newpress-ai / src /vectorstore.py
Tom
feat: replace script generation with tone checker, improve archive search
9384880
"""Supabase PGVector connection for Johnny Harris transcript embeddings"""
import os
import random
from typing import List, Dict, Any, Optional
from supabase import create_client, Client
import requests
class TranscriptChunk:
"""Represents a transcript chunk from the database"""
def __init__(self, chunk_text: str, metadata: dict):
self.chunk_text = chunk_text
self.metadata = metadata
@property
def video_id(self) -> str:
return self.metadata.get('video_id', '')
@property
def video_url(self) -> str:
return self.metadata.get('video_url', '')
@property
def title(self) -> str:
return self.metadata.get('title', '')
@property
def chunk_index(self) -> int:
return self.metadata.get('chunk_index', 0)
@property
def total_chunks(self) -> int:
return self.metadata.get('total_chunks', 0)
@property
def similarity(self) -> float:
return self.metadata.get('similarity', 0.0)
class TranscriptVectorStore:
"""Manages connection to Supabase PGVector database with Johnny Harris transcript embeddings"""
def __init__(
self,
supabase_url: Optional[str] = None,
supabase_key: Optional[str] = None,
jina_api_key: Optional[str] = None,
embedding_model: str = "jina-embeddings-v3"
):
"""
Initialize the vector store connection
Args:
supabase_url: Supabase project URL (defaults to SUPABASE_URL env var)
supabase_key: Supabase anon key (defaults to SUPABASE_KEY env var)
jina_api_key: Jina AI API key (defaults to JINA_API_KEY env var)
embedding_model: Embedding model to use (default: jina-embeddings-v3)
"""
self.supabase_url = supabase_url or os.getenv("SUPABASE_URL")
self.supabase_key = supabase_key or os.getenv("SUPABASE_KEY")
self.jina_api_key = jina_api_key or os.getenv("JINA_API_KEY")
self.embedding_model = embedding_model
if not self.supabase_url or not self.supabase_key:
raise ValueError("SUPABASE_URL and SUPABASE_KEY environment variables must be set")
if not self.jina_api_key:
raise ValueError("JINA_API_KEY environment variable must be set")
# Initialize Supabase client
self.supabase: Client = create_client(self.supabase_url, self.supabase_key)
def _generate_embedding(self, text: str, task: str = "retrieval.query") -> List[float]:
"""
Generate embedding for text using Jina AI API
Args:
text: Text to embed
task: Task type - 'retrieval.query' for queries, 'retrieval.passage' for documents
Returns:
List of floats representing the embedding vector (1024 dimensions)
"""
try:
api_url = "https://api.jina.ai/v1/embeddings"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.jina_api_key}"
}
payload = {
"model": self.embedding_model,
"task": task,
"input": [text]
}
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
if response.status_code != 200:
raise Exception(f"Jina API returned status {response.status_code}: {response.text}")
result = response.json()
if isinstance(result, dict) and 'data' in result:
return result['data'][0]['embedding']
raise Exception("Unexpected response format from Jina API")
except Exception as e:
raise Exception(f"Error generating embedding: {str(e)}")
def similarity_search(
self,
query: str,
k: int = 10,
match_threshold: float = 0.7
) -> List[TranscriptChunk]:
"""
Perform similarity search on the transcript database (Tab 1: Topic Search)
Args:
query: Search query
k: Number of results to return
match_threshold: Minimum similarity threshold (0.0 to 1.0)
Returns:
List of TranscriptChunk objects with relevant transcript chunks
"""
query_embedding = self._generate_embedding(query, task="retrieval.query")
try:
response = self.supabase.rpc(
'match_transcripts',
{
'query_embedding': query_embedding,
'match_threshold': match_threshold,
'match_count': k
}
).execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': item.get('similarity', 0.0)
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error performing similarity search: {str(e)}")
def tiered_similarity_search(
self,
query: str,
direct_threshold: float = 0.6,
related_threshold: float = 0.3,
max_per_tier: int = 10
) -> tuple:
"""
Search with tiered results: direct matches and related content.
