Spaces:
Running
Running
File size: 11,719 Bytes
1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 1ac873b 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 9384880 1e2d815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
"""
NewPress AI - Johnny Harris Script Assistant
A Gradio app that uses a Supabase vector database of Johnny Harris transcripts to:
1. Search if topics have been covered before
2. Generate scripts in Johnny's voice from bullet points
"""
import os
import gradio as gr
from dotenv import load_dotenv
from src.vectorstore import TranscriptVectorStore, create_vectorstore
from src.llm_client import InferenceProviderClient, create_llm_client
from src.prompts import (
TOPIC_SEARCH_SYSTEM_PROMPT,
SCRIPT_SYSTEM_PROMPT,
TONE_CHECK_SYSTEM_PROMPT,
get_topic_search_prompt,
get_script_prompt,
get_tone_check_prompt
)
# Load environment variables
load_dotenv()
# Initialize components (lazy loading)
vectorstore = None
llm_client = None
def get_vectorstore() -> TranscriptVectorStore:
"""Get or create the vector store instance"""
global vectorstore
if vectorstore is None:
vectorstore = create_vectorstore()
return vectorstore
def get_llm_client() -> InferenceProviderClient:
"""Get or create the LLM client instance"""
global llm_client
if llm_client is None:
llm_client = create_llm_client()
return llm_client
# =============================================================================
# TAB 1: TOPIC SEARCH
# =============================================================================
def expand_query(query: str) -> list:
"""Use LLM to generate related search terms for broader coverage"""
try:
llm = get_llm_client()
prompt = f"""Given this search query about Johnny Harris video topics: "{query}"
Generate 2-3 closely related search terms that might find relevant videos.
Focus on: the core topic, key entities mentioned, and one closely related concept.
Return ONLY the terms, one per line, no numbering or explanation."""
response = llm.generate(prompt, max_tokens=60, temperature=0.3)
terms = [t.strip() for t in response.strip().split('\n') if t.strip()]
return [query] + terms[:3]
except Exception:
return [query]
def search_topics(query: str, progress=gr.Progress()):
"""
Generator that yields progress updates during search.
Uses tiered results: direct matches and related content.
Args:
query: User's topic or question
progress: Gradio progress tracker
Yields:
Progress status messages, then final search results
"""
if not query or not query.strip():
yield "Please enter a topic or question to search."
return
try:
vs = get_vectorstore()
# Expand query using LLM
progress(0.1, desc="Expanding search query...")
yield "Expanding search query..."
search_terms = expand_query(query.strip())
# Collect tiered results from all search terms
all_direct = []
all_related = []
seen_videos = set()
total_terms = len(search_terms)
for i, term in enumerate(search_terms):
pct = 0.2 + (0.5 * (i / total_terms))
progress(pct, desc=f"Searching: {term[:30]}...")
yield f"Searching: {term[:30]}..."
direct, related = vs.tiered_similarity_search(
query=term,
direct_threshold=0.6,
related_threshold=0.3,
max_per_tier=10
)
# Add results, deduplicating by video
for chunk in direct:
if chunk.video_id not in seen_videos:
seen_videos.add(chunk.video_id)
all_direct.append(chunk)
for chunk in related:
if chunk.video_id not in seen_videos:
seen_videos.add(chunk.video_id)
all_related.append(chunk)
progress(0.8, desc="Processing results...")
yield "Processing results..."
# Sort each tier by similarity
all_direct = sorted(all_direct, key=lambda x: x.similarity, reverse=True)[:10]
all_related = sorted(all_related, key=lambda x: x.similarity, reverse=True)[:10]
if not all_direct and not all_related:
yield f"No matching content found for: **{query}**\n\nThis topic may not have been covered yet, or try rephrasing your search."
return
# Format tiered output
output_parts = []
search_info = f"*Searched: {', '.join(search_terms)}*\n\n"
output_parts.append(f"## Search Results for: \"{query}\"\n\n{search_info}")
if all_direct:
output_parts.append("### Direct Matches\nVideos that directly cover this topic:\n")
output_parts.append(vs.format_results_for_display(all_direct))
if all_related:
if all_direct:
output_parts.append("\n---\n")
output_parts.append("### Related Content\nVideos that touch on similar themes:\n")
output_parts.append(vs.format_results_for_display(all_related))
progress(1.0, desc="Done!")
yield "\n".join(output_parts)
except Exception as e:
yield f"Error searching: {str(e)}"
# =============================================================================
# TAB 2: TONE CHECKER
# =============================================================================
def check_script_tone(user_script: str, progress=gr.Progress()):
"""
Generator that yields progress updates during tone analysis.
