Spaces:
Running
Running
File size: 17,098 Bytes
1e2d815 9384880 1e2d815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
"""Supabase PGVector connection for Johnny Harris transcript embeddings"""
import os
import random
from typing import List, Dict, Any, Optional
from supabase import create_client, Client
import requests
class TranscriptChunk:
"""Represents a transcript chunk from the database"""
def __init__(self, chunk_text: str, metadata: dict):
self.chunk_text = chunk_text
self.metadata = metadata
@property
def video_id(self) -> str:
return self.metadata.get('video_id', '')
@property
def video_url(self) -> str:
return self.metadata.get('video_url', '')
@property
def title(self) -> str:
return self.metadata.get('title', '')
@property
def chunk_index(self) -> int:
return self.metadata.get('chunk_index', 0)
@property
def total_chunks(self) -> int:
return self.metadata.get('total_chunks', 0)
@property
def similarity(self) -> float:
return self.metadata.get('similarity', 0.0)
class TranscriptVectorStore:
"""Manages connection to Supabase PGVector database with Johnny Harris transcript embeddings"""
def __init__(
self,
supabase_url: Optional[str] = None,
supabase_key: Optional[str] = None,
jina_api_key: Optional[str] = None,
embedding_model: str = "jina-embeddings-v3"
):
"""
Initialize the vector store connection
Args:
supabase_url: Supabase project URL (defaults to SUPABASE_URL env var)
supabase_key: Supabase anon key (defaults to SUPABASE_KEY env var)
jina_api_key: Jina AI API key (defaults to JINA_API_KEY env var)
embedding_model: Embedding model to use (default: jina-embeddings-v3)
"""
self.supabase_url = supabase_url or os.getenv("SUPABASE_URL")
self.supabase_key = supabase_key or os.getenv("SUPABASE_KEY")
self.jina_api_key = jina_api_key or os.getenv("JINA_API_KEY")
self.embedding_model = embedding_model
if not self.supabase_url or not self.supabase_key:
raise ValueError("SUPABASE_URL and SUPABASE_KEY environment variables must be set")
if not self.jina_api_key:
raise ValueError("JINA_API_KEY environment variable must be set")
# Initialize Supabase client
self.supabase: Client = create_client(self.supabase_url, self.supabase_key)
def _generate_embedding(self, text: str, task: str = "retrieval.query") -> List[float]:
"""
Generate embedding for text using Jina AI API
Args:
text: Text to embed
task: Task type - 'retrieval.query' for queries, 'retrieval.passage' for documents
Returns:
List of floats representing the embedding vector (1024 dimensions)
"""
try:
api_url = "https://api.jina.ai/v1/embeddings"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.jina_api_key}"
}
payload = {
"model": self.embedding_model,
"task": task,
"input": [text]
}
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
if response.status_code != 200:
raise Exception(f"Jina API returned status {response.status_code}: {response.text}")
result = response.json()
if isinstance(result, dict) and 'data' in result:
return result['data'][0]['embedding']
raise Exception("Unexpected response format from Jina API")
except Exception as e:
raise Exception(f"Error generating embedding: {str(e)}")
def similarity_search(
self,
query: str,
k: int = 10,
match_threshold: float = 0.7
) -> List[TranscriptChunk]:
"""
Perform similarity search on the transcript database (Tab 1: Topic Search)
Args:
query: Search query
k: Number of results to return
match_threshold: Minimum similarity threshold (0.0 to 1.0)
Returns:
List of TranscriptChunk objects with relevant transcript chunks
"""
query_embedding = self._generate_embedding(query, task="retrieval.query")
try:
response = self.supabase.rpc(
'match_transcripts',
{
'query_embedding': query_embedding,
'match_threshold': match_threshold,
'match_count': k
}
).execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': item.get('similarity', 0.0)
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error performing similarity search: {str(e)}")
def tiered_similarity_search(
self,
query: str,
direct_threshold: float = 0.6,
related_threshold: float = 0.3,
max_per_tier: int = 10
) -> tuple:
"""
Search with tiered results: direct matches and related content.
