SmartVision_AI / scripts /04_validation and cleaning.py
yogesh-venkat's picture
Auto-deploy from GitHub Actions
08d66df verified
raw
history blame
11.5 kB
"""
YOLO Dataset Validation & Cleaning Script
==========================================
This script will:
1. Validate all YOLO label files
2. Fix out-of-bounds coordinates (clip to [0,1])
3. Remove invalid/empty annotations
4. Generate a detailed report
5. Create backups before making changes
6. Clear corrupted cache files
"""
import os
import glob
import shutil
import json
from datetime import datetime
from pathlib import Path
class YOLODatasetCleaner:
def __init__(self, dataset_dir):
self.dataset_dir = dataset_dir
self.detection_dir = os.path.join(dataset_dir, "detection")
self.labels_dir = os.path.join(self.detection_dir, "labels")
self.images_dir = os.path.join(self.detection_dir, "images")
self.backup_dir = os.path.join(dataset_dir, f"backup_{datetime.now().strftime('%Y%m%d_%H%M%S')}")
self.stats = {
'total_files': 0,
'corrupt_files': 0,
'fixed_files': 0,
'removed_files': 0,
'empty_files': 0,
'splits': {'train': {}, 'val': {}, 'test': {}}
}
def create_backup(self):
"""Create backup of labels directory"""
print("\n" + "="*60)
print("πŸ“¦ CREATING BACKUP")
print("="*60)
if os.path.exists(self.backup_dir):
print(f"⚠️ Backup directory already exists: {self.backup_dir}")
return False
try:
shutil.copytree(self.labels_dir, os.path.join(self.backup_dir, "labels"))
print(f"βœ… Backup created at: {self.backup_dir}")
return True
except Exception as e:
print(f"❌ Backup failed: {e}")
return False
def validate_label_line(self, line):
"""Validate a single label line and return fixed version if needed"""
parts = line.strip().split()
# Need at least 5 values: class_id x_center y_center width height
if len(parts) < 5:
return None, "insufficient_values"
try:
class_id = int(parts[0])
coords = [float(x) for x in parts[1:5]]
# Check if coordinates are out of bounds
issues = []
if any(c < 0 for c in coords):
issues.append("negative_coords")
if any(c > 1 for c in coords):
issues.append("out_of_bounds")
# Check for invalid dimensions (width/height must be > 0)
if coords[2] <= 0 or coords[3] <= 0:
issues.append("invalid_dimensions")
# Clip coordinates to [0, 1]
fixed_coords = [max(0.0, min(1.0, c)) for c in coords]
# Keep width and height positive
if fixed_coords[2] <= 0:
fixed_coords[2] = 0.01
if fixed_coords[3] <= 0:
fixed_coords[3] = 0.01
fixed_line = f"{class_id} {' '.join(f'{c:.6f}' for c in fixed_coords)}\n"
return fixed_line, issues if issues else None
except (ValueError, IndexError) as e:
return None, f"parse_error: {e}"
def clean_label_file(self, label_path):
"""Clean a single label file"""
try:
with open(label_path, 'r') as f:
lines = f.readlines()
if not lines:
return {'status': 'empty', 'issues': ['empty_file']}
fixed_lines = []
all_issues = []
for line_num, line in enumerate(lines, 1):
if not line.strip():
continue
fixed_line, issues = self.validate_label_line(line)
if fixed_line is None:
all_issues.append(f"line_{line_num}: {issues}")
else:
fixed_lines.append(fixed_line)
if issues:
all_issues.extend([f"line_{line_num}: {issue}" for issue in issues])
if not fixed_lines:
return {'status': 'all_invalid', 'issues': all_issues}
# Write back fixed labels
with open(label_path, 'w') as f:
f.writelines(fixed_lines)
if all_issues:
return {'status': 'fixed', 'issues': all_issues, 'lines_kept': len(fixed_lines)}
else:
return {'status': 'valid', 'issues': [], 'lines_kept': len(fixed_lines)}
except Exception as e:
return {'status': 'error', 'issues': [str(e)]}
def process_split(self, split_name):
"""Process all label files in a split (train/val/test)"""
print(f"\nπŸ“‚ Processing {split_name.upper()} split...")
