}")
else:
log("❌ WARNING: Pipe not initialized or prepare_latents missing; skipping prepare_latents patch")
from PIL import Image
import torch
# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
"""
Safely prepare latents for any ZImagePipeline variant.
Returns latents tensor, logs issues instead of failing.
"""
try:
# Determine number of channels
num_channels = 4 # default fallback
if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"):
num_channels = pipe.unet.in_channels
elif hasattr(pipe, "vae") and hasattr(pipe.vae, "latent_channels"):
num_channels = pipe.vae.latent_channels # some pipelines define this
LOGS.append(f"🔹 Using num_channels={num_channels} for latents")
latents = pipe.prepare_latents(
batch_size=1,
num_channels_latents=num_channels,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator,
)
LOGS.append(f"🔹 Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
return latents
except Exception as e:
LOGS.append(f"⚠️ Latent extraction failed: {e}")
# fallback: guess a safe shape
fallback_channels = 16 # try standard default for ZImage pipelines
latents = torch.randn((1, fallback_channels, height // 8, width // 8),
generator=generator, device=device)
LOGS.append(f"🔹 Using fallback random latents shape: {latents.shape}")
return latents
# --------------------------
# Main generation function (kept exactly as your logic)
# --------------------------
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
# placeholders
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
try:
# --- Try advanced latent mode ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
for i, t in enumerate(pipe.scheduler.timesteps):
# Step-wise denoising
with torch.no_grad():
noise_pred = pipe.unet(latents, t, encoder_hidden_states=pipe.get_text_embeddings(prompt))["sample"]
latents = pipe.scheduler.step(noise_pred, t, latents)["prev_sample"]
# Convert latent to preview image
try:
latent_img = latent_to_image(latents, pipe.vae)[0]
except Exception:
latent_img = placeholder
latent_gallery.append(latent_img)
# Yield intermediate update: latents updated, final gallery empty
yield None, latent_gallery, final_gallery, LOGS
# decode final image
final_img = pipe.decode_latents(latents)[0]
final_gallery.append(final_img)
LOGS.append("✅ Advanced latent pipeline succeeded.")
yield final_img, latent_gallery, final_gallery, LOGS
except Exception as e:
LOGS.append(f"⚠️ Advanced latent mode failed: {e}")
LOGS.append("🔁 Switching to standard pipeline...")
# Standard pipeline fallback
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # optionally show in latent gallery as last step
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, final_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, final_gallery, LOGS
except Exception as e:
LOGS.append(f"❌ Total failure: {e}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, final_gallery, LOGS
@spaces.GPU
def generate_image_backup(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
"""
Robust dual pipeline:
- Advanced latent generation first
- Fallback to standard pipeline if latent fails
- Always returns final image
- Returns gallery (latents or final image) and logs
"""
LOGS = []
image = None
latents = None
gallery = []
# Keep a placeholder original image (white) in case everything fails
original_image = Image.new("RGB", (width, height), color=(255, 255, 255))
try:
generator = torch.Generator(device).manual_seed(int(seed))
# -------------------------------
# Try advanced latent generation
# -------------------------------
try:
batch_size = 1
num_channels_latents = getattr(pipe.unet, "in_channels", None)
if num_channels_latents is None:
raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline")
latents = pipe.prepare_latents(
batch_size=batch_size,
num_channels=num_channels_latents,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator
)
LOGS.append(f"✅ Latents prepared: {latents.shape}")
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents
)
image = output.images[0]
gallery = [image] if image else []
LOGS.append("✅ Advanced latent generation succeeded.")
# -------------------------------
# Fallback to standard pipeline
# -------------------------------
except Exception as e_latent:
LOGS.append(f"⚠️ Advanced latent generation failed: {e_latent}")
LOGS.append("🔁 Falling back to standard pipeline...")
