DataEngEval / src /ragas_evaluator.py
uparekh01151's picture
Initial commit for DataEngEval
acd8e16
"""
RAGAS-based Evaluator
Uses RAGAS for comprehensive SQL evaluation metrics.
"""
import os
import time
import pandas as pd
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import duckdb
import sqlglot
from ragas import evaluate
from ragas.metrics import (
faithfulness,
answer_relevancy,
context_precision,
context_recall
)
from ragas.testset import TestsetGenerator
from datasets import Dataset
import numpy as np
# HuggingFace LLM for RAGAS
from ragas.llms import LangchainLLMWrapper
from langchain_huggingface import HuggingFacePipeline
from transformers import pipeline
@dataclass
class EvaluationResult:
"""Result of a single evaluation."""
model_name: str
dataset_name: str
dialect: str
case_id: str
question: str
reference_sql: str
generated_sql: str
correctness_exact: float
result_match_f1: float
exec_success: float
latency_ms: float
readability: float
dialect_ok: float
ragas_faithfulness: float
ragas_relevancy: float
ragas_precision: float
ragas_recall: float
composite_score: float
class RAGASEvaluator:
"""RAGAS-based evaluator for SQL generation."""
def __init__(self):
# Initialize HuggingFace LLM for RAGAS
self.hf_llm = None
self._setup_huggingface_llm()
self.ragas_metrics = [
faithfulness,
answer_relevancy,
context_precision,
context_recall
]
def _setup_huggingface_llm(self):
"""Setup HuggingFace LLM for RAGAS evaluation."""
try:
# Create a HuggingFace pipeline for evaluation
# Use a lightweight model for evaluation tasks
hf_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-small",
max_new_tokens=256,
temperature=0.1,
do_sample=True,
device=-1 # Use CPU for evaluation
)
# Wrap the pipeline in LangChain
langchain_llm = HuggingFacePipeline(pipeline=hf_pipeline)
# Wrap LangChain LLM for RAGAS
self.hf_llm = LangchainLLMWrapper(langchain_llm=langchain_llm)
print("✅ HuggingFace LLM configured for RAGAS evaluation")
except Exception as e:
print(f"⚠️ Could not setup HuggingFace LLM for RAGAS: {e}")
print(" RAGAS metrics will be skipped")
self.hf_llm = None
def evaluate_sql(
self,
model_name: str,
dataset_name: str,
dialect: str,
case_id: str,
question: str,
reference_sql: str,
generated_sql: str,
schema: str,
db_path: str
) -> EvaluationResult:
"""Evaluate a single SQL generation."""
start_time = time.time()
# Basic metrics
correctness_exact = self._calculate_exact_match(reference_sql, generated_sql)
result_match_f1 = self._calculate_result_match_f1(
reference_sql, generated_sql, db_path
)
exec_success = self._calculate_execution_success(generated_sql, db_path)
readability = self._calculate_readability(generated_sql)
dialect_ok = self._calculate_dialect_compliance(generated_sql, dialect)
# RAGAS metrics
ragas_metrics = self._calculate_ragas_metrics(
question, generated_sql, reference_sql, schema
)
latency_ms = (time.time() - start_time) * 1000
# Composite score
composite_score = self._calculate_composite_score(
correctness_exact, result_match_f1, exec_success,
latency_ms, readability, dialect_ok, ragas_metrics
)
return EvaluationResult(
model_name=model_name,
dataset_name=dataset_name,
dialect=dialect,
case_id=case_id,
question=question,
reference_sql=reference_sql,
generated_sql=generated_sql,
correctness_exact=correctness_exact,
result_match_f1=result_match_f1,
exec_success=exec_success,
latency_ms=latency_ms,
readability=readability,
dialect_ok=dialect_ok,
ragas_faithfulness=ragas_metrics.get('faithfulness', 0.0),
ragas_relevancy=ragas_metrics.get('answer_relevancy', 0.0),
ragas_precision=ragas_metrics.get('context_precision', 0.0),
ragas_recall=ragas_metrics.get('context_recall', 0.0),
composite_score=composite_score
)
def _calculate_exact_match(self, reference_sql: str, generated_sql: str) -> float:
"""Calculate exact match score."""
# Normalize SQL for comparison
try:
ref_normalized = sqlglot.parse_one(reference_sql).sql()
gen_normalized = sqlglot.parse_one(generated_sql).sql()
return 1.0 if ref_normalized.lower() == gen_normalized.lower() else 0.0
except:
return 0.0
def _calculate_result_match_f1(self, reference_sql: str, generated_sql: str, db_path: str) -> float:
"""Calculate F1 score based on query results."""
try:
# Execute both queries
ref_results = self._execute_sql(reference_sql, db_path)
gen_results = self._execute_sql(generated_sql, db_path)
if ref_results is None or gen_results is None:
return 0.0
# Convert to sets for comparison
ref_set = set(str(row) for row in ref_results)
gen_set = set(str(row) for row in gen_results)
if not ref_set and not gen_set:
return 1.0
if not ref_set or not gen_set:
return 0.0
# Calculate F1
intersection = len(ref_set & gen_set)
precision = intersection / len(gen_set) if gen_set else 0
recall = intersection / len(ref_set) if ref_set else 0
if precision + recall == 0:
return 0.0
return 2 * (precision * recall) / (precision + recall)
except Exception as e:
print(f"⚠️ Error calculating result match F1: {e}")
return 0.0
def _calculate_execution_success(self, sql: str, db_path: str) -> float:
"""Calculate execution success rate."""
try:
result = self._execute_sql(sql, db_path)
return 1.0 if result is not None else 0.0
except:
return 0.0
def _calculate_readability(self, sql: str) -> float:
"""Calculate SQL readability score."""