Args:
user_script: User's script to analyze
progress: Gradio progress tracker
Yields:
Progress status messages, then final tone analysis
"""
if not user_script or not user_script.strip():
yield "Please enter a script to analyze."
return
try:
progress(0.05, desc="Gathering style references...")
yield "Gathering style references from Johnny's archive..."
vs = get_vectorstore()
llm = get_llm_client()
progress(0.15, desc="Searching knowledge base...")
yield "Searching knowledge base for style references..."
context_chunks = vs.get_bulk_style_context(
topic_query=user_script.strip()[:500], # Use first 500 chars as topic hint
max_chunks=50,
topic_relevant_ratio=0.4
)
progress(0.35, desc="Preparing context...")
yield "Preparing context for analysis..."
context = vs.format_context_for_llm(context_chunks) if context_chunks else ""
progress(0.5, desc="Building prompt...")
yield "Building analysis prompt..."
prompt_template = get_tone_check_prompt()
prompt = prompt_template.format(
user_script=user_script.strip(),
context=context
)
progress(0.7, desc="Analyzing tone (30-60 seconds)...")
yield "Analyzing script tone (this may take 30-60 seconds)..."
analysis = llm.generate(
prompt=prompt,
system_prompt=TONE_CHECK_SYSTEM_PROMPT,
temperature=0.3,
max_tokens=1500
)
progress(1.0, desc="Complete!")
yield analysis.strip()
except Exception as e:
yield f"**Error:** {str(e)}"
# =============================================================================
# GRADIO INTERFACE
# =============================================================================
def create_app():
"""Create and configure the Gradio application"""
with gr.Blocks(
title="NewPress AI - Johnny Harris Script Assistant"
) as app:
app.queue() # Enable queue before defining event handlers for progress to work
gr.Markdown("""
# NewPress AI
### Johnny Harris Script Assistant
Use Johnny's archive of hundreds of video transcripts to:
- **Search** if a topic has been covered before
- **Generate** scripts in Johnny's voice from your notes
""")
with gr.Tabs():
# =================================================================
# TAB 1: TOPIC SEARCH
# =================================================================
with gr.TabItem("Topic Search"):
gr.Markdown("""
### Has Johnny covered this topic?
Search the archive to see if a topic has been addressed in previous videos.
""")
with gr.Row():
with gr.Column(scale=3):
topic_input = gr.Textbox(
label="Topic or Question",
placeholder="e.g., Why do borders exist? or US immigration policy",
lines=2
)
with gr.Column(scale=1):
search_btn = gr.Button("Search", variant="primary", size="lg")
search_output = gr.Markdown(label="Search Results", value="Search results will appear here...")
search_btn.click(
fn=search_topics,
inputs=[topic_input],
outputs=[search_output],
show_progress="full"
)
topic_input.submit(
fn=search_topics,
inputs=[topic_input],
outputs=[search_output],
show_progress="full"
)
# =================================================================
# TAB 2: TONE CHECKER
# =================================================================
with gr.TabItem("Tone Checker"):
gr.Markdown("""
### Check if your script matches Johnny's voice
Paste your script below to analyze how well it matches Johnny Harris's
signature style. Get a score and specific feedback on what works and what to improve.
""")
with gr.Row():
with gr.Column():
script_input = gr.Textbox(
label="Your Script",
placeholder="""Paste your script here...
Example:
There's this line on the map that most people have never heard of.
It's called the Durand Line, and it cuts right through the middle of a people
who have lived in these mountains for thousands of years.
The thing is, this line wasn't drawn by the people who live here...""",
lines=15
)
check_btn = gr.Button("Check Tone", variant="primary", size="lg")
tone_output = gr.Markdown(label="Tone Analysis", value="Tone analysis will appear here...")
check_btn.click(
fn=check_script_tone,
inputs=[script_input],
outputs=[tone_output],
show_progress="full"
)
script_input.submit(
fn=check_script_tone,
inputs=[script_input],
outputs=[tone_output],
show_progress="full"
)
gr.Markdown("""
---
*Powered by Johnny Harris's transcript archive, Jina AI embeddings, and Qwen-2.5-72B*
""")
return app
# =============================================================================
# MAIN
# =============================================================================
# Create app at module level for `gradio app.py` CLI compatibility
demo = create_app()
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|