Args:
query: Search query
direct_threshold: Minimum similarity for direct matches (default 0.6)
related_threshold: Minimum similarity for related content (default 0.3)
max_per_tier: Maximum results per tier
Returns:
Tuple of (direct_matches, related_content) - two separate lists
"""
query_embedding = self._generate_embedding(query, task="retrieval.query")
try:
# Get all results above the related threshold
response = self.supabase.rpc(
'match_transcripts',
{
'query_embedding': query_embedding,
'match_threshold': related_threshold,
'match_count': max_per_tier * 3 # Get more to filter
}
).execute()
direct_matches = []
related_content = []
seen_videos = set()
for item in response.data:
similarity = item.get('similarity', 0.0)
video_id = item.get('video_id')
# Deduplicate by video (keep highest similarity per video)
if video_id in seen_videos:
continue
seen_videos.add(video_id)
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': video_id,
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': similarity
}
)
if similarity >= direct_threshold:
if len(direct_matches) < max_per_tier:
direct_matches.append(chunk)
elif similarity >= related_threshold:
if len(related_content) < max_per_tier:
related_content.append(chunk)
return (direct_matches, related_content)
except Exception as e:
raise Exception(f"Error performing tiered search: {str(e)}")
def get_video_chunks(self, video_id: str) -> List[TranscriptChunk]:
"""
Fetch all chunks for a specific video
Args:
video_id: YouTube video ID
Returns:
List of TranscriptChunk objects ordered by chunk_index
"""
try:
response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.eq('video_id', video_id) \
.order('chunk_index') \
.execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 1.0
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error fetching video chunks: {str(e)}")
def get_random_diverse_chunks(self, n: int = 50) -> List[TranscriptChunk]:
"""
Fetch random chunks from different videos for style variety
Args:
n: Number of random chunks to fetch
Returns:
List of TranscriptChunk objects from diverse videos
"""
try:
# Get all unique video IDs first
response = self.supabase.from_('johnny_transcripts') \
.select('video_id') \
.execute()
video_ids = list(set(item['video_id'] for item in response.data if item.get('video_id')))
if not video_ids:
return []
# Sample from different videos to ensure diversity
chunks = []
chunks_per_video = max(1, n // len(video_ids)) if video_ids else n
# Shuffle video IDs for randomness
random.shuffle(video_ids)
for video_id in video_ids[:min(len(video_ids), n)]:
try:
# Get random chunks from this video
video_response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.eq('video_id', video_id) \
.limit(chunks_per_video) \
.execute()
for item in video_response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 0.0 # Random selection, no similarity score
}
)
chunks.append(chunk)
if len(chunks) >= n:
break
except Exception:
continue
return chunks[:n]
except Exception as e:
raise Exception(f"Error fetching random chunks: {str(e)}")
def get_bulk_style_context(
self,
topic_query: str,
max_chunks: int = 100,
topic_relevant_ratio: float = 0.3
) -> List[TranscriptChunk]:
"""
Retrieve maximum context from knowledge base for script generation (Tab 2)
This method combines:
1. Topic-relevant chunks (found via similarity search)
2. Diverse random samples from across the archive
The entire knowledge base serves as the style reference.
Args:
topic_query: User's topic/bullet points to find relevant content
max_chunks: Maximum number of chunks to retrieve
topic_relevant_ratio: Ratio of chunks that should be topic-relevant (0.0 to 1.0)
Returns:
List of TranscriptChunk objects (topic-relevant + diverse samples)
"""
topic_relevant_count = int(max_chunks * topic_relevant_ratio)
diverse_count = max_chunks - topic_relevant_count
# Get topic-relevant chunks
topic_chunks = self.similarity_search(
query=topic_query,
k=topic_relevant_count,
match_threshold=0.3 # Lower threshold to get more results
)
# Get diverse random chunks for style variety
diverse_chunks = self.get_random_diverse_chunks(n=diverse_count)
# Combine and deduplicate by video_id + chunk_index
seen = set()
combined = []
for chunk in topic_chunks + diverse_chunks:
key = (chunk.video_id, chunk.chunk_index)
if key not in seen:
seen.add(key)
combined.append(chunk)
return combined[:max_chunks]
def get_all_chunks(self, limit: int = 500) -> List[TranscriptChunk]:
"""
Fetch all chunks from the database (up to limit)
Args:
limit: Maximum number of chunks to fetch
Returns:
List of TranscriptChunk objects
"""
try:
response = self.supabase.from_('johnny_transcripts') \
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
.limit(limit) \
.execute()
chunks = []
for item in response.data:
chunk = TranscriptChunk(
chunk_text=item.get('chunk_text') or '',
metadata={
'video_id': item.get('video_id'),
'video_url': item.get('video_url'),
'title': item.get('title', ''),
'chunk_index': item.get('chunk_index'),
'total_chunks': item.get('total_chunks'),
'similarity': 0.0
}
)
chunks.append(chunk)
return chunks
except Exception as e:
raise Exception(f"Error fetching all chunks: {str(e)}")
def format_results_for_display(self, chunks: List[TranscriptChunk]) -> str:
"""
Format search results for Tab 1 display
Args:
chunks: List of TranscriptChunk objects
Returns:
Formatted markdown string for display
"""
if not chunks:
return "No matching content found."
# Group by video
videos = {}
for chunk in chunks:
video_id = chunk.video_id
if video_id not in videos:
videos[video_id] = {
'title': chunk.title,
'url': chunk.video_url,
'chunks': [],
'max_similarity': 0.0
}
videos[video_id]['chunks'].append(chunk)
videos[video_id]['max_similarity'] = max(
videos[video_id]['max_similarity'],
chunk.similarity
)
# Sort by max similarity
sorted_videos = sorted(
videos.items(),
key=lambda x: x[1]['max_similarity'],
reverse=True
)
# Format output
output = []
for video_id, data in sorted_videos:
similarity_pct = int(data['max_similarity'] * 100)
output.append(f"### [{data['title']}]({data['url']})")
output.append(f"**Relevance:** {similarity_pct}%\n")
# Show top excerpt
top_chunk = max(data['chunks'], key=lambda c: c.similarity)
excerpt = top_chunk.chunk_text[:500] + "..." if len(top_chunk.chunk_text) > 500 else top_chunk.chunk_text
output.append(f"> {excerpt}\n")
return "\n".join(output)
def format_context_for_llm(self, chunks: List[TranscriptChunk]) -> str:
"""
Format chunks as context for LLM script generation (Tab 2)
Args:
chunks: List of TranscriptChunk objects
Returns:
Formatted string with transcript excerpts for LLM context
"""
if not chunks:
return ""
formatted = []
for i, chunk in enumerate(chunks, 1):
formatted.append(f"[Excerpt {i} - {chunk.title}]\n{chunk.chunk_text}")
return "\n\n---\n\n".join(formatted)
def create_vectorstore() -> TranscriptVectorStore:
"""Factory function to create and return a configured vector store"""
return TranscriptVectorStore()