try:
# Simple readability metrics
lines = sql.strip().split('\n')
avg_line_length = sum(len(line) for line in lines) / len(lines)
# Penalize very long lines and very short queries
if avg_line_length > 100 or len(sql.strip()) < 20:
return 0.5
elif avg_line_length > 80:
return 0.7
else:
return 1.0
except:
return 0.5
def _calculate_dialect_compliance(self, sql: str, dialect: str) -> float:
"""Calculate dialect compliance score."""
try:
# Parse and transpile to check dialect compliance
parsed = sqlglot.parse_one(sql)
transpiled = parsed.sql(dialect=dialect)
# If transpilation succeeds without errors, it's compliant
return 1.0 if transpiled else 0.0
except:
return 0.0
def _calculate_ragas_metrics(
self,
question: str,
generated_sql: str,
reference_sql: str,
schema: str
) -> Dict[str, float]:
"""Calculate RAGAS metrics using HuggingFace models."""
try:
# Check if HuggingFace LLM is available
if self.hf_llm is None:
print("⚠️ No HuggingFace LLM configured - skipping RAGAS metrics")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
# Check if OpenAI API key is available (still required by RAGAS)
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ No OpenAI API key found - RAGAS still requires it for internal operations")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
# Create dataset for RAGAS evaluation
dataset = Dataset.from_dict({
"question": [question],
"answer": [generated_sql],
"contexts": [[schema]],
"ground_truth": [reference_sql]
})
# Configure metrics to use HuggingFace LLM
# Create new metric instances with the HuggingFace LLM
metrics_with_hf = []
for metric in self.ragas_metrics:
# Create a new instance of the metric with the HuggingFace LLM
if hasattr(metric, '__class__'):
new_metric = metric.__class__()
if hasattr(new_metric, 'llm'):
new_metric.llm = self.hf_llm
metrics_with_hf.append(new_metric)
else:
metrics_with_hf.append(metric)
# Evaluate with RAGAS using HuggingFace LLM
result = evaluate(
dataset,
metrics=metrics_with_hf
)
return {
'faithfulness': result['faithfulness'][0] if 'faithfulness' in result else 0.0,
'answer_relevancy': result['answer_relevancy'][0] if 'answer_relevancy' in result else 0.0,
'context_precision': result['context_precision'][0] if 'context_precision' in result else 0.0,
'context_recall': result['context_recall'][0] if 'context_recall' in result else 0.0
}
except Exception as e:
print(f"⚠️ Error calculating RAGAS metrics with HuggingFace: {e}")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
def _execute_sql(self, sql: str, db_path: str) -> Optional[List]:
"""Execute SQL query and return results."""
try:
conn = duckdb.connect(db_path)
result = conn.execute(sql).fetchall()
conn.close()
return result
except Exception as e:
print(f"⚠️ SQL execution error: {e}")
return None
def _calculate_composite_score(
self,
correctness_exact: float,
result_match_f1: float,
exec_success: float,
latency_ms: float,
readability: float,
dialect_ok: float,
ragas_metrics: Dict[str, float]
) -> float:
"""Calculate composite score with RAGAS metrics."""
# Weights for different metrics
weights = {
'correctness_exact': 0.25,
'result_match_f1': 0.20,
'exec_success': 0.15,
'latency': 0.10,
'readability': 0.05,
'dialect_ok': 0.05,
'ragas_faithfulness': 0.10,
'ragas_relevancy': 0.10
}
# Normalize latency (lower is better)
latency_score = max(0, 1 - (latency_ms / 5000)) # 5 second max
# Calculate weighted score
score = (
weights['correctness_exact'] * correctness_exact +
weights['result_match_f1'] * result_match_f1 +
weights['exec_success'] * exec_success +
weights['latency'] * latency_score +
weights['readability'] * readability +
weights['dialect_ok'] * dialect_ok +
weights['ragas_faithfulness'] * ragas_metrics.get('faithfulness', 0.0) +
weights['ragas_relevancy'] * ragas_metrics.get('answer_relevancy', 0.0)
)
return min(1.0, max(0.0, score))
def evaluate_batch(
self,
evaluations: List[Dict[str, Any]]
) -> List[EvaluationResult]:
"""Evaluate a batch of SQL generations."""
results = []
for eval_data in evaluations:
result = self.evaluate_sql(
model_name=eval_data['model_name'],
dataset_name=eval_data['dataset_name'],
dialect=eval_data['dialect'],
case_id=eval_data['case_id'],
question=eval_data['question'],
reference_sql=eval_data['reference_sql'],
generated_sql=eval_data['generated_sql'],
schema=eval_data['schema'],
db_path=eval_data['db_path']
)
results.append(result)
return results
def save_results(self, results: List[EvaluationResult], filepath: str):
"""Save evaluation results to file."""
data = []
for result in results:
data.append({
'model_name': result.model_name,
'dataset_name': result.dataset_name,
'dialect': result.dialect,
'case_id': result.case_id,
'question': result.question,
'reference_sql': result.reference_sql,
'generated_sql': result.generated_sql,
'correctness_exact': result.correctness_exact,
'result_match_f1': result.result_match_f1,
'exec_success': result.exec_success,
'latency_ms': result.latency_ms,
'readability': result.readability,
'dialect_ok': result.dialect_ok,
'ragas_faithfulness': result.ragas_faithfulness,
'ragas_relevancy': result.ragas_relevancy,
'ragas_precision': result.ragas_precision,
'ragas_recall': result.ragas_recall,
'composite_score': result.composite_score
})
df = pd.DataFrame(data)
df.to_parquet(filepath, index=False)
print(f"💾 Results saved to {filepath}")
# Global instance
ragas_evaluator = RAGASEvaluator()