File size: 9,666 Bytes
4b17916
2a0098d
6142af3
 
46a015f
132c134
46a015f
6142af3
5b2a6b6
6142af3
 
2a0098d
4b17916
2a0098d
4b17916
 
1e679fd
e1111e0
 
2a0098d
 
 
 
 
0e14740
132c134
2a0098d
46a015f
132c134
2a0098d
4c88f38
1e679fd
46a015f
bc2abd9
 
46a015f
 
 
bc2abd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a015f
 
 
bc2abd9
46a015f
4b17916
46a015f
1e679fd
6142af3
 
 
132c134
 
 
bc2abd9
46a015f
132c134
 
4b17916
6142af3
46a015f
bc2abd9
4b17916
 
46a015f
 
bc2abd9
4b17916
bc2abd9
 
 
 
 
 
2a0098d
132c134
2a0098d
 
bc2abd9
4b17916
46a015f
 
bc2abd9
 
2a0098d
bc2abd9
 
 
 
 
 
2a0098d
46a015f
bc2abd9
 
 
 
 
 
 
2a0098d
6142af3
 
132c134
6142af3
 
46a015f
6142af3
bc2abd9
5b2a6b6
bc2abd9
46a015f
 
bc2abd9
5b2a6b6
132c134
5b2a6b6
6142af3
 
46a015f
bc2abd9
46a015f
 
 
bc2abd9
6142af3
46a015f
bc2abd9
0e14740
bc2abd9
46a015f
 
 
bc2abd9
46a015f
 
 
 
 
 
 
bc2abd9
46a015f
bc2abd9
46a015f
1e679fd
46a015f
6142af3
46a015f
 
132c134
 
 
46a015f
 
6142af3
46a015f
132c134
6142af3
bc2abd9
 
 
 
 
 
 
 
1e679fd
46a015f
6142af3
bc2abd9
6142af3
 
 
 
 
 
 
0e14740
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import asyncio
import json
import logging
import random
import re
from typing import AsyncGenerator, Optional, Tuple, List

from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")

if not LLM_API_KEY:
    raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
    logger.info("LLM API Key loaded successfully.")

# --- Constants & Headers ---
# API Provider Constants
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "gpt-4.1-mini"

# Automatic Context Sizing (No more fixed limits)
TARGET_TOKEN_LIMIT = 28000
ESTIMATED_CHARS_PER_TOKEN = 4
MAX_CONTEXT_CHAR_LENGTH = TARGET_TOKEN_LIMIT * ESTIMATED_CHARS_PER_TOKEN

# ***** THE CRITICAL FIX: Full, legitimate headers for the Snapzion API call *****
SNAPZION_HEADERS = {
    'accept': '*/*',
    'accept-language': 'en-US,en;q=0.9',
    'content-type': 'application/json',
    'origin': 'https://search.snapzion.com',
    'priority': 'u=1, i',
    'referer': 'https://search.snapzion.com/docs',
    'sec-ch-ua': '"Chromium";v="140", "Not=A?Brand";v="24", "Google Chrome";v="140"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'sec-fetch-dest': 'empty',
    'sec-fetch-mode': 'cors',
    'sec-fetch-site': 'same-origin',
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36',
}

# Real Browser User Agents for SCRAPING ROTATION
USER_AGENTS = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
]

LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json"}

class DeepResearchRequest(BaseModel):
    query: str

def extract_json_from_llm_response(text: str) -> Optional[list]:
    match = re.search(r'\[.*\]', text, re.DOTALL)
    if match:
        try: return json.loads(match.group(0))
        except json.JSONDecodeError: return None
    return None

app = FastAPI(
    title="AI Deep Research API",
    description="Provides robust, streaming deep research completions.",
    version="4.0.0"  # Final Production Version
)

