NeuroMusicLab / sound_control.py
sofieff's picture
Remove corrupted sound_manager.py and final version
ab15ef5
"""
Sound Management System for EEG Motor Imagery Classification (Clean Transition Version)
-------------------------------------------------------------------------------
Handles sound mapping, layering, and music composition based on motor imagery predictions.
Supports seamless transition from building (layering) to DJ (effects) phase.
"""
import numpy as np
import soundfile as sf
from typing import Dict
from pathlib import Path
class AudioEffectsProcessor:
@staticmethod
def apply_fade_in_out(data: np.ndarray, samplerate: int, fade_duration: float = 0.5) -> np.ndarray:
fade_samples = int(fade_duration * samplerate)
data = np.copy(data)
if fade_samples > 0 and fade_samples * 2 < len(data):
fade_in_curve = np.linspace(0, 1, fade_samples)
fade_out_curve = np.linspace(1, 0, fade_samples)
data[:fade_samples] = data[:fade_samples] * fade_in_curve
data[-fade_samples:] = data[-fade_samples:] * fade_out_curve
return data
@staticmethod
def apply_high_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 800.0) -> np.ndarray:
from scipy import signal
nyquist = samplerate / 2
normalized_cutoff = cutoff / nyquist
b, a = signal.butter(4, normalized_cutoff, btype='high', analog=False)
return signal.filtfilt(b, a, data)
@staticmethod
def apply_low_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 1200.0) -> np.ndarray:
from scipy import signal
nyquist = samplerate / 2
normalized_cutoff = cutoff / nyquist
b, a = signal.butter(4, normalized_cutoff, btype='low', analog=False)
return signal.filtfilt(b, a, data)
@staticmethod
def apply_reverb(data: np.ndarray, samplerate: int, room_size: float = 0.5) -> np.ndarray:
delay_samples = int(0.08 * samplerate)
decay = 0.4 * room_size
reverb_data = np.copy(data)
for i in range(3):
delay = delay_samples * (i + 1)
if delay < len(data):
gain = decay ** (i + 1)
reverb_data[delay:] += data[:-delay] * gain
return 0.7 * data + 0.3 * reverb_data
@staticmethod
def apply_echo(data: np.ndarray, samplerate: int, delay_time: float = 0.3, feedback: float = 0.4) -> np.ndarray:
delay_samples = int(delay_time * samplerate)
echo_data = np.copy(data)
for i in range(delay_samples, len(data)):
echo_data[i] += feedback * echo_data[i - delay_samples]
return 0.7 * data + 0.3 * echo_data
@staticmethod
def apply_compressor(data: np.ndarray, samplerate: int, threshold: float = 0.2, ratio: float = 4.0) -> np.ndarray:
# Simple compressor: reduce gain above threshold
compressed = np.copy(data)
over_threshold = np.abs(compressed) > threshold
compressed[over_threshold] = np.sign(compressed[over_threshold]) * (threshold + (np.abs(compressed[over_threshold]) - threshold) / ratio)
return compressed
@staticmethod
def process_layer_with_effects(audio_data: np.ndarray, samplerate: int, movement: str, active_effects: Dict[str, bool]) -> np.ndarray:
processed_data = np.copy(audio_data)
effect_map = {
"left_hand": AudioEffectsProcessor.apply_fade_in_out, # Fade in/out
"right_hand": AudioEffectsProcessor.apply_low_pass_filter, # Low Pass
"left_leg": AudioEffectsProcessor.apply_compressor, # Compressor
"right_leg": AudioEffectsProcessor.apply_echo, # Echo (vocals)
}
effect_func = effect_map.get(movement)
if active_effects.get(movement, False) and effect_func:
if movement == "left_hand":
processed_data = effect_func(processed_data, samplerate, fade_duration=0.5)
else:
processed_data = effect_func(processed_data, samplerate)
return processed_data
class SoundManager:
def __init__(self, sound_dir: str = "sounds"):
self.available_sounds = [
"SoundHelix-Song-6_bass.wav",
"SoundHelix-Song-6_drums.wav",
"SoundHelix-Song-6_instruments.wav",
"SoundHelix-Song-6_vocals.wav"
]
self.sound_dir = Path(sound_dir)
self.current_cycle = 0
self.current_step = 0
self.cycle_complete = False
self.completed_cycles = 0
self.max_cycles = 2
self.composition_layers = {}
self.current_phase = "building"
self.active_effects = {m: False for m in ["left_hand", "right_hand", "left_leg", "right_leg"]}
self.active_movements = ["left_hand", "right_hand", "left_leg", "right_leg"]
self.current_movement_sequence = []
self.movements_completed = set()
self.active_layers: Dict[str, str] = {}
self.loaded_sounds = {}
self._generate_new_sequence()
self._load_sound_files()
# Provide mapping from movement to sound file name for compatibility
self.current_sound_mapping = {m: f for m, f in zip(self.active_movements, self.available_sounds)}
# Track DJ effect trigger counts for each movement
self.dj_effect_counters = {m: 0 for m in self.active_movements}
self.cycle_stats = {'total_cycles': 0, 'successful_classifications': 0, 'total_attempts': 0}
def _load_sound_files(self):
self.loaded_sounds = {}
for movement, filename in self.current_sound_mapping.items():
file_path = self.sound_dir / filename
if file_path.exists():