label_path = os.path.join(self.labels_dir, split_name)
image_path = os.path.join(self.images_dir, split_name)
if not os.path.exists(label_path):
print(f"⚠️ Labels directory not found: {label_path}")
return
label_files = glob.glob(os.path.join(label_path, "*.txt"))
split_stats = {
'total': len(label_files),
'valid': 0,
'fixed': 0,
'empty': 0,
'removed': 0,
'corrupt_files': []
}
for label_file in label_files:
self.stats['total_files'] += 1
result = self.clean_label_file(label_file)
if result['status'] == 'valid':
split_stats['valid'] += 1
elif result['status'] == 'fixed':
split_stats['fixed'] += 1
self.stats['fixed_files'] += 1
split_stats['corrupt_files'].append({
'file': os.path.basename(label_file),
'issues': result['issues']
})
elif result['status'] in ['empty', 'all_invalid']:
split_stats['empty'] += 1
self.stats['empty_files'] += 1
split_stats['corrupt_files'].append({
'file': os.path.basename(label_file),
'issues': result['issues']
})
# Remove empty/invalid label files and corresponding images
img_file = label_file.replace(label_path, image_path).replace('.txt', '.jpg')
try:
os.remove(label_file)
if os.path.exists(img_file):
os.remove(img_file)
split_stats['removed'] += 1
self.stats['removed_files'] += 1
print(f" πŸ—‘οΈ Removed: {os.path.basename(label_file)}")
except Exception as e:
print(f" ❌ Could not remove {os.path.basename(label_file)}: {e}")
self.stats['splits'][split_name] = split_stats
print(f" βœ… Valid: {split_stats['valid']}")
print(f" πŸ”§ Fixed: {split_stats['fixed']}")
print(f" πŸ—‘οΈ Removed: {split_stats['removed']}")
def clear_cache_files(self):
"""Remove YOLO cache files"""
print("\n" + "="*60)
print("🧹 CLEARING CACHE FILES")
print("="*60)
cache_files = glob.glob(os.path.join(self.labels_dir, "**/*.cache"), recursive=True)
for cache_file in cache_files:
try:
os.remove(cache_file)
print(f" βœ… Removed: {cache_file}")
except Exception as e:
print(f" ❌ Could not remove {cache_file}: {e}")
print(f"βœ… Removed {len(cache_files)} cache files")
def generate_report(self):
"""Generate detailed cleaning report"""
print("\n" + "="*60)
print("πŸ“Š CLEANING REPORT")
print("="*60)
print(f"\nπŸ“ˆ Overall Statistics:")
print(f" Total files processed: {self.stats['total_files']}")
print(f" Files fixed: {self.stats['fixed_files']}")
print(f" Files removed: {self.stats['removed_files']}")
print(f" Empty files: {self.stats['empty_files']}")
print(f"\nπŸ“Š Per-Split Statistics:")
for split, data in self.stats['splits'].items():
if data:
print(f"\n {split.upper()}:")
print(f" Total: {data['total']}")
print(f" Valid: {data['valid']}")
print(f" Fixed: {data['fixed']}")
print(f" Removed: {data['removed']}")
# Save detailed report to JSON
report_path = os.path.join(self.dataset_dir, f"cleaning_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json")
with open(report_path, 'w') as f:
json.dump(self.stats, f, indent=2)
print(f"\nπŸ’Ύ Detailed report saved to: {report_path}")
def verify_dataset(self):
"""Verify dataset after cleaning"""
print("\n" + "="*60)
print("βœ… VERIFICATION")
print("="*60)
for split in ['train', 'val', 'test']:
label_path = os.path.join(self.labels_dir, split)
image_path = os.path.join(self.images_dir, split)
label_files = glob.glob(os.path.join(label_path, "*.txt"))
image_files = glob.glob(os.path.join(image_path, "*.jpg"))
print(f"\n{split.upper()}:")
print(f" Images: {len(image_files)}")
print(f" Labels: {len(label_files)}")
if len(image_files) != len(label_files):
print(f" ⚠️ WARNING: Image/Label count mismatch!")
def run(self):
"""Run the complete cleaning pipeline"""
print("\n" + "="*60)
print("πŸš€ YOLO DATASET CLEANER")
print("="*60)
print(f"Dataset directory: {self.dataset_dir}")
# Step 1: Create backup
if not self.create_backup():
response = input("\n⚠️ Proceed without backup? (yes/no): ")
if response.lower() != 'yes':
print("❌ Cleaning cancelled.")
return
# Step 2: Process each split
print("\n" + "="*60)
print("πŸ”§ CLEANING LABELS")
print("="*60)
for split in ['train', 'val', 'test']:
self.process_split(split)
# Step 3: Clear cache
self.clear_cache_files()
# Step 4: Generate report
self.generate_report()
# Step 5: Verify
self.verify_dataset()
print("\n" + "="*60)
print("βœ… CLEANING COMPLETE!")
print("="*60)
print("\n🎯 Next Steps:")
print(" 1. Review the cleaning report")
print(" 2. Delete old training runs: rm -rf yolo_runs/smartvision_yolov8s*")
print(" 3. Retrain your model: python scripts/train_yolo_smartvision.py")
print(f"\nπŸ’Ύ Backup location: {self.backup_dir}")
print(" (You can restore from backup if needed)")
if __name__ == "__main__":
# Configuration
DATASET_DIR = "smartvision_dataset"
# Run the cleaner
cleaner = YOLODatasetCleaner(DATASET_DIR)
cleaner.run()