# --- Core Service Functions ---
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
    logger.info(f"Searching Snapzion for: '{query}'")
    try:
        async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=20) as response:
            response.raise_for_status()
            data = await response.json()
            results = data.get("organic_results", [])
            logger.info(f"Found {len(results)} sources for: '{query}'")
            return results
    except Exception as e:
        logger.error(f"Snapzion search failed for query '{query}': {e}"); return []

async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
    if url.lower().endswith('.pdf'): return "Error: PDF"
    try:
        headers = {'User-Agent': random.choice(USER_AGENTS)}
        async with session.get(url, headers=headers, timeout=10, ssl=False) as response:
            if response.status != 200: return f"Error: HTTP {response.status}"
            return await response.text() # Return full HTML for parsing
    except Exception as e:
        return f"Error: {e}"

def parse_html(html: str) -> str:
    soup = BeautifulSoup(html, "html.parser")
    for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
    return " ".join(soup.stripped_strings)

async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
    html_or_error = await scrape_url(session, source['link'])
    if html_or_error.startswith("Error:"):
        logger.warning(f"Scraping failed for {source['link']} ({html_or_error}). Falling back to snippet.")
        return source.get('snippet', ''), source
    
    content = parse_html(html_or_error)
    return content, source

# --- Streaming Deep Research Logic ---
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
    def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
    try:
        async with aiohttp.ClientSession() as session:
            # Step 1: Generate Research Plan
            yield format_sse({"event": "status", "data": "Generating research plan..."})
            plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"}]}
            try:
                async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=25) as response:
                    response.raise_for_status(); result = await response.json()
                    sub_questions = result if isinstance(result, list) else extract_json_from_llm_response(result['choices'][0]['message']['content'])
                    if not isinstance(sub_questions, list): raise ValueError(f"Invalid plan from LLM: {result}")
            except Exception as e:
                yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return

            yield format_sse({"event": "plan", "data": sub_questions})

            # Step 2: Conduct Research in Parallel
            yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
            search_tasks = [call_snapzion_search(session, sq) for sq in sub_questions]
            all_search_results = await asyncio.gather(*search_tasks)
            
            unique_sources = list({source['link']: source for results in all_search_results for source in results if 'link' in source and 'snippet' in source}.values())
            
            if not unique_sources:
                yield format_sse({"event": "error", "data": "All search queries returned zero usable sources. The search provider might be blocking requests or the topic is too obscure."}); return
            
            yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing..."})
            
            processing_tasks = [research_and_process_source(session, source) for source in unique_sources]
            
            consolidated_context, all_sources_used = "", []
            successful_scrapes = 0
            
            for task in asyncio.as_completed(processing_tasks):
                content, source_info = await task
                if content:
                    consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
                    all_sources_used.append(source_info)
                    if not content == source_info.get('snippet'): successful_scrapes += 1

            logger.info(f"Context complete. Scraped {successful_scrapes}/{len(unique_sources)} pages. Used {len(all_sources_used)} total sources (with snippet fallbacks).")

            if not consolidated_context.strip():
                yield format_sse({"event": "error", "data": "Failed to gather any research context from scraping or snippets."}); return

            # Step 3: Synthesize Final Report
            yield format_sse({"event": "status", "data": "Synthesizing final report..."})
            if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
                consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]

            report_prompt = f'Synthesize the provided context into a comprehensive, well-structured report on "{query}". Use markdown. Context:\n{consolidated_context}'
            report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}

            async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
                response.raise_for_status()
                async for line in response.content:
                    line_str = line.decode('utf-8').strip()
                    if line_str.startswith('data:'): line_str = line_str[5:].strip()
                    if line_str == "[DONE]": break
                    try:
                        chunk = json.loads(line_str)
                        content = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
                        if content: yield format_sse({"event": "chunk", "data": content})
                    except json.JSONDecodeError: continue
            
            yield format_sse({"event": "sources", "data": all_sources_used})
    except Exception as e:
        logger.error(f"A critical error occurred: {e}", exc_info=True)
        yield format_sse({"event": "error", "data": str(e)})
    finally:
        yield format_sse({"event": "done", "data": "Deep research complete."})

# --- API Endpoints ---
@app.post("/v1/deepresearch/completions")
async def deep_research_endpoint(request: DeepResearchRequest):
    return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")