Args:
query: Search query
direct_threshold: Minimum similarity for direct matches (default 0.6)
related_threshold: Minimum similarity for related content (default 0.3)
max_per_tier: Maximum results per tier
Returns:
Tuple of (direct_matches, related_content) - two separate lists
"""
query_embedding = self._generate_embedding(query, task="retrieval.query")
try:
# Get all results above the related threshold
response = self.supabase.rpc(
'match_transcripts',
{
'query_embedding': query_embedding,
'match_threshold': related_threshold,
'match_count': max_per_tier * 3 # Get more to filter
}
).execute()
direct_matches = []
related_content = []
seen_videos = set()
for item in response.data:
similarity = item.get('similarity', 0.0)
video_id = item.get('video_id')
# Deduplicate by video (keep highest similarity per video)
if video_id in seen_videos:
continue
seen_videos.add(video_id)
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': video_id,
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': similarity
}
)
if similarity >= direct_threshold:
if len(direct_matches) < max_per_tier:
direct_matches.append(chunk)
elif similarity >= related_threshold:
if len(related_content) < max_per_tier:
related_content.append(chunk)
return (direct_matches, related_content)
except Exception as e:
raise Exception(f"Error performing tiered search: {str(e)}")
def get_video_chunks(self, video_id: str) -> List[TranscriptChunk]:
"""
Fetch all chunks for a specific video
Args:
video_id: YouTube video ID
Returns:
List of TranscriptChunk objects ordered by chunk_index
"""
try:
response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.eq('video_id', video_id) \
.order('chunk_index') \
.execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 1.0
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error fetching video chunks: {str(e)}")
def get_random_diverse_chunks(self, n: int = 50) -> List[TranscriptChunk]:
"""
Fetch random chunks from different videos for style variety
Args:
n: Number of random chunks to fetch
Returns:
List of TranscriptChunk objects from diverse videos
"""
try:
# Get all unique video IDs first
response = self.supabase.from_('johnny_transcripts') \
.select('video_id') \
.execute()
video_ids = list(set(item['video_id'] for item in response.data if item.get('video_id')))
if not video_ids:
return []
# Sample from different videos to ensure diversity
chunks = []
chunks_per_video = max(1, n // len(video_ids)) if video_ids else n
# Shuffle video IDs for randomness
random.shuffle(video_ids)
for video_id in video_ids[:min(len(video_ids), n)]:
try:
# Get random chunks from this video
video_response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.eq('video_id', video_id) \
.limit(chunks_per_video) \
.execute()
for item in video_response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 0.0 # Random selection, no similarity score
}
)
chunks.append(chunk)
if len(chunks) >= n:
break
except Exception:
continue
return chunks[:n]
except Exception as e:
raise Exception(f"Error fetching random chunks: {str(e)}")
def get_bulk_style_context(
self,
topic_query: str,
max_chunks: int = 100,
topic_relevant_ratio: float = 0.3
) -> List[TranscriptChunk]:
"""
Retrieve maximum context from knowledge base for script generation (Tab 2)
This method combines:
1. Topic-relevant chunks (found via similarity search)
2. Diverse random samples from across the archive
The entire knowledge base serves as the style reference.
Args:
topic_query: User's topic/bullet points to find relevant content
max_chunks: Maximum number of chunks to retrieve
topic_relevant_ratio: Ratio of chunks that should be topic-relevant (0.0 to 1.0)
Returns:
List of TranscriptChunk objects (topic-relevant + diverse samples)
"""
topic_relevant_count = int(max_chunks * topic_relevant_ratio)
diverse_count = max_chunks - topic_relevant_count
# Get topic-relevant chunks
topic_chunks = self.similarity_search(
query=topic_query,
k=topic_relevant_count,
match_threshold=0.3 # Lower threshold to get more results
)
# Get diverse random chunks for style variety
diverse_chunks = self.get_random_diverse_chunks(n=diverse_count)
# Combine and deduplicate by video_id + chunk_index
seen = set()
combined = []
for chunk in topic_chunks + diverse_chunks:
key = (chunk.video_id, chunk.chunk_index)
if key not in seen:
seen.add(key)
combined.append(chunk)
return combined[:max_chunks]
def get_all_chunks(self, limit: int = 500) -> List[TranscriptChunk]:
"""
Fetch all chunks from the database (up to limit)
Args:
limit: Maximum number of chunks to fetch
Returns:
List of TranscriptChunk objects
"""
try:
response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.limit(limit) \
.execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 0.0
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error fetching all chunks: {str(e)}")
def format_results_for_display(self, chunks: List[TranscriptChunk]) -> str:
"""
Format search results for Tab 1 display
Args:
chunks: List of TranscriptChunk objects
Returns:
Formatted markdown string for display
"""
if not chunks:
return "No matching content found."
# Group by video
videos = {}
for chunk in chunks:
video_id = chunk.video_id
if video_id not in videos:
videos[video_id] = {
'title': chunk.title,
'url': chunk.video_url,
'chunks': [],
'max_similarity': 0.0
}
videos[video_id]['chunks'].append(chunk)
videos[video_id]['max_similarity'] = max(
videos[video_id]['max_similarity'],
chunk.similarity
)
# Sort by max similarity
sorted_videos = sorted(
videos.items(),
key=lambda x: x[1]['max_similarity'],
reverse=True
)
# Format output
output = []
for video_id, data in sorted_videos:
similarity_pct = int(data['max_similarity'] * 100)
output.append(f"### [{data['title']}]({data['url']})")
output.append(f"**Relevance:** {similarity_pct}%\n")
# Show top excerpt
top_chunk = max(data['chunks'], key=lambda c: c.similarity)
excerpt = top_chunk.chunk_text[:500] + "..." if len(top_chunk.chunk_text) > 500 else top_chunk.chunk_text
output.append(f"> {excerpt}\n")
return "\n".join(output)
def format_context_for_llm(self, chunks: List[TranscriptChunk]) -> str:
"""
Format chunks as context for LLM script generation (Tab 2)
Args:
chunks: List of TranscriptChunk objects
Returns:
Formatted string with transcript excerpts for LLM context
"""
if not chunks:
return ""
formatted = []
for i, chunk in enumerate(chunks, 1):
formatted.append(f"[Excerpt {i} - {chunk.title}]\n{chunk.chunk_text}")
return "\n\n---\n\n".join(formatted)
def create_vectorstore() -> TranscriptVectorStore:
"""Factory function to create and return a configured vector store"""
return TranscriptVectorStore()
|