data, sample_rate = sf.read(str(file_path))
if len(data.shape) > 1:
data = np.mean(data, axis=1)
self.loaded_sounds[movement] = {'data': data, 'sample_rate': sample_rate, 'sound_file': str(file_path)}
def _generate_new_sequence(self):
# Fixed movement order and mapping
self.current_movement_sequence = ["left_hand", "right_hand", "left_leg", "right_leg"]
self.current_sound_mapping = {
"left_hand": "SoundHelix-Song-6_instruments.wav",
"right_hand": "SoundHelix-Song-6_bass.wav",
"left_leg": "SoundHelix-Song-6_drums.wav",
"right_leg": "SoundHelix-Song-6_vocals.wav"
}
self.movements_completed = set()
self.current_step = 0
self._load_sound_files()
def get_current_target_movement(self) -> str:
# Always process left_hand last in DJ mode
incomplete = [m for m in self.active_movements if m not in self.movements_completed]
if not incomplete:
return "cycle_complete"
# If in DJ mode, left_hand should be last
if getattr(self, 'current_phase', None) == 'dj_effects':
# Remove left_hand from incomplete unless it's the only one left
if 'left_hand' in incomplete and len(incomplete) > 1:
incomplete = [m for m in incomplete if m != 'left_hand']
import random
movement = random.choice(incomplete)
return movement
def process_classification(self, predicted_class: str, confidence: float, threshold: float = 0.7, force_add: bool = False) -> Dict:
result = {'sound_added': False, 'cycle_complete': False, 'audio_file': None}
# If force_add is True, allow adding sound for any valid movement not already completed
if force_add:
if (
confidence >= threshold and
predicted_class in self.loaded_sounds and
predicted_class not in self.composition_layers
):
sound_info = dict(self.loaded_sounds[predicted_class])
sound_info['confidence'] = confidence
self.composition_layers[predicted_class] = sound_info
self.movements_completed.add(predicted_class)
result['sound_added'] = True
else:
pass
else:
current_target = self.get_current_target_movement()
if (
predicted_class == current_target and
confidence >= threshold and
predicted_class in self.loaded_sounds and
predicted_class not in self.composition_layers
):
sound_info = dict(self.loaded_sounds[predicted_class])
sound_info['confidence'] = confidence
self.composition_layers[predicted_class] = sound_info
self.movements_completed.add(predicted_class)
result['sound_added'] = True
else:
pass
if len(self.movements_completed) >= len(self.active_movements):
result['cycle_complete'] = True
self.current_phase = "dj_effects"
return result
def start_new_cycle(self):
self.current_cycle += 1
self.current_step = 0
self.cycle_complete = False
self.cycle_stats['total_cycles'] += 1
self._generate_new_sequence()
self.composition_layers = {} # Clear layers for new cycle
self.movements_completed = set()
self.current_phase = "building"
self.active_layers = {}
def transition_to_dj_phase(self):
if len(self.composition_layers) >= len(self.active_movements):
self.current_phase = "dj_effects"
return True
return False
def toggle_dj_effect(self, movement: str, brief: bool = True, duration: float = 1.0) -> dict:
import threading
if self.current_phase != "dj_effects":
return {"effect_applied": False, "message": "Not in DJ effects phase"}
if movement not in self.active_effects:
return {"effect_applied": False, "message": f"Unknown movement: {movement}"}
# Only toggle effect at counts 1, 4, 8, ... (i.e., 1 and then every multiple of 4)
self.dj_effect_counters[movement] += 1
count = self.dj_effect_counters[movement]
if count != 1 and (count - 1) % 4 != 0:
return {"effect_applied": False, "message": f"Effect for {movement} only toggled at 1, 4, 8, ... (count={count})"}
# Toggle effect ON
self.active_effects[movement] = True
effect_status = "ON"
# Schedule effect OFF after duration if brief
def turn_off_effect():
self.active_effects[movement] = False
if brief:
timer = threading.Timer(duration, turn_off_effect)
timer.daemon = True
timer.start()
return {"effect_applied": True, "effect_name": movement, "effect_status": effect_status, "count": count}
def get_composition_info(self) -> Dict:
layers_by_cycle = {0: []}
for movement, layer_info in self.composition_layers.items():
confidence = layer_info.get('confidence', 0) if isinstance(layer_info, dict) else 0
layers_by_cycle[0].append({'movement': movement, 'confidence': confidence})
# Add DJ effect status for each movement
dj_effects_status = {m: self.active_effects.get(m, False) for m in self.active_movements}
return {'layers_by_cycle': layers_by_cycle, 'dj_effects_status': dj_effects_status}
def get_sound_mapping_options(self) -> Dict:
return {
'movements': self.active_movements,
'available_sounds': self.available_sounds,
'current_mapping': {m: self.loaded_sounds[m]['sound_file'] for m in self.loaded_sounds}
}
def get_all_layers(self):
return {m: info['sound_file'] for m, info in self.composition_layers.items() if 'sound_file' in info}