File size: 9,878 Bytes
4b17916 2a0098d 6142af3 46a015f 132c134 46a015f 6142af3 5b2a6b6 6142af3 2a0098d 4b17916 2a0098d 4b17916 1e679fd e1111e0 2a0098d 0e14740 132c134 2a0098d 46a015f 132c134 2a0098d 4c88f38 1e679fd 46a015f 4b17916 132c134 46a015f 1e679fd 132c134 6142af3 132c134 46a015f 132c134 5b2a6b6 4b17916 6142af3 46a015f 4b17916 46a015f 4b17916 2a0098d 132c134 2a0098d 132c134 2a0098d 6142af3 4b17916 46a015f 6142af3 2a0098d 132c134 2a0098d 132c134 2a0098d 46a015f 2a0098d 6142af3 132c134 6142af3 46a015f 6142af3 46a015f 5b2a6b6 46a015f 5b2a6b6 132c134 5b2a6b6 6142af3 46a015f 6142af3 46a015f 0e14740 46a015f 1e679fd 46a015f 6142af3 46a015f 132c134 46a015f 132c134 46a015f 6142af3 46a015f 132c134 6142af3 0e14740 6142af3 396db14 0e14740 1e679fd 46a015f 6142af3 46a015f 6142af3 0e14740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import asyncio
import json
import logging
import random
import re
from typing import AsyncGenerator, Optional, Tuple, List
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logger.info("LLM API Key loaded successfully.")
# --- Constants & Headers ---
# API Provider Constants
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "gpt-4.1-mini"
# Automatic Context Sizing based on Tokens
TARGET_TOKEN_LIMIT = 28000 # Safe limit for models with ~32k context windows
ESTIMATED_CHARS_PER_TOKEN = 4
MAX_CONTEXT_CHAR_LENGTH = TARGET_TOKEN_LIMIT * ESTIMATED_CHARS_PER_TOKEN
# Real Browser User Agents for Rotation
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 17_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/17.5 Mobile/15E148 Safari/604.1"
]
# Headers
SNAPZION_HEADERS = {'Content-Type': 'application/json'}
LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json"}
# --- Pydantic Models & Helper Functions ---
class DeepResearchRequest(BaseModel):
query: str
def extract_json_from_llm_response(text: str) -> Optional[list]:
match = re.search(r'\[.*\]', text, re.DOTALL)
if match:
json_str = match.group(0)
try: return json.loads(json_str)
except json.JSONDecodeError: return None
return None
# --- FastAPI App ---
app = FastAPI(
title="AI Deep Research API",
description="Provides robust, streaming deep research completions.",
version="3.0.0" # Major version bump for robustness overhaul
)
# --- Core Service Functions ---
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
try:
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
response.raise_for_status(); data = await response.json()
return data.get("organic_results", [])
except Exception as e:
logger.error(f"Snapzion search failed for query '{query}': {e}"); return []
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
try:
# Rotate user agents for each request
headers = {'User-Agent': random.choice(USER_AGENTS)}
async with session.get(url, headers=headers, timeout=10, ssl=False) as response:
if response.status != 200: return f"Error: HTTP status {response.status}"
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
return " ".join(soup.stripped_strings)
except Exception as e:
logger.warning(f"Scraping failed for {url}: {e}"); return f"Error: {e}"
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
"""Scrapes a single source and falls back to its snippet if scraping fails."""
scraped_content = await scrape_url(session, source['link'])
if scraped_content.startswith("Error:"):
# SNIPPET FALLBACK LOGIC
logger.warning(f"Scraping failed for {source['link']}. Falling back to snippet.")
return source['snippet'], source
return scraped_content, source
# --- Streaming Deep Research Logic ---
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
try:
async with aiohttp.ClientSession() as session:
# Step 1: Generate Research Plan
yield format_sse({"event": "status", "data": "Generating research plan..."})
plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array, without markdown. Example: [\"Question 1?\"]"}]}
try:
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=20) as response:
response.raise_for_status(); result = await response.json()
sub_questions = result if isinstance(result, list) else extract_json_from_llm_response(result['choices'][0]['message']['content'])
if not isinstance(sub_questions, list): raise ValueError(f"Could not extract a valid list from LLM response: {result}")
except Exception as e:
logger.error(f"Failed to generate research plan: {e}")
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return
yield format_sse({"event": "plan", "data": sub_questions})
# Step 2: Conduct Research in Parallel
yield format_sse({"event": "status", "data": f"Searching for sources for {len(sub_questions)} topics..."})
search_tasks = [call_snapzion_search(session, sq) for sq in sub_questions]
all_search_results = await asyncio.gather(*search_tasks)
# Deduplicate sources by link to avoid scraping the same page multiple times
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
if not unique_sources:
yield format_sse({"event": "error", "data": "Search did not return any usable sources."}); return
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Scraping and processing..."})
# Process all unique sources concurrently with snippet fallback
processing_tasks = [research_and_process_source(session, source) for source in unique_sources]
consolidated_context = ""
all_sources_used = []
successful_scrapes = 0
for task in asyncio.as_completed(processing_tasks):
content, source_info = await task
if content:
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
all_sources_used.append(source_info)
if not content == source_info['snippet']: # Count as success only if not a snippet
successful_scrapes += 1
logger.info(f"Context gathering complete. Successfully scraped {successful_scrapes}/{len(unique_sources)} pages. Used {len(all_sources_used)} total sources (including snippets).")
if not consolidated_context.strip():
yield format_sse({"event": "error", "data": "Failed to gather any research context from scraping or snippets."}); return
# Step 3: Synthesize Final Report
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
logger.warning(f"Context truncated from {len(consolidated_context)} to {MAX_CONTEXT_CHAR_LENGTH} chars.")
consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]
report_prompt = f'Synthesize the provided context into a comprehensive, well-structured report on "{query}". Use markdown. Context:\n{consolidated_context}'
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
response.raise_for_status()
async for line in response.content:
if line.strip():
line_str = line.decode('utf-8').strip()
if line_str.startswith('data:'): line_str = line_str[5:].strip()
if line_str == "[DONE]": break
try:
chunk = json.loads(line_str)
content = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
if content: yield format_sse({"event": "chunk", "data": content})
except json.JSONDecodeError: continue
yield format_sse({"event": "sources", "data": all_sources_used})
except Exception as e:
logger.error(f"A critical error occurred in the main research stream: {e}", exc_info=True)
yield format_sse({"event": "error", "data": str(e)})
finally:
yield format_sse({"event": "done", "data": "Deep research complete."})
# --- API Endpoints ---
@app.post("/v1/deepresearch/completions")
async def deep_research_endpoint(request: DeepResearchRequest):
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream") |