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator
)
image = output.images[0]
gallery = [image] if image else []
LOGS.append("✅ Standard pipeline generation succeeded.")
except Exception as e_standard:
LOGS.append(f"❌ Standard pipeline generation failed: {e_standard}")
image = original_image # Always return some image
gallery = [image]
# -------------------------------
# Return all 3 outputs
# -------------------------------
return image, gallery, LOGS
except Exception as e:
LOGS.append(f"❌ Inference failed entirely: {e}")
return original_image, [original_image], LOGS
# ============================================================
# UI
# ============================================================
# Utility: scan local HF cache for safetensors in a repo folder name
def list_loras_from_repo(repo_id):
"""
Attempts to find safetensors inside HF cache directory for repo_id.
This only scans local cache; it does NOT download anything.
Returns:
A list of strings suitable for showing in the dropdown. Prefer returning
paths relative to the repo root (e.g. "NSFW/doggystyle_pov.safetensors") so that
pipe.load_lora_weights(repo_id, weight_name=that_path) works for nested files.
If a relative path can't be determined, returns absolute cached file paths.
"""
if not repo_id:
return []
safe_list = []
# Candidate cache roots
hf_cache = os.path.expanduser("~/.cache/huggingface/hub")
alt_cache = "/home/user/.cache/huggingface/hub"
candidates = [hf_cache, alt_cache]
# Normalize repo variants to search for in path
owner_repo = repo_id.replace("/", "_")
owner_repo_dash = repo_id.replace("/", "-")
owner_repo_double = repo_id.replace("/", "--")
# Walk caches and collect safetensors
for root_cache in candidates:
if not os.path.exists(root_cache):
continue
for dirpath, dirnames, filenames in os.walk(root_cache):
for f in filenames:
if not f.endswith(".safetensors"):
continue
full_path = os.path.join(dirpath, f)
# try to find a repo-root-like substring in dirpath
chosen_base = None
for pattern in (owner_repo_double, owner_repo_dash, owner_repo):
idx = dirpath.find(pattern)
if idx != -1:
chosen_base = dirpath[: idx + len(pattern)]
break
# fallback: look for the repo folder name (last component) e.g., "ZImageLora"
if chosen_base is None:
repo_tail = repo_id.split("/")[-1]
idx2 = dirpath.find(repo_tail)
if idx2 != -1:
chosen_base = dirpath[: idx2 + len(repo_tail)]
# If we found a base that looks like the cached repo root, compute relative path
if chosen_base:
try:
rel = os.path.relpath(full_path, chosen_base)
# If relpath goes up (starts with ..) then prefer full_path
if rel and not rel.startswith(".."):
# Normalize to forward slashes for HF repo weight_name usage
rel_normalized = rel.replace(os.sep, "/")
safe_list.append(rel_normalized)
continue
except Exception:
pass
# Otherwise append absolute path (last resort)
safe_list.append(full_path)
# remove duplicates and sort
safe_list = sorted(list(dict.fromkeys(safe_list)))
return safe_list
with gr.Blocks(title="Z-Image-Turbo") as demo:
with gr.Tabs():
with gr.TabItem("Image & Latents"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(
label="Latent Steps", columns=4, height=256, preview=True
)
with gr.TabItem("Logs"):
logs_box = gr.Textbox(label="All Logs", lines=25)
# New UI: LoRA repo textbox, dropdown, refresh & rebuild
with gr.Row():
lora_repo = gr.Textbox(label="LoRA Repo (HF id)", value="rahul7star/ZImageLora", placeholder="e.g. rahul7star/ZImageLora")
lora_dropdown = gr.Dropdown(choices=[], label="LoRA files (from local cache)")
refresh_lora_btn = gr.Button("Refresh LoRA List")
rebuild_pipe_btn = gr.Button("Rebuild pipeline (use selected LoRA)")
# Refresh callback: repopulate dropdown from repo text
def refresh_lora_list(repo_name):
try:
files = list_loras_from_repo(repo_name)
if not files:
return gr.update(choices=[], value=None)
return gr.update(choices=files, value=files[0])
except Exception as e:
log(f"⚠️ refresh_lora_list failed: {e}")
return gr.update(choices=[], value=None)
refresh_lora_btn.click(refresh_lora_list, inputs=[lora_repo], outputs=[lora_dropdown])
# Rebuild callback: build pipeline with selected lora file path (if any)
def rebuild_pipeline_with_lora(lora_path, repo_name):
global pipe, LOGS
try:
log(f"🔄 Rebuilding pipeline using LoRA repo={repo_name} file={lora_path}")
# call existing logic to rebuild: attempt to create new pipeline then load lora file
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# try set backend
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
except Exception as _e:
log(f"⚠️ set_attention_backend failed during rebuild: {_e}")
# load selected lora if provided
if lora_path:
weight_name_to_use = None
# If dropdown provided a relative-style path (contains a slash or no leading /),
# use it directly as weight_name (HF expects "path/inside/repo.safetensors")
if ("/" in lora_path) and not os.path.isabs(lora_path):
weight_name_to_use = lora_path
else:
# It might be an absolute path in cache; try to compute relative path to repo cache root
abs_path = lora_path if os.path.isabs(lora_path) else None
if abs_path and os.path.exists(abs_path):
# attempt to find repo-root-ish substring in abs_path
repo_variants = [
repo_name.replace("/", "--"),
repo_name.replace("/", "-"),
repo_name.replace("/", "_"),
repo_name.split("/")[-1],
]
chosen_base = None
for v in repo_variants:
idx = abs_path.find(v)
if idx != -1:
chosen_base = abs_path[: idx + len(v)]
break
if chosen_base:
try:
rel = os.path.relpath(abs_path, chosen_base)
if rel and not rel.startswith(".."):
weight_name_to_use = rel.replace(os.sep, "/")
except Exception:
weight_name_to_use = None
# fallback to basename
if weight_name_to_use is None:
weight_name_to_use = os.path.basename(lora_path)
# Now attempt to load
try:
pipe.load_lora_weights(repo_name or "rahul7star/ZImageLora",
weight_name=weight_name_to_use,
adapter_name="lora")
pipe.set_adapters(["lora"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
log(f"✅ Loaded LoRA weight: {weight_name_to_use} from repo {repo_name}")
except Exception as _e:
log(f"⚠️ Failed to load selected LoRA during rebuild using weight_name='{weight_name_to_use}': {_e}")
# as last resort, try loading using basename
try:
fallback_name = os.path.basename(lora_path)
pipe.load_lora_weights(repo_name or "rahul7star/ZImageLora",
weight_name=fallback_name,
adapter_name="lora")
pipe.set_adapters(["lora"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
log(f"✅ Fallback loaded LoRA weight basename: {fallback_name}")
except Exception as _e2:
log(f"❌ Fallback LoRA load also failed: {_e2}")
# finalize
debug_pipeline(pipe)
pipe.to("cuda")
# re-attach monkey patch safely
if pipe is not None and hasattr(pipe, "prepare_latents"):
try:
original_prepare = pipe.prepare_latents
def logged_prepare(self, *args, **kwargs):
lat = original_prepare(*args, **kwargs)
msg = f"🔹 prepare_latents called | shape={lat.shape}, dtype={lat.dtype}"
if hasattr(self, "_latents_log"):
self._latents_log.append(msg)
else:
self._latents_log = [msg]
return lat
pipe.prepare_latents = logged_prepare.__get__(pipe)
log("✅ Re-applied prepare_latents monkey patch after rebuild")
except Exception as _e:
log(f"⚠️ Could not re-apply prepare_latents patch: {_e}")
return "\n".join([LOGS, "Rebuild complete."])
except Exception as e:
log(f"❌ Rebuild pipeline failed: {e}")
log(traceback.format_exc())
return "\n".join([LOGS, f"Rebuild failed: {e}"])
rebuild_pipe_btn.click(rebuild_pipeline_with_lora, inputs=[lora_dropdown, lora_repo], outputs=[logs_box])
# Wire the button AFTER all components exist
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch()
|